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A B S T R A C T

Deep learning (DL) in orthopaedics has gained significant attention in recent years. Previous studies have
shown that DL can be applied to a wide variety of orthopaedic tasks, including fracture detection, bone tumour
diagnosis, implant recognition, and evaluation of osteoarthritis severity. The utilisation of DL is expected to
increase, owing to its ability to present accurate diagnoses more efficiently than traditional methods in many
scenarios. This reduces the time and cost of diagnosis for patients and orthopaedic surgeons. To our knowledge,
no exclusive study has comprehensively reviewed all aspects of DL currently used in orthopaedic practice.
This review addresses this knowledge gap using articles from Science Direct, Scopus, IEEE Xplore, and Web
of Science between 2017 and 2023. The authors begin with the motivation for using DL in orthopaedics,
including its ability to enhance diagnosis and treatment planning. The review then covers various applications
of DL in orthopaedics, including fracture detection, detection of supraspinatus tears using MRI, osteoarthritis,
prediction of types of arthroplasty implants, bone age assessment, and detection of joint-specific soft tissue
disease. We also examine the challenges for implementing DL in orthopaedics, including the scarcity of data
to train DL and the lack of interpretability, as well as possible solutions to these common pitfalls. Our work
highlights the requirements to achieve trustworthiness in the outcomes generated by DL, including the need
for accuracy, explainability, and fairness in the DL models. We pay particular attention to fusion techniques as
one of the ways to increase trustworthiness, which have also been used to address the common multimodality
in orthopaedics. Finally, we have reviewed the approval requirements set forth by the US Food and Drug
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Administration to enable the use of DL applications. As such, we aim to have this review function as a guide
for researchers to develop a reliable DL application for orthopaedic tasks from scratch for use in the market.
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1. Introduction

The branch of surgery related to the human musculoskeletal system,
including the spine, extremities, and corresponding structures, is known
as orthopaedics [1]. This discipline emphasises the prevention, treat-
ment, and rehabilitation of the different structural and/or functional
diseases affecting bones, articulations, ligaments, musculotendinous
units, and the surrounding neuro-vasculature. A subcategory of this dis-
cipline deals with injuries sustained during traumatic events, including
accidents at work and in sports. Common injuries include fractures,
joint dislocations, tendon tears, ligament ruptures, traumatic disc her-
niations, and acute nerve compressions. Other orthopaedic diagnoses
relate to degenerative pathologies, mainly due to age and/or overuse-
related wear and tear of the involved structure(s). Osteoarthritis and
chronic disc herniations are examples of the latter.

Orthopaedics also covers some paediatric congenital conditions that
appear at birth and occur during childhood, including extremity defor-
mities. Furthermore, there are conditions that are described as neoplas-
tic. These include benign and cancerous bone tumours. In light of this
2

broad scope of practice, we can infer that musculoskeletal disorders
not only significantly impact the health of individual patients but
also impose a significant burden on the healthcare system, negatively
impacting any country’s overall health and economy.

For instance, in the United Kingdom (UK) alone, 25% of all surgical
operations are related to musculoskeletal problems, which represents
£4.7 billion of the expenditure of the National Health Service (NHS)
annually [2]. Meanwhile, it is believed that one in two adults in the
United States of America (USA) suffers from musculoskeletal problems,
inflating the cost of treatment and economic productivity to an esti-
mated 213 billion dollars, equivalent to approximately 1. 4% of its
Gross Domestic Product (GDP) [3]. Due to the significant economic
pressures, there is a growing demand for effective and reproducible
orthopaedic diagnostic and treatment approaches. There is great po-
tential to adopt innovative technological applications, including deep
learning (DL) based technologies in this space [4]. Successful treatment,
or even more efficient diagnosis of a particular condition, can substan-
tially reduce the economic burdens in today’s industrial and ageing
populations.
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The diversity of characteristics in orthopaedic diagnostic and thera-
peutic schemes makes it a suitable environment to implement creative
and innovative DL methods, addressing the scalability and budget
issues that plague traditional healthcare models. Currently, technology
is utilised mainly in orthopaedic ‘‘software’’ and ‘‘hardware’’, ranging
from a simple fracture–fixation screw to highly advanced robotics
that can navigate and possibly implant a prosthetic joint. Due to
the wide range of possible applications, orthopaedic experts must ac-
quire comprehensive technical knowledge to appropriately evaluate,
plan, and implement these technologies when treating patients. Thus,
orthopaedic surgeons must assess and adopt new technologies once
these technologies’ effectiveness, precision, and accuracy have been
proven and verified. A prime example of this process is the growing
implementation of mixed reality [5,6].

In addition, orthopaedic experts already have deep professional
relationships with technologically innovative industries. This profes-
sional, patient-focused partnership provides mechanisms for collecting
real-time feedback and improving improvements and improvements.
The diagnostic and therapeutic methodologies of the orthopaedic prac-
tice are generally well established, facilitating the large-scale optimi-
sation of processes. This is aided by the fact that the majority of
orthopaedic operations, such as hip replacements, are commonly repro-
ducible with highly effective outcomes [7]. After decades of refinement,
such procedures’ progressive and consistent success provides reason-
able stability for developing up-to-date technologies and advanced
optimisation systems. More importantly, as a result of the integral
relationships with technologically innovative partners, the orthopaedic
community is considered a pioneer in applications from the field of Big
Data. Historically, orthopaedics has been the leading medical branch
that established national and international databases (e.g., joint re-
placement registries) with a huge collection of procedure-specific data
repositories [8]. Considering that a significant obstacle in the rapid
advancement of DL is the requirement for adequate data to optimise
performance and accuracy, the maturity of orthopaedic databases,
with tens to hundreds of thousands of patients in individual national
registries, is a significant boon for DL development. These factors have
influenced the rapid research and development (R&D) of numerous
DL-based techniques and applications in orthopaedics.

Roughly, Artificial Intelligence (AI) is defined as the ability of
machines to process information similar to human intelligence [9].
Over the years, AI has achieved significant advances through Machine
Learning (ML), which has demonstrated the capability of machines
to conduct diagnostic tasks for medical imaging with an outcome
similar to that of human specialists [4]. These performances have been
achieved using novel contributions based on DL, e.g. Deep Convolu-
tional Neural Networks (DCNN), which consist of multiple algorithmic
layers that approximate the structure of a human visual cortex [10,11].

Specifically, DL algorithms have shown the ability to perform a
wide range of radiographic tasks that involve reading musculoskeletal
images [12]. The accurate and precise identification of the types of
prosthetic implants has been reported for hip [13], knee [14], and
shoulder [15,16] arthroplasty using DL models. The accuracy of these
results was equivalent to or superior to that of expert human readers,
while also being much faster than traditional methods. This opens
obvious avenues to alleviate the workload of physicians in identify-
ing orthopaedic implants from radiographs. Despite such outstanding
findings, there is a lack of a systematic assessment of the extent and
operation of AI algorithms to classify orthopaedic implants in patients.
There are some reviews on the application of machine learning/deep
learning in orthopaedics [4,9,17–19], but none are as comprehensive
as our review. Existing reviews have not focused on challenges and
possible solutions. Furthermore, there has been little discussion on how
to create trustworthy DL systems for this field. Moreover, there are
no details on technologies, software, or fusion techniques. This review
aims to assist researchers and practitioners by highlighting challenges
3

and providing information on trustworthy DL systems that can support
the orthopaedic sector. We have formulated and will address the fol-
lowing five questions that are of great importance and are attracting
increasing attention from the medical field of orthopaedics.

• What are the main applications of DL in orthopaedics?
• Contribution#1: DL applications in orthopaedics have been de-

scribed, including fracture classification, prediction of arthro-
plasty implants, bone age regression, MRI-based tear segmenta-
tion, and soft tissue disease segmentation.

• What are the major challenges encountered in applying DL tech-
niques for orthopaedic tasks, and what are the potential solutions
to overcome them?

• Contribution#2: Data scarcity and lack of interpretability are
challenges in applying DL techniques for orthopaedic tasks. Po-
tential solutions include data enhancement, transfer learning, and
the development of interpretable DL models.

• What are the main technologies associated with DL for tasks in
orthopaedics?

• Contribution#3: Technologies associated with DL for ortho
paedics encompass integration with robotic surgery, mixed reality
(MR), wearable sensors, and 3D printing, enhancing preoperative
software for diagnosis, planning, and outcome prediction.

• What are the requirements needed for developing reliable DL appli-
cations in the field of orthopaedics?

• Contribution#4: Requirements for developing reliable DL appli-
cations in orthopaedics entails ensuring data quality, model relia-
bility, and a transparent process, which includes data verification,
model validation, and compliance with regulatory standards such
as FDA approval.

• What techniques can be employed to address the integration of
multimodal data in Orthopaedics?

• Contribution#5: Techniques employed to integrate multimodal
data in orthopaedics include feature fusion, image fusion, deci-
sion fusion, and multi-modal fusion, enhancing diagnostic and
predictive capabilities.

The structure of this review is as follows:

2. Review methodology

Four digital databases were utilised to search for the target publi-
cations: Science Direct (SD), Scopus, IEEE Xplore (IEEE), and Web of
Science (WoS). SD provides reliable technological, scientific, and engi-
neering references. Scopus contains reliable resources in several fields,
including medicine, health, technology, science, and engineering. The
IEEE includes a comprehensive technical and scientific literature on
electrical engineering, electronics, and computer science. WoS contains
all cross-disciplinary research papers in science, technology, art, and
social science. These databases provide comprehensive insights for
researchers by covering most research disciplines from a scientific and
technological perspective. We have focused on scientific publications
between Jan 2017 and March 2023. The articles of this literature
review were selected based on the following queries: (‘‘Deep learning’’
AND ‘‘artificial intelligence’’ AND ‘‘orthopaedics’’ OR ‘‘orthopedics’’ OR
‘‘orthopaedic surgery’’ OR ‘‘orthopedics surgery’’), (‘‘Deep learning’’
AND ‘‘orthopaedics’’ OR ‘‘orthopedics’’), (‘‘Deep learning’’ AND ‘‘frac-
ture Detection’’), (‘‘Deep learning’’ AND ‘‘Supraspinatus Tears Detec-
tion’’), (‘‘Deep learning’’ AND ‘‘Osteoarthritis’’), (‘‘Deep learning’’ AND
‘‘Bone Age Assessment’’), (‘‘Deep learning’’ AND ‘‘Transfer learning’’),
(‘‘Deep learning’’ AND ‘‘MURA’’), (‘‘Deep learning’’ AND ‘‘Interpretabil-
ity’’ OR ‘‘orthopaedics’’ OR ‘‘orthopedics’’), (‘‘Deep learning’’ AND
‘‘Adversarial Attacks’’ OR ‘‘orthopaedics’’ OR ‘‘orthopedics’’), (‘‘Deep
learning’’ AND ‘‘Robotic surgery’’ AND ‘‘orthopaedics’’ OR ‘‘orthope-
dics’’), (‘‘Deep learning’’ AND ‘‘Mixed Reality’’ AND ‘‘orthopaedics’’
OR ‘‘orthopedics’’), (‘‘Deep learning’’ AND ‘‘Wearable sensors’’ AND

‘‘orthopaedics’’ OR ‘‘orthopedics’’), (‘‘Deep learning’’ OR ‘‘Preoperative
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Software’’ AND ‘‘orthopaedics’’ OR ‘‘orthopedics’’), (‘‘Deep learning’’
AND ‘‘Trustworthy’’ AND ‘‘orthopaedics’’ OR ‘‘orthopedics’’), (‘‘Deep
learning’’ AND ‘‘Fusion Techniques’’ OR ‘‘orthopaedics’’ OR ‘‘orthope-
dics’’). The keywords were selected based on the recommendations of
AI experts and orthopaedic surgeons.

3. Motivation: Deep learning in diagnosis of orthopaedics

Orthopaedic practice relies heavily on radiological imaging, with
the most frequent modalities including ultrasonography, radiography,
computed tomography scanning, and magnetic resonance imaging.
Most injuries are initially addressed in an emergency department or
by a primary care practitioner, who requests some form of imaging.
In some cases, the radiographic images may be inconclusive or in-
sufficiently good to properly diagnose an injury that requires a more
advanced imaging modality. An orthopaedic specialist may request
supporting opinions or a more sensitive scanning analysis for further
treatment. The delay in initiating treatment or misdiagnosis of a trau-
matic lesion may result in poor recovery of the patients, increasing the
need for complex medical management, resulting in a higher cost of
treatment [20,21].

Additionally, missed or occult fracture detections contribute to a
substantial portion of medicolegal claims. For example, a scaphoid
fracture often leads to an elevated incidence of avascular necrosis [20].
As many as 20% of scaphoid fractures are missed radiologically, and
detection of these fractures can be enhanced through serial imaging,
reasonable prospects, or an urgent protocol for MRI or CT scan [20,
22]. Another example of missed fracture cases is Lisfranc fracture-
dislocations, of which roughly 20% of cases are missed [23], increasing
to 50% if the X-ray images are misinterpreted [24]. The risk of missed
fractures can be minimised by early determination of the mechanism
that caused the injury, a well-planned image protocol, and a low thresh-
old to use a more advanced imaging modality, which could reduce the
rates of morbidity and cost of care. Using DL in orthopaedic diagnostics
has the potential to reduce the risk of missed injuries and achieve more
timely treatment. Possible applications include enhanced upstream ap-
plications, such as rapid image acquisition and more effective protocols,
as well as downstream functions, such as computerised image analysis
and interpretation [11]. Specific applications include:

• DL utilisation to improve the precision of surgical planning. 3D
models of bones and joints can be utilised to simulate surgical
procedures and make outcome predictions. This can lead to more
effective and less invasive surgical procedures, resulting in faster
recovery times for patients.

• DL in orthopaedics can also assist in reducing the workload
of healthcare professionals, leading to more efficient and cost-
effective healthcare delivery.

• DL can offer more accurate and efficient diagnosis and treatment
planning. Most notably, DL can be utilised to analyse medical
images such as X-rays and MRIs to detect and diagnose traumatic
or degenerative lesions and other orthopaedic tasks. This can lead
to more accurate and timely diagnoses, resulting in better patient
outcomes.

• DL can also help improve the overall quality of life of patients by
reducing the time spent in hospitals and facilitating the provision
of more personalised treatment plans.

. Deep learning applications in orthopaedics

Recently, there has been a growing interest in the adoption of DL
echniques in various areas of orthopaedics. The emergence of AI and
L technologies in medical imaging is supported by Convolutional
eural Networks (CNNs), which serve as the backbone for this class of
lgorithms, and leverage enhanced computational processing capacity
4

o perform various tasks, including segmentation, injury recognition,
and image reconstruction [25]. Despite the fact that DL methods have
received significant attention in diagnostic imaging in recent years,
the implementation of DL in musculoskeletal imaging has been largely
overlooked compared to imaging in other fields [26], and DL is used
primarily in musculoskeletal imaging for anatomical segmentation and
injury classification [27]. Given the ever-expanding imaging volumes
in current practice, DL has been introduced as a promising work-
flow aid. Current applications include acting as a ’second observer’
to minimise inaccurate diagnoses and improve efficiency, as well as
in non-interpretative usages [28] such as image acquisition and pro-
tocolling [29]. Segmentation models are introduced to integrate with
applications related to downstream quantitative modelling, with these
models being developed out of early developmental stages [30].

This section will explore some of the current and potential applica-
tions of DL in orthopaedics.

4.1. Fracture classification

Fractures are one of the most common ailments assessed by or-
thopaedists [31,32]. As such, it is logical that DL methods were first em-
ployed in fracture detection. Since then, multiple studies have demon-
strated the capabilities of DL algorithms for automated fracture de-
tection in radiographs. These models call can also be extended to
include the classification of fracture type (see Fig. 1). Fig. 2 illustrates
the typical DL workflow to predict the type of fracture. It is worth
mentioning that this workflow is almost the same for all orthopaedic
tasks, with small changes based on the target task.

Previously, Kalmet et al. [34] presented a brief overview of DL
technology, describing how DL has been used to detect fractures on
radiographs and CT examinations. Chung et al. [35] proposed a CNN
model to diagnose and classify proximal humerus fractures. The study
employed three specialists to identify 1891 anteroposterior shoulder
radiographs that had normal proximal humerus (n = 515) or one of four
types of proximal humerus fractures (greater tuberosity: 346; surgical
neck: 514; 3-part: 269; and 4-part: 247). Subsequently, a dataset-
trained ResNet-152 CNN model was generated using the augmented
data. Compared to a trained CNN model, the accuracy of 96% was
achieved for normal shoulders and proximal humerus fractures, which
was higher compared to a general orthopaedist who had an accuracy
of 92 8%. The fracture type classification by the CNN model recorded
a top-1 accuracy of 65%–86% with an Area Under the Curve (AUC) of
0.90–0.98.

Demir et al. [36] presented a DL model with enhanced classifica-
tion accuracy to diagnose and classify humerus fractures via a novel
stable feature extraction approach. Referred to as the exemplar pyra-
mid method, the model returned an exceptional 99.12% classification
accuracy.

Similarly to shoulder fracture classification, several studies have
attempted to classify hip fractures by training CNN-based models. Ya-
mada et al. [37] trained an Xception architectural CNN model using
3123 plain hip and lateral radiography images. The trained model
was able to classify the fractures with up to 98% accuracy compared
to 92.2% by orthopaedists. Urakawa et al. [38] employed hip plain
radiographs (1573 normal hip and 1773 intertrochanteric hip fracture
images, respectively) to train a VGG-16 CNN model and recorded
95.5% accuracy.

In another study, Lee et al. [39] trained a GoogLeNet-InceptionV3
CNN model using 786 anteroposterior pelvic plain radiographs. The
trained model recorded a reasonable accuracy of 86.8% and success-
fully classified the proximal femur fracture into three types, type A
(trochanteric region), type B (femur neck), and type C (femoral head),
following the AO/OTA classification system [40]. Lind et al. [40] also
trained a ResNet-based CNN model using 6768 images of anteropos-
terior and lateral knee radiographs. The trained CNN model classified
knee radiographic images following the AO/OTA classification system

and classified the patellar fractures, proximal tibia fractures, and distal
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Fig. 1. Femur bone fractures types [33].
Fig. 2. Fracture classification process with DL.
femur fractures with AUCs of 0.89, 0.87, and 0.89, respectively. In
addition, the trained CNN model diagnosed and classified fractures
in the large appendices of the shoulder, hip, and knee at a relatively
high AUC and accuracy level. Conversely, the trained CNN model
only achieved a fairly poor AUC and accuracy when diagnosing and
classifying fractures in the small or axial joints.

Farda et al. [41] trained a PCANet-based CNN model to classify
calcaneal fractures according to Sanders classification using a dataset
containing 5534 CT scans and achieved 72% accuracy. Apart from
that, Ozkaya et al. [42] trained a ResNet50 CNN-based model using
390 anteroposterior wrist radiographic images. The trained CNN model
5

recorded an AUC of 0.84, indicating a moderately satisfactory outcome,
although the value was lower compared to orthopaedic specialists. The
outcome was similar to the report by Langerhuizen et al. [43], where
the accuracy of a trained VGG16 CNN-based model was only 72%
compared to the higher accuracy by an orthopaedic surgeon (84%).
The scaphoid fracture diagnostic was performed using 150 radiographic
scaphoid fracture images and 150 radiographic normal wrist images
without fracture. A total of 23 out of the 150 scaphoid fracture images
could not be assessed using the radiographic images and were only
verified via MRI imaging. It should be noted that all orthopaedic
surgeons missed five out of six occult scaphoid fractures.
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A report was also published by Chen et al. [44], who diagnosed
compression fractures in the spine using a trained ResNet-based CNN
model. Spinal results seem to be more heavily influenced by the imag-
ing modality used for training. Previous results showed a significant
difference with an accuracy of 73.59% when the CNN model was
trained using plain spine X-rays compared to Yabu et al. [45] who
introduced a trained CNN model using MRI images with a higher
accuracy of 88% compared to the surgeons.

In 2023, Wang et al. [46] proposed a diagnostic tool that uses DL to
identify and classify fatigue fractures in X-ray images of the tibiofibu-
lar and foot regions. They obtained a sensitivity of 95.4%/85.5%, a
specificity of 80.1%/77.0%, and an AUC of 0.965/0.877 of internal
testing/external validation set, respectively.

In 2022, Meena and Roy [31] evaluated multiple methods for
identifying and categorising fractures across multiple regions. They
determined that utilising CNN-based models, specifically the Incep-
tionNet and XceptionNet, yields better results than other CNN-based
models. Liao et al. [47] presented a new method using CNN atten-
tion guidance to assist CNN classification networks in making deci-
sions based on more meaningful visual patterns. This was achieved
by incorporating self-attention and human-guided regularisation into
state-of-the-art CNN models. The study used a ResNet-50 backbone
and showed great improvements in prediction accuracy on evaluated
fracture datasets, which are representative of typical data sizes for
medical image analysis issues.

Overall, a higher accuracy level is achieved for fracture diagnosis
(binary classification) using DL-trained CNN models than fracture clas-
sification (multiclass classification), with an expected narrowing of the
gap as more advanced CNN models are introduced. It was noted that
the classification of fractures of small and axial joints results in poorer
accuracy when compared to that of large joints. The poor outcome is
viewed as a drawback of CNN-based approaches, which adjudicate the
outcome by recognising the contrast information (such as the average
margin of the cortical bone and the fracture line or normal joint
line) and the spatial information of the images. The authors assume
that more powerful CNN models can be utilised to overcome these
limitations. So far, DL methods have been employed to diagnose and
classify osteoporotic fractures, while the investigation of low-frequency
osteoporotic fracture joints has reported fairly poor outcomes. This
could be due to the high percentage of osteoporotic fractures observed
amongst all types of fractures and the relatively standardised fracture
pattern that makes it suitable to be applied in fracture classification.

Generally, the two primary factors governing the performance of
the previous DL models for fracture detection are the need for a
large number of high-quality images and the interpretability of the
results. Table 1 lists the latest state-of-the-art DL methods in fracture
classification. Most of the previous fracture classification methods are
listed in [48].

4.2. Osteoarthritis and prediction of arthroplasty implants classification

Osteoarthritis is the degenerative wear and tear of the articular
cartilage, progressively leading to joint destruction. To date, several
investigations have used DL algorithms to diagnose and classify os-
teoarthritis [29]. Lee et al. [57] summarised the use of AI to diagnose
knee osteoarthritis and predict the outcomes of subsequent total knee
arthroplasty. The study found that ML-based models show promising
results in grading knee radiographs and predicting the need for total
knee arthroplasty. This study also showed the ability of AI algorithms
to predict patient-reported outcomes and satisfaction after surgery.
However, the study also highlighted weaknesses in the model, such as
the lack of validation, biases in clinical data, and the need for large
datasets for training.

One of the pioneering studies applying DL methods in orthopaedics
was performed by Xue et al. [58], who trained a VGG-16 CNN-based
model using 420 plain hip X-rays. The diagnosis of hip osteoarthritis by
the trained model achieved 92.8% accuracy. Another pioneering study
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Fig. 3. Types of shoulder implants in X-ray Classification [69].

was carried out by Üreten et al. [59], who introduced a similar design
model for diagnosing hip osteoarthritis and recorded 90. 2% precision.
Meanwhile, Tiulpin et al. [60] reported a multiclass accuracy of 66.7%
from a trained Siamese classification CNN model using plain knee X-
rays to classify knee osteoarthritis based on the Kellgren–Lawrence
grading scale.

Furthermore, Swiecicki et al. [61] trained a Faster Region-based
CNN (R-CNN) using knee X-rays from the Multicentre Osteoarthritis
Study (MOST) dataset. The model recorded a multiclass accuracy of
71.9%, indicating enhanced performance compared to Tiulpin et al.
[60]. Pedoia et al. [62] trained a DenseNet-based CNN model using
MRI images instead of X-ray data (normally used in previous studies)
and achieved a high AUC of 0.83. Furthermore, Kim et al. [63] used
4366 knee anteroposterior X-rays as the data set together with various
demographic information (body mass index (BMI), sex, and age), align-
ment, and pertinent metabolic information that can train a CNN model
based on SE-ResNet. The study achieved a significantly higher AUC by
coupling image data with additional patient information.

Zhuang et al. [64] presented a new approach to using MRI to diag-
nose knee osteoarthritis using multiple views and integrating them to
improve accuracy, unlike traditional methods which used a single-view
MRI. They proposed a Local Graph Fusion Network (LGF-Net), which
models multiple MRI views as a unified graph and uses graph-based
representation and fusion for osteoarthritis diagnosis.

Given that arthroplasty is frequently needed in the advanced hip or
knee osteoarthritis, several researchers have proposed DL-based models
to identify arthroplasty implants. Previously, Karnuta et al. [65] trained
an InceptionV3 network-based CNN model using anteroposterior knee
X-rays with nine varying implant models. The trained model classified
implant models at a nearly perfect level with accuracy and AUC of 99%
and 0.99, respectively. Borjali et al. [66] performed a similar study on
hip joints by training a CNN model using 252 plain hip X-rays with
three implant types. The model successfully classified the implants with
100% accuracy. In addition, Kang et al. [67] trained a CNN model
using 170 plain hip X-rays with 29 implant types. The trained model
achieved an outstanding performance value of AUC of 0.99. However,
the small training dataset can raise the issue of overfitting and lack of
generalisation. Urban et al. [68] also trained an implant identification
CNN model using 597 plain shoulder X-rays with four implant types
(see Fig. 3) and 16 different DL models, recording up to 80% accuracy.

Sultan et al. [70] proposed a modified ResNet and DenseNet model
to classify different implant designs from four manufacturers, which
obtained an accuracy of 85.9%. In 2021, Yılmaz [15] utilised a DL
model to classify four types of implants based on CNNs with a new
layer through a channel selection formula to improve filter properties.
This model achieved an accuracy rate of 97.2%. In 2022, Sivari et al.
[71] proposed a combination of 10 different hybrid DL models and
ML algorithms for the same task. The best performing model was
the integrated DenseNet201-logistic regression model, which had an
accuracy of 95.07%. Table 2 lists the latest state-of-the-art DL methods
in osteoarthritis and prediction of arthroplasty implants. More details
on the previous methods can be found in [72–74].

4.3. Bone age regression

The development of the human skeletal structure is a continuous
differentiation process with different maturity markers that can be
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Table 1
The state-of-the-art methods of DL applied to fracture classification.

Reference and year Body part CNN model Number of
samples

Best results

Yamada et al. [37] Hip Xception 3123 Accuracy = 0.98
Lee et al. [39] Hip Inceptionv3 686 Accuracy = 0.86
Langerhuizen et al. [43] Wrist VGG-16 300 AUC = 0.77
Lind et al. [40] Knee ResNet 6768 AUC = 0.89
Farda et al. [41] Ankle PCANet 5534 Accuracy = 0.72
Yabu et al. [45] Vertebra VGG-16,19, Inception

V3,ResNet50
1624 AUC = 0.95

Chen et al. [44] Vertebra ResNeXt 1306 Accuracy = 0.73
Oakden-Rayner et al. [49] Proximal femur DenseNet 4577 AUC = 0.99
Wang et al. [50] Mandible U-Net and ResNet 22 256 AUC = 0.95
Dupuis et al. [51] Several body parts DL algorithm (Rayvolve) 5865 AUC = 0.92
Guan et al. [52] femur ResNeXt 3842 Precision = 0.88
Ashkani-Esfahani et al. [53] Ankle Inception V3 and Renet-50 2100 Sensitivity = 0.98
Wang et al. [46] Foot ResNet-50 3993 AUC = 0.96
Huang et al. [54] Rib AlexNet , GoogLeNet,

EfficientNet, DenseNet201, and
MobileNet

2000 Accuracies: 92.6%, 92.2%,
92.3%, 92.4%, 91.2%.

Cheng et al. [55] Vertebral YOLOv4 and ResUNet 3634 Precision = 0.99, 0.74, and 0.94
Schilcher et al. [56] Femur Fusion techniques 1124+4014 AUC = 0.98
Table 2
The state-of-the-art methods of the DL in osteoarthritis and prediction of arthroplasty implants.

Reference and year Body part CNN model Best results

Xue et al. [58] Hip VGG-16 Accuracy = 0.92
Tiulpin et al. [60] Knee Siamese CNN Accuracy = 0.66
Pedoia et al. [62] Knee DenseNet AUC = 0.83
Kim et al. [63] Knee SE-ResNet AUC = 0.75
Üreten et al. [59] Hip VGG-16 Accuracy = 0.90
Leung et al. [75] Knee ResNet34 AUC = 0.87
Swiecicki et al. [61] Knee Faster R-CNN Accuracy = 0.71
Yılmaz [15] Shoulder Multichannel model Accuracy = 0.97.2
Karaci [76] Shoulder YOLOV3 & DenseNet201 Accuracy = 0.84
Sivari et al. [71] Shoulder DenseNet201 & Logistic Regression Accuracy = 0.95
recognised and analysed by paediatricians and radiologists to assess
bone age. With this in mind, bone age is a quantitative measure
of skeletal maturity [77,78]. The difference between bone age and
chronological age is strongly associated with physical growth, such as
body size, changes in sex characteristics, the significant appearance
of the pubertal growth spurt (fast growth) and the level of endocrine
hormones [79–81]. In medical practise, bone age assessment is carried
out by analysing specific patterns of skeletal maturity markers on
hand-wrist X-ray images of a patient.

Standard clinical bone age assessment techniques include atlas and
scoring methods. The Greulich and Pyle (G&P) method is an example
of an atlas method [82]. Generally, radiologists compare target X-ray
images with the atlas as a reference and use the closest match as the
evaluation outcome. However, it is challenging to accurately assess
bone age when the target X-ray image is between two proximate atlas
references, and the description of bone development is less detailed. In
contrast, the Tanner–Whitehouse (TW) approach is a type of scoring
method in which radiologists initially observe 20 specific regions of
interest (ROI) before evaluating bone age based on the analysis of
each ROI [83]. The method has been revised and updated over time,
with the latest version being the TW3 method. In the TW3 method,
a higher number of parameters and indicators are used compared to
the 20 ROIs in the original TW method to build a more detailed
description of bone development and improve the accuracy of the
assessment. Two common features of the various procedures for bone
age assessment is that they are largely subjective and time-consuming.
Consequently, a modern radiology department has difficulty obtain-
ing consistent evaluation results within an acceptable error margin.
Therefore, several available computer-aided techniques were evaluated
to determine factors that aid or hinder the performance of clinical
procedures. Evaluation of bone age using computer-aided methods can
be grouped into two classes: non-DL and DL. The former basically
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utilises classic ML techniques and image processing technology [84].
Non-DL methods also utilise hand-crafted visual features from entire
images or local informative regions, and the classifiers are constructed
using a small-scale private dataset. The results range from 10 to 28
months of Mean Absolute Error (MAE) and are easily affected by hand-
wrist X-ray images with unexpected image quality. The generalisation
ability of the models is also disputable.

For example, Pietka et al. [85] distinguished bone tissue from other
regions by applying numerous window sizes with adaptive thresholds.
Additionally, ROIs were employed to produce feature descriptors in
terms of geometrical description and pixel property values. Ultimately,
the generated feature descriptors were passed into the decision-making
approaches to estimate bone age. A recent study illustrated the extrac-
tion of epiphyseal and metaphyseal tissues [86]. The feature descriptors
were acquired by measuring the critical bone area diameter and the
ratios of the crucial distance.

A commercial automated method called the BoneXpert adopts a gen-
erative model to generate images while retaining realistic shapes and
densities, which collectively resemble bone structure [87]. The features
include information on the bone’s shape, texture, and intensities. In
short, the method implements an automated assessment by mapping
functions to generate a relative score depending on the selected TW
or G&P methods. Nevertheless, the process would sometimes have to
be performed manually since poor-quality images or abnormal bone
structures are rejected. Compared to non-DL methods, BoNet [88] is a
type of DL method that used a purpose-designed CNN model to extract
low- and middle-level feature descriptors and applied an extra layer of
deformation to represent non-rigid deformed objects. The evaluation
of bone age was then achieved by implementing fully connected layers
with an approximate MAE of 9.6 months. Previously, the Radiological
Society of North America (RSNA) developed a large-scale bone age
assessment data set containing 12,611 images of various resolutions



Artificial Intelligence In Medicine 155 (2024) 102935L. Alzubaidi et al.
to support the formation and establishment of ML models for medical
image analysis [89].

Data processing that comprises multiple subtasks is a significant
element in identifying informative regions. In one study, both DL and
classic ML were utilised to generate a credible prediction [90]. Pre-
trained CNNs were implemented for the DL-based method to extract
image features and construct a regressor model automatically. On the
other hand, the canny edge detection was adopted for the classic
ML method to extract the image features and develop five traditional
ML regressors: Random Forest, Linear Regression, XGBoost, Support
Vector Regressor (SVR), and Multilayer Perceptron (MLP). Based on
the results, the pre-trained CNNs achieved the best performance with
an MAE of 14.78 months. A U-Net model was first trained in an-
other study to acquire vital point regions with manually labelled hand
masks [91]. A vital point detection model was then utilised to align
the hand radiographs into a common coordinate space. Overall, the
study achieved an MAE of 6.30 months and 6.49 months for males and
females, respectively.

A novel experimental design with manually labelled bounding boxes
and key point annotations was proposed during training in [92]. Local
information was exploited to perform pose estimation and region de-
tection for bone age assessment. The findings recorded the best RSNA
with an MAE of 4.14 months. Despite the high accuracy and efficiency
of the large number of models that perform well with accurate manual
annotations, additional annotations were considered time-consuming.
They restricted the algorithm conversion into useful clinical practice.

In [93], a hybrid model was proposed that combines learning of
DL characteristics and a fast ELM method to monitor the skeletal
development of children using bone age prediction from hand-wrist
radiographs. ROIs were used to assess bone maturity. The previously
mentioned Tanner–Whitehouse (TW) method, a common Bone Age
Assessment (BAA) alternative, was used to estimate bone age. The
proposed method obtained high performance with the RSNA dataset
when using a hybrid model of MAE 6.0737.

DL was also used by Li et al. [94] to assess the bone age of a child
diagnosed with growth disorders. Unsupervised learning methods with
CNNs were used to extract high-level features using a batch normali-
sation layer and an argmax layer for feature clustering. This work is
based on the MLP technique for the prediction head and MobileNetV3
for the backbone, and the MAE was 6.2 and 5.1, respectively.

The deep neural network (DNN) model has been proposed in [95]
to assess bone age using a database of paediatric left-hand radiographs.
The result has shown that the MAE values for male and female models
were between 0.33 and 0.25 years, respectively.

Research by Zulkifley et al. [96] proposed an Attention-Xception
Network (AXNet) method to predict bone growth in the paediatric pop-
ulation. This method used ROIs to calculate the rotational alignment
module of the hand region based on a key-point detector. The results
showed that the proposed framework achieved the lowest MAE and
MSE values of 7.699 and 108.869 months, respectively.

In [97], the deep convolutional neural network technique (DCCN)
has been proposed to estimate age-based sex information. They used
hand-crafted key point detection-based affine transformation to register
the hand pose. The MEA obtained was 5.31 months higher than other
existing BAA methods.

The hyperparameter optimisation-based DL-based model for the
automated assessment and classification of bone age (HPTDL-BAAC)
method has been proposed by Palaniswamy [98] to assess bone age and
classify it into stages using the Digital Hand Atlas (DHA) database. A
SqueezeNet-based regional convolutional neural network (RCNN) mask
was used for feature extraction. The result showed that it produced
higher average accuracy of 98.30% and an average F-score of 98.31%
than other techniques.

Estimating bone maturity using hand-bone radiographs and X-ray
images has been proposed in [99]. This research employed Multi-
scale Multi-reception Attention Net (MMANet) and Multi-scale Multi-
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reception Complement Attention (MMCA) network to improve the
representation of features of key regions and eliminate background
regions’ influence. The method achieved a higher performance of MAE
3.88 months using the RSNA Paediatric Bone Age Challenge dataset
than other compared methods. The research of Wang et al. [100]
proposed multi-instance learning-based attention networks using patch
features. These features have been ranked by an attention backbone and
aggregated to predict bone age. The proposed method achieved MAE
4.17 months using RSNA 2017 dataset.

Recently, DL techniques have been used to assess age based on the
bone structure of the teeth. For example, the study of Upalananda et al.
[101] developed the GoogLeNet method to assess the developmental
stage of the mandibular third molars using the method of Demirjian
et al. [102] classification stages D to H, generating sound results. Ta-
ble 3 lists the latest state-of-the-art DL methods in bone age assessment
tasks.

4.4. Classification and segmentation of supraspinatus tears using MRI

DL methods can help analyse data sets for the diagnosis, manage-
ment of risk and treatment of patients with musculoskeletal injury,
which benefits both patients and their providers [106]. One of the
promising applications of DL methods relates to rotator cuff tears. Ro-
tator cuff tears are a broad entity of diagnoses encompassing different
combinations of tendon involvement, varying depths and dimensions
of tendon tears, diverse tear configurations, and different retraction
patterns, all requiring advanced medical imaging for evaluation. In
general, tears occur in all demographics [107], and the supraspinatus
tendon is the most frequently affected tendon. Cuff tears can be treated
with conservative or surgical methods, and decision making is influ-
enced by tear severity and other patient factors [108]. As such, the
clinical presentation and imaging features usually dictate the need for
surgery. Moosmayer et al. [109], Longo et al. [110]. MRI is the gold
standard imaging to diagnose and classify rotator cuff tears, offering
a sensitivity of 90% (95% CI: 84%–96%) and specificity of 90% (95%
CI: 84%–95%) for binary classification [111]. Fig. 4 shows an example
where DL can be applied for this task.

Several DL methods have been employed in shoulder imaging,
particularly for the rotator cuff anatomy and segmentation of the
glenohumeral joint [27,27,112]. Although three individual studies have
reported on the use of both DL [113] and non-DL [114] methods for MR
classification of supraspinatus tears, single-scanner data in these studies
may not represent the heterogeneity in standard clinical practices,
including the variations in magnetic field strength. Thus, one of the
feasible applications of DL this paper is reviewing is the detection of
supraspinatus tears using MRI. The study also examined the variable
accuracy under different MR protocols and injury subtypes to gain
further insights into the generalisability of the DL models for future
clinical applications. Fig. 4 shows the Goutallier classification system,
where the four rotator cuff muscles are classified into five escalating
grades of fatty infiltration into the muscle belly. By classifying the
quality of muscle–tendon tissue,this system allows clinicians to assess
the chronicity and repairability of rotator cuff tears. DL can be used
to classify rotator cuff muscles using this system, as explained in the
following paragraphs [115].

Shim et al. [113] trained a Voxception-ResNet (VRN)-based CNN
model using 2124 shoulder MRIs to assess the presence and size of
rotator cuff tears. The identification and classification of these tears
were recorded with an accuracy of 92.5% and 76.5%, respectively. Lee
et al. [116] constructed an innovative DL architecture based on an
integrated positive loss function and a pre-trained encoder, which
accurately determined the position of the rotator cuff tear even with
imbalanced and noisy ultrasound images.

Kim et al. [117] trained a CNN model using shoulder MRI of 240
patients as the dataset. The trained CNN model achieved an accuracy
of 99.9% and determined the muscle area of the rotator cuff with fatty
infiltration of high grade. Similarly, Taghizadeh et al. [118] trained a
CNN model using shoulder CT of 103 patients as the dataset and mea-

sured the fatty infiltration with 91% accuracy. In another study, Medina
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Table 3
The state-of-the-art methods of the DL in bone age assessment.

Reference and year Role Feature extraction Methods MAE

Spampinato et al. [88] Bone age assessment low-middle-level feature
descriptors

BoNet 9.6

Iglovikov et al. [91] Aligning hand radiographs Vital Point region U-Net 6.3

Wibisono et al. [90] Identifying informative regions in
bone

RF, LR, XGBoost, SVR, and
MLP

CNNs 14.78

Escobar et al. [92] Conducting the pose estimation
and region detection

– BoNet 4.14

Li et al. [94] assessment of bone age using CNNs for high level
features

MLP and
MobileNetV3

6.2–5.1

Cheng et al. [95] Assess bone age based on
pediatric left-hand radiographs

– DNNA 0.311–0.25

Zulkifley et al. [96] To detect any anomaly in bone
growth among kids and babies

RIOs to get hands key points AXNet 7.699

Guo et al. [93] Monitoring the skeletal
development of children’
hand-wrist

using RIOs to assess the
maturity of bone

CNNs and ELM 6.0737

Nguyen et al. [97] Bone age prediction based sex using information hand’s
key-points features

DCNNs 5.31

Palaniswamy [98] Bone age assessment using R-CNN based mask with
SqueezeNet for features

HPTDL-BAAC –

Jabbar and Abdulmunem [103] bone evaluation growth stage of
younger

– DCNN –

Yang et al. [99] Estimating bone maturity from
hand bone

improving key and
background regions features

MMCA and MMANet 3.88

Upalananda et al. [101] Tooth development of mandibular
third molars

– GoogLeNet –

Wang et al. [100] Evaluating children’s endocrine,
genetic, and growth disorders

Patch features using feature
extraction network

DL based on
multiple-instance
learning

4.17

Rassmann et al. [104] Bone age assessment validated on
skeletal dysplasias

Patch features using feature
extraction network

Convolutional neural
network models

3.87 & 5.84

Wu et al. [105] Bone age prediction in children Patch features using feature
extraction network

Vision transformers 0.5 & 0.4
Fig. 4. The Goutallier classification: oblique-sagittal proton density-weighted images
show different degrees of fatty degeneration of the supraspinatus muscle: normal =
grade 0 (a), some fat streaks = grade 1 (b), less fat than muscle = grade 2 (c), as
much fat as muscle = grade 3 (d), and fatter than muscle = grade 4 (e) [115].

et al. [119] segmented rotator cuff muscles on 258 shoulder MRIs with
mean Dice scores > 0.93.

Ro et al. [120] developed a DL model to detect and evaluate
rotator cuff tears on shoulder MRI scans. They used a DL algorithm
to detect the supraspinatus muscle and its fossa and calculated the
occupation ratio of the muscle in the fossa. The authors also evaluated
the fatty infiltration of the muscle using an automated region-based
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Otsu thresholding technique. They found that the proposed CNN was
able to detect and evaluate the occupation ratio and fatty infiltration
accurately, and these had a moderate negative correlation.

In 2022, Yao et al. [112] used DL to detect tears in the supraspinatus
tendon using MRI images automatically. The study used 200 shoulder
MRI scans and divided them into three categories: full-thickness tears,
partial-thickness tears, or intact tendons. They created a 3-stage process
using different types of computer networks to analyse the images and
then compared the results to the findings of radiologists. They found
that the DL was able to detect tears with a high level of accuracy, with
a test sensitivity and specificity of 85%. They also found that the DL
was able to detect full-thickness tears with 100% sensitivity.

In 2023, Lin et al. [27] aimed to develop a DL model to detect and
classify rotator cuff tears on shoulder MRI images. They used 11,925
MRI scans from 2 institutions, with 11,405 for training the program
and 520 for testing. They used an algorithm that analysed four different
series of images from each scan and used the radiologist’s report as the
‘‘ground truth’’ for what the DL should be looking for. They found that
the DL was able to detect and classify tears with high accuracy, with
an overall AUC of 0.93. The DL performed especially well detecting
full-thickness tears, with an AUC of 0.98. They also found that the DL’s
accuracy was similar to that of radiologists.

Based on the aforementioned studies, it can be stated that DL has
become a feasible approach for detecting supraspinatus tears on MRI.
Extra training data is required to further characterise the tears.

4.5. Joint-specific soft tissue disease segmentation

Specialised DL algorithms for diagnosis based on learned images
have key structural differences from algorithms used for segmentation
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Fig. 5. Example of results on meniscus MR images from [123]. (a) Degenerations in the anterior and posterior meniscal horns, (b) Tears in the meniscal body, (c) Tears in the
posterior horn, (d) Healthy meniscus.
using analysed features. As such, both algorithms have been devel-
oped for specific applications in different areas [121]. Segmentation
algorithms suffer from technical complexity, which is easily lost in
the outer layer process of synthesising the results of the CNN model
during training. It is necessary to preserve spastic information [122].
Several techniques, such as the Fully Convolutional Network (FCN)-
based semantic segmentation, have been assessed to overcome these
limitations. The presence of numerous DL algorithms also influences
the level of utilisation of DL in the field of orthopaedics.

The aforementioned DL-based studies represent study cases that
used X-ray images for diagnosis and classification, which often does not
require specialised CNN models for segmentation [122]. Conversely, a
satisfactory accuracy level can only be achieved using specialised CNN
models to segment diseases diagnosed and classified based on MRI or
ultrasound images. For example, a CNN model is more suitable for
diagnosing rotator cuff tears based on the normal outline of the rotator
cuff (segmentation) than a diagnostic approach specifying the point of
the tear occurrence (regional detection). Thus, the use of CNN models
to diagnose soft tissue disorders in orthopaedics only appeared after
2018, when the segmentation technology was fully developed [112].

Recent publications have proposed the use of a CNN model to
diagnose cartilage lesions, meniscal tears, and ruptures of the anterior
cruciate ligament (ACL) in the knee joint [124]. According to Couteaux
et al. [125], a Mask-RCNN model was trained using 1828 knee MRI
images to identify the torn segment of the meniscus from the normal
segment and classify the tear according to its position. The model
diagnosed and classified meniscal tears with a high AUC of 0.91. A
comparable model was also reported by Roblot et al. [126], which also
recorded an exceptional AUC of 0.94. Additionally, Chang et al. [127]
proposed a trained CNN model based on U-Net to diagnose complete
ACL tears using 320 MRI images, which achieved an excellent AUC of
0.97. Flannery et al. [128] assessed the segmentation of a modified
trained CNN model based on U-Net, which showed a statistically in-
significant difference with respect to ground truth, represented by the
actual value suggested by an expert.
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Li et al. [129] investigated the value of using magnetic resonance
imaging to diagnose anterior cruciate ligament (ACL) injuries using a
multimodal fusion model based on DL. 30 patients with knee injuries
were diagnosed using both MRI and arthroscopy. Empirical results
showed that DL-based magnetic resonance imaging achieved a high
precision of 96. 28% in predicting ACL tears.

Li et al. [123] aimed to improve the diagnostic accuracy and ef-
ficiency of meniscal tears. A DL model was proposed to be trained
using standard knee MRI images from 924 patients. The Mask Regional
Convolutional Neural Network (R-CNN) and ResNet50 were used to
build the structure of the DL network. The results showed that the
DL model accurately recognised healthy and injured menisci with an
average precision ranging from 68% to 80% and diagnostic accuracy
for healthy, torn and degenerated menisci of 87. 50%, 86. 96%, and 84.
78%, respectively (see Fig. 5). Validation in an external data set showed
that the precision of diagnosing intact and torn meniscus tears through
3.0T MRI images was greater 80% and greater 50% when verified by
arthroscopic surgery.

Recently, Key et al. [130] proposed a method for detecting meniscal
tear and anterior cruciate ligament (ACL) injuries using MR imaging.
MR images were collected in three different slices (sagittal, coronal, and
axial) and grouped into three data sets (sagittal database (sDB), coronal
database (cDB), and axial database (aDB)). The proposed method em-
ploys deep feature extraction using the AlexNet architecture, significant
feature selection using the iterative RelifF algorithm, and classification
using the k-nearest-neighbour (kNN) method. The proposed method
was applied to three data sets and achieved high precision with 98.
42% for sDB, 100% for cDB and 100% for aDB.

This DL model demonstrated excellent potential in diagnosing spe-
cific soft tissue diseases in joints. However, its accuracy can be further
enhanced by increasing the training sample size, which will be dis-
cussed in the Challenges section, along with strategies to overcome the
issue of limited data availability.
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Fig. 6. The MURA dataset classes where (A) Fingers; (B) Wrist; (C) Forearm; (D) Elbow;
(E) Shoulder; (F) hands; (G) Humerus.

4.6. Other applications

In addition to the groups of applications mentioned above, there
are other miscellaneous applications for DL in orthopaedics. For ex-
ample, DL can be widely adopted in the detection of bone density for
the identification of osteoporosis from radiographs, with high accu-
racy [131–134]. DL can also be used to check whether a bone tumour is
malignant or not [135–137]. von Schacky et al. [136] developed a DL
model to categorise bone tumours, evaluated 934 patient radiographs
and achieved 80. 2% accuracy of the model in the classification of
malignant or benign tumours.

DL can also be implemented in the diagnosis of paediatric develop-
ment dysplasia of the hip (DDH) [138–140]. Zhang et al. [138] studied
1130 patients with an average age of 1.5 years, trained a DL model
using 9081 radiographs; 1138 test radiographs, and showed that the
effectiveness of the DL system for hip development dysplasia diagnosis
is greater than that of the clinician-led diagnosis.

Another application of DL in musculoskeletal imaging is the au-
tomatic determination of clinically important geometric angles and
lengths. Automatic measurement of the hip-knee-ankle angle (HKA)
is another application of DL in orthopaedics [141]. The authors used
DL to automatically segment the hip, knee, and ankle in the X-ray
images. They determined the HKA angle accordingly, showing that the
difference between the automatic HKA angle measurement and the
average manual measurement of 3 orthopaedic surgeons was 0.49◦ on
average.

DL can also be applied in automated Cobb angle measurement [142–
144]. Horng et al. [142] obtained the vertebrae segmentation via the
DL-based neural network, calculated the Cobb angle result, compared
it with the manual results of 2 physicians, and stated that these results
are similar, demonstrating the ability of the DL model to help doctors
in the clinical diagnosis and treatment of scoliosis.

DL models, such as the developed convolutional neural network
(CNN), can be applied for automated angle measurement in flatfoot
diagnosis. The model exhibited superior accuracy and reliability in
angle measurements compared to human observers, highlighting the
potential of DL to improve diagnostic precision. The guidance provided
by the CNN resulted in reduced errors and a more efficient measure-
ment process for human observers, showcasing the practical benefits of
employing DL in medical diagnostics [145].

A modified U-Net architecture was developed to diagnose vertebral
compression fractures (VCF) and detect vertebral levels in lumbar
spine lateral radiographs (LSLRs) simultaneously. The multi-task model
showed better performance in sensitivity and area under the receiver
operating characteristic curve compared to the single-task model. Dur-
ing internal and external validation, the model demonstrated high
accuracy, sensitivity, and specificity for fracture detection per patient
or vertebral body and successful vertebral-level detection. This suggests
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that the model has the potential to assist radiologists in real-life medical
examinations [146].

Cascade Convolutional Neural Network algorithms, such as the
newly developed Flatfoot Landmarks Annotating Network (FlatNet),
have proven to be valuable for accurate and efficient landmark de-
tection in flatfoot radiographs. This is crucial for the analysis of foot
deformities. The DL model has outperformed human observers in the
identification of X- and Y-coordinates, with the average difference in
absolute distance being reduced under FlatNet guidance. The overall
accuracy and reliability of landmark identification have improved for
both experienced orthopaedic surgeons and a general physician. This
highlights the potential of FlatNet to improve diagnostic precision in
the analysis of foot deformities [147].

The use of U-Net in semantic segmentation for weight-bearing
lateral radiographs, especially for flatfoot-related deformities, is an
effective and precise method. The active learning strategy has shown
better values of the Dice similarity coefficient (DSC) and Hausdorff
distance (HD) compared to learning with a pooled dataset. Active
learning has also reduced angle measurement errors based on segmen-
tation results, with a shorter labelling time of 0.82 min, compared
to learning with a pooled dataset which took 0.88 min. These results
indicate that active learning is a promising strategy for developing
accurate and efficient flatfoot classifiers through semantic segmentation
in radiographic analysis [148].

A novel approach for detecting and diagnosing adolescent idiopathic
scoliosis in chest X-rays (CXRs) involves utilising the discriminative
ability of the latent space in a generative adversarial network (GAN)
and a simple multi-layer perceptron (MLP). Trained in a two-step
process, the GAN served as a feature extractor for various scoliosis
severities, and an optimised 2-layer MLP achieved the best classifica-
tion results. The model exhibited an area under the receiver operating
characteristic (AUROC) of 0.850 in internal and 0.847 in external
datasets, with a specificity of 0.697 and 0.646, respectively, at a fixed
sensitivity of 0.9. This innovative classifier, based on learning of gen-
erative representations, demonstrates promising diagnostic capabilities
for adolescent idiopathic scoliosis in chest radiograph screening [149].

In conclusion, DL has enormous potential to revolutionise the field
of orthopaedics by working with various imaging applications. With
the use of DL, orthopaedic diagnosis can become more efficient and
accurate, improving surgical outcomes and reducing the risk of com-
plications. DL is likely to play an increasingly important role in or-
thopaedics by providing new and innovative solutions to complex
medical problems.

5. Datasets

5.1. Public datasets

There are several public datasets in the area of orthopaedics with
possible applications in DL. We have summarised the top ten datasets
for different orthopaedics tasks as listed in Tables 4 and 5.

5.2. MURA dataset

The MURA (Musculoskeletal Radiographs) dataset is a large collec-
tion of X-ray images of various bones in the human body. The data
set includes images of seven different skeletal bones: elbow, finger,
forearm, hand, humerus, shoulder, and wrist (see Fig. 6). Each of these
bones is divided into two subclasses: positive (abnormal) and negative
(normal). The total number of images in the data set is 40,561. The data
set is divided into training and test sets, as detailed in Table 6. This data
set is useful for training ML models to detect and diagnose abnormali-
ties in these bones, which can help diagnose and treat musculoskeletal
conditions. The data set was introduced in 2017 by Rajpurkar et al.
[157]. The dataset can be downloaded from the following link: https://
stanfordmlgroup.github.io/competitions/mura/. Table 7 lists the latest
DL methods using the MURA data set.

https://stanfordmlgroup.github.io/competitions/mura/
https://stanfordmlgroup.github.io/competitions/mura/
https://stanfordmlgroup.github.io/competitions/mura/
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Table 4
Public dataset in the area of orthopaedics.

Dataset Number of samples Task Download link Ref.

RSNA benchmarking dataset of American
Society of Neuroradiology (ASNR) and
the American Society of Spine Radiology
(ASSR).

Number of Patients: 2019
Patients with fracture:
961

CT scans of the
cervical spine
(neck)

https:
//www.kaggle.com/
code/andir16/rsna-
2022-cervical-spine-
fracture-detection-eda

–

Knee Osteoarthritis Dataset with Severity
Grading: Grade 0: Healthy knee image.
Grade 1 (Doubtful): Doubtful joint
narrowing with possible osteophytic
lipping Grade 2 (Minimal): Definite
presence of osteophytes and possible
joint space narrowing. Grade 3
(Moderate): Multiple osteophytes,
definite joint space narrowing, with mild
sclerosis. Grade 4 (Severe): Large
osteophytes, significant joint narrowing,
and severe sclerosis.

Val = 826 Test = 1656
Train = 5778

This dataset
contains knee
X-ray data for
both knee joint
detection and
knee KL grading.

https:
//data.mendeley.com/
datasets/56rmx5bjcr/1

Chen [150]

The MRNet dataset consists of 1370
knee MRI exams performed at Stanford
University Medical Center labels were
obtained through manual extraction
from clinical reports.

The dataset contains
1104 (80.6%) abnormal
exams, with 319 (23.3%)
ACL tears and 508
(37.1%) meniscal tears

Abnormal knee,
meniscal tears and
ACL tears

https://
stanfordmlgroup.github.
io/competitions/mrnet/

Azcona et al.
[151]

RSNA public dataset containing
radiological images are taken for the
BAA study, such as its statistical
features, training the proposed DL
models and evaluating the performance
on predicting bone ages. Here, the
dataset is taken from the Pediatric Bone
Age Challenge (RSNA, 2017) organised
by the Radiological Society of North
America (RSNA).

12,611 images with
labels, which consists of
54.2% male and 45.8%
female infants’ hand
images

Bone age
assessment

https://www.rsna.org/
education/ai-resources-
and-training/ai-image-
challenge/rsna-
pediatric-bone-age-
challenge-2017

Halabi et al.
[89]

IRMA public data set compiled
anonymous radiographs, which have
been arbitrarily selected from the
routine at the Department of Diagnostic
Radiology, Aachen University of
Technology (RWTH), Aachen, Germany.
The images consisted of different ages,
genders body bone parts.

15,363 images of 193
categories of bone
Training data: 12,677
radiographs with known
categories Class
distribution: Distribution
of classes in the training
data. Test data: 1733
radiographs without
classification.

Bone age
assessment

https://www.kaggle.
com/datasets/raddar/
irma-xray-dataset

Karthik and
Kamath [152]
Table 5
More of a public dataset in the area of orthopaedics.

Dataset Number of samples Task Download link Ref.

The Osteoarthritis Initiative (OAI)
database contains the permanent archive
of the clinical data, patient-reported
outcomes, biospecimen analyses,
quantitative image analyses, radiographs
(X-rays) and magnetic resonance images
(MRIs) acquired during this study.

There are bone assessments and
measurements from 4796 subjects, with
data from over 431,000 clinical and
imaging, and almost 26,626,000 images
Men and women ages 45–79 With, or at
risk for, symptomatic femoral–tibial knee
OA All ethnic minorities (focus on
African–Americans).

Bone age
assessment,
knee, hand, foot

https:
//nda.nih.gov/oai

Soh et al.
[153]

This dataset of X-rays of wrist fracture
for male and female collected from
Al-huda Digital X-ray Laboratory,
Pakistan.

193 x-ray images of wrist fracture and
normal

Wrist fracture https:
//data.mendeley.
com/datasets/
xbdsnzr8ct

Malik et al.
[154]

RibFrac dataset is a benchmark for the
development of algorithms for rib
fracture detection, segmentation, and
classification. This is a large-scale
dataset that could facilitate clinical
research for automatic rib fracture
detection and diagnoses.

RibFrac Training Set has divided into
two parts: Training Set Part 1 of RibFrac
dataset, including 300 CTs and their
corresponding annotation images.

Rib fracture https:
//zenodo.org/
record/3893508#
.Y851dMlBw2w

Jin et al. [155]

Osthersit dataset: is formed from
thermal knee images which are
composed by radiologists from Trichy
and Chennai. Images were collected
from the standard scan centres in
Tamilnadu after ethical clearance.

This dataset consists of 100 OA thermal
images which are collected from 30
cases. Among the 30 subjects,
OSTHERSIT consists of 9 males subjects
and 21 females subject cases.

Osteoarthritis
Knee

https://sethu.ac.
in/osthersit/

Lohchab et al.
[156]
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https://www.kaggle.com/code/andir16/rsna-2022-cervical-spine-fracture-detection-eda
https://www.kaggle.com/code/andir16/rsna-2022-cervical-spine-fracture-detection-eda
https://www.kaggle.com/code/andir16/rsna-2022-cervical-spine-fracture-detection-eda
https://www.kaggle.com/code/andir16/rsna-2022-cervical-spine-fracture-detection-eda
https://www.kaggle.com/code/andir16/rsna-2022-cervical-spine-fracture-detection-eda
https://data.mendeley.com/datasets/56rmx5bjcr/1
https://data.mendeley.com/datasets/56rmx5bjcr/1
https://data.mendeley.com/datasets/56rmx5bjcr/1
https://stanfordmlgroup.github.io/competitions/mrnet/
https://stanfordmlgroup.github.io/competitions/mrnet/
https://stanfordmlgroup.github.io/competitions/mrnet/
https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017
https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017
https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017
https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017
https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017
https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017
https://www.kaggle.com/datasets/raddar/irma-xray-dataset
https://www.kaggle.com/datasets/raddar/irma-xray-dataset
https://www.kaggle.com/datasets/raddar/irma-xray-dataset
https://nda.nih.gov/oai
https://nda.nih.gov/oai
https://data.mendeley.com/datasets/xbdsnzr8ct
https://data.mendeley.com/datasets/xbdsnzr8ct
https://data.mendeley.com/datasets/xbdsnzr8ct
https://data.mendeley.com/datasets/xbdsnzr8ct
https://zenodo.org/record/3893508#.Y851dMlBw2w
https://zenodo.org/record/3893508#.Y851dMlBw2w
https://zenodo.org/record/3893508#.Y851dMlBw2w
https://zenodo.org/record/3893508#.Y851dMlBw2w
https://sethu.ac.in/osthersit/
https://sethu.ac.in/osthersit/
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Table 6
Number of images of the MURA dataset.

Type of Training Testing

bone Negative Positive Negative Positive

Elbow 2925 2006 234 230
Finger 3138 1968 214 247
Hand 4059 1484 271 189
Humerus 673 599 148 140
Forearm 1164 661 150 151
Shoulder 4211 4168 285 278
Wrist 5765 3987 364 295

5.3. MedShapeNet dataset

MedShapeNet stands as a pivotal resource in the field of medi-
cal shape analysis, providing an extensive collection of anatomical
shapes and surgical instrument models [170]. Unlike traditional shape
descriptors, which were prevalent prior to the deep learning era, Med-
ShapeNet leverages contemporary algorithms, predominantly diverging
from computer vision approaches. Currently, MedShapeNet encom-
passes 23 datasets comprising over 100,000 shapes, each paired with
annotations (ground truth). These datasets are freely accessible through
a user-friendly web interface and a Python application programming
interface (API). They can be utilised for a wide range of purposes,
including discriminative, reconstructive, and variational benchmarks,
as well as applications in virtual, augmented, or mixed reality and
3D printing. Several exemplary use cases of MedShapeNet include
brain tumour classification, skull reconstructions, multi-class anatomy
completion, educational purposes, and 3D printing applications. The
dataset page (https://medshapenet.ikim.nrw/). The dataset is a new
one with only a few publications available on it Jayakumar et al.
[171], Li et al. [172], Krieger et al. [173] and Luijten et al. [174].
MedShapeNet serves as a valuable resource for various applications in
the medical domain, including orthopaedics, as shown in Fig. 7.

6. Deep learning challenges & solutions in orthopaedics

DL has been gaining momentum in the field of orthopaedics as a
powerful tool for image analysis, surgical planning, and rehabilitation.
However, as with any new technology, there are challenges that need
to be addressed. These challenges include the need for a large number
of high-quality images and the interpretability of the results. In this sec-
tion, we will explore some of the main challenges facing the application
of DL in orthopaedics and discuss potential solutions to overcome them.

6.1. Data scarcity

Advancements in the development of DL and increased access to
larger datasets have led to the emergence of medical AI. Algorithm-
based medical AI has been designed to perform specific medical tasks
in terms of diagnosis, prediction, and recommendation of appropriate
treatments on a wide range of medical modalities and data types [112,
175]. A significant challenge during the construction of algorithms for
medical AI is the heavy dependence on the availability of annotated
input data, frequently at a scale of hundreds of thousands (if not
millions) of data points. Overcoming this drawback would extend the
advancement of accurate and precise AI algorithms to cover a wider va-
riety of tasks in healthcare and combating disease, ranging from rapid
diagnostics to effective monitoring and reliable treatment decisions.

Despite DL’s significance in the medical AI space, its adoption
depends largely on the availability of large-scale annotated datasets.
Typically, DL models are trained using a supervised learning model in
which the proposed model learns to map input data (for example, a
shoulder MRI image or a hip X-ray image) to output data (such as the
detection of supraspinatus tears on MRI or the detection of fractures
13
Fig. 7. Some of the orthopaedics tasks in MedShapeNet dataset where (a) Left femur;
(b) Left hip; (c) Sacrum; (d) Scapula.

on X-ray). The training process of these models through supervised
learning requires large datasets. Each input is annotated with its cor-
responding output so that the model can learn appropriate patterns
in the data. Instead of focussing on building annotated datasets, a
greater focus has been on constructing and evaluating the models. This
emphasis is in part due to the extremely high cost of building the
required datasets for most medical tasks [176].

As such, there is a relatively weak commitment to invest the re-
sources required to establish annotated data sets compared to the
resources invested in model design. Although the currently available
datasets have been used repetitively for common image types, such as
skin lesion images, chest radiographs, and brain CT scans, task-specific
orthopaedic datasets are lacking [11,158].

As previously mentioned, creating large-scale medical datasets that
experts precisely annotate is difficult when compared to annotating
nonmedical datasets. For example, remarkably, non-medical DL models
have been successfully trained on ImageNet, where 49,000 Amazon
Mechanical Turk workers (a crowd-sourcing marketplace for outsourc-
ing tasks that require human intelligence) and hundreds of citizen
scientists and academics labelled up to 15 million images from 21,000
classes (such as ‘hummingbird’ and ‘broccoli’) [177]. On the contrary,
considerable time and expert input from the medical field are required
to label medical datasets. Compared to other studies, more time is
needed to interpret and label each medical image, such as a shoulder
magnetic resonance image or tissue slide image, than is required to
label diagnostic data or other natural objects in clinical applications.
For example, sample images can be labelled in ImageNet at an average
rate of 50 images per minute, while shoulder magnetic resonance
imaging could take an average of 2–5 min per case to label. Krizhevsky
et al. [177].

In addition, developmental time and domain expertise are essen-
tial for automated labelling methods. This approach enabled poorly
supervised learning, which is a technique that leverages imprecise or

https://medshapenet.ikim.nrw/
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Table 7
The state-of-the-art DL methods using the MURA dataset.

Reference Task CNN Model Best results Limitations

Rajpurkar et al. [157] All MURA tasks DenseNet AU-ROC of 0.929, 0.815
sensitivity and 0.887 specificity

TL from different domain

Kandel et al. [158] All MURA tasks VGG, Xception, ResNet,
GoogLeNet, Inception ResNet,
DenseNet

Accuracy of 84.88% for the
elbow dataset.

TL from different domains and
lack of interpretability

Kandel et al. [159] All MURA tasks VGG19, InceptionV3, ResNet50,
Xception, and DenseNet

Xception using TL without FC
achieved 83.58% accuracy for the
elbow images.

TL from different domains and no
performance explainability.

He et al. [160] All MURA tasks ConvNet, ResNet, and DenseNet AUC: 0.97, Accuracy: 0.93,
Precision: 0.90, Recall: 0.97,
Cohen’s kappa: 0.85.

Not tested against different
changes.

Uysal et al. [11] Shoulder Thirteen DL-based models: ResNet
(34,50,101,152), ResNeXt
(50,101), DenseNet (169,201),
VGG (13,16,19), InceptionV3, and
MobileNet

Ensemble model EL2: Accuracy:
0.8472, Precision: 0.85, Recall:
0.845, F1-score: 0.845, Cohen’s
kappa: 0.6942.

TL from different domains and no
performance explainability.

Liang and Gu [161] All MURA tasks Multi-scale convolution neural
network (MSCNN-GCN)

Average Cohen’s kappa score =
0.83

Imbalanced classes for some tasks.

Saif et al. [162] All MURA tasks Capsule Network Average Cohen’s kappa score =
0.80

Small dataset.

Fang et al. [163] All MURA tasks Iterative fusion convolutional
neural network (IFCNN)

Average accuracy = 0.73 Imbalanced classes for some tasks.

Harini et al. [164] Finger, Wrist, Shoulder Xception, Inception v3, VGG-19,
DenseNet, and MobileNet

Accuracy = 0.56 in wrist TL from different domain.

Malik et al. [165] Elbow Xception and DarkNetwork-53 Accuracy of 97.1% and a kappa
score of 94.3%

No performance explainability.

Alammar et al. [166] Humerus, wrist Feature fusion Accuracy of 87.8% for humerus% Requires high computational
resources.

Alzubaidi et al. [167] Forearm Feature fusion Accuracy of 90.7% Requires high computational
resources.

Kumar et al. [168] All MURA tasks Multistage feature map Average accuracy 85% for all
tasks.

Requires high computational
resources.

Alzubaidi et al. [169] Shoulder Feature fusion Accuracy of 99.2% and a kappa
score of 98.5%

Requires high computational
resources.
noisy sources to reduce the burden of obtaining hand-labelled datasets.
One of the related challenges when studying complex topics like those
in orthopaedics is that data sets must be comprehensive and fully
reflect the diversity of the data (particularly the relevant patients and
pathologies). In view of the difficulty of labelling medical domains, one
of the methods to develop more effective models is to train the model
using a general and massive dataset, similar to ImageNet, followed by
retraining the model using a smaller and specific medical task. Various
applications, such as the Transfer Learning (TL) process (from a general
to a specific domain), offer models that perform better than models
trained from scratch [178]. However, training models using TL for
medical AI is an essential issue. The primary training is commonly
unrelated to medical tasks. Hence, the properties that the model learns
may not be relevant to carry out medical tasks [179].

Another solution to address the issue of data scarcity in orthopaedics
is self-supervised learning. This technique trains a model on a dataset
without explicit labels or supervision [180,181]. In orthopaedics, it can
be used for tasks such as image segmentation, bone age prediction, and
diagnosis of musculoskeletal disorders. For instance, self-supervised
learning can be employed to predict the bone age of patients us-
ing X-ray images, eliminating the need for manual annotation by
experts [182]. Meta-learning techniques are designed to learn from a
diverse range of tasks or datasets, which helps them identify common
patterns or meta-knowledge that can be applied to new tasks. This
approach enables the model to quickly adapt to new tasks by utilising
its acquired meta-knowledge, instead of starting from scratch every
time. Meta-learning is particularly advantageous when dealing with
situations where there are limited data available for each new task, as
it facilitates efficient adaptation and generalisation [183,184].
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In-domain TL is another option to address the issue of data scarcity.
TL is a method that involves utilising the knowledge gained by a model
through training on a task, to improve the performance of a different
yet related task [185]. In orthopaedics, this technique can be applied by
using a model that has been trained on a large dataset of orthopaedic
medical images, as the starting point to train a model for a specific
orthopaedic application. For instance, a model that was trained on X-
ray, MRI, and CT images of different body parts can be used for a
dataset of MRI images of knee joints, which will help the model learn
the relevant characteristics, thus increasing its accuracy in identifying
knee abnormalities. TL can also be used to adapt a model that was
trained on a large dataset to a smaller dataset, which can be helpful
in situations where the training dataset is small [10].

The solutions mentioned previously have already demonstrated suc-
cess in various medical applications. However, the following two so-
lutions have been less explored in the medical field, particularly in
orthopaedics, and it may be worth investigating them further:

Federated learning can aid to overcome the challenge of data
scarcity in orthopaedics by combining data from multiple institutions
to train the model. This improves the performance of the model and
increases its generalisability [186]. Federated learning is a distributed
DL-based approach that allows institutions or hospitals to train a DL
model on their data without sharing it. This is particularly useful in
orthopaedics, where privacy and regulatory concerns often restrict data
sharing. The approach allows each institution or hospital to train a
model locally and share the learned model parameters with a central
server. The central server then aggregates the model parameters from
all institutions to create a global model. This process is repeated until
the global model converges [187,188].
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Fig. 8. Grad-CAM visualisation of two DL models on a shoulder X-ray image [169]. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
Fig. 9. Activation visualisation of the first convolutional layer of DL model from
ongoing work.

Lastly, Physics-guided deep learning (PGDL) is a technique that
combines the power of DL with the physical laws of the problem at
hand [189]. PGDL can be used in various fields, including mechanics,
finance, and medicine [190,191]. It has been shown to be highly
accurate and effective in situations where data is limited. One example
is using physics laws combined with limited medical imaging, such as
MRI or CTI, to study the condition of organs [192,193].

In orthopaedics, PGDL can be used to model complex biomechanical
systems and enhance the performance of DL models in tasks such as
image segmentation, bone age prediction, and diagnosis of muscu-
loskeletal conditions. For example, utilising PGDL for accurate bone
age prediction by incorporating the physical laws of bone growth and
remodelling can lead to more precise predictions of bone age and
improve the performance of DL models. PGDL is still a relatively new
field, and more research is needed to fully explore its potential in
orthopaedics. For a more in-depth understanding of the aforementioned
solutions in this article, detailed information can be found in [194]

6.2. Lack of interpretability

There is a persistent threat of creating DL applications that make
unjustifiable or illegitimate decisions or are prohibited from providing
in-depth explanations of their behaviour. Therefore, key stakeholders
have voiced their growing concern for greater transparency in the
increasing application of black-box DL models to make predictions in
crucial contexts [195–198]. It is vital for a model to provide supporting
explanations for a given output. This is particularly true in medicine,
where experts need extensive information from the model to support
the proposed diagnosis rather than a simple binary prediction. Other
examples of applications that stress the significant need for supporting
explanations include security, autonomous vehicles in transportation,
healthcare, and finance [199].
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In response to the growing demand for ethical AI, humans are
generally less inclined to implement interpretable, trustworthy, and
tractable methods indirectly [200]. Traditionally, it is believed that a
system would become more transparent when it is solely focussing on
performance. Such an assumption is valid under a trade-off between
the model’s performance and transparency. However, the limitations
of a system can be rectified by improving understanding of the system.
Thus, interpretability techniques can be used to translate the behaviour
of the network into easily interpretable output [201]. Subsequently, the
output can respond to questions related to the network’s predictions.
Three factors should be considered during the development of an
ML model to enhance the implementation of interpretability as an
additional design driver:

• Interpretability warrants impartiality when making decisions,
such as detecting and correcting biases in the training dataset.

• Interpretability helps to provide robustness by highlighting poten-
tial adverse perturbations that could affect the prediction.

• Interpretability serves as a preventative measure so that the out-
put is inferred only by meaningful variables to guarantee the
presence of an underlying truthful causality in the model reason-
ing.

There is an apparent paucity of interpretability of DL in ortho
paedics, as the data can be complex and the decision-making process
may involve multiple factors. However, efforts are being made to
improve the interpretability of DL models through the use of techniques
such as attention mechanisms and visualisation techniques.

Interpretability techniques include model selection, learning, bias
assessment, verification, and debugging. Interpretability techniques can
be adopted after network training or integrated into network training.
The unnecessary construction of an interpretable DL network is the
main advantage for post-training methods, which saves time and gen-
erally makes post-training methods the preferable option. Therefore,
this review highlights post-training methods that utilise test images to
describe the predictions of a trained network using image data. One
of the interpretability techniques is the visualisation method, which
exploits visual representations of the network observation to describe
its predictions. Numerous techniques have been proposed to visualise
network behaviour, such as low-dimensional projections, heat maps,
feature importance maps, and saliency maps.

The comparison of two models trained for shoulder abnormality
detection from our ongoing work is shown in Fig. 8. Both models
correctly predicted the images, according to their confidence values.
However, the Grad-CAM heatmap revealed that the first model is biased
and less accurate, failing to identify the region of interest outlined by
the red circle. In contrast, the second model correctly detected the
region of interest with high confidence. This illustrates the significance
of visualisation, as even models with high confidence values may not
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Fig. 10. Example of CAM [169].

Fig. 11. Grad-CAM visualisation of two DL models on a Wrist X-ray image [166].

be accurate. By incorporating visualisation techniques, we can enhance
both the results and confidence in those results before implementing
models in real-world scenarios. The following section explains several
visualisation methods that will help to understand DL decisions and
detect bias in orthopaedics:

• Activation visualisation: Activation visualisation refers to a sim-
ple approach to understanding the behaviour of the network.
Most CNN models learn to identify characteristics in the first con-
volutional layer, such as colour and edges. The network continues
to learn more complex characteristics in deeper convolutional
layers [202]. By using the input image in Fig. 8, Fig. 9 shows
an example of Activation visualisation of the first convolutional
layer of the DL model.

• Class Activation Mapping (CAM): CAM is also a simple tech-
nique that generates visual descriptions of CNN predictions [203].
This method utilises the global average pooling layer in a CNN
model to produce a map that emphasises the distinct area of an
image the network uses with respect to a specific class label.
Fig. 10 shows an example of CAM.

• Gradient-weighted Class Activation Mapping (Grad-CAM):
Derived from the CAM method, the Grad-CAM method utilises the
classification score gradient in terms of the convolutional features
determined by the network to understand the most essential parts
of an image for the classification process [204]. Locations with
a larger gradient are also where the final score relies mostly on
the data. Additionally, the Grad-CAM method generates similar
outcomes to the general CAM without the design limitations of
CAM. Fig. 11 shows an example of Grad-CAM.

• Occlusion Sensitivity (OS): OS determines the sensitivity of
the network towards small perturbations in the input data. The
method involves perturbing small areas of the input by replacing
sections with an occluding mask, typically a grey square. The
change in probability score is measured for a given class as the
mask moves across the image. The occlusion sensitivity can be
used to highlight the vital parts of the image for classification. The
appropriate values must be selected for the MaskSize and Stride
options to obtain the best results from occlusion sensitivity. Thus,
this tuning offers more flexibility in assessing the input features
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under various length scales. Fig. 12 shows an example of OS.
Fig. 12. Example of occlusion sensitivity from ongoing work.

Fig. 13. Example of LIME [169].

• Locally Interpretable Model-agnostic Explanations (LIME):
The LIME method estimates the classification behaviour of a DL
network using a more simple and interpretable model, such as
the regression tree or linear model [205]. This simple model
evaluates the important features of the input data as a proxy for
the importance of the features to the DL network. Fig. 13 shows
an example of LIME.

• Gradient Attribution (GA): GA methods offer pixel-resolution
maps that show the most essential pixels to the network classi-
fication decisions [206]. These methods calculate the class score
gradient with respect to the input pixels. The maps show the pix-
els with the most affected class score when altered. The gradient
attribution methods produce maps with the same size as the input
image. Despite the high resolution of the gradient attribution
maps, they tend to be much noisier, as well-trained deep networks
are poorly dependent on the precise value of specific pixels.

• DeepDream (DD): DD is a feature visualisation technique syn-
thesising images that strongly activate network layers [207]. The
image features learned by a network are highlighted by visu-
alising these images, which are valuable to understanding and
diagnosing the behaviour of the network.

• t-Distributed Stochastic Neighbor Embedding (t-SNE): The t-
SNE is a dimension-reduction technique that maintains the dis-
tance of both points close to each other in the high-dimension
and low-dimensional representation [208]. This method is used
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Fig. 14. Adversarial attacks.

to visualise the changing input data representation by the DL
networks as it penetrates the network layers.

• Maximal and Minimal Activating Images: A simple technique
to understand a network is to visualise images that weakly or
strongly activate the network for each class. Strongly activated
images indicate how the network thinks of the appearance of a
‘‘typical’’ image from that class. In contrast, weakly activated im-
ages facilitate identifying the image element that led the network
to give inaccurate classification predictions.

6.3. Other challenges

Data scarcity and interpretability are not the only challenges facing
the use of DL in orthopaedics. There are several other significant issues
that must be addressed. These include:

• Generalisation: Generalisation is a significant problem in the use
of DL in orthopaedics, as models tend to be trained and evaluated
on a specific set of data and may not perform well on new
or unseen data [209]. This specificity can be caused by a lack
of diversity in the training dataset, which may not adequately
reflect the diversity of patient populations [210]. Furthermore,
models may be too complex and tailored to training data, failing
to generalise well to new patients. This can pose a significant
challenge in clinical settings, where the ability of the model to
perform well on unseen patients is critical for accurate diagnosis
and treatment.

• Adversarial attacks: DL models in orthopaedics can be vulnerable
to adversarial attacks, where input data is intentionally manip-
ulated to produce incorrect predictions. For instance, adding a
small perturbation to an input image results in an incorrect de-
cision [211–213] (see Fig. 14). This is a serious concern, as it can
lead to inaccurate diagnoses and worse patient outcomes. These
attacks can be challenging to identify and prevent, making them
a significant obstacle to DL’s secure and dependable utilisation in
orthopaedics. It is critical to consider the possibility of an adver-
sarial attack when building a DL application for orthopaedics or
for clinical applications in general [214].

• Scalability: The use of DL in the field of orthopaedics often
requires a large amount of computational power. This can pose a
challenge when trying to implement these models on devices with
limited resources, such as mobile phones or low-resource envi-
ronments. To overcome this limitation, researchers have been in-
vestigating ways to decrease the computational demands of these
models, such as model compression, quantisation, and adopting
more shallow DL models, such as MobileNet and ShuffleNet. Some
researchers have also utilised FPGAs to accelerate the processing
of DL models [215–217].
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7. Exploring the limitations of data labelling in orthopaedics: A
professional analysis

Orthopaedic surgery is likely one of the most challenging medical
disciplines in terms of data labelling [218,219]. Practicing orthopaedics
often requires highly sophisticated analytical reasoning that is prone
to human subjectivity and errors at multiple levels. It is difficult for
an orthopaedic surgeon to verbally explain his clinical choices, which
are often highly case-specific and surgeon-personalised. Often it is
prior training and previous experience that inform the choices made
by clinicians. Although evidence-based guidelines try to sharpen the
profession and standardise its practice, these guidelines are often broad-
reaching and general in nature, intended as broad guiding references
rather than strict rules. In addition, it is very common to have a lack of
consensus in orthopaedic societies and academies, and disagreements
in opinion are frequent in orthopaedic literature. Several unconfirmed
dogmas exist in the field, and the postulates of ’orthopaedic masters’ are
often regarded by members of the orthopaedic community as a ground
truth. Orthopaedic surgery is a relatively new branch of surgery, with
almost all the body of knowledge condensed in the second half of the
20th century. Rapid advances have been made in the last 20 years, in-
cluding the evolution of pin-hole, or arthroscopic, procedures. The role
of precision and accuracy in surgery has only recently been addressed
and has been exponentially increasing, thanks to the introduction of a
variety of imaging and device technologies in the field.

Like all branches of medicine, approaching an orthopaedic case
starts with a dedicated patient interview. The diagnosis is a long
process that is fundamentally based on the patient’s medical history,
including a detailed description of symptoms or a description of the
traumatic injury. Some patients are more expressive than others and
can give a description that is highly suggestive of a specific diagnosis or
category of diagnoses, especially if they used classic descriptions of the
concerned pathology and if their demographics (gender, age, ethnicity,
etc...) have been shown to be statistically linked with this pathology.
For example, a teenager who visits a knee clinic with a frequent knee
‘‘giving way’’ sensation after a pivoting injury to this knee caused by a
kick during a soccer match and who reports hearing a loud ‘pop’ during
this kick has an anterior cruciate ligament (ACL) tear until proven
otherwise. The pathognomonic keywords, in this case, are giving-way,
pivoting injury, and a loud ‘‘pop’’ sound. Having a magnetic resonance
imaging (MRI) of the knee of this patient and finding that the ACL
is not torn would be particularly surprising. In fact, if the physical
examination suggests, along with the patient’s story, an incompetent
or deficient ACL, then an ACL tear can be confidently diagnosed,
even if the MRI is negative. Although magnetic resonance imaging is
the gold standard imaging modality for diagnosing ACL ruptures, it
is not accurate 100%, and arthroscopic confirmation (during surgery)
provides the ground truth for diagnosis. In a study by Zhao et al. [220],
it was found that 4 out of 66 ACL tears confirmed during arthroscopy
were mislabelled by preoperative MRI: 2 partial ACL tears that were
labelled as complete tears, one complete ACL tear that was labelled as
a partial tear, and one complete tear that fully escaped MRI detection.
Thus, the patient’s interview constitutes the essence of any diagnosis. It
should be highlighted that clinical examination is only one piece of the
puzzle. Special orthopaedic tests are meant to stress specific anatomic
structures, but none are 100% specific or sensitive to the disease tested.
A large meta-analysis revealed that none of the ten commonly used
specific tests for rotator cuff pathology were consistent in a diagnostic
setting [221]. Thus, it’s always wise to consider a constellation of tests
rather than a single test.

The human process for analysing musculoskeletal images is highly
sophisticated. It’s difficult for human language to describe this pro-
cess in words, and secondarily, it’s difficult for computer language to
describe it in code. The radiologic diagnosis of an orthopaedic injury
(e.g., ACL rupturing) is intrinsically asynchronous because of the fact
that the mechanism of injury has already taken place and ceased
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prior to imaging, and what we are seeing is a static screenshot of the
‘‘aftermath’’ of the injury (e.g., interruption of ACL continuity, fibre
edema, bone contusion, etc.). Zhao et al. [220] studied four direct
and eight indirect MRI signs of ACL injury and found that these 12
signs differ by their sensitivities (a biostatistical term for the ability
of a test to rule-in a disease) and specificities (a biostatistical term
for the ability of a test to rule out a disease), yet none is perfect.
Even a very logical and straightforward sign, such as ‘‘interruption of
the continuity of ACL fibres’’, was absent in 15 out of 66 ACL tears
and presented in 2 out of 12 normal ACLs in this study. In simpler
words, 23% of torn ACLs showed continuous fibres, and 17% of normal
ACLs showed disruption of fibres on MRI. We can teach a machine to
identify the ACL in a knee MRI. We can then teach the machine to
look for disruptions in the ligament’s continuity (which is a pixilated
challenge for artificial intelligence). Even with 100% performance in
performing this task, the machine might miss 23% of ACL tears and
would misidentify 17% of normal ACLs as tears! Thus, the ‘‘interruption
of the continuity of ACL fibres’’ criteria is not enough to diagnose a tear.
Li et al. [94] taught a multimodal feature fusion deep learning model
based on deep learning algorithms to diagnose ACL tears based on a
continuum of ‘‘fibre discontinuity features’’ rather than binary criteria
(continuous/discontinuous) and added other signs related to ligament
boundaries/edges, ligament thickness, ligament signal, and percentage
of damage from the whole ligament. They identified three grades of
ACL tear: Grade I: the ligament continuity was still good, the contour
was still intact, the ligament was not thickened or slightly thickened
and expanded, small patches or streaks of a signal can be seen, and
damage area was less than 50%. Grade II: ligamentous continuity was
poor, but some continuous fibres were still visible; locally thickened
or diffused ligaments were visible; incomplete or well-defined edges
were at the site of ligament injury, or there were locally notched
areas; the abnormally high signal can be seen, with damage area
greater than or equal to 50%. Grade III: there was an intact rupture
of the ligament, characterised by broken continuity of the ligament,
displacement of the bent or broken end, clumpy ligament, increased
signal, and unclear boundary. This model’s sensitivity, specificity, and
accuracy in diagnosing ACL injury were 96.78%, 90.62%, and 92.17%,
respectively. This high success rate can be attributed to better criteria
definition, adding more criteria to the labelling process, generous and
diverse data output, and not committing the neural network to difficult
binary decisions. In fact, it makes more sense for clinicians to have
a probability continuum than a 0–1 dichotomy. This would allow DL
outputs to be added to, rather than replacing, the other pieces of the
diagnosis puzzle.

Like in the human experience, incorporating clinical data into ra-
diologic training improves the computer model’s accuracy. Liu et al.
[222] taught a deep learning model of how to classify bone tumours
on X-ray into three categories: benign, intermediate, and malignant.
It achieved an accuracy of 73.3%, an AUC of 0.813, a specificity of
84.4%, and a sensitivity of 62.7%. Combining clinical characteristics in
the fusion model (such as the value of erythrocyte sedimentation rate,
the presence of pain, etc...) improved accuracy by 4.9%, the AUC by
0.059, the specificity by 3.3%, and the sensitivity by 7.2%. Including
clinical characteristics, the fusion model’s performance was comparable
with that of senior radiologists. This inclusion of relevant additional
data is a potential additive to improve the performance of AI.

In any field of therapeutic medicine, a classification system is a
categorising system that aims to grade the severity of the diagnosis,
suggest treatment options, predict prognosis, standardise the reporting
of clinical and epidemiologic data, unify the communication between
clinicians, and homogenise data collection for research. As such, classi-
fication systems show promise in data labelling for ML. An effective
classification system must be valid, reliable, and reproducible. Or-
thopaedic surgery is probably the specialty in medicine where we find
the greatest abundance of classification systems. The vast majority are
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introduced by single surgeons based on small case series and have never
been validated. Despite this, some are still in widespread use despite
independent evidence of low interobserver and/or intraobserver relia-
bility. In a review of 185 published orthopaedic classifications [223],
only four (2.1%) had a validation process described in the initial
paper that introduced that classification to the literature. Over 70%
of these systems have never been independently validated and as-
sessed for intra-observer and inter-observer error. Of those that have
(54/185), only 10 (18.5%) demonstrated either an intra-observer or
inter-observer error that is described as excellent (kappa score ≥ 0.8).
Only two classification systems of the 54 (3.7%) were shown to have
both intra-observer and inter-observer errors as excellent, meaning only
2 of the 185 classification systems reviewed (1.1%) have been shown
to be highly reproducible [224].

With the so-many subjective, nonvalidated, or unreliable diagnostic
and classification systems, it is hard to formulate a ground truth for
ML. Building a unified reference for data labelling in orthopaedics is
particularly challenging. There is no 1 + 1 = 2 in medicine; however,
in orthopaedics specifically, 1 + 1 = 3 to some, and 1 + 1 = 4 to
others, with evidence pointing in different directions simultaneously.
Teaching a model all of these possibilities might lead to the model’s
replication of human confusion. Thus, it is particularly important to
have any orthopaedic classification system objectively validated before
calling it a ground truth, as DL outputs will only be as reliable as the
frameworks on which they are based.

8. Deep learning associated with technologies in orthopaedics

DL has increasingly been adopted for various tasks in Orthopaedics,
including (i) Image analysis such as X-rays, CT scans, and MRI scans
which can aid in diagnosing conditions and determining the best treat-
ment plan. (ii) DL can assist in surgical planning, which helps reduce
the risk of complications and improve outcomes. DL can offer more
by associating with other technologies to improve the outcomes for
patients.

8.1. DL and robotic surgery in orthopaedics

With the aim of improving the precision of bone resection, soft-
tissue balancing of the gap, and reducing intraoperative hand tremors
in order to achieve better clinical outcomes (e.g., less pain, better
restoration of joint kinematics, and better implant survival) for pa-
tients, orthopaedic surgical robotic systems have been extensively
adopted in various types of arthroplasty in recent decades. In Total
Knee Arthroplasty (TKA), robot-assisted surgeries demonstrated higher
reproducibility and accuracy for restoring mechanical alignment com-
pared to traditional surgeries [225]. Meanwhile, the radiological out-
comes of Total Hip Arthroplasty (THA) with the help of surgical robots
were reported to be superior to those outcomes of conventional arthro-
plasty [226]. Clinical outcomes of joint function in robotic arthroplasty
were studied, and the results showed that outcomes of robotic surg-
eries were comparable to those of traditional arthroplasty [227]. As
such, robotic surgeons have emerged as competitors in carrying out
orthopaedic surgeries, with advancements in robotic technologies over-
coming early issues such as blood loss and infection during long
surgeries [228,229]. While comparative studies with humans have
shown that robots are better in terms of limb lengthening, patient
satisfaction, and cost [230], the replacement of human expertise with
technology is unlikely to occur in the near future as the long-term
results of traditional methods are still being observed [231].

DL has been integrated into robotic surgery in Orthopaedics to
improve its accuracy and outcomes [57,232]. This combination of DL
and robotics in Orthopaedics can result in:

• Safety: DL models can be adapted to monitor the surgical proce-
dure in real-time to ensure that the procedure is performed safely
and that any potential complications are identified and addressed

immediately.
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Fig. 15. Example of robotic surgery in orthopaedics [233].

• Enhanced Accuracy: DL models can be applied to process and
analyse large amounts of data, including images and patient
data, to support surgical decision-making and enhance surgical
accuracy.

• Enhanced instrument control: DL algorithms can be utilised to op-
timise robotic arm movements and control, resulting in smoother
and more precise surgical procedures.

• Reduced procedure time: The use of robotics in combination
with DL models can lead to faster and more efficient surgical
procedures, reducing the overall time required for surgery.

Many orthopaedic surgical robot systems are currently in clini-
cal use, including in knee replacement where DL can be used (see
Fig. 15). Stryker’s Mako Robot and Smith & Nephew’s NAVIO Surgi-
cal System were used in Unicompartmental Knee Arthroplasty (UKA),
Patellofemoral Knee Arthroplasty (PFA), as well as TKA. At the same
time, most other surgical robotic systems [233–235] focused on TKA.
Regarding preoperative planning, ROSA [236], iBlock [237], NAVIO
[238], and CORI [239] systems are examples of preoperative planning
robots.

To realise a wider implementation of robot systems in orthopaedic
surgeries, the cost of the robot systems and the length of operation time
induced by the adoption of surgical robots should be further reduced.
The mitigation of risks in robot-assisted orthopaedic surgeries, such as
infections, human error due to inadequate training and malfunction of
electronic components, should be considered with more care to ensure
that the robotic technologies adopted in orthopaedic surgeries are safe
for patients and surgeons. Although DL can play a role in reducing
operation time and human error, more effort is required to integrate
DL with surgical robots.

8.2. DL and Mixed Reality (MR) in orthopaedics

Mixed Reality (MR) technology is designed to bridge the gap be-
tween the preoperative plan and surgical execution, especially in revi-
sion surgeries (replacement of old or failed implants) where anatomical
guidance is needed. MR technology allows 3D visualisation of deformi-
ties and the ability to manipulate the preoperative plan in real time
with holograms, leading to better anatomical understanding and more
confident surgical decisions [240]. In revision surgeries, surgeons often
have multiple plans and options to address potential challenges during
the operation. MR technology provides the advantage of generating
multiple holograms based on the preoperative plan and backup plans
established for various surgical scenarios (see Fig. 16) [5].
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Fig. 16. Example of mixed reality [5].

MR techniques face several challenges in which DL can help to
solve some of these issues, such as improving interactivity, improv-
ing realism, improving tracking and adapting the experience for each
user. DL models can be used to provide real-time natural interaction
through computer vision and gesture recognition, add realistic lighting
and shading, improve textures and materials, and accurately represent
objects and scenes for a more immersive experience. It can also im-
prove the tracking of user and object movements and personalise the
experience for each user by adapting to their preferences and current
state [241].

8.3. DL and wearable sensors in orthopaedics

Use of wearable sensor technology has expanded greatly in or-
thopaedic diagnosis, rehabilitation, and data collection. Typically, a
portable wireless body area network (WBAN) is constructed to aid
in physical rehabilitation. The WBAN can be made up of different
sensors, such as vital signal sensors and motion sensors. These sensors
collect data and send it to a central hub to help supervise and mon-
itor post-operative rehabilitation. The wireless network is commonly
based on different modalities such as Bluetooth, Zigbee, UWB, or
WLAN. The network architecture is chosen based on trade-offs between
power consumption, interference level, overall system configuration,
and integration [242,243].

Data are usually transmitted to a server connected to the Internet
and can be accessed by clinicians and the medical registry. Continuous
data acquisition then serves as a window to customise rehabilitation
and investigate patient progress trends after surgery. Data collected in
this fashion can be used to train DL models and improve monitoring
programmes delivered to patients by clinicians [244].

In addition to wearable sensors, continuous efforts have been made
to develop microwave-based imaging systems for bones. These imag-
ing systems are classified into two categories, wearable vs. free-space
systems. Free-space systems can be converted into wearable systems
considering antenna conformity, impedance mismatch, and tissue load-
ing. In [245], a feasibility study was conducted to investigate the
development of a microwave imaging system for bone operating at 0.5–
4 GHz. This feasibility study was carried out with a realistic phantom
and 3D image reconstruction was performed to show the tibia and
fibula as shown in Fig. 17. More research is needed to confirm the
ability to differentiate between the tibia and fibula with different cross
sections with background tissues. Here, DL models can help in the
classification, as an extension of its previously established imaging
applications.

The imaging of bone fractures was investigated in [246]. The system
was developed to detect fractures in the tibia at a higher frequency
of 8.3–11.1 GHz. The system itself is not considered wearable, but
it can be changed into a conformal array once all the challenges of
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Fig. 17. 3D reconstruction of realistic phantom with tibia and fibula [245].

tissue loading, antenna sensitivity to bending, and others are addressed.
To remove the effect of background and skin artefacts, SVD was used
instead. DL models would provide a promising image enhancement
strategy to improve the quality of microwave imaging systems once a
large dataset is collected. A wearable brace microwave imaging system
was developed in [247] (see Fig. 18). Although the system is made with
textile antennas, it is still in the research stages, where a lot of images
need to be taken with volunteers to build a dataset for the improvement
of image detection with DL. This system can also be combined with
WBAN for rehabilitation after ACL/PCL tears surgery. However, contin-
uous effort needs to be made to understand the interplay between the
role of sensor data and images from that system. Advancements in the
field of microwave imaging systems can be fused with results collected
from other sensors to guide rehabilitation after orthopaedic surgery.

8.4. DL and 3D printing in orthopaedics

The deployment of 3D printing in orthopaedic surgery has signif-
icantly grown in recent years (see Fig. 19). This is due to advances
in technology and favourable outcomes, as proven in the existing
literature [248]. 3D printing has become more accessible and flexible
due to lower costs and new developments such as bioprinting and
metal 3D printing [249]. The application of this technology is likely
to transform the future of healthcare delivery. Studies have shown
that 3D printing can improve understanding of patient-specific anatomy
and enhance outcomes, particularly in complex cases of hip and knee
reconstruction [250]. Studies have also shown that 3D printing can be
used to manufacture orthopaedic implants with improved mechanical
strength and tribological and corrosion behaviour [251].

DL has been employed in 3D printing to improve the quality and
productivity of the final product through in situ monitoring, as well
as to optimise the design and process parameters. Furthermore, it has
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Fig. 18. Wearable knee microwave imaging system [247].

Fig. 19. Example of 3D printing in orthopaedics where both images are forearm [254].

facilitated the prediction of microstructure evolution by developing
surrogate models driven by physics-based data [252,253].

The US Food and Drug Administration (FDA) has established clearer
regulatory pathways for 3D printed medical devices in orthopaedic
surgery and other fields. The cost and time savings associated with the
use of 3D printing are significant, and there is great potential for even
more advances in the future [254].

DL models can be used to design and optimise custom orthopaedic
implants. This can be achieved by using data from medical images such
as CT and magnetic resonance imaging and patient-specific anatomical
information. DL models can analyse this information to create a 3D im-
plant model that fits the patient’s anatomy as closely as possible [255].

In summary, the use of DL in combination with 3D printing has the
potential to revolutionise the way orthopaedic implants are designed
and manufactured, which could lead to better patient outcomes and
more efficient surgical processes [256].
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9. Orthopaedic preoperative software

Orthopaedic solution-based software has emerged as a valuable tool
that has the potential to assist surgeons in improving their surgical
procedures and enhancing patient outcomes. These tools support the
clinical decision-making process from diagnosis to treatment. Accord-
ing to the US Food and Drug Administration (FDA), software intended
to diagnose, cure, mitigate, treat, or prevent disease in humans is
considered a medical device [257]. An increasing number of medical
devices and algorithms using AI and its different approaches, from
ML to DL, have been approved by the FDA [258]. Consequently, the
number of commercially available orthopaedic software packages has
increased in recent years, especially with recent advances in digital
technologies and computer vision created primarily by DL. However,
compared to other medical fields, such as breast cancer and cardiology,
orthopaedics still lags behind the adoption of DL. Many orthopaedic
solution-based companies claim to use DL to automate their workflow
and help surgeons make informed decisions for better patient outcomes.
However, companies have either not formally stated how they are using
DL, or it is at its very early stage of development, and regulatory
approval has not been received to commercialise their products.

9.1. Computer-aided diagnosis (CAD)

Computer-aided diagnosis (CAD) is an important research topic in
medical imaging and diagnostic radiology [259]. CAD is the use of the
computer output as a ‘second opinion’ to assist radiologists, and has
become an essential component of medical image analysis [260]. CAD
is complementary to radiologists’ precision and helps in early detection
of abnormalities, especially breast cancers on mammograms [261].
CAD schemes could be assembled as packages and implemented as part
of a picture archiving and communication system (PACS), including
computerised detection of lung nodules, vertebral fractures, and inter-
val changes in chest radiographs, as well as the classification of benign
and malignant nodules and the differential diagnosis of interstitial lung
diseases [262].

We identified three CAD devices that both formally claimed the use
of DL in diagnostic tasks and have been cleared by the FDA to the
best of our knowledge. These devices are KOALA by Image Biopsy Lab,
OsteoDetect by Imagen Technologies, and FractureDetect by Imagen
Technologies. KOALA (Knee Osteoarthritis Labelling Assistant) is a knee
osteoarthritis assistive diagnostic tool that uses deep learning to detect
signs of knee osteoarthritis from X-ray images. The software helps
provide an automated scoring of the osteoarthritis stage according to
the Kellgren and Lawrence grading system, providing precise and auto-
mated measurements of the minimum joint space width and evaluation
of the severity of joint space narrowing, osteophytosis, and sclerosis.
The device provides a reliable measurement with 87% sensitivity and
83% specificity. It also helps standardise radiographic reading by in-
creasing the physician’s agreement rate to the gold standard by 23%
and saving workflow time. The device obtained 510(k) FDA approval
in 2019.

OsteoDetect is an AI software for detecting and diagnosing wrist
fractures in the adult population. This software is based on AI algo-
rithms that are capable of analysing two-dimensional X-ray images
and detecting distal radius fractures, which is a very common wrist
fracture. The region of the radius fracture would be highlighted on
posteroanterior and lateral radiographs of the adult’s wrists. The Os-
teodetect tool is intended for use by clinicians, emergency physicians,
urgent care, and orthopaedic surgeons. The software was cleared by
the FDA in 2018. Later, in 2020, the same company obtained 510(k)
FDA approval for FractureDetect software. This computer-assisted diag-
nosis and detection software helps detect fractures of twelve different
musculoskeletal structures (ankle, clavicle, elbow, femur, forearm, hip,
humerus, knee, pelvis, shoulder, tibia/fibula and wrist) using two-
dimensional radiographs of adults only. It has been reported that the
21

use of this software has improved fracture detection by 45%.
9.2. Preoperative planning software

For preoperative planning software in the orthopaedic setting, DL-
technology can be used to process medical images of different modal-
ities (CT, MRI, radiographs, etc.), 3D reconstruct bones and soft tissue
structures to provide the surgeon with additional visual insight into the
disease and its severity, provide the surgeons with the critical measured
parameters to guide implant positioning, and simulate a postoperative
range of motion. The following are the leading companies that use
DL-based algorithms in their preoperative software.

Formus Labs, based in Auckland, New Zealand, offers an automated
3D preoperative planning solution for primary total hip arthroplasty
using DL and population-based computational modelling. The software
provides an automated image preprocessing module to segment the
bony anatomy of the joint and find the optimal implant selection and
positioning. According to the company, their platform can alleviate
the manual tasks involved in this process, reduce the cost of joint
replacement by 25%, and minimise the risk of revision surgery. The
company has submitted a 510(k) premarket approval for FDA clearance
as a primordial step to access the US market. More than 450,000 total
hip replacements are performed annually

Akunah, an Australian-based medical technologies company, has
recently announced that it has FDA approval for its preoperative plan-
ning software (Akunah Reflect). This software aims mainly to empower
surgeons to plan any primary procedures, revisions, fractures, and
instability of the shoulder, and the software is agnostic to the implant of
the surgeon’s choice. Akunah Reflect uses advanced ML technologies to
segment bone geometries from CT scans of patients. Reconstructed 3D
bones models are checked and fine-tuned using the gold standard man-
ual technique to ensure product safety and compliance. The software
features, such as anatomical measurements of the scapula and humerus,
medialisation of the joint line, subluxation of the humerus, and quan-
tification of glenoid bone loss, help surgeons make an informed decision
for an optimised patient outcome. The software also has a module to
reconstruct the premorbid anatomy of the scapula to provide visual
information on glenoid bone loss and its severity (see Fig. 20). This
module uses statistical shape model technology.

Precision AI provides AI-driven preoperative planning solutions that
help improve the accuracy of surgical procedures. This company is
also based in Australia and provides software that empowers shoulder
surgeons to create preoperatively patient-specific guides for shoulder
replacement. As of the writing of this paper, no FDA has been cleared or
approved for this software. However, it is approved for use in Australia,
New Zealand, and the UK.

The Signature One system by Zimmer Biomt is a planning software
providing patient-specific shoulder replacement guides. The software
uses an ML algorithm to automatically segment and generate 3D models
of the scapula that is then fine-tuned manually by specialists to make
sure that the output meets some accuracy standards. This preoperative
planner uses a semi-automated approach to provide the required pre-
operative information to help surgeons plan the glenoid component.
The FDA has cleared this software as a class II device. Overall, we
found minimal preoperative planning software that claims to have
implemented DL to automate the planning workflow. As such, the
key features of the available software that do not use DL to support
automated preoperative planning orthopaedic workflows are analysed
below to understand better how we can use DL to support this auto-
mated workflow. We focused on shoulder orthopaedic surgical planners
that have been FDA-approved and highlighted key features that can
help surgeons efficiently prepare the case preoperatively.

Blueprint 3D planning software by Stryker is one of the surgical
planners intended to be used for planning shoulder joint replacement.
This software does not claim any use of DL technology. It requires CT
scan images in DICOM format. The scapula and humerus bones are
then automatically segmented. Then, the software allows the surgeons

to select and position glenoid and humeral implants and simulate
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Fig. 20. Akunahh Reflect software user interface. The scapula on the left (gold colour) represents the 3D segmented bone geometry, and on the right is the same bone geometry
overlayed with the premorbid scapula (Orange colour). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the prosthetic range of motion accordingly. The software has been
cleared as class II in the USA (510(k) pathway). The ExactechGPS
Total Shoulder Application is a software component of the ExactechGPS
system developed by Exactech, a medical device company specialising
in orthopaedic solutions. This application is specifically designed to
assist surgeons during total shoulder arthroplasty procedures. It is
integrated with the ExactechGPS navigation system, which combines
preoperative planning, intraoperative guidance, and real-time feedback
to enhance the precision and accuracy of shoulder surgeries. FDA has
cleared this device.

Surgicase is a shoulder pre-surgical planner by Materialise that can
be used to simulate surgical shoulder interventions. The software allows
surgeons to visualise the 2D and the 3D anatomy of the glenohumeral
joint, reconstruct the premorbid shape of the scapula, provide humeral
head diameter measurements, quantify glenoid defect, and provide
glenoid and humeral component positioning based on critical measure-
ments (such as glenoid version, lateralisation, inclination and humeral
version, inclination, and resection level). The software also features
a range of motion simulation, similar to Blueprint. The software is
built on state-of-the-art manual segmentation and surgical planning
techniques and has been cleared as a class II device in the USA (510(k)
FDA).

Considering the above software packages, it is highly likely that DL
could be used at each stage of the preoperative planning workflow to
provide surgeons with a more informative and accurate preoperative
plan for a better patient outcome. It has been proven that DL can be
used for the following modules of the planning process:

• DL to segment the shoulder bones and soft tissues.
• Predicting the best-fit implant size and position based on the

size and orientation of articular surfaces, bone density, and the
patient’s clinical history.

• SSM modelling technology to help quantify glenoid bone defects
and virtually reconstruct the premorbid shape of the glenoid
to better inform surgeons about the required amount of joint
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lateralisation and the size of the required bone graft or metallic
augment.

• DL to predict impingement-Free ROM, thus preventing potential
complications such as notching and instability.

• Patient-specific guides customised based on patient-specific
anatomy for a more efficient patient outcome.

Table 8 list the aforementioned software’s indication for use and the
key features.

9.3. Prediction of clinical outcomes in orthopaedics

Several studies explored the potential of ML techniques to predict
clinical outcomes and stratify risk among patients [263,264]. Kumar
et al. [263], Franceschetti et al. [265] used preoperative data from
6210 primary patients undergoing shoulder arthroplasty of one pros-
thesis design to create predictive models for multiple clinical outcome
measures using three supervised ML techniques. The results showed
that each ML technique accurately predicted each outcome measure
at each postoperative point for anatomic total shoulder arthroplasty
(aTSA) or reversed total shoulder arthroplasty (rTSA). However, small
differences in prediction accuracy were observed between techniques.
The models accurately identified patients who achieved and did not
achieve clinical improvement that exceeded the minimal clinically im-
portant difference (MCID) and substantial clinical benefit thresholds for
each outcome measure. These findings suggest that ML techniques can
accurately predict clinical outcomes at multiple postoperative points af-
ter shoulder arthroplasty and stratify risk by identifying those who may
or may not achieve MCID and substantial clinical benefit improvement
thresholds for each outcome measure.

Kumar et al. [266] built predictive models for clinical outcomes
after shoulder arthroplasty using ML analysis on a dataset of 5774
patients. The full-feature set model and the minimal-feature set model
were compared to assess the efficacy of using a minimal feature set as
a decision support tool. The XGBoost ML technique created and tested
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Table 8
Orthopaedic software using machine learning for different applications.

Software product Indication for use Use of ML
or DL

Key features Link

KOALA by Image
Biopsy Lab

Knee osteoarthritis Yes • Automated knee osteoarthritis grading
system
• Minimum joint space width
• Severity of the joint space narrowing
• osteophytosis and sclerosis

https://www.imagebiopsy.com/
product/koala-ce

OsteoDetect by Imagen
Technologies

Wrist fracture Yes • Detection of distal radius fracture, a
common type of wrist fracture, using
two-dimensional radiographs of adults
only.

https://www.fda.gov/news-

FractureDetect by
Imagen Technologies

Musculosk-eletal fracture Yes • Detection of fracture of twelve
different musculoskeletal structures
(ankle, clavicle, elbow, femur, forearm,
hip, humerus, knee, pelvis, shoulder,
tibia/Fibula, and wrist) using
two-dimensional radiographs of adults
only.

https://imagen.ai/ai-software/

Formus labs Presurgical planner for
Primary hip arthroplasty

Yes • Automatic segmentation of 3D models
of hip joint
• Optimal implant selection and
positioning.

https://www.formuslabs.com/

Precision AI Presurgical planner for
Shoulder joint replacement

Yes • Patient-specific surgical plan for
shoulder replacement.

https://www.precisionai.com.au/

Akunah Reflect by
Akunah

Presurgical planner for
shoulder primaries,
revisions, fractures and
shoulder Instability.

Yes • Segmentation of the 3D models of the
scapula and the Humerus
• Anatomic measurements of the Scapula
and Humerus
• Native joint Line Medialisation
• Humerus subluxation
• Glenoid bone Loss
• Premorbid anatomy of the scapula
• Generating planning reports

https://akunah.com/reflect-complex

Signature one by
Zimmer Biomet

Presurgical planner for
Shoulder joint replacement

Yes • Preoperative planning of the glenoid
component for total shoulder
arthroplasty.

https://www.zimmerbiomet.com/
content/dam/zbcorporate/en/
products/specialties/shoulder/
signature-one-planner/2619.1-GLBL-
en-Signature-ONE-Features-and-
Benefits-of-New-System-and-Guides-
Brochure-digital.pdf

The ExactechGPS Total
Shoulder Application
by Exactech

Presurgical planner for
total shoulder arthroplasty

No • Segmentation of the scapula and the
humerus.
• Select different implants and sizes.

https://www.exac.com/extremities/
exactechgps-shoulder-
application/#equinoxe-planning-app

BluePrint 3D planning
by Stryker

Presurgical planner for
shoulder replacement
surgery

No • Automatic segmentation of scapula and
humerus bones from CT scans of adults
only.
• Visualise, measure, reconstruct and
annotate anatomic data
• Position and select glenoid and
humeral implants.
• Simulate the range of motion of the
prosthetic.
• Generate planning reports.

https://www.shoulderblueprint.com/

Surgicase by Materialise Presurgical planner for
shoulder replacement
surgery

No • 3D and 3D visualisation
• Reconstruction of the premorbid
scapula
• Automated humeral Head diameters
• Glenoid and humeral components
positioning
• Glenoid defect quantification
• Generate planning reports

https://www.materialise.com/en/
healthcare/mimics-innovation-
suite/surgicase

VIP by Arthrex Presurgical planner for
shoulder

No • Segmentation of the scapula
• Position of the glenoid implant

https://www.arthrexvip.com/
predictive models for multiple outcome measures. The study found that
the full and abbreviated models had similar precision in predicting
clinical outcomes at multiple postoperative time points. The findings
suggest that the tool can be easily used during a surgical consultation
to improve decision-making related to shoulder arthroplasty.

Roche et al. [267] proposed a new clinical assessment tool, the
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Smart Shoulder Arthroplasty Score (SAS), constructed using ML, to
quantify outcomes after total shoulder arthroplasty (TSA). The SAS
score was compared with five other historical assessment tools using
data from 3667 TSA patients. The results demonstrated that the SAS
score has equivalent or better validity, responsiveness, and clinical
interpretability than the other measures analysed. Additionally, the
SAS score has an appropriate response range without floor or ceiling

effects and without bias in any target patient characteristic, unlike the

https://www.imagebiopsy.com/product/koala-ce
https://www.imagebiopsy.com/product/koala-ce
https://www.fda.gov/news-
https://imagen.ai/ai-software/
https://www.formuslabs.com/
https://www.precisionai.com.au/
https://akunah.com/reflect-complex
https://www.zimmerbiomet.com/content/dam/zbcorporate/en/products/specialties/shoulder/signature-one-planner/2619.1-GLBL-en-Signature-ONE-Features-and-Benefits-of-New-System-and-Guides-Brochure-digital.pdf
https://www.zimmerbiomet.com/content/dam/zbcorporate/en/products/specialties/shoulder/signature-one-planner/2619.1-GLBL-en-Signature-ONE-Features-and-Benefits-of-New-System-and-Guides-Brochure-digital.pdf
https://www.zimmerbiomet.com/content/dam/zbcorporate/en/products/specialties/shoulder/signature-one-planner/2619.1-GLBL-en-Signature-ONE-Features-and-Benefits-of-New-System-and-Guides-Brochure-digital.pdf
https://www.zimmerbiomet.com/content/dam/zbcorporate/en/products/specialties/shoulder/signature-one-planner/2619.1-GLBL-en-Signature-ONE-Features-and-Benefits-of-New-System-and-Guides-Brochure-digital.pdf
https://www.zimmerbiomet.com/content/dam/zbcorporate/en/products/specialties/shoulder/signature-one-planner/2619.1-GLBL-en-Signature-ONE-Features-and-Benefits-of-New-System-and-Guides-Brochure-digital.pdf
https://www.zimmerbiomet.com/content/dam/zbcorporate/en/products/specialties/shoulder/signature-one-planner/2619.1-GLBL-en-Signature-ONE-Features-and-Benefits-of-New-System-and-Guides-Brochure-digital.pdf
https://www.zimmerbiomet.com/content/dam/zbcorporate/en/products/specialties/shoulder/signature-one-planner/2619.1-GLBL-en-Signature-ONE-Features-and-Benefits-of-New-System-and-Guides-Brochure-digital.pdf
https://www.exac.com/extremities/exactechgps-shoulder-application/#equinoxe-planning-app
https://www.exac.com/extremities/exactechgps-shoulder-application/#equinoxe-planning-app
https://www.exac.com/extremities/exactechgps-shoulder-application/#equinoxe-planning-app
https://www.shoulderblueprint.com/
https://www.materialise.com/en/healthcare/mimics-innovation-suite/surgicase
https://www.materialise.com/en/healthcare/mimics-innovation-suite/surgicase
https://www.materialise.com/en/healthcare/mimics-innovation-suite/surgicase
https://www.arthrexvip.com/
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Fig. 21. Three primary elements determining the trustworthiness of DL in orthopaedics.
ceiling scores for the other measures analysed. Therefore, the authors
recommend using the new SAS score to quantify the results of the TSA.
However, future work is needed to perform external validations and
quantify the reliability of this ML-based outcome tool.

The aforementioned studies and more recent work [268,269] have
demonstrated the potential of ML to predict clinical outcomes after
shoulder arthroplasty using a minimal set of characteristics of only 19
preoperative inputs. Future work in this area can further explore the use
of ML to develop more accurate predictive models for clinical outcomes
after shoulder arthroplasty. One potential avenue for future research
could be the incorporation of more comprehensive and diverse data
sources, such as imaging and patient-reported outcome measures, into
predictive models. Additionally, further validation of predictive models
using larger and more diverse patient populations could be performed
to confirm their generalisability and effectiveness in clinical practise.
Furthermore, DL models could be used to optimise surgical planning
and decision making by predicting which surgical approach or implant
would be best suited for a given patient based on their individual
characteristics and predicted outcomes.

10. Requirements of building trustworthy deep learning for or-
thopaedics

A trustworthy DL model is a model that is accurate, fair, transpar-
ent, and free of bias [270–274]. Trustworthiness is critical in various
spine orthopaedic tasks, including diagnosis, surgical planning, and
postoperative follow-up, since DL is increasingly used to make de-
cisions that impact patients’ lives. To achieve trustworthiness in the
DL orthopaedic model, it should produce accurate results, generalise
well to new patients, and provide understandable explanations for its
decisions [275–277]. /par
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The three primary elements that determine the trustworthiness of
DL in orthopaedics include the quality of the data, the quality of the
DL model, and the trustworthiness of the process used to develop and
deploy the model (see Fig. 21).

10.1. Trust in data

It is essential to have confidence in the data used to train a DL
model, as the quality of the training input heavily influences the quality
of the model output. Using low-quality data can lead to models that are
biased or untrustworthy [278]. Quality can be maintained by ensuring
that data are unbiased, accurate, high-quality, and protect privacy.
Several factors degrade the trustworthiness of training data:

• Inaccurate data: When the data used to train the DL model are
inaccurate, as may be the case when non-experts annotate the
training dataset, the model will be less reliable and may lead
to incorrect decisions. This is particularly pertinent in healthcare
applications, where expert opinion is often required to label
training data. There is the possibility of adverse patient outcomes
due to DL-based decision making.

• Bias in data: A DL model may develop biased decision-making
when trained on biased data. For example, a DL model trained
on a dataset of orthopaedic medical images that lacks diversity
in terms of race, gender, or age may show bias towards certain
groups of people, resulting in inaccurate diagnoses or treatments
for patients whose demographics were a minority in the training
dataset.

• Poor-quality data: Using data that are not aligned with the task
at hand or are not pertinent to the problem the model is being
employed to address can result in suboptimal model performance.



Artificial Intelligence In Medicine 155 (2024) 102935L. Alzubaidi et al.

1

e
i
m
o
i

1

p
r
m
i

An example is using data collected a decade ago for a current
task, as it may no longer be valid or relevant, potentially leading
to poor model performance. Another example would be to use a
dataset that is not representative of the population or environ-
ment in which the model will be used. For example, a model
trained on images of fracture detection from a single hospital may
not perform well when applied to images from other hospitals due
to variations in imaging modalities, resolution, or other factors.

• Privacy concerns: Using unprotected data to train a DL model
can raise concerns about privacy. For example, suppose that a DL
model is trained on a dataset of orthopaedic medical images that
includes sensitive personal information such as details of patients,
medical conditions, or personal identification numbers. In that
case, it may result in privacy breaches if the data is not properly
secured.

0.2. Trust in the DL model

Building trust in DL models requires addressing concerns such as
xplainability, accuracy, bias, and robustness. Ensuring that the model
s easy to understand and explainable makes it easier to ensure that the
odel is making fair and unbiased decisions. To establish the reliability

f a DL model, various elements must be taken into account [279–281],
ncluding:

• Level of explainability: When the decision-making process of a DL
model is not/cannot be explained, it can be hard for humans to
comprehend how it arrives at its outcomes. This can result in a
lack of confidence in the model, as people may be unsure about
how it is coming to its conclusions. This issue has been described
earlier.

• Inaccuracy: DL may make flawed decisions and produce inaccu-
rate outcomes, which can damage trust in the model and have
negative effects if utilised for critical decision-making.

• Bias in the model: A DL model that is not fair can generate
discriminatory or unjust decisions. For example, when a model
is trained using biased data, it may replicate those biases when
applied to new data, resulting in unfair outcomes.

• Lack of robustness: DL may not perform well or make errors when
confronted with new data if they are not robust. This can lead
to a lack of trust in the model, as individuals may question its
dependability.

0.3. Trust in the process

It is essential to establish trust in the DL model and its evaluation
rocess by carefully checking the evaluation process, complying with
egulations and guidelines, and maintaining consistency in the perfor-
ance of the model. It is necessary to overcome these issues; otherwise,

t can result in a lack of trust in the model and the process.

• Lack of transparency: When the development and deployment
processes for a DL model are not transparent, it can be challenging
for people to comprehend the method of the model and accept
how it is being used.

• Lack of compliance: It is crucial to verify that the method used
to create and implement a DL model is consistent with applicable
regulations and guidelines.

• Inconsistency in performance: A DL model that demonstrates
inconsistent results over time or in various situations can be hard
to trust.

• Lack of evaluation: Insufficient evaluation can make it difficult to
determine the reliability and performance of a DL model.
Splitting the data set into training and testing data sets is one
of the key steps in the DL process. Avoiding bias against under-
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represented target classes when training and testing a DL model
is important. Different splitting strategies could mitigate data
selection bias and ensure the diversity of the test data set to
highlight the generalisability of the DL model.
Stratified sampling is a data division technique that involves
dividing a population into homogeneous subpopulations (strata)
based on specific characteristics and then sampling each stratum
using another probability sampling method [282] (see Fig. 22).
This technique ensures that every characteristic of the population
is adequately represented in the sample and helps to generalise
and validate the study while avoiding research biases such as
undercover bias. The DL algorithm must be tested on a large,
diverse dataset to show the generalisability of the model and to
ensure that the selection criteria are objective.

11. Deep learning and fusion techniques for orthopaedics

The information fusion technique combines various data forms or
image modalities to make more reliable and accurate decisions. This
could include data from electronic health records, medical devices,
research studies, and other sources [283,284]. The aim of this process
is to improve patient outcomes by providing healthcare professionals
with results based on a more comprehensive understanding of the
patient’s condition. Fusion techniques can help with data scarcity issues
and reduce the chance of overfitting. The orthopaedic field frequently
generates multiple data modes for individual patients, including patient
records, MRI scans, CT scans, and X-rays [285]. Therefore, the use of
fusion techniques has become increasingly important in the analysis
and interpretation of such data. As a result, implementing these tech-
niques can enhance the outcomes and increase confidence in the final
decision [286].

There are several fusion types; this section will discuss four tech-
niques for orthopaedic tasks with DL fusion.

11.1. Feature fusion

This technique is based on the extraction of features using two
or more models based on DL such as CNN, then the fusion of the
extracted features, which will be used to train ML classifiers as shown in
Fig. 23. Feature fusion can be achieved by concatenating, averaging or
combining features in some other way [287]. The aim of feature fusion
is to produce a more robust and informative representation of the data.
By accomplishing this, this technique can enhance the performance of
ML classifiers [288].

Dang et al. [289] developed a feature fusion algorithm to auto-
matically detect Kashin–Beck disease (KBD) based on hand radiograph
images. The KBD diagnosis method uses multi-feature fusion for classi-
fication. Two types of features are extracted from X-ray images using
a DCNN and then combined and fed into a fully connected neural
network (FCNN) to obtain diagnostic results. Experiments on a data
set of 960 samples in KBD endemic areas of Tibet show that the
multifunctional method achieved an average accuracy and sensitivity
rate of 98.5% and 97.6% for diagnosis, which is 4.0% and 7.6% higher
than the method using only global features. The proposed multi-feature
fusion method substantially reduces large-scale screening costs and
missed diagnosis rates in rural China.

Deep feature extraction and fusion are performed using pre-trained
convolutional models Darknet-53 and Xception and hand-made features
such as HOG and LBP for elbow by Malik et al. [165]. Principal
component analysis (PCA) is used to select the best features, which
are then supplied to the SVM, KNN, and NN classifiers. The proposed
method is evaluated on 16,984 X-ray radiographs from the MURA
dataset, achieving a precision of 97. 1% and a kappa score of 0.943%.

With the two aforementioned examples, the feature fusion tech-

nique improved the results in two orthopaedic tasks.
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Fig. 22. Stratified sampling technique [282].
Fig. 23. Example of feature fusion in orthopaedics [169].
11.2. Image fusion

The image fusion technique aims to combine multiple images into
one image that provides a more comprehensive and accurate patient
description. This technique offers several advantages, such as improved
information quality, an expanded range of operations, increased spa-
tial and temporal coverage, reduced uncertainty, enhanced reliabil-
ity, robust performance, and a more concise representation of the
information [290,291].

Yoshii et al. [292] described the development of an image fusion
system for 3D preoperative planning and fluoroscopy for the operative
fixation of fractures. The study aimed to evaluate the reproducibility
of preoperative planning in open reduction and internal fixation of
distal radius fractures using the image fusion system and compare it
with patients who did not use the same system. The results showed
that the image fusion group had significantly smaller differences in
plate-to-joint surface distances and distal screw choices than the control
group. The study concludes that the image fusion system was useful
in reproducing planned plate positions and distal screw choices in the
osteosynthesis of distal radius fractures.

Image fusion can be helpful in segmentation tasks where two image
modalities can be combined to produce a more precise result [293].
Another approach is to combine the segmentation results of different
DL algorithms to achieve a more accurate segmentation result [293].

11.3. Decision fusion

Decision fusion techniques, as shown in Fig. 24, are vital to re-
duce overfitting and improve multimodal learning in the field of or-
thopaedics. The purpose of decision fusion is to combine the outputs
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or decisions of various algorithms, including DL models, to produce a
final decision that is more accurate and reliable [294]. In orthopaedic
applications, decision fusion can be particularly useful in situations
where there are multiple modalities with multiple DL models, as well
as in scenarios involving a single modality with multiple DL models.
Decision fusion is a technique that helps integrate information from
various sources, such as CT, MRI, clinical measurements, and patient
records when dealing with multiple modalities and multiple DL models.
This technique aggregates these inputs using methods such as majority
voting or weighted voting. Decision fusion helps capture complemen-
tary information from each modality, reducing the risk of overfitting
by ensuring that the final decision is not too dependent on any single
modality or DL model. By combining different DL models that are
trained on different modalities, decision fusion leverages the strengths
of each model to enhance overall performance and robustness. Decision
fusion can combine their outputs when working on a task involving a
single type of data and multiple deep-learning models. This is partic-
ularly useful when the models are trained on different subsets of data
or with different architectures. Decision fusion helps prevent overfitting
and improve the generalisability of models by leveraging their diversity
to capture different aspects of the data. The fusion techniques used
in decision fusion enable the creation of a more comprehensive and
reliable final decision.

11.4. Multi-modal fusion

The technique of multi-modal fusion involves combining data from
different modalities or types of data. This method is known to improve
the accuracy and reliability of decisions [295]. The main objective of
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Fig. 24. Types of decision fusion in Orthopaedics: (a) regards to multiple modalities and multiple DL models; (b) regards to single modality and multiple DL models.
multimodal fusion is to build a more robust and informative representa-
tion of the data, which enhances the performance of ML-based models
and decision-making processes.

Fig. 25 is a crucial illustration in the context of our research on
orthopaedics. It demonstrates the practical use of multi-modal data
fusion, a technique that combines information from various sources to
enhance decision-making processes. This figure depicts the integration
of three different inputs: CT scans, 3D models, 3D landmarks, clinical
measurements, and patient records. These inputs are used together
to make informed decisions about individual patients. Segmentation
of the scapula and humerus bones, together with 3D reconstruction
and landmarking of key points, highlights the complexity and depth
of the data used in the orthopaedic analysis. This figure emphasises
the importance of incorporating diverse datasets to fully understand
orthopaedic conditions. Using multiple modalities, such as imaging
scans, clinical measurements, and demographic data of the patient,
we can obtain more accurate and reliable information. Ultimately,
this approach leads to improved diagnostic accuracy and treatment
planning, which contributes to better patient outcomes.

12. FDA approval requirements for DL application

The US FDA, Health Canada, and the Medicines and Healthcare
Products Regulatory Agency (MHRA) of the United Kingdom (UK) have
collaboratively established ten principles to assist in the development of
Good ML Practise (GMLP) for medical devices that utilise AI/ML [296,
297]. These requirements aim to ensure that AI/ML-based medical
devices are safe, effective, and of high quality. Section 10 of this article
has already explained most of these requirements. These include:

• Multi-Disciplinary Expertise Leveraging Throughout The To-
tal Product Life Cycle: Using multidisciplinary expertise through
out the complete life cycle of a product is crucial. By comprehen-
sively understanding how a model is intended to be integrated
into the clinical workflow and its associated benefits and risks to
patients, it is much easier to ensure the safety and effectiveness of
medical devices that incorporate ML. This approach also ensures
that the device addresses clinically significant needs over its
lifespan.
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• The Implementation Of Good Software Engineering and Se-
curity Practises: Implementation of good software engineering
and security practises should be ensured during model design.
This includes data quality assurance, data management, and cy-
bersecurity practises. These practices are integrated into a risk
management process that can effectively capture and communi-
cate design decisions and ensure the authenticity and integrity
of the data. Attention must be paid to the fundamentals of good
software engineering practises.

• Clinical Study Participants and Dataset Representation of
the Intended Patient Population: It is essential to ensure that
the participants and data sets employed are representative of
the patient population of interest. This requires data collection
protocols that consider relevant features such as age, sex, race,
and ethnicity, as well as use and measurement inputs. Adequate
sample sizes should be used in clinical studies, training, and test
data sets to manage any bias. It is also helpful to promote ap-
propriate and generalisable performance in the intended patient
population, assess usability, and identify situations where the
model may fail. Broadly speaking, the study’s results can be gen-
eralised to the population of interest by ensuring that the datasets
and participants represent the intended patient population.

• Independent Test Sets: It is essential to check that training
datasets are independent of test sets. This means that the data
used for training the DL model should be separate and distinct
from the data used to evaluate the model’s performance. This
principle is essential to promote unbiased and reliable evalu-
ation of the model’s performance and to avoid overfitting or
underfitting, which can lead to poor generalisation of new and
unseen data. To ensure independence, all factors that can cause
dependence, such as those related to the patient, data acquisition,
and site, must be considered and addressed accordingly.

• Best Available Methods for Dataset selection: The selected ref-
erence datasets should be established based on the best available
methods to ensure that they represent the current standard in
clinical practise. Reference data sets must be comprehensive and
include a range of inputs to cover a variety of medical cases.
Moreover, it is necessary to check that the datasets are high
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Fig. 25. Example of multi-model data fusion in Orthopaedics from our ongoing work.
quality, well-characterised, and annotated. The datasets should
be updated on a regular basis to incorporate new and improved
methods as they become available. Widely accepted reference
datasets should be utilised to develop and test the DL model. This
is essential to prove the generalisability and robustness of the
model across the intended patient population.

• Model Design Consideration of Available Data and Intended
Device Use: The design of the model is customised to fit the
available data and allows the proactive mitigation of recognised
risks such as overfitting, performance degradation and security
vulnerabilities. The clinical risks and benefits related to the device
are fully understood and used to determine meaningful perfor-
mance objectives for testing, ensuring that the device can safely
and effectively fulfil its intended purpose. This includes assess-
ing the impact of global and local performance and variabil-
ity/uncertainty in device inputs, outputs, target patient popula-
tions, and clinical usage conditions.

• The Human-DL Team: The performance of the human-DL team
is prioritised in situations where the model includes human in-
volvement. Human factors and interpretability of model outputs
are considered, focussing on the performance of the Human-DL
team rather than solely on the model’s performance.

• The Demonstration Of Device Performance During Clinically
Relevant Conditions: Testing involves creating statistically
sound plans to produce clinically significant information that is
separate from the training data set, reflecting the performance
of the device in relevant clinical situations. This includes factors
such as the intended patient population and important subgroups,
the clinical environment and use by the Human-DL team, the
measurement input, and possible confounders.

• Information to Users: Users receive clear and essential informa-
tion to easily access relevant instructions suitable for healthcare
providers or patients. Information includes the intended use and
indications, the performance of the model for subgroups, data
characteristics, inputs, limitations, interpretation of the user inter-
face, and integration of the clinical workflow. Users are updated
on device modifications and real-world performance monitoring,
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with transparent decision-making and a means to report concerns
to developers.

• Risk Management: The performance of the deployed models is
continuously monitored to ensure safety and improve efficiency
in real world settings. Appropriate measures are also in place to
manage the risks of overfitting, unintended bias, or model degra-
dation during periodic or continuous post-deployment training.
These measures are essential to ensure the safety and performance
of the model as the Human-DL team uses it.

The FDA requirements mentioned above are not enough for DL
applications in orthopaedics. The current FDA approval process for
medical devices and software lacks a focus on health equity, as it
mainly considers Caucasian populations and women as patient pop-
ulations [298]. For example, medical imaging devices, pulse oxime-
ters, and infrared thermometers have been implemented without being
tested on a representative cohort of patients, resulting in readout
error. This bias results in a reduced quality of care for marginalised
groups. Extending the requirements of the pre-market approval path-
way is necessary to advance health equity. The extension should require
manufacturers to test their devices and software on diverse patient pop-
ulations and provide information on the composition of patients who
participated in the design and calibration of the device or software. The
clinical investigation sections of the strict premarket pathway can also
be improved in terms of study protocols, patient information, and study
design. Efforts to improve representation in clinical testing are not
unprecedented and should be expanded to ensure health equity [299].

13. Discussion

Since 2019, research studies on DL algorithms have been actively
contributed in various medical fields, including orthopaedics, oph-
thalmology, dermatology, and cardiology. This trend is predicted to
continue until the ’new winter’ is reached, when AI development will
reach its limit and plateau. So far, the application of DL methods in
imaging studies of orthopaedic diseases has demonstrated exceptional
results [300,301]. Several studies have stated that trained CNN models
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exhibit satisfactory classification results and diagnostic accuracy com-
parable to human experts in areas such as traumatology (fractures)
and osteoarthritis. However, the assessment of small joints recorded
fairly undesirable outcomes compared to large joints. When comparing
binary diagnosis and multiclass classification, the precision of the first
task consistently outperforms the accuracy of the second.

It is believed that these limitations can be addressed for two reasons.
To address the relative weakness of nonbinary classification systems, a
CNN model can be developed for medical image analysis to provide an
accurate diagnosis and precise classification. The type of class needed
for this process is relatively small. Specifically, Paoletti et al. [302]
showed that using fewer class types in a deep-layer structured CNN
model improved accuracy. The accuracy of multiclass classification is
expected to enhance the development of a CNN model with increasing
deep hyperparameters via medical image analysis.

On the other hand, medical images are highly refined data com-
pared to images used to learn climate predictions or traffic conditions.
As such, relevant noise-free image data can easily be obtained, such
as the different heights of flying birds or traffic lights. Therefore, a
proper data set can be produced to train the CNN model, even using
simple data augmentations, such as the affine transformation. Overall,
the advanced configuration of a CNN model and the accumulation of
supplementary medical images is expected to increase the currently
poor classification accuracy of osteoarthritis and fractures compared
to the precision of diagnosis. Currently, the development of DL algo-
rithms that are beneficial for segmentation is expected to improve the
diagnosis and classification of joint-specific soft tissue [300].

Several notable studies have achieved high-level segmentation [303,
304]. U-Net is among the essential CNN semantic segmentation frame-
works [305], with a robust design to recognise structural edges. In
another study, Hiasa et al. [306] used a trained U-Net-based CNN
model to segment the psoas major muscle and achieved an average
intersection-over-union (IoU) of 86 6%. Thus, the U-Net-based CNN
model is expected to be extensively applied to segment medical images.
Interestingly, new U-Net-based CNN designs are being implemented
steadily beyond the field of orthopaedics and have reported favourable
results [307]. For example, Wang et al. [308] incorporated squeeze
and excitation blocks (SE) into U-Net (SAR-U-Net) to perform zonal
prostate segmentation. On the contrary, Yeung et al. [309] reported an
improved U-Net through a trained dual attention-gated CNN (Focus U-
Net) model and satisfactorily segmented the polyp colonoscopy image.
Therefore, there are currently studies in orthopaedic surgery that have
developed CNN models with high-level diagnosis and classification
compared to human experts. More work is underway to improve the
segmentation of medical images. For instance, Zhao et al. [310] pro-
posed a femur segmentation method based on an improved U-Net
network to address the challenges in segmenting the femur from CT
bodies, including missed detection, false detection, and low segmenta-
tion accuracy. The proposed method introduced a residual module and
an attention mechanism to enhance the features of small target femurs.
Experimental results demonstrate that the proposed method achieves
higher Intersection over Union (IoU), Recall, Precision, and F score
than existing semantic segmentation networks such as U-Net, ResNet,
and SegNet. The method can focus more on segmentation of small
target femurs without affecting the segmentation of large target femurs,
improving the overall segmentation performance of femur images.

Furthermore, a thorough investigation is required to determine the
impact of data accumulation or the development of enhanced CNN
to overcome such problems or verify that the limitation of a trained
CNN model using image data is natural and unavoidable. Here, two ap-
proaches are presented. First, experts can address not only image data
problems through the use of other information, such as demographic
data of patients, the nature of the disorder, the level of pain, and a
physical evaluation that impacts the diagnosis and classification of the
disease. A report by Kim et al. [63] stated that a trained CNN model
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using additional information, such as demographic (age, BMI and sex),
alignment and metabolic data that could influence knee osteoarthritis,
achieved a higher statistically significant AUC. This addresses the cur-
rent limitation of CNN models based solely on image analysis using DL
algorithms. Although an enhanced CNN model is constructed and high-
quality image data is gathered, they are potentially unable to match
the level of experts who are able to include multiple factors in their
decision-making. This technique can also increase trust in the final
decision of the models by considering factors similar to those of experts.
Multimodal fusion techniques can also help with issues by combining
the outcome of the image and patient records, increasing trust and
helping compensate for data scarcity [311–313].

In the authors’ opinion, it is premature to exclude the possibility
that CNN models would succeed at the level of experts in specific
fields. However, the opposing views are outlined above, as CNN models
evaluate images from a different perspective than human beings. For
example, Langerhuizen et al. [43] included 23 scaphoid fracture data
and 150 scaphoid fracture images that could only be verified by MRI
analysis. Although the trained CNN model recorded a lower accuracy
level than expert orthopaedic surgeons, the model identified five out
of six occult scaphoid fractures that all orthopaedic surgeons missed.
Hence, it is essential that there be a detailed discourse on image
analysis models’ ability to surpass those of human experts using DL in
particular areas.

While ample room exists to enhance the current CNN models, the
significance of studies conducted to date should not be undermined.
Their potential contributions to clinical practise are significant. The
currently available CNN model can be used to minimise the intensity of
the task of expert readers as well as a reference to educate nonexpert
medical professionals, such as specialists during training or medical
students [314–316]. With the help of a developed CNN model, a paedi-
atrician can use X-rays to approximate the bone age of patients without
the supervision of an orthopaedic surgeon. More attractive and feasible
studies that practically facilitate the interaction of patients and doctors
will prevent clinical doctors from dealing with the issue of the accuracy
of CNNs. For example, Mendes et al. [317] produced high resolution
images by converting native medical CT scan images using Generative
Adversarial Networks (GANs), and this study has the potential to be
applied to enhance the resolution of MRI images [318]. This technology
can offer high-quality magnetic resonance results to areas that would
otherwise have restricted access to high-quality magnetic resonance
imaging due to limited medical infrastructure or cost issues.

Several limitations have been highlighted following the review of
DL approaches for orthopaedic diseases by image analysis. First, the
CNN model is the only model approved by the US FDA to predict bone
age in children and diagnose wrist fractures [258]. In comparison, the
FDA has approved several models in other medical specialities as early
as April 2018, beginning with a DL-based model for the automated
diagnosis of diabetic retinopathy. Second, no prospective study has yet
been reported in orthopaedics [319]. In 2020, a future and randomised
control trial (RCT) based on the CONSORT-AI guidelines was proposed
to enhance the quality of research and continue functional studies,
which will be necessary [320]. Third, the most recently designed DL
models are developed to perform a single task. Therefore, numerous
DL algorithms are needed to assess each possible abnormality to ensure
its usefulness in clinical practise. Several initiatives have been taken to
address these drawbacks. For example, Grauhan et al. [321] proposed
a CNN model to diagnose joint dislocation, osteoarthritis, and fractures
through plain shoulder radiographs.

Ultimately, there is a requirement to minimise expert biases on
a specific dataset. Traditionally, orthopaedic surgeons have used CT
scans, magnetic resonance imaging, or ultrasounds to diagnose soft
tissue diseases. However, DL algorithms frequently provide appropriate
judgments that exceed human cognition. Previously, Kang et al. [322]
introduced a trained CNN model using axillary lateral radiographs to

diagnose subscapularis (SSC) tears and showed an acceptable accuracy
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Fig. 26. Tiny fractures were detected by DL [324].

level. Therefore, orthopaedic surgeons are free to construct CNN models
according to their imagination without bias.

The increasing use of black-box DL models in orthopaedics has
raised concerns among stakeholders about the lack of transparency
and interpretability of these models, which could result in unjus-
tifiable or illegitimate decisions [196,197]. Supporting explanations
of the model’s output are necessary for the medical field. Interpre-
tation techniques can be utilised to enhance the understanding of
these models, which can be adopted after training or integration into
the network. Post-training methods that utilise test images to eval-
uate the predictions of a trained network can be a time-saving and
preferable option. One such technique is visualisation, which takes
advantage of visual representations of network observations to describe
predictions [323]. Visualisation techniques such as low-dimensional
projections, heat maps, feature importance maps, and saliency maps
can be used to understand network behaviour [276]. Incorporating
visualisation techniques can improve the reliability and precision of
model predictions in real-world scenarios.

In summary, the application of the DL model for image analy-
sis is receiving a growing interest at a rapid pace, demonstrating a
remarkable milestone in orthopaedics. The advanced innovation of
CNN designs and the accumulation of high-resolution image data are
expected to contribute to the development of highly advanced models.
However, it is challenging to foresee the extent to which the develop-
ment of DL models would outperform human experts’ capacity [169].
DL can help clinical physicians identify complex orthopaedic problems
and manage patients early to mitigate additional medical costs and
impact on their quality of life (see Fig. 26) [324].

Surgeons aim to use DL methods for medical image analysis, but
they seek trustworthy AI systems with precise, fair, and interpretable
decision making processes.

Our review is a valuable resource for both researchers and surgeons
who are interested in the potential applications of DL in orthopaedics.
We discuss the existing challenges and highlight the untapped potential
of DL to foster collaboration between researchers and surgeons. By
working together, they can develop and implement trustworthy DL
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solutions in orthopaedics. This collaboration is crucial for ensuring the
successful integration of DL technologies into clinical practice, leading
to improved patient care and outcomes.

14. Conclusions and future directions

DL has gained significant attention in recent years in the field of
orthopaedics. It has been demonstrated that DL can be applied to
various orthopaedic tasks, including fracture detection, bone tumour
diagnosis, implant recognition, and evaluation of the severity of os-
teoarthritis. DL has been shown to provide more accurate and efficient
diagnoses than traditional methods while reducing the cost and time of
diagnosis for patients and surgeons. This conceptual review presented
the state of the art of DL in orthopaedics, including its applications,
challenges, and potential solutions. Our work also highlighted the
need to build trustworthy DL applications considering high accuracy,
explainability, and fairness. DL can greatly improve the diagnosis and
treatment planning in orthopaedics, and further research should focus
on addressing the challenges and realising the full potential of DL in
this field.

DL has numerous possibilities in orthopaedics to improve patient
outcomes and advance the field. Suggested potential future directions
of research include:

• More effort is needed to develop computer-assisted diagnosis
using DL to assist physicians in diagnosing orthopaedic conditions
and reduce diagnostic errors.

• Virtual 3D models of bones and joints with DL could be used to
enable precision surgery by assisting surgeons in planning and
performing procedures.

• Further development and implementation of predictive analytics
using DL to predict patient outcomes and identify those at risk of
complications.

• DL algorithms can be used to analyse patient movement and
provide feedback to therapists, allowing the use of customised
rehabilitation and physical therapy techniques.

• Wearable devices with integrated DL models to monitor patient
activity and provide real-time feedback to healthcare providers.

• Patient education with personalised education programmes to
help patients understand their condition and manage symptoms.

• DL models can identify abnormalities and diagnose orthopaedic
conditions using medical images, reducing diagnostic errors and
improving outcomes. More effort is required to provide DL models
with high-quality large data to be trained well and produce
accurate decisions.

• Described AI algorithms are being developed to increase trans-
parency and interpretability, allowing healthcare providers to
understand the decision-making process of algorithms. This will
build trust and ensure the appropriate use of the technology.

• Assistant, operating, navigating, and guiding robots in ortho
paedics will become more effective and efficient with advances
in DL. DL models can analyse medical images and assist with sur-
gical planning, improving accuracy and reducing complications.
These robots can also be trained to navigate and guide during
surgery, reducing surgical time and improving patient outcomes.
The use of DL has the potential to revolutionise orthopaedic
surgery, but more research and development are necessary to
fully realise its potential.

• DL applications in orthopaedics should prioritise addressing trust-
worthy requirements such as fairness, accuracy, and privacy at an
early stage to ensure their successful implementation.

• Federated learning is a DL technique that allows organisations or
subgroups within an organisation to train and improve a shared
global DL model collaboratively. However, the emergence of data
fusion technology has presented new challenges for federated
learning, such as multisource and heterogeneous data fusion.
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Better utilisation of data and models in federated learning is
necessary due to the increasing variety and quantity of data. Elim-
inating redundant data and combining various data sources can
produce valuable new information. Future work should address
challenges such as maintaining user privacy, designing universal
models, and ensuring stability in data fusion results to facili-
tate the effective utilisation of data in federated learning with
orthopaedics and other domains.

• To effectively use data and models in adversarial DL frameworks
and applications, it is necessary to develop methodologies and
algorithms to handle the increasing quantity and variety of data
and systems. This requires focussing on processing heterogeneous
data from multiple data fusion and intelligent systems in ad-
versarial DL while ensuring universality and data fusion result
stability. Developing advanced attack and defence mechanisms to
explore weaknesses in modern deep learning architectures in data
fusion and intelligent systems is a high-demand research task that
requires prioritisation in orthopaedics and other domains.

• DL for orthopaedics should be explored more, and its potential
application in areas such as spine surgery, bone healing, pain
management, physical therapy, and prosthetics should be ex-
plored. For example, DL models could aid surgeons to perform
spinal surgeries with greater precision and precision while pre-
dicting the healing times and outcomes of bone fractures. Addi-
tionally, DL could help identify patients at high risk of developing
chronic pain after orthopaedic surgery, personalise physical ther-
apy plans, and develop advanced prosthetics that better mimic
the natural movement of the limb. Further research is needed to
evaluate the potential benefits of DL in these areas.

• Finally, to improve the search methodology, several important
improvements could be proposed. Firstly, expanding the search
strategy by incorporating additional relevant keywords or varia-
tions can ensure a more comprehensive coverage of the literature.
Second, considering the inclusion of supplementary databases or
repositories dedicated to orthopaedics or deep learning research
can further increase the scope of the study, potentially capturing
valuable publications not indexed in the primary databases. These
adjustments aim to broaden the search horizon and maximise the
retrieval of pertinent literature.
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