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Abstract
Effectively predicting the remaining useful life (RUL) of rolling bearings can ensure reliability
and safety, minimize machine downtime, and reduce the operation and maintenance costs of
enterprises. To solve the problems of data distribution discrepancy caused by different working
conditions and the collected signals containing a lot of useless information and noise, a novel
cross-domain adaption network (CDAN) is proposed in this study. Firstly, a novel feature
extractor, squeeze-and-excitation (Se)-selective kernel (Sk)-DenseNet, is developed to extract
useful critical features from the input data and remove the ineffective features by embedding Se
and Sk attention blocks; besides, a new objective loss function consist of the RUL loss, the
multi-kernel maximum mean discrepancy loss, the contrastive loss, and the Kullback–Leibler
divergence loss, is proposed to solve the problem of data distribution shift; finally, the
effectiveness and superiority of CDAN are proved on the PHM2012 bearings dataset. The
results demonstrate that CDAN can extract deep critical features and achieve the high
cross-domain RUL prediction accuracy under different working conditions.

Keywords: Remaining using life, Cross-domain adaption network, Se-Sk-DenseNet,
Objective loss function

1. Introduction

Rolling bearing is one of the most essential components in
the rotating machinery, which is easy to be failure when run-
ning in the complex working conditions. Besides, the dam-
aged bearings will directly influence the service performance

∗
Authors to whom any correspondence should be addressed.

of whole mechanical system [1]. Thus, the practical and accur-
ate prognostic and health management (PHM) of rolling bear-
ings can grasp the health status in real-time for fault detec-
tion and remaining useful life (RUL) prediction, and it has
received great attention nowadays [2–4]. In the study of PHM,
RULmeans the normal service life of themachinery before the
occurrence of the failures [5]. Therefore, RUL prediction aims
to guide the replacement strategies of rolling bearings to pre-
vent sudden failures by predicting the health condition, which

1 © 2024 The Author(s). Published by IOP Publishing Ltd 
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can ensure product safety, improve mechanical operation effi-
ciency and reduce maintenance costs [6, 7].

RUL prediction of rolling bearings can be usually cat-
egorized into three approaches: physical model-driven, data-
driven, and hybrid approaches [8]. Most of physical model-
driven approaches must research the failure mechanism and
the damage laws, but it is very difficult to establish the accur-
ate degradation models for complex parts under the complex
working conditions [9, 10]. The hybrid approach combines
the strengths of physical models and data-driven methods with
the aim of improving the accuracy and interpretability of pre-
dictions. This approach can take advantage of the a priori
knowledge and structural information provided by the phys-
ical model and calibrate and optimize the model through data-
driven methods. However, the design and parameter tuning
of hybrid methods can be complex and requires a combina-
tion of factors. On the contrary, data-driven approaches can
construct the mapping relationship between a large amount
of collected monitoring data and corresponding RUL, which
do not require building the accurate degradation models [11,
12]. Among these, condition-based maintenance (CBM) is a
method of determining maintenance needs by monitoring the
condition of equipment. In the case of bearings, CBM involves
the use of appropriate sensors to collect data about the bear-
ings, which can include vibration frequency, vibration amp-
litude, temperature variations, and so on. Data analytics tech-
niques are applied to process and interpret this data, and reas-
oning is performed to estimate the health and degradation of
the bearing. Due to the rapid development of machine learning
(ML), data-driven approaches have been widely used to learn
degradation laws from historical monitoring data from a large
number of rolling bearings under specific working conditions.

Some traditional ML models, for example, restricted
Boltzmann machine [13], relevance vector machine [6], auto-
encoder [14], artificial neural network (ANN) [15], and sup-
port vector machine (SVM) [16] have been applied for RUL
prediction. Daroogheh et al [17] predicted degradation peri-
ods by utilizing particle filters and ANN. Nieto et al [18] pro-
posed an RUL prediction model based on the particle swarm
optimization (PSO)-SVM which is used for aircraft engines.
However, these shallow ML models are challenging to extract
deep features for characterizing RUL from non-stationary and
non-linear signals [19, 20].

Deep learning (DL) has attracted great attention because of
extracting effective deep characteristics from a large amount of
the data collected from different sensors by using a lot of hid-
den layers. The RUL prediction is a typical time-series-related
regression problem [21]. DL approaches are mainly divided
into recurrent neural network (RNN) [22] and convolutional
neural network (CNN) [23]. On the one hand, many sequence
networks, including RNN and its versions (long short-term
memory, gated recurrent unit, etc.) can capture the depend-
ence relationship between the front and back segments of the
time-series data, even the information with a significant time-
series span, which are very suitable for the relevant signals
generated in bearing degradation [24, 25]. However, the above
RNN approaches still have some problems which are very
hard to ignore [22]. The subsequent forecast in these models

must wait for the previous forecast to complete because of the
incapacity for parallel processing, and it will lead to the error
accumulation by steps owing to the lower flexibility. In addi-
tion, many difficult problems, such as gradient explosion, large
memory occupation and gradient disappearance, still exists
during model training [26].

On the other hand, as another active branch of DL, the
traditional CNN cannot be usually considered available for
time-series problem modeling because of the limitation of the
convolutional kernel size, resulting in the inability to pro-
cess the long-term related information. However, many stud-
ies have shown that specific CNN can also get excellent res-
ults by taking advantage of the strong abilities to process
high-dimensional complex data and extract features automat-
ically. Li et al [27] proposed a new data-driven RUL pre-
diction approach based on deep CNNs (DCNNs). The ori-
ginal collected normalized data was directly used as the
input of the DCNN without the advance prediction and sig-
nal processing expertise. The experiments on the popular
Commercial Modular Aero-Propulsion System Simulation
dataset were carried out to demonstrate the high prediction
accuracy and superiority. Besides, Liu et al [28] proposed a
joint-loss (JL) CNN architecture to capture common charac-
teristics between different relative problems through shared
partial parameters and network. A JL function was designed
to learn the key characteristics and enhance the generalization
of CNN. It can also avoid the risk of the overfitting and reduce
the calculation costs. However, the above studies commonly
assume that the training and test data have the same distribu-
tion. Owing to the change of working conditions and strong
noise in the actual industrial environment, there are the obvi-
ous distribution discrepancy. This will cause the generaliza-
tion performance of the methods to be highly affected by the
extremely variable working conditions. Thus, new approaches
are urgently needed to predict the RUL under different
working conditions.

Transfer learning (TL) provides a feasible way to solve
the distribution discrepancy by obtaining common information
between the source and target domains through minimizing
the data features [29]. Domain adaption (DA) has gained great
attention by reducing the distribution discrepancy of different
domains, which can map different domains into a common
feature space to learn domain-invariant features through the
additional loss terms [30]. Domain adaptive neural networks
(DANNs) [31] was proposed to use the maximum mean dis-
crepancy (MMD) as a regularization to reduce the distribution
discrepancy. Deep adaption network (DAN) [32] could learn
transferable features with statistical guarantees by adding a
multi-kernel MMD (MK-MMD) term to the loss function to
reduce the distribution discrepancy. Conditional MMD [33],
joint MMD [34], weighted MMD [35] were used by embed-
ding of empirical conditional, joint distributions or assign-
ing class-specific weights between the source and target data.
Local MMD [36] was also proposed to measure the discrep-
ancy through embedding relevant subdomains in source and
target domains. However, these approaches do not have func-
tions that accurately map the sample of the similar distribution
unless the target domain is known. In addition, these methods
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only obtain global domain-invariant features to realize the
cross-domain RUL prediction. This will easily lead to the loss
of information of local degenerate features, thus affecting the
prediction accuracy. Nevertheless, most TL approaches can
not ignore the interference of the noise hidden in the original
signals which can result in the limited transfer performance.
Some noise and redundant information are always hidden in
the original vibration signals collected from different working
conditions which also cause great difficulties for the RUL pre-
diction. Therefore, it is very necessary to develop an effective
method to predict the RUL of rolling bearings under different
working conditions.

In this paper, aiming to solve the above problems under
different working conditions, a novel cross-DA network for
the RUL prediction of rolling bearings is proposed by embed-
ding squeeze-and-excitation (Se) [37] and selective-kernel
(Sk) [38] attention blocks into DenseNet (Se-Sk-DenseNet)
and designing a new DA architecture. As far as we know, this
is the first attempt to skillfully take advantage of Se and Sk
attention blocks to weaken the time-series signals unrelated to
the actual degradation features, so as to extract the degradation
features of key details. Besides, a new DA architecture with
the RUL loss, the MK-MMD loss, the contrastive loss, and the
Kullback–Leibler (KL) divergence loss is proposed to build a
mapping function for comprehensively characterizing the loss
function for learning the domain invariant features by minim-
izing the distribution discrepancy between different domains.

2. CDAN

A novel CDAN is proposed to handle the cross-domain fea-
ture distribution discrepancy with a lot of useless information
and noise under different working conditions of rolling bear-
ings. The overall procedure of CDAN for the RUL prediction
of rolling bearings is presented in figure 1. Firstly, original
signals of rolling bearings with a lot of useless information
and noise are collected from the source and target domains.
Secondly, Se-Sk-DenseNet is proposed to conduct CDAN
model training. Among them, as an effective adaptive selec-
tion mechanism, Se block is embedded into DenseNet to select
essential features from multi-inputs adaptively. Furthermore,
Sk block is developed to learn deep features by adaptively
adjusting attention weights, so as to further extract critical
information and remove useless information. Thirdly, the
objective loss function, consist of the RUL loss, the MK-
MMD loss, the contrastive loss, and the KL divergence loss,
is developed to learn domain invariant features by minimiz-
ing the distribution discrepancy between the source and tar-
get domains. Finally, the bearing RUL prediction in the target
domain can be easily implemented based on the available fea-
tures extracted from the source domain.

2.1. Deep feature extractor

Degradation data of rolling bearings have two promin-
ent features: (1) the data not only contain the mechanical
degradation information but also the noise and useless

Figure 1. The procedure of CDAN for the RUL prediction of rolling
bearings. Machine operation process adopted an experimental
platform for accelerated degradation testing of bearings [39].

information; (2) the crucial degradation information caused by
the faults may be found in local sequences. Therefore, in order
to discover and highlight crucial information, it is very neces-
sary to learn critical areas and restrain useless information.
Fortunately, as effective attention mechanisms, Se block and
Sk block are reasonably competent for the job, which are dex-
terously embedded into DenseNet to extract local and global
deep degradation features.

2.1.1. DenseNet. DenseNet is a classical DCNN. It solves
the problem of residual network destroying data flow through
connecting the data of each channel. The network structure
of the DenseNet is mainly composed of dense block and
transition.

(1) Dense block
It is the most critical module in DenseNet, which extracts use-
ful feature information from the signals. The DenseNet con-
tains multiple dense blocks, and a dense block contains mul-
tiple convolution blocks. The input signals flow each convo-
lution block in turn, and then the output of each convolution
block is concerted together to flow to the transition. In this
way, the feature information of each layer can be reused, and
the correlation of the cross-layer information is enhanced.

(2) Transition.
It is mainly used to connect two adjacent dense blocks. It
retains the main features, reduces the size of the feature map,
and increases the calculation speed, which can prevent over-
fitting and improve the model generalization performance.

2.1.2. Se-Dense block. The convolutional layer is usually
used to process the input information for obtaining the feature
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Figure 2. The structure of the Se-Dense block.

map ofmultiple channels, which contain much useless inform-
ation and noise. Therefore, the correlation between different
channels and the critical input information is calculated to pay
attention to the essential information and eliminate the inter-
ference of useless information. The precise allocation of each
channel weight can fully extract practical features in convolu-
tion calculation, thereby improving the non-linear expression
ability of the model. Fortunately, the Se block is an excellent
way to rule out useless information. As shown in figure 2, the
Se block is integrated into dense block to form a new Se-Dense
block.

Firstly, global average pooling (GAP) is applied to process
the input data for obtaining preliminary global information
from all channels. The GAP calculation formula is as follows:

FGAP (XC) =
1
L

L∑
l=1

XC (l) (1)

whereX is the input characteristic element, L is the data length,
C is the data channel.

Secondly, the 1× 1 convolutional layer is used to paramet-
erize the global information. 1 × 1 convolutional layer can
make the parameter calculation amount smaller than the fully
connected (FC) layer, which is calculated by:

F(x) = σ (w · x+ b) (2)

where w is weight, b is biased, x is the global information, and
σ is the activation function.

The Sigmoid is usually used as the activation function
behind the convolutional layer to obtain the attention weight
of each channel by scaling the sequence of global information
parameters to the range of [0,1], which is represented as:

y=
1

1+ e−x
(3)

where x is the sequence of global information parameters; y is
attention weight.

Finally, the input characteristic element channel data are
multiplied with the attention weight sequence to remove some
useless information and noise, which can be updated as:

y= wc⊗Xc (4)

where wc is attention weight sequence;⊗ is the multiplication
of corresponding terms.

2.1.3. Sk-Transition block. It is considered that the data
obtained from each convolutional block (Conv block) in the
dense block are equally important before the original data are
transferred to the transition. However, the data of the differ-
ent Conv blocks have different importance in the actual calcu-
lation process. The data weights are calculated to strengthen
the valuable information and weaken the useless information.
In this way, the dense block can obtain more critical fea-
tures and improve prediction accuracy. If the weight distribu-
tion is unreasonable, the useless information will have a neg-
ative effect on the extraction of critical features. Hence, the
improved Sk-Transition block is shown in figure 3.

First of all, the data of several Conv blocks are input into the
transition. The channel of each Conv block is C, and the num-
ber of the Conv block is N. So the total channels are N × C.
In order to make the channels of downsampling data 1C, the
GAP is chosen to obtain the comprehensive global informa-
tion, which can be calculated as:

ytotal = GAP

(
N∑
n=1

xcn

)
(5)

where ytotal is the comprehensive global information, xcn is the
cth channel sequence of the data of the nth Conv block, and
GAP is the GAP.

Then the global information of each Conv block is para-
meterized to get the total global information by the following
calculation formula:

(y1,y2, . . . ,yN) = Conv(ytotal) (6)

where yN is the global information of the nth Conv block, and
(y1, y2 . . .yN) is the global information of the Conv blocks.

Afterwards, the softmax function is used to obtain the
attention weights of all channels of each Conv block and the
sum of the weights of each Conv block is 1, which can be
expressed as:

N∑
n=1

τ cn = 1 (7)

where τ cn is the nth attention weight of the cth channel. The
calculation formula of the softmax function is as follows:

τn = softmax(yn) =
yn
N∑
n=1

eyn
(8)

where yn is the global information of the nth Conv block.
Subsequently, in order to obtain the information of dif-

ferent importance, the attention weight and the data channel
obtained by the Conv block are correspondly multiplied and
added. Through the above operations, useful information is
strengthened, and useless information is weakened. The pur-
pose of adding attention mechanism is achieved by the follow-
ing calculation formula:

yc =
N∑
n=1

xcn⊗ τ cn (9)
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Figure 3. The structure of the improved Sk-Transition block.

where yc is the sequence of the cth channel.
Finally, the max-pooling layer is used to complete the

downsampling operation, and can further strengthen the use-
ful information because of the different importance of the
data. The calculation formula of the max-pooling layer is as
follows:

max-pooling=max(x1,x2, . . . ,xk) (10)

where k is the size of the max-pooling kernel.

2.1.4. Se-Sk-DenseNet. The proposed Se-Sk-DenseNet can
optimize the branch adaptively by adding Se block and Sk
block into dense block and transition, respectively. Through
the above operations, critical information is strengthened,
and useless information is weakened, which can enhance the
accuracy of feature extraction. A complete feature extraction
process based on Se-Sk-DenseNet is shown in figure 4.

2.2. RUL predictor

The RUL predictor is composed of one FC layer, whose pur-
pose is to obtain the RUL. The predicted RUL can be defined
as:

ŷ= σ (w ·Fsp + b) (11)

where σ is the rectified linear unit, Fsp is the output of the
sparse feature selection layer, and w and b denote the weights
and biases, respectively.

The extracted features of the source domain by using the
Se-Sk-DenseNet feature extractor are transferred to the RUL
predictor, which composed of multiple FC layers for output-
ting the corresponding predicted RUL. Moreover, the RUL
predictor and Se-Sk-DenseNet feature extractor are trained in
an end-to-end way. The loss between the predicted RUL and
the actual RUL is described as follows:

LRUL =
1
n

n∑
i=1

(ŷi− yi)
2 (12)

where ŷi is the predicted RUL labels, yi is the actual RUL val-
ues, and n is the number of the source samples.

2.3. The proposed DA module

2.3.1. MK-MMD loss term. The primary function of the
monitoring module is to extract the critical information in the
signals, and the mapping relationship between the information
and the RUL is established. But additional module needs to
be added to narrow the distribution discrepancy between the
source and target domains. MK-MMD is a widely useful way
to reduce the distribution distance in TL. The MK-MMD is
shown as follows:

MK−MMD(S,T)2 =

∥∥∥∥∥ 1m
m∑
i=1

f(S)− 1
n

n∑
i=1

f(T)

∥∥∥∥∥
2

H

(13)

where S andm are the source domain and the number of data in
the source domain, respectively. T and n are the target domain
and the number of data in the target domain, respectively.
f(∗) is to map the domain to the reproducing kernel Hilbert
space. The Gaussian kernel function can be transformed into
the inner product of the reproducing kernel Hilbert space.
The MK-MMD simplified by kernel function is shown as
follows

MK−MMD(S,T)2 =

∥∥∥∥∥∥ 1
m2

m∑
i=1

m∑
j=1

k(Si,Sj)

− 2
mn

m∑
i=1

n∑
j=1

k(Si,Tj)

+
1
n2

n∑
i=1

n∑
j=1

k(Ti,Tj)

∥∥∥∥∥∥ (14)

where k(·) is the mapping of the Gaussian kernel function.
MK-MMD is the optimal kernel obtained by the combination
of multiple linear kernels.

2.3.2. Contrastive loss term. In addition to reducing the dis-
tribution distance between the source and target domains in the
MK-MMD loss term, it is also necessary to make the model
unable to identify the data categories of each group in different
working conditions. Minimizing the prediction error of data
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Figure 4. The extraction process of the Se-Sk-DenseNet.

Figure 5. Structure diagram of the complete Se-Sk DenseNet and the proposed loss function.

and maximizing the category error of data is also one of essen-
tial ideas in domain generalization. The contrastive loss term
expands the category error, which can maximize to study the
common information between data under different working
conditions. The RUL prediction accuracy is further improved
by increasing the generalization performance.

The contrastive loss function proposed by [40] is applied in
this paper. The contrastive loss function is shown as follows.

C−Loss(S,T,Y) = (1−Y)
1
2
(DS−T)

+ (Y)
1
2
{max(0, l−DS−T)}2 (15)

where Y is the category label. If Y= 0, S and T belong to the
same category; if Y= 1, S and T belong to different categories.
DS−T is the Euclidean distance between S and T. l is the margin
to be set. If Y= 0, the loss is proportional to the Euclidean
distance; if Y= 1, the loss is 0 when the Euclidean distance
exceeds l and the loss is inversely proportional to the Euclidean
distance when the Euclidean distance is not exceeded l. The
purpose of the paper is to identify S and T as the same category,
so l always is set to 0.

2.3.3. KL divergence loss term. In addition, the difference
between probability distribution functions also has a signi-
ficant influence on the feature extraction and the determina-
tion of critical regions. The KL divergence loss function is an
effective solution. The concept of KL divergence comes from

probability theory and information theory, and the formula is
as follows:

KL [P(X)∥Q(X) ] =
∑
x∈X

[
P(x) log

P(x)
Q(x)

]
= Ex∼P(x)

[
log

P(x)
Q(x)

]
(16)

where P(X) is the actual distribution function, Q(X) is the
approximate distribution function used to fit P(X), X is
the input value. The KL divergence is asymmetric, which
means KL([P(X)∥Q(X) ]) ̸= KL([Q(X)∥P(X) ]). The forward
KL divergence is used to characterize the function fit-
ting behavior by finding the mean value. In the calcula-
tion process of minimizing forward KL divergence, when
P(X) = 0, Q(X) becomes meaningless. When P(X) > 0, Q(X)
searches for the highest fitting accuracy on the set of values
of P(X).

2.3.4. The proposed objective loss function. As shown in
figure 5, the total objective loss function Losstotal is proposed
by combining the RUL regression loss term on the source
domain (LRUL), the MK-MMD loss term, the contrastive loss
term, and the KL divergence loss term in this paper.

Losstotal = LRUL +α×MK−MMD(S,T)2

+β×C−Loss(S,T,Y)+ δ×KL(S,T) (17)
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whereα, β and γ are positive regular coefficients used to
balance the contribution among each term. Therefore, cross-
domain regression operation on target domain unlabeled data
is carried out to obtain a more accurate RUL value by learning
the stronger domain invariant features specified to the targets
from the source data.

3. RUL prediction procedure

3.1. Algorithm flow

CDAN is composed of a deep feature extractor, a RUL pre-
dictor, and a DA module to achieve the accurate prediction
under different working conditions. The detailed prediction
process of CDAN is shown in algorithm 1.

Algorithm 1. Training procedure of CDAN.

Input: source domain: ℑs= {xims ,yis}nsi=1, target domain:
ℑt= t{x jmt ,y jt}ntj=1; batch size: n;
Initialize network parameters
Adaptive filtering of obvious non-signal factors of the training
set, extracting feature X̃;
Mining features Xfs of the source domain through
Se-Sk-DenseNet module, and learning features Xft of target
domain I adaptively;
Predicting RUL Ys of the source domain and Yt of target domain
I through RUL prediction;
Calculate the loss values:
lossRUL = αlossmse +βlossMK - MMD + γlosscon +µKL;
Calculate the current loss value;
Update parameters;
Predicting RUL Yt of source domain II through RUL prediction;
Save parameters, and back propagate;
Predicting RUL of target domain through current parameter
model.

3.2. Evaluation metrics

To quantify the experimental results, root mean squared error
(RMSE) and mean absolute error (MAE) are used for the eval-
uation of the proposedmethod. The RMSE andMAE formulas
are shown as follows:

RMSE=

√√√√ 1
m

m∑
i=1

(yi− ŷi)
2 (18)

MAE=
1
m

m∑
i=1

|yi− ŷi| (19)

where m is the number of samples. yi is the actual RUL value.
ŷi is the RUL value calculated by the model.

Table 1. Settings of some key hyperparameters for the CDAN
model.

Hyperparameters Value

Batch size 16
Epochs 300
Kernel size 3
Learning rate 0.001
Optimizer Adam

3.3. Hyperparameter setting

The predefined hyperparameters defined by the CDAN struc-
ture are mainly batch size, convolution kernel size, learning
rate, the maximum number of iterations, etc. For the RUL
prediction, these hyperparameters are calculated by cross-
validation of experimental datasets, and finally determined
after weighing prediction accuracy, calculation speed, and
cost. Table 1 lists the final hyperparameter results.

4. Experimental results and discussion

4.1. Description of PHM2012 bearings dataset

The PHM2012 bearings dataset [39] is used for the experi-
ment, which includes three working conditions, and the oper-
ating conditions of 17 bearings under the operating condi-
tions of PRONOTIA platform are shown in table 2. The
PRONOSTIA platform is shown in figure 6. The horizontal
and vertical vibration signals were collected by two acceler-
ometers of Type DYTRAN 3035B. The sampling frequency
of the signals were 25.6 kHz, and the signals were recor-
ded every 10 s. In the experiment, with the deepening of the
degree of bearing wear, the reaction on the bearing vibra-
tion signal is the amplitude increase, in this paper, when the
amplitude of the vibration signal is more than 20 g, then
the bearing is considered to have reached the rated service
life.

4.2. Single working condition RUL prediction experiment of
PHM2012 bearings dataset

Due to the different failure positions of each bearing in the
bearing dataset, and the using life of the bearings are differ-
ent, the data labels are set to 100%–0%. The training and test
datasets of this comparative experiment are the same as the
PHM2012 challenge competition, and are shown in table 3.

The ablation experiments have been conducted to show
the effectiveness of Se-Dense block and Sk-Transition. The
RMSE and MAE of four models in the B1-3–B1-7 dataset are
shown in table 4. The optimal results are indicated in bold in
table 4. It can be seen that the results of the B1-3, B1-5, andB1-
7 datasets have reached the highest level. Besides, the average
of RMSE and MAE are respectively 0.130 and 0.100, which
are less than other models.
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Table 2. The settings of each operation condition in the dataset.

Operation condition Radial force Rotating speed Dataset

Condition 1 4.0 kN 1800 rmp B1-1–B1-7
Condition 2 4.2 kN 1650 rmp B2-1–B2-7
Condition 3 5.0 kN 1500 rmp B3-1–B3-3

Table 3. The training dataset and test dataset settings.

No. Training dataset Test dataset

S1 B1-1, B1-2 B1-3, B1-4, B1-5, B1-6, B1-7

Table 4. The RMSE and MAE of four models in the B1-3–B1-7 dataset.

model B1-3 B1-4 B1-5 B1-6 B1-7 Average

DenseNet
RMSE 0.166 0.064 0.348 0.244 0.139 0.192
MAE 0.148 0.052 0.276 0.175 0.113 0.153

Se-DenseNet
RMSE 0.159 0.208 0.185 0.172 0.117 0.168
MAE 0.140 0.127 0.140 0.110 0.094 0.122

Sk-DenseNet
RMSE 0.177 0.081 0.243 0.206 0.126 0.167
MAE 0.154 0.063 0.178 0.156 0.101 0.130

Se-Sk-DenseNet
RMSE 0.158 0.109 0.121 0.152 0.110 0.130
MAE 0.124 0.086 0.089 0.112 0.090 0.100

As shown in figure 6, the overall trend of experiments con-
ducted through the Se-Sk-DenseNet model shows a monoton-
ous downward trend, which indicates that the actual degrad-
ation characteristics of bearings can be learned. When the
error between the predicted value and the real value gradually
increases, the model can timely draw closer to the predictive
trending, indicating that the Se-Sk-DenseNet model can mine
the relationship between hidden features and the amount of
front and rear degradation with insignificant degradation fea-
tures, so as to correct the model’s prediction error. This is
due to the Se and Sk attention block added in the DenseNet.
Through two adaptive optimizations of the weight coefficients
of different channels, the data weight of each time will be
adjusted according to its importance, so that the prediction res-
ults will approach the actual values. In addition, figures 6(a)
and (d) show that Se-Sk-DenseNet can significantly shorten
the results of the predicted value and the true value in the late
stage of bearing degradation compared with DenseNet in the
prediction of B1-5. This means that the model can constrain
non critical areas and strengthen the key information in the
bearing degradation process, and strengthen the representation
ability of the network.

4.3. Variable operation condition RUL prediction experiment
of PHM2012 bearings dataset

The RUL prediction method based on Se-Sk-DenseNet has
achieved high accuracy in the single working condition.
However, the prediction method should be designed to cope

with themulti-working conditions of the bearing. The data dis-
tribution of multi-working condition signals is usually differ-
ent, and the single-working condition model has not learned
the new degradation law in different working conditions,
which leads to poor monitoring accuracy. In order to verify
the validity of the bearing RUL predictionmethod based on the
proposed CDAN in this paper, comparative experiments under
multi-working conditions are designed. The settings of the
training and test datasets are shown in table 5. Two of the three
conditions are assumed to be selected and the RUL prediction
results are transferred from A to B. The training dataset con-
tains A with labeled and B without labeled, and the test dataset
contains the remaining B data. In addition to the CDAN being
trained, five models are used as comparison methods, respect-
ively, Se-Sk-DenseNet without DA, CNN with DA, Miao’s
sparse domain adaption network (SDAN), transferable CNN
and a TL method based on bidirectional gated recurrent unit.
The RMSE and MAE of six models in the M1–M6 are shown
in table 6, with the best results highlighted in bold.

It can be seen from table 6 that the bearing RUL predic-
tion method based on the CDAN is better than other meth-
ods on the whole. The prediction impact of Se-Sk-DenseNet is
poor, while the effect of CDANwill be significantly improved.
The RMSE of the proposed CDAN is reduced by 37.8%,
12.6%, 15.5%, 40.1% and 24.2%, respectively, compared with
the other methods. Therefore, the proposed DA model is an
effective way to solve the RUL prediction problem under
multi-working conditions. The MK-MMD loss term, the con-
trastive loss term, and the KL divergence loss term all play
an important role in reducing the distribution discrepancy

8
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Figure 6. The predicted and true RUL curves of the two models.

Table 5. The training dataset and test dataset settings.

No. Domain adaption Training dataset Test dataset

M1 Condition 1→ Condition 2 Labeled: B1-1, B1-2. Unlabeled: B2-1, B2-2 B2-3, B2-4, B2-5, B2-6, B2-7
M2 Condition 1→ Condition 3 Labeled: B1-1, B1-2. Unlabeled: B3-1, B3-2 B3-3
M3 Condition 2→ Condition 1 Labeled: B2-1, B2-2. Unlabeled: B1-1, B1-2 B1-3, B1-4, B1-5, B1-6, B1-7
M4 Condition 2→ Condition 3 Labeled: B2-1, B2-2. Unlabeled: B3-1, B3-2 B3-3
M5 Condition 3→ Condition 1 Labeled: B3-1, B3-2. Unlabeled: B1-1, B1-2 B1-3, B1-4, B1-5, B1-6, B1-7
M6 Condition 3→ Condition 2 Labeled: B3-1, B3-2. Unlabeled: B2-1, B2-2 B2-3, B2-4, B2-5, B2-6, B2-7

Table 6. The RMSE and MAE of four models in theM1–M6 dataset.

Se-Sk-DenseNet CDACNN Miao’s SDAN [41] TCNN [42] TBiGRU [43] CDAN

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 → 2 0.293 0.237 0.297 0.229 0.398 — 0.33 0.31 0.17 0.15 0.274 0.218
1 → 3 0.246 0.187 0.212 0.159 0.064 — 0.31 0.29 0.15 0.13 0.187 0.146
2 → 1 0.383 0.224 0.284 0.210 0.353 — 0.24 0.22 0.23 0.21 0.218 0.167
2 → 3 0.278 0.231 0.244 0.200 0.098 — 0.27 0.25 0.22 0.20 0.191 0.152
3 → 1 0.698 0.290 0.246 0.205 0.291 — 0.60 0.58 0.64 0.62 0.243 0.184
3 → 2 0.311 0.222 0.291 0.217 0.421 — 0.54 0.52 0.40 0.38 0.260 0.202
Average 0.368 0.232 0.262 0.203 0.271 — 0.382 0.362 0.302 0.282 0.229 0.178

between different domains. The MK-MMD loss term has
excellent performances to reduce the data distribution distance
between the source domain and the target domain. What’s
more, if the difference between the predicted value of 3 → 1,

2→ 1 and the real value is too large, the predicted value will be
corrected in time, which depends on the contrastive loss term.
The contrastive module can extract hidden common features
when the source domain and target domain are quite different.
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In addition, the KL divergence loss term makes the CDAN to
have stronger generalization performance.

5. Conclusions

Rolling bearings are one of the most important key compon-
ents in rotating machinery and equipment. Due to the spe-
cial characteristics of rotating machinery, bearing failure often
occurs, therefore, the remaining life prediction and degrada-
tion assessment of rolling bearings can predict the failure of
rolling bearings in advance, which can provide an effective
guarantee for the safety and reliability of rotating machinery
and equipment. This paper focuses on the existing problems of
residual life prediction, takes rolling bearings as the research
object, and carries out in-depth research and improvement of
the method of residual life prediction. In this paper, the RUL
prediction of the rolling bearings under different working con-
ditions with a lot of useless information and noise is stud-
ied. Two extensive experiments are conducted to confirm the
effectiveness of the proposed method. The conclusions can be
summarized as follows:

(1) A improved deep feature extractor, Se-Sk-DenseNet is
proposed to learn domain invariant features from multiple
input signals by embedding Se and Sk blocks for weaken-
ing the signals unrelated to the real degradation features
and extracting the degradation features of critical details.
The ablation experimental results under the single working
condition show the effectiveness of Se-Sk-DenseNet.

(2) A new objective loss function, composed of the RUL
loss, the MK-MMD loss, the contrastive loss, and the
KL divergence loss, is proposed to reduce the distribu-
tion discrepancy of different domains. Among them, the
contrastive loss can maximize the common information
of different categories of data and the KL divergence
loss can reduce the difference of probability distribu-
tion functions between source domain and target domain.
These are beneficial supplements to the MK-MMD loss
term.

(3) A novel CDAN called CDAN for the RUL estimation of
rolling bearings based on Se-Sk-DenseNet is proposed
under different working conditions.it can successfully
reduce the distribution discrepancy of the features from
multiple input signals of rolling bearings with a lot of noise
under different working conditions. Experimental results
under multi-working conditions show that the proposed
method has the advantages of strong generalization and
high accuracy, and is superior to other methods.

However, a major limitation of this work is that the effect-
iveness of the proposed technique has only been tested using
laboratory data, its validity in industrial applications requires
further work where a continuous full-life degradation data
may not be the case. This constitutes to a future research
direction.
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