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ABSTRACT

Distributed Open-Domain Answer Sentence Selection by Federated Learning

by

Weikuan Wang

Natural Language Processing (NLP) has achieved huge success, largely attributed to

the use of large pre-trained language models. Open-Domain Question Answering (OD-

QA), a task of significant importance within the industry, has also experienced substantial

advancements through the application of these large-scale pre-training models. A spe-

cialized subset of Open-Domain Question Answering, Open-Domain Answer Sentence

Selection (OD-AS2), seeks to provide an answer to a query from a sentence within a

document collection. An excellent application of this technology is the deployment of

OD-AS2 models on edge devices such as computers and smartphones, thereby creating

a personalized, intelligent question-answering assistant derived from a user’s personal

documents.

Recently, Dense Retrieval has garnered interest from both academic and industrial

society as a novel approach to OD-QA/OD-AS2. The Dense Retrieval models play an in-

dispensable role by striking a balance between efficiency and performance across various

solution paradigms. However, their effectiveness largely depends on the availability of

ample labeled positive QA pairs and a diverse range of hard negative samples in training.

Fulfilling these requirements is challenging in a privacy-preserving distributed scenario,

where each client possesses fewer in-domain pairs and a relatively small collection, un-

suitable for effective Dense Retrieval training.

To address this issue, we introduce a new deep-learning framework for Privacy-preserving

Distributed OD-AS2, dubbed as PDD-AS2. Drawing upon the principles of Federated

Learning, this framework incorporates a client-customized query encoding method for

personalization and a cross-client negative sampling method to enhance learning effec-



tiveness called Fed-Negative. To assess our learning framework, we initially construct a

novel OD-AS2 dataset, termed Fed-NewsQA, utilizing NewsQA as the base to simulate

distributed clients with varying genre/domain data. Experimental results indicate that our

learning framework outperforms baseline models and demonstrates impressive personal-

ization capabilities.

Dissertation directed by A/Prof. Guodong Long, Dr. Tao Shen and Dr. Jing Jiang

Australian Artificial Intelligence Institute

Faculty of Engineering and IT

University of Technology Sydney
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Chapter 1

Introduction

1.1 Background

The recent success of deep-learning [1] can be attributed primarily to two factors: the

rapid development of computational power, and the discovery and utilization of massive

amounts of data. Natural Language Processing, a field regarded as the jewel in the crown

of artificial intelligence, has also greatly benefited from the development of deep learn-

ing. In Natural Language Processing (NLP), tasks are complex due to the nuanced and

variable nature of human language, which involves diverse syntax, semantics, and con-

text. This complexity surpasses that of fields like computer vision and robotics, which

often deal with more structured and predictable data. They not only require the model to

have a certain level of knowledge about the real world, but also high-level demands on

the model’s advanced cognitive activities such as reasoning and induction. However, in

recent years, a number of deep learning models, such as BERT [2], have achieved, and

even surpassed, human-level performance in many tasks in Natural Language Processing.

Open-Domain Question Answering (OD-QA) [3–6] is widely studied in academia

and industry due to its extremely high commercial value. OD-QA is capable of answer-

ing user queries by searching millions of documents. Therefore, search engines utilize

such technologies to make their search results more intelligent. As shown in this image,

modern commercial search engines improve their search results through OD-QA. Com-

pared to normal search results, the OD-QA returned content is more intuitive and specific,

eliminating the need for users to click into web pages to find answers themselves. Ad-

ditionally, some mobile or computer operating systems also carry such technologies to
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help users intelligently search the documents stored on their devices. Typically, the task

form varies slightly depending on the granularity of the answer. Some tasks only require

returning the article where the answer is located, while others require accurately returning

the phrase or word that constitutes the answer. Open-Domain Answer Sentence Selec-

tion(OD-AS2) [7–11], as a subtask of OD-QA, has achieved a balance in task granularity

and answer accuracy by responding in the form of the sentence where the answer is lo-

cated. Therefore, this subtask has also attracted much attention in the industry. This thesis

will focus on answer sentence selection. In traditional OD-QA [12–14] methods, a con-

Figure 1.1 : Comparison between modern commercial search engines using OD-QA tech-

nology and traditional search engines. Modern search engines (left) return direct answers,

while traditional search engines (right) provide only related page links.

text retriever is responsible for extracting documents related to the question from a lot of

documents. During this process, some traditional encoding methods, such as BM25 [15]

and TF-IDF [16], are used to encode the documents. After document encoding, an answer

retriever is responsible for extracting answers from these documents. Typically, Named

Entity Recognition(NER) [17, 18] plays a very important role in this phase.
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With the surgiing of pre-trained language models [19, 20], OD-QA has benefited

greatly. Initially, a two-stage model framework was proposed for OD-QA. This frame-

work achieves tasks through the collaboration of a reader model and a retriever model.

In the retriever-reader framework, retriever can be used for screening documents related

to the question from a large number of documents, and the reader is responsible for ex-

tracting answers from these documents. The early retriever-reader [21] framework still

used sparse encoding, such as TF-IDF and BM25, to retrieve articles. Subsequently,

some work [22, 23] switched to using pre-trained models to obtain dense encodings of

documents to improve model performance. The reader part usually uses pre-trained lan-

guage models, in the form of a Machine Reading Comprehension(MRC) model [24–28],

to extract possible answers from these articles separately. Although this framework does

indeed make significant progress in accuracy and other performance metrics compared to

traditional methods, it is not feasible in practice due to its large overhead (each question

requires the model to encode all documents in real-time).

Dense Retrieval [5,29,30], recently proposed as a task paradigm for solving OD-QA,

has received extensive research from both the industry and academia. This framework

reaches a balance between model performance and operational efficiency. In Dense Re-

trieval, the model pre-process the documents into candidate answers, then encodes and

stores them. In inference, the framework only needs to encode the question with little

latency and then search for answers from the encoded document embeddings through a

lightweight evaluation matrix [5, 30], such as cosine similarity. As a result, this method

significantly reduces the time required for inference. Dense Retrieval models have been

shown can quickly find answers with little latency from tens of millions documents. Since

the model requires both positive and negative samples to differentiate between correct and

incorrect answers, the correct samples are labeled by humans, while high-quality negative

samples are generally composed of the correct answers labeled for other queries or sen-

tences that are semantically similar but not the correct answer. Therefore, the quantity of



4

labeled data and the richness of the corpus are closely related to the success of Dense Re-

trieval. Some research [31, 32] shows that without enough training data, Dense Retrieval

models’ performance can drop by as much as 30%. This thesis will also investigate the

challenge of training Dense Retrieval models in data-scarce environments.

Federated learning [33,34] is a newly proposed distributed machine learning frame-

work with privacy preserving. In recent years, the total amount of data has experienced

exponential growth, and data security and privacy have become new focus issues. Many

countries have introduced specific data privacy protection laws to ensure that private data

is not leaked or exploited. However, the training of deep learning models inevitably re-

quires a large amount of data, and existing open-source datasets cannot meet the ever-

increasing data demand. Therefore, Federated Learning, which use a privacy-protecting

method to utilize private data owned by various companies or individuals has been pro-

posed.

In Federated Learning, there is a central server for coordinating training, and entities

with private data and participating in the training are called clients. During the training

process, the training data on the client will not be uploaded and stay locally on device.

The deep learning model will be trained locally, and only the model weights or training

gradients will be transmitted from each client to the central server and to other clients. The

process is illustrated in . Combining Federated Learning with natural language processing

is widely noticed not only in the industry but also in academia. Google [35] was the first

to apply Federated Learning on a large scale in the industry, using it to train input method

prediction models. Other applications [36–41] include word prediction, text classification,

named entity recognition, etc.

As a task with high industrial value, OD-QA can train an intelligent QA robot based

on documents owned by each user’s device. However, the amount of data on each user’s

device is usually too small to train deep learning models. Also, it is unacceptable to upload
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user’s private data out of the local device. Therefore, this thesis studies the combination

of Federated Learning and OD-QA, and uses the personal data on each client under the

premise of privacy protection to cooperate in training and enhance its performance.

Another issue with Federated Learning is personalization. In the vanilla Federated

Learning framework, all the models running on the clients share the same weights, while

the data distribution on these clients varies greatly. As a consequence, comparing with

using Federated Learning, training with only local data on some clients can yield better

results. Some studies [42, 43] have shown that clients with fewer local training sam-

ples benefit from Federated Learning, while clients with more samples actually suffer a

performance loss in federated learning. One solution is that, compared to using a uni-

fied global model on all clients, the model on each client should combine both the local

and global models to obtain a model suitable for its own data. There are also academic

efforts [44–47] exploring Personalized Federated Learning, which train Personalized Fed-

erated Learning models through fine-tuning on local training data, or via transfer learning

and knowledge distillation. This thesis also investigates the issue of Personalized Feder-

ated Learning in the context of OD-AS2.

Figure 1.2 : Classical Federated Learning architecture. The local model is uploaded to the

server to do the aggregation, and each client gets the aggregated model from the server.
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However, Federated Learning is not omnipotent, and its protection of privacy is not

guaranteed. Recently, there have been many works [48–51] dedicated to studying data

leakage issues in federated learning. Some of these studies have found that in some tasks

of natural language processing, even if Federated Learning is applied, any party involved

in the training can still reconstruct part of the training data from the training gradients.

However, research on privacy issues in federated learning primarily focuses on server-side

attacks to obtain model weights or intercepting the gradient updates transmitted between

the server and clients to inversely reconstruct the training data. These two attack methods

are effective against all federated learning systems because they all require a certain de-

gree of information transmission. Therefore, their research scope goes beyond this thesis.

In our proposed method, due to the presence of information exchange between clients,

which is not involved in traditional federated learning, and because we transmit document

embeddings in a manner different from most federated learning algorithms, we need to

investigate the new privacy issues introduced by our method.

1.2 Research Problems

As introduced in the previous chapters, how to train Open-Domain Answer sentence

selection (OD-AS2) in a distributed setting through privacy preserving is an urgent and

yet unresolved issue. Second, if Federated Learning is used to resolve the task of training

a distributed OD-AS2 framework, how to conduct effective personalized model training

in distributed OD-AS2 has not yet been solved. This thesis addresses these two main

problems, which cannot be addressed by the previous methods.

• Research Problem 1: Training OD-AS2 models on private data in a distributed

scenario: The usual practice is to train a local model using local training data. The

result of doing this is that the model performance would be very poor on clients

with scarce data. If all training data is centralized and trained on a central server, it
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would cause serious privacy leakage.

• Research Problem 2: Solve the limitations of single global model setting in the

distributed OD-AS2 scenario: In the context of OD-AS2 models acting as personal

intelligent QA assistants, it is necessary to conduct personalized training on local

data. Moreover, in distributed OD-AS2, clients with scant data would result in a

severe performance drop of the local model, while clients with a large amount of

data would not benefit from distributed training.

To address the aforementioned research problems, we will develop efficient algo-

rithms to train high-performance Personalized Distributed OD-AS2 tasks under the premise

of privacy preserving. Specifically, we break down this task into two core tasks.

• Task 1 (to Problem 1): Utilizing the private data on various clients, an OD-AS2

model is trained under the premise of privacy protection. Recent studies have used

Federated Learning to train models in natural language processing tasks that require

privacy protection. However, no work has yet been done on solving OD-AS2 in a

distributed scenario. As a task of great industrial value, it is necessary to study on

how to build a practical and high-performance distributed OD-AS2 framework.

• Task 2 (to Problem 2): Personalized distributed OD-AS2 model training. We

hope to achieve a balance between the unified global model and local models by

personalize global model in local dataset. This approach provide clients which

have large local dataset with better performance in distributed training. At the same

time, it can also enhance the performance of those clients’ models where the local

dataset is small or data distribution greatly deviates from other clients.

1.3 Major Contributions

The major contributions of this thesis are summarized below.
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• Contribution 1 (in Task 1):We proposed the distributed OD-AS2 scenario and

demonstrated its necessity and importance for research. We propose a Privacy-

preserving Distributed OD-AS2 method, dubbed PDD-AS2, this method combines

the vanilla FedAvg with the AS2 approach to address distributed OD-AS2 problem.

In this method, we utilizes training data on different clients while eliminating the

need to transfer the raw data between clients.

We further test our method on a new Federated OD-AS2 benchmark based on the

CNN News dataset. This benchmark simulates the differences in data distribu-

tion across various clients in federated learning based on the types of news. This

CNN dataset is widely used in various NLP benchmarks. The experiment demon-

strates that our method can greatly improve model’s performance on OD-AS2 un-

der distributed settings by leveraging training data on different clients in a privacy-

preserving way.

• Contribution 2 (in Task 2): We propose a personalization method applicable to

the distributed OD-AS2 scenario. This method is implemented after the traditional

stage of federated learning. In this method, we personalize a client-customized

query encoder for each client. This approach allows the query encoder to adapt to

each user’s different language habits and question styles while keeping the docu-

ment encoder unchanged, maintaining the model’s robustness in handling various

documents. However, this method does not address the decline in the quality of

negative samples and the resulting decrease in training effectiveness caused by the

scarcity of data. At the same time, we also propose a negative sampling method

called Fed-Negative. This method shares training data by transmitting context em-

beddings on other clients. Experiments show that our proposed method can greatly

enhance the our distributed OD-AS2 model.
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1.4 Thesis Organization

This thesis is organised as follows:

• Chapter 2: This chapter present a literature review of this thesis, including Open-

Domain Question Answering, Answer Sentence Selection, Federated Learning.

• Chapter 3: This chapter introduces a framework for solving the training of OD-AS2

in a distributed setting while preserving privacy (PDD-AS2) based on Federated

Learning. It also explores its performance, how its performance varies in scenarios

with scarce data, and other issues encountered during training. Finally, experiments

show that our method is better other comparison methods on the dataset.

• Chapter 4: This chapter presents a personalization training method for OD-AS2

cooperated with Federated learning. This approach optimizes for each client user’s

unique queries by fixing the context encoder and training the query encoder locally.

Moreover, we introduce Fed-Negative, a method to optimize personalization train-

ing in a Federated Learning scenario. This method boosts model performance by

swapping context embeddings between clients. In this chapter, we test our proposed

personalized method on benchmark dataset. The results show that our method can

further improve the performance of the OD-AS2 model in a distributed scenario.

In addition, in this chapter, we also investigate whether our proposed Fed-Negative

would cause privacy leakage when swapping context embeddings.

• Chapter 5: This chapter makes an conclusion of the thesis and discusses recom-

mendations for future work.
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Chapter 2

Literature Review

2.1 Open-Domain Question Answering

In this task, the model answers a given question using a collection of documents.

It does not require a specified context. In practice, the system first retrieves relevant

documents from a collection. The collection often consists of local documents or web

archives. Then, an answer is generated from relevant documents as a final answer. Gen-

erally speaking, most OD-QA methods can be divided into three classes: 1. Traditional

OD-QA methods, 2. Two-stage methods of Retriever-Reader, 3. Bi-encoder based Dense

Retrieval.

Traditional OD-QA methods. Traditional OD-QA system often consist of a multi-

stage method, i.e., query analysis, context retrieval, and answer retrieval [12–14].

In query analysis, a query is used to generate search queries. The search queries are

therefore facilitated in the following steps. First, some linguistic methods are used to

extract keywords from the query by using pos-tagging [17], stemming [17], and pars-

ing [52]. Afterward, the type of the query is classified by some pre-set types (e.g, when,

how).

In context retrieval, the system uses Information Retrieval(IR) methods to select rele-

vant contexts or passages from the document collections using search queries. Tf-idf [16]

and BM25 [15], which use probability to calculate the score between queries and docu-

ments, are two of the most successful methods in context retrieval.

In answer retrieval, the answer is extracted by using previously retrieved documents
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and processed search queries. Therefore, the performance of this stage is highly influ-

enced by the result of previous stages. Traditional OD-QA systems often use factoid

questions so that the answers are usually a special name-entity or text-span in the docu-

ments. Thus, these systems rely heavily on Named Entity Recognition (NER) methods

[17, 18]. In addition, web search engines are often used to validate the answer candidates

by a simple principle: a good query and answer pair can return many documents which

contain useful information or element about query and answer [12].

Retriever-Reader methods. In a Retriever-Reader system, the Retriever aims at re-

trieving query-related documents or contexts. The Reader aims to retrieve the answer to

the query from the previously retrieved documents or contexts. Retriever is usually an IR

model, and Reader model often has a form of MRC model. The early Retriever-Reader

methods employed traditional Information Retrieval (IR) techniques such as Tf-idf and

BM25 to search for relevant articles or content. DrQA [21] is the first method to integrate

traditional IR techniques with modern Neural Machine Reading Comprehension (MRC)

models. The similarity between documents and queries is calculated using Tf-idf.

[CLS] Query [SEP ] Context [SEP ], (2.1)

where [CLS] and [SEP ] are special tokens in BERT. Afterwards, they apply a dense

layer on the last layer output of [CLS] token. Therefore, the probability that context p is

a relevant document to query q can be denoted as:

P (q, p)positive = Softmax(logitpositive(h[CLS])), (2.2)

where logitpositive is the logit represents positive label in a binary classification net-

work, h[CLS] is the embedding of [CLS] token. Reader is the other core component

in a Retriever-Reader OD-QA system. Reader is usually implemented by a neural MRC

model. The goal of the Reader model is to find the answer of the query from documents.

Most of the Reader models are extractive reader, which aims at predicting the start in-

dex and end index of the answer in the given documents [24, 26–28, 53]. We show the
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formulation of answer extraction in below, given a query q and the previously retrieved

candidate passages pi, the inference procedure is described as :

Pstart,i(s) = Softmax(hpiWstart), (2.3)

Pend,i(t) = Softmax(hpiWend), (2.4)

Pselected,i = Softmax( ˆh[CLS]
T
Wselected), (2.5)

whereWstart,Wend,Wselected are learnable parameters, ˆh[CLS] is the set of the embedding

of [CLS] token for each pi. However, these methods usually yield tremendous compu-

tational costs. In real-world applications of OD-QA, the number of documents can be

millions or billions. Therefore, a more efficient method is needed for the implementation

of OD-QA methods.

Bi-encoder based Dense Retrieval Bi-encoder, also called dual-encoder or two-tower

encoder, is the architecture that employs two identical but independent encoders. These

encoders are usually called query encoders and context encoders, respectively. The query

and context are encoded separately by two encoders in this system. Then, the similarity

score is computed by some scoring metric (e.g., cosine similarity). ORQA [54] employs

a bi-encoder retriever with two independent BERT-based encoders. They represent query

and contexts by the logit of [CLS] token. Then, the similarity score is computed by their

embeddings. Given a query q and a context p, the relevance s(q, p) can be denoted as :

hq = Encq(q)[CLS], (2.6)

hp = Encp(p)[CLS], (2.7)

s(p, q) = hT
q hp, (2.8)

where Encq is the query encoder, Encp is the context encoder, respectively. DPR [26]

gets rid of the expensive pre-training stage by learning on paired queries and answers

sorely. With this aim, DPR proposes introducing negative samples from the whole doc-

uments corpus. They proposed several methods for sampling these negatives, including
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random selected documents, top documents returned by BM25, and the gold documents

paired with other queries. These negative samples improved the performance of Dense

Retrieval significantly.

Negative Sampling. Negative sampling, which pairs each training query with wrong

candidate passages or contexts in training, is crucial to the success of Dense Retrieval.

From these generated negative samples, the encoder learns to represent queries and con-

texts with more describable dense vectors. Therefore, the quality of the negative samples

determines the performance of Dense Retrieval. In the early days, random negatives,

where an incorrect answer was randomly selected from all text fragments, were widely

used. Another similar sampling method is called gold negative. This method randomly

selects from the correct answers of other questions to serve as negatives. There is also

a very efficient sampling method called in-batch negatives. In-batch negatives was used

in [55, 56] as an effective method that boost the number of training examples in train-

ing. The basic idea of in-batch negative is to reuse the negative samples of other queries

in the same batch. However, normal negative sampling methods which pair each query

with random negatives or gold negatives are proved to be sub-optimal in some work [57].

Hard negative sampling, which samples top-K documents or contexts as negatives yields

semantically similar negative samples. Some early methods utilize IR techniques to find

semantically similar negative samples. Recently, some research has been using trained

models themselves to obtain semantically similar samples. [58] propose to retrieve the

documents with highest similarity score as hard negatives before the training with a Dense

Retrieval model warmed up on other negative-sampling methods.

2.2 Answer Sentence Selection

Answer sentence selection (AS2), which is one of the essential tasks in question-

answering, has attracted much interest since the recent development of intelligent assis-

tants. The definition of AS2 can be described as: with a question q and many candi-



14

dates answer sentences set S. The task aims to choose a sentence sk to answer the query

q. Some machine reading comprehension datasets also provides sentence-level answers,

such as Natural Questions and Hotpot QA. The first appearance of AS2 task was in the

TREC competition [59]. With the surge of neural networks, it has significantly improved,

such as [60–62].

Previous work usually experiments on small datasets. In TREC [59], there are only

3000 QA pairs, and each query has around 20 candidate answer sentences. [11] proposes

a relatively larger dataset ASNQ with 30000 QA pairs. Each query is paired with four

candidate answers. However, in our proposed distributed OD-AS2 setting, a query may

have millions or even billions of candidate answers. The queries in the client, which has

the fewest documents, are paired with thousands of candidate answers, which is much

greater than those datasets. However, now existing methods are not efficient for solving

such complicate settings.

With the surge of transformer-based models, many works apply transformer-based

models in AS2 task such as [11, 63]. However, these methods involve a computational-

heavy inference process, which is not applicable in our setting. In our work, we propose

a Dense Retrieval based method for distributed OD-AS2. This method is efficient for

real-time inference and maintains a usable performance.

2.3 Federated Learning

Federated learning was first raised by [64]. It allows clients such as organizations

or personal devices to train a model together in a private-preserving manner. In this

diagram, the central server only coordinates the training process, while all the training

data is decentralized in each client. Let ω represent global model and {ωk}kk=1 represent k

local models. Let Dk = {(xk,i, yk,i)}nk
i=1 be the local dataset where xk,i is the i-th sample

in k and yk,i is its ground truth answer.In each round r, a subset of kA clients are chosen

to participate in local training. The global model then collect all local updated weight
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ωr+1 → 1
kA

∑kA
k=1(ω

r
k) and send new weight to local models. In FL, the global model ω

tries to optimized the total loss, i.e.,

min
ω

L(ω) ↭
K∑

k=1

nk

N
Lk(ω), N =

K∑

k=1

nk, (2.9)

where Lk(ω) represent the loss on D̃k for client-k, i.e.,

Lk(ω) =
1

nk

nk∑

i=1

LCE (ỹk,i, F (xk,i; ω)) , (2.10)

where LCE is the cross-entropy loss and F (·; ω) is the probabilities of each class by model

prediction. The update on client-k begins from ωk → ω and then optimize the local loss

Lk by gradient descent on D̃k with each step as

ωk → ωk ↑ ε↓ωLk(ωk), (2.11)

where ε is the local learning rate. Then the server collects the local models by:

ω →
K∑

k=1

nk

N
ωk. (2.12)

The server then transfer ω to all clients as the starting point for the next round of local

update.

FedAvg [65] is the most famous and widely used federated learning algorithm. It per-

forms SGD in parallel on some selected clients, and then uploads the model weights of

each client to a central server. The central server averages all the weights and then dis-

tributes them back to the clients. In this thesis, the methods we propose are mainly based

on FedAvg. Improvements to the Federated Learning training framework and discussions

of issues are beyond the scope of this thesis.

Applications of Federated Learning Recently, some work has proposed to solve lan-

guage modeling in a Federated setting. In industry, mobile keyboard is one of the most

popular applications of Federated Language Modeling. In this application, the model pre-

dicts the user inputs using a language model. Given the limited hardware resource on
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mobile devices and the need for an inference time within 20 milliseconds, a small and

efficient network is often used. Most works [35–39] use variants of LSTM as the client

model. CIFG [66] is a popular solution used in many works [35, 38] as it ensures infer-

ence latency and task performance. Classification is another basis of NLP tasks. Many

tasks can be solved by using text classification methods such as sentiment analysis, ques-

tion answering, and topic labeling. [41] apply a standard FedAvg to TextCNN. Speech

recognition recognizes speech in audio and then converts it into text. Most of the modern

intelligent assistants, such as Siri and Alexa, are equipped with a wake-up words detection

function. This function process user’s audio in real-time and on-device to detect a spe-

cific wake-up word such as ’Hey, Siri. This setting is a perfect fit for Federated Learning:

which requires a robust and local model on each device for local-inference, and the train-

ing data is too sensitive for uploading to a central server. [67] propose to use Federated

Learning on wake-up words detection. [68] study on the non-iid problem in speech recog-

nition with Federated Learning. However, for the distributed OD-QA/OD-AS2, which

requires many user privacy data, no research has yet used Federated Learning to address

this problem. In this thesis, we propose a framework based on Federated Learning to

solve the distributed OD-AS2 task.

Personalized Federated Learning. The primary purpose for clients to participate in

Federated Learning is to obtain a better model compared with local training models. How-

ever, many works [42, 43] show that not all clients can benefit from Federated Learning.

Clients who have insufficient local data can benefit more from the collaboration. On the

opposite, those clients who have sufficient local data found the final global model even

worse than their local model. Consequently, a simple global model is not enough for

many cases in Federated Learning. As a solution, personalization provides methods that

can use both the global shared model with the individual local models to get better perfor-

mance in each client. Transfer learning [45] lets models utilize knowledge learned from a

task to solve problems in another task. [44] propose to use transfer learning as personal-



17

ization with a Federated setting. Meta-learning trains a model on multiple tasks and aims

to learn a robust model for any kind of task. And the model only needs a small number

of data when adapting to new tasks. [46] propose that Federated Learning is very similar

to Reptile [69], a famous Meta-learning method. Knowledge distillation is also used to

train a Personalized Federated Learning model. [47] use Knowledge distillation to trans-

fer knowledge from the teacher(global) model to student(local) model on each client. In

this thesis, we investigate and propose a method for personalizing the OD-AS2 model in

the context of Federated Learning.

Privacy in Federated Learning. However, Federated Learning does not guarantee that

there are no risks of privacy leakage. In fact, the academic community has made signif-

icant efforts to study the privacy leakage issues caused by the application of Federated

Learning in natural language processing. In Federated Learning, model weights or train-

ing gradients are transmitted through networks, and attackers may potentially reconstruct

users’ private data used for training from this information. For instance, some studies

have attempted to reconstruct training data by analyzing the variations in weights of the

word-embedding layer in large-scale pre-trained models [51]. Other research endeavors

have explored techniques such as inferring training data from model gradients [48, 49] or

modifying model weights [50]. However, since these privacy concerns are not the cen-

tral focus of this thesis, we will only discuss new privacy issues arising from the novel

approach we propose in this thesis.
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Chapter 3

PDD-AS2: a Framework of privacy-preserving

distributed OD-AS2

3.1 Introduction

As stated in the literature review, common OD-QA models use a Dense Retrieval

model [24, 26–28, 53] structure of a dual-encoder (also known as a bi-encoder or two-

stream encoder). Dense Retrieval encodes the question and candidate answers simultane-

ously into dense vectors and stores them. During inference, the model uses a lightweight

metric such as dot-product to calculate semantic similarity. These model architectures

are widely studied in academia and industry for their balance between performance and

inference efficiency.

However, training an effective Dense Retrieval model in OD-AS2 requires a large

amount of data, human-generated question-answer pairs, and an extremely large-scale

document library based on real user data. However, the substantial requirement for user

privacy data makes it a formidable challenge to directly apply Dense Retrieval to real-

world scenarios, such as in-house data inquiry, individual email searches, and personal

intelligent assistants. If we adopt the existing methods, such as training Dense Retrieval

models locally, underfitting would occur due to the scarcity of training samples. In the

Dense Retrieval training process, a large number of diverse negative samples are also

needed to help the model learn the relationship between correct and incorrect samples.

Some research [31, 32] has found that, in the case of insufficient sample size, the per-

formance of Dense Retrieval models may drop by 20%. Therefore, these questions have

driven us to seek a framework for training Dense Retrieval models using personal privacy
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data distributed across various clients, under the premise of privacy protection. Based on

federated learning, we propose a Privacy-preserving Distributed OD-AS2, called PDD-

AS2. Although we only tested the implementation based on FedAvg in our experiments,

our framework is also compatible with other Federated Learning algorithms. Through

this framework, we can utilize the privacy data stored on each device for distributed train-

ing of the OD-AS2 model. Our main contributions of this work can be summarized as

follows:

• We highlight a promising setting of open-domain answer sentence selection (OD-

AS2) for real-world industrial applications and propose a privacy-preserving dis-

tributed OD-AS2 (PDD-AS2) learning framework towards effectiveness.

• We construct a new distributed OD-AS2 dataset upon

NewsQA, dubbed Fed-NewsQA to evaluate the effectiveness of our framework and

its baselines.

In Section 3.2, we give a brief introduction of our proposed method. Section 3.3

presents the training and inference process of our proposed method in detail. Then, we

conclude the new benchmark we proposed and experiments results in Section 3.4 and

give insightful conclusions about our method in Section 3.5. The chapter summary is in

Section 3.6.

3.2 The Overview of PDD-AS2

In this chapter, we present PDD-AS2, a privacy-preserving OD-AS2 framework pow-

ered by Federated Learning. The idea behind our framework is that we protect privacy by

training the OD-AS2 model locally on individual’s private data, only uploading the model

weights/training gradients. During the local training process, we specifically identify the

training into two different steps: In the first step, we use similar samples selected by

BM25 as the negative samples for a certain question to train, this stage can be seen as the
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cold start of the whole model. In the second step of training, we use the already trained

model itself to find the negative samples for each question in the training set. In these

two stages, we do not change our loss function and hyper-parameters, only the negative

samples and their corresponding quantities will differ. During these two stages, the model

weights of each client will be uploaded to the server and then redistributed to each client’s

local device in the end of each round. During the inference process, the local model on

each client runs independently for inference locally, without the need for participation

from the central server. Next, we will first give a detailed definition of the OD-AS2 task,

then we will elaborate on the framework of our proposed PDD-AS2.

Figure 3.1 : The training process of our proposed PDD-AS2. Query embeddings and

negative embeddings are generated in real-time. Then, the loss is calculated and gradient

is used to train both query encoder and sentence encoder.

3.2.1 Framework formulation.

In line with existing works [5, 8, 11, 70], we first formulate Open-Domain Answer

Sentence Selection (OD-AS2) under distributed setting as follows: For each client ci ↔ C

with its large-scale sentence collection Si = {si1...sin}, it aims to fetch potential answer
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sentence(s) sik from Si that answers a given query q ↔ Q. In the OD-AS2 setting, the

sentence set Si contains sentences from all passages in ci. If no confusion is caused, we

omit the superscript ‘i’ for a specific client in the remainder.

Usually, a query q and its answer sentence s+q are often provided as positive training

data in each client. Hence, it is necessary to sample a set of negative for q to construct

negative samples, i.e.,

Nq = {d|d ↗ P (S)}, (3.1)

where P (·) denotes a distribution over S. For simplicity, we omit the query-specific sub-

script indicator, q.

Then, a contrastive learning framework is usually employed to learn an efficient re-

trieval model. Formally, a representation learning module is first used to embed q and

each s ↔ {s+}↘N and then derive a probability distribution over {s+}↘N. Specifically,

P ({s+} ↘N|q;!) =
1

Z
exp

(
≃enc(q;!(q)), enc(s;!(s))⇐

)
(3.2)

where ! = {!(q),!(s)}, Z denotes softmax normalization term, ! parameterizes a text

encoder for a single vector representation, <,> denotes a lightweight relevance metric

(say, a dot product) for their similarity score. Here, !(q) and !(s), whether tied or not,

compose a dual-encoder structure for efficient dense retrieval. Lastly, the training loss of

contrastive learning can be defined to optimize !, i.e.,

L(ct)(Q;!) = ↑
∑

q→Q

logP (s = s+|q, {s+} ↘N ;!) (3.3)

where P (·|q;!) denotes the probability distribution over {s+} ↘ N for q by Eq.(3.2).

Subsequently, considering the distributed setting of OD-AS2, the overall training loss

can be defined as

L({Qi}i; {!i}i) =
∑

i

L(ct)(Qi;!i). (3.4)

However, directly optimizing Eq.(3.4) cannot deliver a satisfactory performance for

each client i since both labeled question-answering pairs and the collection are too scarce
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to effectively learn. Therefore, we adopt a popular federated learning method, FedAvg

[71], as the backbone of our framework. It will leverage the training data distributed in

each client in a privacy-preserving way. We denote the weight of global model as !global.

For each c ↔ C with model weight !i, we update !i with a learning rate of ϑ locally by

!i = !i ↑ ϑ↓L(Qi;!i), (3.5)

where L is the loss function of local training objective defined in Eq.3.4. After local

updates, each client sends their weights !i to the central server. Central server aggregate

the weights by

!global =
k∑

i=1

|Di|∑k
i=1 |Di|

!i, (3.6)

where k is the number of clients,Di denotes the volume of the dataset on each client. Note

that our PDD-AS2 framework is also compatible with other Federated Learning methods.

Algorithm 1 PDD-AS2

1: Input: Clients set C, Training set Di on client ci, global model weight !global, learn-

ing rate ϑ

2: Begin: Initialize the global model !global .

3: for r = 0, 1, . . . , R do

4: for Client ci ↔ C in parallel do

5: Initialize local model !i → !.

6: for batch b in Di do

7: Send queries qb ↔ b to other clients cj ↔ C

8: Receive negative samples Nqb

9: !i → !i ↑ ε↓L(s+ ↘ N; q;!i)

10: end for

11: end for

12: Server optimize ! model weights

13: end for
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3.3 Training Pipeline of PDD-AS2

Finally, we introduce the overall training pipeline of our PDD-AS2 framework which

adapted from some prevailing works [5, 70]. In this framework, we train the encoders

with different kinds of negative samples under FedAvg. Due to the instability of the

model in the early training stage, we initially sample BM25 negativesNBM25 to warm up

the model, following the approach of some works [70,72]. The advantage of the BM25 is

that it is an unsupervised method. However, because it cannot extract the deep semantics

of the query and the candidate answers, the performance of BM25 is not as good as deep

learning models. Therefore, after completing the warm-up, we use the trained model

itself to extract negative samples. In the second stage, at the beginning of each training

epoch, we use the trained sentence encoder and query encoder to encode all potential

answers and questions respectively. Then, we use the cosine-similarity method to find

the semantically closest sample to each query as the static hard negatives, excluding the

correct answer. Although for optimal performance, hard negatives should be recalculated

after each training step, this would result in a huge computational cost. The training

method of static hard negatives has also been proven very effective in many works. We

update both (q;!) and (s;!) by L defined in Eq.3.4. The overview of our Federated

Learning method is shown in Algorithm.1.

3.3.1 Retrieval Schemes

Our model is compatible with two retrieval schemes: sentence-level retrieval and

passage-level retrieval. For sentence-level retrieval, we retrieve the top sentences fol-

low the probability distribution defined in Eq.??. For passage-level retrieval, based on the

fact that sentences are extracted from their source passages, we retrieve the passage with
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Figure 3.2 : Statistics of each genre in our Benchmark

highest relevance score as

f(p, q) := max
s→p

{< (q;!), (3.7)

(s;!) >}, ⇒s ↔ S,

where s ↔ p represents the set of sentences in a given passage p. The additional cost

of sorting sentence scores can be ignored [73]. Therefore, the inference speed of our

sentence-based passage retrieval is the same as for sentence retrieval.

3.4 Experiment

3.4.1 Fed-NewsQA: A Multi-client OD-AS2 Benchmark

To better evaluate our method in a distributed setting, we propose a multi-client OD-

AS2 benchmark based on NewsQA. Recent OD-QA works often use datasets such as

SQuAD [74], TREC [7], WebQuestions [75], Natural Questions [76] in their experiments.

However, we propose to use NewsQA [77] as our original dataset for two main reasons.
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First, to better mimic the difference between each client’s personal documents and the

data scarcity problem in the real-world cases, we propose to split the dataset into different

genres for simulating different clients. Among all these datasets, we find that NewsQA

meets our requirements perfectly. We split the dataset into different genres directly from

the web-link of each passage. We choose ten genres from NewsQA since the remaining

genres do not have enough number of samples in the dev/test set. Each of these genres

represents a different client in our Federated Learning setting. The statistics of each genre

are shown in the Figure 3.2.

Second, NewsQA significantly outnumbers some other datasets on the distribution of

the more difficult reasoning questions, such as SQuAD [77]. We believe inferencing and

reasoning queries are essential for OD-QA/OD-AS2 in real-world cases.

3.4.2 Implementation

We use pre-trained DistilBERT [78] by Hugging Face as our model. We use AdamW

with a learning rate of 3e-5. We use Faiss [79] to perform the similarity search. We use

open-sourced BM25 model in training. Queries and sentences are truncated to a maxi-

mum of 32 tokens and 512 tokens, respectively.We represent query embeddings simply

using the [CLS] token, and we represent sentence embeddings using the average pooling

of word embeddings in the sentence.

The details of our training procedure are described as follows: In the federated static

negative training, we pair each query with BM25 negatives and gold-negatives with a

batch size of 8 in the warm-up stage. Then we replace them with static hard-negatives.

To demonstrate the influence of numbers of negatives, we also experiment with settings

with different numbers of negatives. We enable in-batch negative in this stage. We imple-

mented vanilla FedAvg as our Federated learning framework. We aggregate local weights

after each epoch.

We report two levels of metrics in our experiments: sentence-level and passage-level.
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The retrieval procedure of both levels is defined in section 4.2.4. In both levels, we report

the MRR@10, Recall@1,20,100 scores.

3.4.3 Baselines

We conduct experiments to compare of our method with several Dense Retrieval meth-

ods, including: (1) Dense Retrieval trained with random negative [29] (2) Dense Retrieval

trained with BM25 negative [30]; (3) Dense Retrieval trained with STAR [70].

3.4.4 Experiment Results

Table 3.1 : Results on our Fed-NewsQA Benchmark.

Sentence-level Retrieval Passage-level Retrieval

Models MRR@10 R@1 R@20 R@100 MRR@10 R@1 R@20 R@100

Upper Bound

Central-training 0.338 0.284 0.629 0.781 0.502 0.447 0.553 0.821

Sparse Retriever

BM25 0.172 0.152 0.343 0.533 0.343 0.288 0.345 0.598

Dense Retriever

dense retrieval-Random Neg 0.194 0.171 0.466 0.62 0.376 0.323 0.401 0.702

dense retrieval-Bm25 Neg 0.188 0.151 0.475 0.639 0.353 0.303 0.388 0.679

dense retrieval-STAR 0.232 0.190 0.535 0.679 0.403 0.350 0.421 0.709

Dense Retriever: Ours

PDD-AS2 0.261 0.217 0.546 0.695 0.429 0.395 0.479 0.745

The main result of our experiments is shown in Table 4.1. In the first experiment,

compared with the Dense Retrieval baselines trained on a single client, our PDD-AS2

outperformed all other methods. This is because the number of documents in some clients

are very restricted. Our method can leverage training data on each client in a privacy-

preserving way. Therefore, our federated method can achieve better performance than

non-Federated methods.

In the second experiment, We explore the influence of num negatives in our setting.

We experiment with the combinations of different numbers of negatives used in each
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method. The result of different num negatives is showed in Fig 4.2. We show the impact

of num negatives on training stages separately. The maximum number of hard-negatives

we can test in training is limited due to GPU RAM cost. For BM25 negative sampling and

static hard-negative sampling, we train the model with our PDD-AS2 framework from the

beginning of our training procedure.

We found that insufficient number of negative samples can lead to much worse perfor-

mance. This is intuitive since the model saw fewer numbers of samples during training.

However, larger numbers of negatives are not affordable even on servers due to hardware

limitations. More effective methods are needed to implement more negative samples in

the training.

Table 3.2 : Different numbers of negatives in Training

Sentence-level Retrieval Passage-level Retrieval

Models MRR@10 R@1 R@20 R@100 MRR@10 R@1 R@20 R@100

Dense Retriever with BM25 negatives

num negative=2 0.143 0.123 0.302 0.489 0.310 0.247 0.311 0.582

num negative=8 0.172 0.151 0.343 0.533 0.343 0.288 0.345 0.598

Dense Retriever with STAR

num negative=2 0.201 0.160 0.506 0.655 0.352 0.305 0.379 0.705

num negative=8 0.232 0.191 0.535 0.679 0.403 0.350 0.421 0.709

PDD-AS2

num negative=2 0.242 0.193 0.516 0.645 0.392 0.354 0.432 0.719

num negative=8 0.261 0.217 0.546 0.695 0.429 0.395 0.479 0.745

3.4.5 Influence of dataset Size

In this section, we first want to know if our PDD-AS2 can effectively solve data

scarcity problem on each client by leveraging data on different clients. In training, we

select different ratios of data randomly. We present the sentence-level R@1 score on

our Fed-NewsQA in Figure 3.3. Compared with single-client training, the PDD-AS2 can
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Figure 3.3 : Sentence R@1 of our PDD-AS2 and baseline with single-client training

achieve higher accuracy in all data ratio settings. Moreover, the problem in single-client

is more serious when their own local dataset size is small . As a consequence, PDD-AS2

can bring about a more significant performance improvement over single-client training.

Also, we explore to what extent each client benefits from the PDD-AS2. We show

the performance improvement in sentence-level R@1 on Fed-NewsQA of each client in

Figure 3.4. We found that clients with fewer training data can benefit more from the

PDD-AS2 framework. These results indicate that our framework can effectively leverage

the training data on different clients. However, performance on some clients with a larger

amount of training data was decreased while applying our framework, implying the need

for personalization in this scenario.

3.4.6 Influence of query hubness

However, retrieving all top-k hard negatives from similarity search or BM25 engine

can lead to a performance drop in some scenarios. The reason is that, not every possible

answer for a given query qi has been labeled as positive. This is very intuitive since most

machine reading comprehension datasets only label the answer of the query, which is only

in its context passage. However, in OD-AS2, possible answers from all passages must be
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Figure 3.4 : Performance gain on Sentence R@1 of each genre in our benchmark

labled as positive. This problem is more severe when the query is not specific and precise.

As a consequence, for each qi, if we retrieve all top-k sentences as negative, we actu-

ally harm the performance of the model. We conduct a case study in Table 3.4. The case

study shows that whether or not the query is specific and precise, the top-k negatives often

contain possible answers that were not labeled as positive. We refer to this problem as

‘query hubness’. To alleviate this problem, we uniformly sample n negatives from k can-

didate where k⇑n in our approach. This approach yields better results when we choose

a correct k. The difference in model performance in different k is shown in Table 3.3.

However, more theoretical insight is needed in query hubness problem.

3.5 Chapter Summary

In this work, we propose a Privacy-preserving Distributed OD-AS2 method, dubbed

PDD-AS2. Our method utilizes training data on different clients while eliminating the

need to transfer the raw data between clients. We fisrt train both query encoder and sen-
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Method Sentence R@1 Passage R@1

k=10 0.121 0.235

k=50 0.202 0.379

k=100 0.211 0.352

k=300 0.217 0.395

Table 3.3 : Different k while sampling 10 negatives

tence encoder with static hard-negatives under a Federated framework. We further test our

method on a new Federated Open-domain Answer Sentence Selection benchmark based

on NewsQA. This benchmark better mimics real-world cases than other benchmarks in

terms of data distribution and query types. The results show that our method can greatly

enhance the performance of OD-AS2 under distributed settings by leveraging training

data on different clients in a privacy-preserving way.



31

Case 1 Case 2

Question What did the lawyer say Who will star in the upcoming ABC

pilot “The Manzanis”?

Gold answer Murray defense lawyer Michael

Flanagan, who was in court to de-

fend Dr. White Wednesday, said

after the hearing that he believed

Murray should be eligible for early

release if he is given prison time

When Kirstie Alley cleared the 100

lb. weight-loss hurdle this summer,

it was time for a big, fat celebration.

Hard-negative 1 In addition, Anthony’s attorney

Charles Greene asserted he would

also invoke the Fifth Amendment

on her behalf if questioning delved

into the 2008 death of her 2-year-

old daughter, Caylee.

And she’s ready for her next chal-

lenge: “What I’m looking for is to

be madly, deeply in love,” says Al-

ley, who will also star in the upcom-

ing ABC pilot, “The Manzanis.”

Hard-negative 2 CNN) – Attorneys representing

Casey Anthony invoked her Fifth

Amendment right against self-

incrimination 60 times during a

deposition given in a civil suit

against her, according to a tran-

script of the proceedings.

Kirstie Alley said she’s going to

start dating “butt-ugly men” on an

episode of “The Ellen DeGeneres

Show” airing Friday.

Table 3.4 : Case study of retrieved hard-negatives, all text samples are directly retrived

from the original dataset source
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Chapter 4

Personalized Distributed Open-Domain Answer Sentence

Selection by client-side finetune

4.1 Introduction

In a distributed Open-Domain Answer Sentence Selection (OD-AS2) scenario, Fed-

erated Learning [65] can be used to train private data on clients under the premise of

privacy protection. By retaining the training data for local training and only synchroniz-

ing the model weights or training gradients, Federated Learning can make use of private

data. However, there can be substantial differences in the amount of data on clients. Some

research [42, 43] has found that in Federated Learning, clients with less local data often

see greater improvements, while those with more local data often see smaller improve-

ments, and may even experience performance degradation. On the other hand, given the

substantial differences between individual data on all clients, a unified global model may

perform poorly in these scenarios. Therefore, we urgently need a solution that can balance

the features of the global model and the local model in a distributed OD-AS2 scenario.

Personalization, as a solution, can be integrated with Federated Learning to alleviate

this problem. By fine-tuning on the global model with local data, a personalized global

model based on local data can be obtained. Many works [45–47] have explored the combi-

nation of Federated Learning and Personalization. These methods cover transfer learning,

knowledge distillation, etc.

However, the aforementioned methods also present many problems in the context of

distributed OD-AS2 scenarios. For example, in the implementation of personalized trans-

fer learning, due to significant differences between local and global samples, and the
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scarcity of local samples, many clients tend to overfit and experience catastrophic forget-

ting during the finetune stage. Moreover, common OD-QA/OD-AS2 algorithms require

a large number of negative samples to distinguish between correct and incorrect answers.

During local training, if only local data is used, the quantity of available negative samples

for OD-AS2 becomes too small, leading to poor training results. If knowledge distilla-

tion is employed, due to the insufficient number of local training samples, it is impossible

to distill all the capabilities of the teacher model trained with large datasets on multiple

clients. Personalization achieved through meta-learning also greatly depends on the size

of the local dataset during local training, which is also not the best choice. Therefore,

there is a need for a distributed OD-AS2 personalization method that can balance the

performance of local models and the need of local datasets.

Therefore, in this chapter, we propose a novel personalized approach for distributed

OD-AS2. In this personalized approach, we combine it with the framework we pro-

posed in former chapter, to train the query encoder on local data only, while the sentence

encoder‘s weight is fixed without training. A very intuitive explanation is that the dif-

ference between personal documents among different clients is relatively small, while

personal queries can vary greatly due to language habits, etc. Furthermore, the content

of the query is usually easier to understand, while understanding the context/documents

requires deeper language comprehension skills. Thus, keep the sentence encoder weights

obtained from training on a large amount of client data fixed can avoid catastrophic for-

getting caused by fine-tuning.

At the same time, this approach can significantly reduce training overhead while en-

hancing training effectiveness. In our experiments in previous chapter, we found that the

higher the number of negative samples involved in training at each training step, the bet-

ter the model performance is usually. However, the primary obstacle to the number of

negatives in training is memory overhead. Since the sentence encoder needs to partic-

ipate in training in general training processes, every negative sample encoded with the
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sentence encoder needs to calculate gradients and back-propagate, resulting in substan-

tial memory overhead. In our method, since the sentence encoder’s weight is fixed, the

back-propagation is not required on negative samples. Therefore, in this method, we can

introduce more negative samples to aid training.

Based on the above premise, we propose a novel negative sampling method in the

context of distributed OD-AS2 scenarios, which introduced a large amount of negative

samples picked from other clients, called Fed-Negative. In this method, we enhance per-

sonalized training by sharing context embeddings from other clients. In this process, we

send the query embeddings from one client to another to look for similar context embed-

dings, and then send them back to the original client for training. Since our proposed

personalized training approach does not require training a sentence encoder, it can greatly

increase the number of available local negative samples while maintaining training effi-

ciency and low memory usage. This feature is particularly suitable for distributed scenar-

ios where end devices have limited computational power. Meanwhile, this chapter will

also study the privacy leakage issues that this method may bring about.

The rest of this chapter is organized as follows. The review of other Personalized Fed-

erated Learning methods is introduced in Section 4.2. Section 4.3 illustrates the overall

pipeline of our method and the components of our framework in detail. After that, we

analyze the experimental results in Section 4.4 and then conclude our chapter in Section

4.5 .

4.1.1 Review of Personalized Federated Learning Approaches

In this section, we briefly describe some methods of Personalized Federated Learning.

Transfer learning. Transfer learning [45] lets models utilize knowledge learned from

a task to solve problems in another task. [44] propose to use transfer learning as person-

alization with a federated setting. They continue training the shared global model on a

local dataset. As a result, the model can keep the knowledge learnt from massive private
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training data in Federated Learning stage. However, catastrophic forgetting would happen

if we fine-tune the model on the local dataset too much.

Meta-Learning. Meta-learning trains a model on multiple tasks and aims to learn a

robust model for any kind of task. And the model only needs a small number of data when

adapting to new tasks. [46] propose that federated learning is very similar to Reptile [69],

a famous Meta-learning method. In meta-learning, meta-training builds the global model

on multiple tasks, and meta-testing adapts the global model separately for different tasks.

Therefore, Federated Learning is like meta-training, and personalization is like meta-

testing. They further modify the FedAvg to address better results in this two-stage training

diagram.

Knowledge distillation. Knowledge distillation [47] a technique that compresses

knowledge from single or multiple models to another model. Usually, the former model,

called the teacher model, is much larger than the latter model, which is called the student

model. In personalization, one of the biggest issues is overfitting caused by an improper

personalization process. Some work [33, 43] proposes to mitigate this issue by using

knowledge distillation together with transfer learning.

4.2 The Proposed Approach

4.2.1 Fed-Negative: Cross-client Negatives

As mentioned in the above sections, using local negatives samples only cannot fulfill

negative samples’ needs in terms of quality and quantity in some clients with few doc-

ument collections. Building on this problem, we propose Fed-Negative: a cross-client

negative sampling method inspired by dynamic negative sampling for introducing more

diverse negative samples. By introducing additional context embeddings stored on other

clients, Fed-Negative has expanded the selection of negative samples available during
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model training. Therefore, during the training, the model is more likely to select semanti-

cally similar negative samples, thereby enhancing training performance. Given a client c,

we first encode q into representations by (q;!). Then we select a subset of clients from

the whole client set as

Cs = Select({C}), c /↔ Cs, (4.1)

where the select function can based on network condition or geography distance estimated

by client’s region. Then we send the query representation (q;!) to each client in Cs.

Once each client receive the query, they did a similarity search on their own sentence

embedding matrix to retrieve top n sentences embeddings and send them back to c. c

choose top n negatives from all negatives by the similarity score as

N fed = TopK({(Nck)}), ck ↔ Cs (4.2)

where Nck is the negative set of q sampled in client ck.

One concern with this method is the issue of privacy leakage, that is, whether we

can restore the original training data from the context embeddings, or extract relevant

information. In the subsequent sections of this chapter, we will study the privacy issues

of this method.

4.2.2 Client-customized Query Encoding

On top of Fed-Negative, we propose client-customized query encoding inspired by

query-side fine-tuning. We aim to provide each client with a personalized query encoder

to resolve miscellaneous queries. For this purpose, we personalize (q;!) with local train-

ing while fixing the (s;!). (s;!) shares a global weight among all clients. Therefore,

by keeping the weight of sentence encoder, which is well trained in Federated Learning,

fixed, we retain the model’s ability to understand individual documents. Continuing to

train the query encoder on the local dataset allows the local model to better adapt to the

language habits of different client queries. In this stage, we utilize our proposed Fed-
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Figure 4.1 : (a) Train query encoder (q;!) and sentence encoder (s;!) with Static hard-

negative sampling (b) Personalize the query encoder (q;!) with Fed-Negative

Negative for diverse negative samples.

4.2.3 Training Pipeline.

Finally, we introduce the overall training pipeline of our Personalized PDD-AS2 frame-

work. Compared to traditional FedAvg, we introduce different hard negatives to assist the

model in training within the OD-AS2 scenario. As shown in Figure 4.1, we organize our

training procedure as two stages adapted from some prevailing works [80, 81]: (Stage

1) Federated Static negative training: we train the encoders with static hard negative

sampling N static under FedAvg. Due to the instability of the model in the early training

stage, we initially sample BM25 negatives NBM25 to warm up the model following some

works [80, 82]. We update both (q;!) and (s;!) by L defined in Eq.3.4.

(Stage 2) Client-customized Query Encoding: Continual from first stage, we samples

N fed defined in section 4.2.1 to train a client-customized query encoder follows section

4.2.2. T

4.2.4 Retrieval Schemes

Our model is compatible with two retrieval schemes: sentence-level retrieval and

passage-level retrieval. For sentence-level retrieval, we retrieve the top sentences fol-

low the probability distribution defined in Eq.??. For passage-level retrieval, based on the

fact that sentences are extracted from their source passages, we retrieve the passage with
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highest relevance score as

f(p, q) := max
s→p

{< (q;!), (4.3)

(s;!) >}, ⇒s ↔ S,

where s ↔ p represents the set of sentences in a given passage p. The additional cost

of sorting sentence scores can be ignored [73]. Therefore, the inference speed of our

sentence-based passage retrieval is the same as for sentence retrieval.

4.3 Experiments

Baselines. We conduct experiments to compare the performance of our method with

several Dense Retrieval methods, including: (1) Dense Retrieval trained with random

negative [29] (2) Dense Retrieval trained with BM25 negative [30]; (3) Dense Retrieval

trained with STAR [70]. In personalization stage, we compare our proposed Fed-Negative

to dynamic hard-negatives in [70].(4) a simple sparse retriever constructed by BM25.

Implementation. We use pre-trained DistilBERT [78] by Hugging Face as our model.

We use AdamW with a learning rate of 3e-5. We use Faiss [79] to perform the similar-

ity search. We use open-sourced BM25 model in training. Queries and sentences are

truncated to a maximum of 32 tokens and 512 tokens, respectively. We represent query

embeddings simply using the [CLS] token, and we represent sentence embeddings using

the average pooling of word embeddings in the sentence.

In terms of datasets, we have chosen to continue using the Fed-NewsQA proposed in

the previous chapter.

The details of our training procedure is described as follows: In the Federated static

negative training, we pair each query with BM25 negatives and gold-negatives with a

batch size of 8 in the warm-up stage. Then we replace them with static hard-negatives.

To demonstrate the influence of numbers of negatives, we also experiment with settings
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with different numbers of negatives. We enable in-batch negative in this stage. We imple-

mented vanilla FedAvg as our Federated learning framework. We aggregate local weights

after each epoch.

In the Client-customized Query Encoding, we pair each query with dynamic hard neg-

atives or Fed-Negatives with a batch size of 32. To demonstrate the influence of numbers

of negatives, we also experiment on settings with different numbers of negatives. We

enable in-batch negatives in this stage.

We report two levels of metrics in our experiments: sentence-level and passage-level.

The retrieval procedure of both levels is defined in section 4.2.4. In both levels, we report

the MRR@10, Recall@1,20,100 scores.

4.3.1 Experiment Results

Table 4.1 : Results on our Fed-NewsQA Benchmark.

Sentence-level Retrieval Passage-level Retrieval

Models MRR@10 R@1 R@20 R@100 MRR@10 R@1 R@20 R@100

Upper Bound

Central-training 0.338 0.284 0.629 0.781 0.502 0.447 0.553 0.821

Sparse Retriever

BM25 0.172 0.152 0.343 0.533 0.343 0.288 0.345 0.598

Dense Retriever

dense retrieval-Random Neg 0.194 0.171 0.466 0.62 0.376 0.323 0.401 0.702

dense retrieval-Bm25 Neg 0.188 0.151 0.475 0.639 0.353 0.303 0.388 0.679

dense retrieval-STAR 0.232 0.190 0.535 0.679 0.403 0.350 0.421 0.709

Dense Retriever: Ours

PDD-AS2 0.261 0.217 0.546 0.695 0.429 0.395 0.479 0.745

+client-customized query encoding 0.289 0.232 0.556 0.711 0.445 0.414 0.489 0.75

+client-customized query encoding with fed-negative 0.309 0.252 0.577 0.72 0.458 0.431 0.504 0.762

The main result of our experiments is shown in Table 4.1. We conclude that our

personalization method with Fed-Negative can outperform the method with local dynamic

hard negatives. This is because the scarcity of training data in some clients can lead to a

much worse hard-negative sampling result. Compared with static hard negative sampling,
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the training of the client-customized query encoder introduces far more negative samples,

strengthening the need for hard negatives in terms of quality and quantity. Our method

alleviates the problem by leveraging diverse hard negatives on other clients in a privacy-

preserving way.

4.3.2 Influence of Numbers of Negatives

We explore the influence of num negatives in our setting. We experiment with the

combinations of different numbers of negatives used in each method. The result of dif-

ferent num negatives is shown in Table 4.2. We show the impact of num negatives on

both stages of training separately. The maximum number of hard-negatives we can test in

stage 1 training is limited due to GPU RAM cost. For BM25 negative sampling and static

hard-negative sampling, we train the model with our PDD-AS2 framework from the be-

ginning of our training procedure. In experiments of stage 2 training with Fed-Negative,

we continue our training from the model weights trained in previous steps, which follows

our training procedure.

We found client-customized query encoder can be steadily improved while feeding

much more negatives compared with stage 1 training. This result indicates the need for

introducing more hard-negatives with higher quality in stage 2 training, further proving

the effectiveness and necessity of our Fed-Negative. What’s more, the computational

cost does not scale with the num negatives. As a consequence, client-customized query

encoder can benefit from Fed-Negative with little cost.

4.3.3 Privacy

When transferring sentence embeddings between clients, one key concern is whether

the user’s privacy would be leaked. However, no work has been dedicated to restoring pri-

vate information from mere sentence embeddings. In order to measure the risk involved,

we conducted an experiment to detect whether our transmitted sentence embeddings con-
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Table 4.2 : Different num negative in Training

Sentence-level Retrieval Passage-level Retrieval

Models MRR@10 R@1 R@20 R@100 MRR@10 R@1 R@20 R@100

Dense Retriever with BM25 negatives

num negative=2 0.143 0.123 0.302 0.489 0.310 0.247 0.311 0.582

num negative=8 0.172 0.151 0.343 0.533 0.343 0.288 0.345 0.598

Dense Retriever with STAR

num negative=2 0.201 0.160 0.506 0.655 0.352 0.305 0.379 0.705

num negative=8 0.232 0.191 0.535 0.679 0.403 0.350 0.421 0.709

PDD-AS2

num negative=2 0.242 0.193 0.516 0.645 0.392 0.354 0.432 0.719

num negative=8 0.261 0.217 0.546 0.695 0.429 0.395 0.479 0.745

+client-customized query encoding

num negative=10 0.272 0.233 0.557 0.705 0.431 0.415 0.487 0.746

num negative=200 0.289 0.251 0.576 0.711 0.445 0.434 0.489 0.75

Method Perplexity

Without training 36.3

CLM without embedding 25.9

CLM with sentence embedding 25.6

Table 4.3 : Perplexity of gpt-2 on our dataset

tained information related to the original text.

In this experiment, we used GPT-2, a model that performs well on text generation

tasks. In the first part of the experiment, we trained GPT-2 on the language modeling

task using our dataset and measured its perplexity on the test set. In the second part of

the experiment, we added the sentence embeddings generated by the previously trained

sentence encoder in PDD-AS2 to the training and testing procedure. In detail, we feed the

sentence embeddings into the GPT-2 as key-value pairs together with the text input. After

receiving the input, the model tries to establish the connection between the embedding

and the actual sentence it represents through the self-attention structure. Table 4.3 shows
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no significant difference in the perplexity between the two groups of experiments. The

group with sentence embeddings has slightly lower perplexity on the test set. However,

these differences are not statistically significant. To further demonstrate that we cannot

obtain private information from the sentence embeddings, we let GPT-2 generate actual

sentences directly from their corresponding embeddings without any input and prompts.

We show the result in the Table 4.3.3.

We found that GPT-2 could not restore the actual sentence using only the sentence

embeddings. Sentence embeddings did have an impact on the generated results. However,

these effects are seemingly random and irrelevant to the actual sentence.

Table 4.4 : Case study of sentence-embeddings decoding

Original Sentences Generated Sentences

Four Australian troops have

now died in the conflict in

Afghanistan.

”It’s not the first time that

we’ve had

It made my stomach turn,”

Bertha Lewis, chief executive

officer of ACORN, told re-

porters at the National Press

Club in Washington.

”I think it’s important? very

important? Very difficult to

the one. I think. is, part of

me. I the to blame, I don’t

blame my

Read the story at the WRTV

web site

CNN’s a great-school pro-

gram that’s not

4.4 Chapter Summary

In this chapter, we propose a personalization method to train a client-customized query

encoder for each client. We also propose a new negative sampling method called Fed-

Negative. In Fed-Negative, we introduce diverse negatives from other clients to enhance
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the training. We further test our method on a new Federated OD-AS2 based on NewsQA.

This benchmark better mimics real-world cases than other benchmarks in terms of data

distribution and query types.

The experiment results show that our method can effectively improve the performance

of OD-AS2 under distributed settings by personalization.



44

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we deeply studied how to solve distributed OD-AS2 with privacy pre-

serving. Moreover, we propose a personalization method to alleviate the problem occur

in our proposed distributed learning framework.

• In Chapter 3, we propose a privacy-preserving distributed OD-AS2 framework

called PDD-AS2. We conduct extensive experiments on our benchmark to demon-

strate that PDD-AS2 can levearge the training data on each local device. Moreover,

we also explored the performance of the framework in scenarios with scarce data.

The experiments proved that our framework can effectively improve performance

in data-scarce scenarios. We also explored issues exposed by the framework in the

experiments, such as the performance decline in some clients after using PDD-AS2,

which proved the necessity for further work to resolve this problem.

• In Chapter 4, we first propose a personalized method called Client-customized

Query Encoding to train a personalized query encoder. Second, we introduce a

new negative sampling method: Fed-Negative to further enhance the effectiveness

of our approach. This sampling method allows local models to acquire embeddings

from other clients. In view of potential privacy issues this method may raise, we

also conducted research. Experiments show that our proposed framework signif-

icantly enhances the performance of the distributed OD-AS2 framework, without

compromising privacy.
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5.2 Limitations

In this section, I will discuss the limitations of our proposed work. Firstly, to simu-

late different topics and data distributions among clients in real-world scenarios, I faced

a scarcity of datasets that meet our standards, hence I only conducted tests based on a

single benchmark. This suggests that my conclusions may not hold on other datasets

and benchmarks. Secondly, although my proposed fed-negative method improves model

performance, I did not measure the network overhead, and there is a possibility that this

method could be constrained by communication costs. Lastly, due to limitations in ma-

chine costs and performance overhead, we only used a small model, distill-bert, for my

experiments, and simulated a scenario with only 10 clients. However, in real scenarios, up

to millions of clients might participate in training, which could lead to a dramatic increase

in network communication costs and a discrepancy between the data distribution in my

experiments and actual conditions, potentially causing biases in my results.

5.3 Future Work

In the this section, we will discuss some potential future works to better improve our

method which introduced in before chapters.

For PDD-AS2, the main future work will focus on validating its performance on more

datasets and evaluation methods that conform to real-world scenarios. Although we have

proposed and built a benchmark that fits real-world scenarios in our thesis, in order to

demonstrate the universality of our method, we need to construct more benchmarks to

test the performance of PDD-AS2 in similar distributed scenarios. Meanwhile, regarding

the query hubness problem we have identified, more work is needed to address it.

One of the future tasks for Client-Customized Query Encoding and Fed-Negative is

to clarify the communication overhead of our proposed methods. If embedding transmis-

sion is carried out between any two clients, despite the small amount of data transferred
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each time, if the number of clients joined in the training is enormous, such as millions,

it will cause significant network overhead. If only a portion of the clients are chosen in

the embedding exchange, performance will inevitably be affected. We need to find a way

to balance communication overhead and performance. Secondly, concerning privacy, we

did not conduct a very detailed study of our methods. In this thesis, we only investigated

whether our proposed methods would introduce additional privacy issues. However, there

is considerable evidence that federated learning can pose privacy leakage risks when ap-

plied to NLP tasks, so related research is essential.
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Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated

learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

[36] Mingqing Chen, Rajiv Mathews, Tom Y. Ouyang, and Françoise Beaufays.

Federated learning of out-of-vocabulary words. ArXiv preprint arXiv:1903.10635,

2019.

[37] Shaoxiong Ji, Shirui Pan, Guodong Long, Xue Li, Jing Jiang, and Zi Huang.

Learning private neural language modeling with attentive aggregation. 2019.



52

[38] Swaroop Indra Ramaswamy, Rajiv Mathews, Kanishka Rao, and Franccoise

Beaufays. Federated learning for emoji prediction in a mobile keyboard. ArXiv

preprint arXiv:1906.04329, 2019.

[39] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas

Kong, Daniel Ramage, and Françoise Beaufays. Applied federated learning:

Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903,

2018.

[40] Suyu Ge, Fangzhao Wu, Chuhan Wu, Tao Qi, Yongfeng Huang, and Xing Xie.

Fedner: Privacy-preserving medical named entity recognition with federated

learning. arXiv preprint arXiv:2003.09288, 2020.

[41] Xinghua Zhu, Jianzong Wang, Zhenhou Hong, and Jing Xiao. Empirical studies of

institutional federated learning for natural language processing. In FINDINGS,

2020.
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y Arcas. Communication-efficient learning of deep networks from decentralized

data. In AISTATS, 2017.

[66] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R. Steunebrink, and

Jürgen Schmidhuber. Lstm: A search space odyssey. 2017.

[67] David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph

Dureau. Federated learning for keyword spotting. 2019.

[68] Dhruv Guliani, Françoise Beaufays, and Giovanni Motta. Training speech

recognition models with federated learning: A quality/cost framework. 2021.

[69] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning

algorithms. ArXiv preprint arXiv:1803.02999, 2018.

[70] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.

Optimizing dense retrieval model training with hard negatives. In Proceedings of

the 44th International ACM SIGIR Conference on Research and Development in

Information Retrieval, 2021.

[71] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise

Aguera y Arcas. Communication-Efficient Learning of Deep Networks from

Decentralized Data. In Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics, 2017.



56

[72] Luyu Gao and Jamie Callan. Unsupervised corpus aware language model

pre-training for dense passage retrieval. In Proceedings of the 60th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), 2022.

[73] Jinhyuk Lee, Mujeen Sung, Jaewoo Kang, and Danqi Chen. Learning dense

representations of phrases at scale. In Proceedings of the 59th Annual Meeting of

the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), 2021.

[74] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:

100,000+ questions for machine comprehension of text. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, 2016.

[75] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing

on Freebase from question-answer pairs. In Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing, 2013.

[76] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. 2009.

[77] Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni,

Philip Bachman, and Kaheer Suleman. Newsqa: A machine comprehension

dataset. In Proceedings of the 2nd Workshop on Representation Learning for NLP,

2017.

[78] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a

distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint

arXiv:1910.01108, 2019.

[79] J. Johnson, M. Douze, and H. Jegou. Billion-scale similarity search with gpus.

IEEE Transactions on Big Data, 2021.



57

[80] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.

Optimizing dense retrieval model training with hard negatives. In Proceedings of

the 44th International ACM SIGIR Conference on Research and Development in

Information Retrieval, 2021.
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