
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ACIS 2024 Proceedings Australasian (ACIS)

12-10-2024

Capable - A Framework for Assessing Software Architecture Capable - A Framework for Assessing Software Architecture

Development Capability for Public Health Information Systems Development Capability for Public Health Information Systems

Projects Projects

Anthony Dang
University of Technology Sydney, anthony.j.dang@student.uts.edu.au

Ghassan Beydoun
University of Technology Sydney, Ghassan.Beydoun@uts.edu.au

Follow this and additional works at: https://aisel.aisnet.org/acis2024

Recommended Citation Recommended Citation
Dang, Anthony and Beydoun, Ghassan, "Capable - A Framework for Assessing Software Architecture
Development Capability for Public Health Information Systems Projects" (2024). ACIS 2024 Proceedings.
63.
https://aisel.aisnet.org/acis2024/63

This material is brought to you by the Australasian (ACIS) at AIS Electronic Library (AISeL). It has been accepted for
inclusion in ACIS 2024 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more
information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/acis2024
https://aisel.aisnet.org/acis
https://aisel.aisnet.org/acis2024?utm_source=aisel.aisnet.org%2Facis2024%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/acis2024/63?utm_source=aisel.aisnet.org%2Facis2024%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 1

Capable - A Framework for Assessing Software
Architecture Development Capability for Public Health
Information Systems Projects

Anthony Dang
School of Computer Science - Faculty of Engineering and Information Technology
University of Technology Sydney
Australia
Email: Anthony.J.Dang@student.uts.edu.au

Ghassan Beydoun
School of Computer Science - Faculty of Engineering and Information Technology
University of Technology Sydney
Australia
Email: Ghassan.Beydoun@uts.edu.au

Abstract
Context: In the public health domain, the prevalence of unsuccessful Information Systems projects is
notable. Technical issues persist beyond the pervasive problems of inflated budgets and extended
deadlines. These include poor usability, system instability, suboptimal performance, and data
inconsistencies. These undesirable outcomes are linked to the Software Engineering process and the
Software Architecture underpinning the system. To mitigate these issues, a project’s capability to
achieve Software Architecture quality must be assessed. The socio-technical nature of Information
Systems projects in the Public Health Domain necessitates a holistic approach.

Aim: To address the need to assess Software Architecture development capability within the context of
the Public Health Information Systems.
Method: The framework was synthesised and evaluated using Design Science Research. The synthesis
incorporated Australian and American Public Health Information Systems failure exemplars and drew
upon the existing Software Engineering literature. The framework’s theoretical constructs were
evaluated using an unstructured data source (government audit reports of Public Health Information
Systems failures).
Results: The conceptual aspects of the framework were evaluated. The framework was capable of
detecting failure scenarios. Furthermore, the framework provided an indicative capability score and
capability grade while providing possible actions for improving the project’s Software Architecture
development capability.

Keywords: Public Health, Information Systems, Success Factors, Failure Factors, Software
Architecture, Software Engineering, Capability, Assessment, Design Science Research.

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 2

1 Introduction
Public Health Information Systems (PHIS) projects have notably suffered from poor end-user outcomes.
These systems may manifest issues related to poor usability, system instability, poor performance, and
data inconsistencies. The pervasiveness of these Information System (IS) project failures has led some
to believe these failures are “part of modern life” (Ludlow 2016). A notable exemplar in Australia was
the Queensland health sector payroll system (Eden and Sedera 2014). At $1.25 billion (AUD), the
software problems resulted in staff being either underpaid, overpaid, or even not paid at all.
Underpinning software quality is the Software Architecture (SA). We posit that given the human impact
of PHIS project failures, it is important to determine a project’s capability to achieve successful SA. A
project’s SA development capability would benefit from being assessed before the project commences
and reassessed during critical stages of the development lifecycle. This research aims to address the need
for assessing the capability of developing SA within PHIS projects. Therefore, we posit the Research
Question: Is it possible to assess a project’s capability to achieve successful SA? To the best of our
knowledge, this appears to be a gap in the literature, which we address in this paper.
In our previous paper (published at ACIS 2023), we asserted that a lack of appropriate SA underpins
many of the issues related to poor end-user outcomes (Dang and Beydoun 2023). We found that SA
quality is not simply a concern for the software vendor. It concerns all parties contributing to the project,
including the government organisations. This multi-disciplinary research represents a continuation of
our previous work, incorporating Software Engineering (SE), SA, and PHIS. Our holistic approach to
capability assessment brings to bear the social and organisational impacts on the software architecting
process (Galster et al. 2017). In this paper, we present:

Capable - An empirically validated framework for assessing Software
Architecture development capability for Public Health Information Systems

Projects

The intended Framework Users include individuals in technical roles, such as Chief Technical Officers,
Technical Project Managers, Software Architects, and technical individuals within government
organisations who seek to initiate and continually assess PHIS projects. To the best of our knowledge,
such a framework for assessing the SA development capability of PHIS projects is a novel contribution.

The framework was developed using Design Science Research methodology (DSR) and evaluated using
documented exemplars of PHIS failures.

2 Background and Related Work
The success and failure of IS projects have been studied for some time. Success may be defined in terms
of project sponsor satisfaction, end-user satisfaction, stakeholder satisfaction, and meeting technical
specifications (Silvius and Schipper 2015). Factors impacting success include project planning,
corporate culture, project management, user involvement, and communication (Yeo 2002). Other
factors may include information quality, individuals, and organisations (Li 1997; McManus and Wood-
Harper 2007; Yeo 2002). In one study, factors were found to include: trust, user expectations,
motivation, IT infrastructure, relationship with developers, domain knowledge, management support,
management processes, and organisational competence (Petter et al. 2013). Several evaluation models
for IS success exist (Varajão et al. 2022). However, the models do not focus on SA or assess a project's
capability to develop the SA.
One factor that may impact success is the instability of government organisations due to political
changes (Ombudsman 2024). These changes may occur with little notice, reflecting shifts in policy
priorities with the election of new governments. Such changes can impact ongoing projects, including
IT initiatives, leading to delays, budget overruns, and the need for re-scoping. A New Zealand study
showed that the government organisations’ main sponsor's accountability and inclination toward Agile
Project Management methodology were key to a project’s success (Douglas 2021).
Successful software development has been discussed in the context of Technical Debt - A metaphor
commonly used in SE to denote implementation deficiencies that can lead to problems with large scope.
Architectural Technical Debt is a related concept (Verdecchia et al. 2021). In one study, it was found that

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 3

architectural design decisions may incur Architectural Technical Debt, as well as Requirements Debt
(the delta between the specified requirements and the implemented system) (Soliman et al. 2021). The
researchers stated that knowledge capturing of debt-incurring decisions could improve outcomes. A
theory of Architectural Technical Debt has been proposed (Verdecchia et al. 2021). This included causes
relating to knowledge, human factors, complex business processes, unsuitable architectural decisions,
incorrect implementation of correct architecture, and lack of anticipation of the potential evolution of
the architecture. The causal factors are shown in Appendix 2. This is a holistic model of factors that can
impact SA. Causal categories that have been previously identified include planning and management,
knowledge, methodology/practices, organisation, people and documentation (Rios et al. 2018).
Acknowledging these causal categories is necessary for understanding how to approach addressing
capability.
The Capability Maturity Model Integration (CMMI) provides a performance improvement framework
designed to assess and enhance the maturity of an organisation's processes (Institute 2024).
Encompassing a range of disciplines, CMMI outlines best practices for requirements management and
defect prevention. Complementing this, ISO 9001 specifies a quality system for software development.
It provides a framework for organisations to assess their ability to deliver quality products and services
(ISO 2015). While CMMI and ISO 9001 have necessary aspects, they do not address SA development
capability. SA competence is multifaceted (Bass et al. 2021), encompassing individual, team and
organisational capabilities. For individual architects, architecture competence necessitates a robust
skillset that blends technical knowledge of programming languages and design patterns with effective
project management practices and strong communication abilities (Bass et al. 2021). At the
organisational level, architecture competence necessitates identifying and prioritising architectural
requirements, ensuring the architecture evolves throughout the project lifecycle. In addition, Bass et al.
discuss the need for architects and organisations to embrace agile methodologies while maintaining
architectural rigour (Bass et al. 2021). While these competence aspects have been named, a
comprehensive assessment of capability for SA in PHIS projects remains unaddressed.
Our previous work (published at ACIS2023) asserted the need for a framework to determine SA success
in PHIS projects (Dang and Beydoun 2023). We derived our model from the Unified Model of
Information System Development Success (Siau et al. 2010), which incorporates various inputs and
processes. The input categories in our original model include Project Characteristics, Organisation,
Requirements, Team, Knowledge & Skills, and Human Factors. The process categories include Project
Management, Communication, Practices, Techniques, and Decision-making. These high-level
categories are depicted in Appendix 1.

In the following sections, we outline our framework's research methodology, synthesis, and evaluation.

3 Assessing Software Architecture Development Capability
For some time, it has been understood that success requires an appropriate configuration of
organisational, behavioural, cognitive, and social factors (Kaplan and Harris-Salamone 2009). Indeed,
the SA process and architectural decision-making have been shown to be impacted by factors such as
cost, risk, requirements, tools, and business goals (Demir et al. 2024). It follows that the primary goal
of this research is to assess the capability of a project to achieve successful SA. To this end, the Design
Science Research (DSR) methodology (Vaishnavi and Kuechler 2004) was selected to conduct our
research. DSR was chosen as it necessitates the development of innovative solutions to real-world
problems. It enables socio-technical solutions to be developed by creating and evaluating artifacts that
improve knowledge and practice (Gregor and Hevner 2013). DSR methodology facilitated the iterative
development and refinement of an artifact derived from theoretical constructs in the literature. This
section outlines the principles for constructing a framework for assessing the SA development capability
of a PHIS project instance.

3.1 Design Principles for the Capability Assessment Instrument

When the design of a socio-technical artifact is complex (in terms of its size and the number of
components), then explicit extraction of design principles may be required (Gregor and Hevner 2013).
The framework incorporates many factors encompassing the socio-technical categories shown in
Appendix 1. We anticipate that our framework will be utilised at various stages of the project lifecycle.
For example, in the requirements phase, the framework can help assess whether the PHIS project has a
low capability, allowing the Framework Users to address any shortcomings before proceeding. As the
project progresses, changing factors might necessitate reapplying the framework, which could influence
decisions to continue or halt the project to address the shortcomings. This is particularly crucial if

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 4

requirements evolve or new ones are introduced. Therefore, the framework should be capable of
assessment before and during the project's lifecycle. In addition, for use in practice, the framework must
have a high degree of usability (Nielsen 1994). The guiding design principles for creating the framework
are:

Comprehensiveness - The framework should perform a holistic socio-technical assessment of the
project, considering the breadth of factors that can impact SA outcomes.
Simplicity and Clarity - The framework should be formulated in clear language to ensure that
Framework Users can easily understand and accurately interpret the items. This reduces the likelihood
of misinterpretation and enhances the reliability of the Framework Users’ application of the framework.

Reliability – The framework should be based on well-established theories and empirical research. It
should deliver assessments for small, medium, and large-scale projects, providing consistent
performance.

User-Centred Design - The framework should be intuitive and easy to use, allowing easy data input and
result interpretation without extensive training. It should guide Framework Users step by step through
the assessment process.

Actionability - The assessment results should be actionable, providing insights and recommendations
for improving socio-technical factors in the PHIS project.

3.2 Software Architecture Development Capability Detection

It is important to detect situations where a project lacks SA development capability, as these scenarios
may inform actions to improve the project outcomes. To this end, we examine the SA and SE literature
to deduce a set of socio-technical factors that impact SA quality. We map these to the PHIS literature to
determine the final set of factors. We adopt an iterative approach based on an initial analysis of the
literature. This approach consists of the following steps:

A. Identify factors that characterise the socio-technical impacts on SA.
B. Validate and enhance the set of factors identified in step A by comparing the derived set of

factors with those identified in PHIS literature.
C. Develop and validate a factor rating scheme.

1. Develop a rating scheme to determine the satisfaction of conditions relating to the
identified factors.

2. Validate and enhance the factor rating scheme developed in step 1 as follows:
i. Determine the adequacy of the factor set definitions and associated rating scale

by applying the factors to an exemplar of PHIS project failure.
ii. Determine the reliability of the rating scales by applying the factors to further

exemplars of PHIS project failure.

3.3 Factor Rating Scheme

We develop a rating scheme consisting of specific satisfaction levels for each factor and an associated
rating scale. A rating scheme should be comprehensible to the Framework Users (e.g. Software
Architects, Technical Project Managers and technical individuals within government organisations).
The Framework User must identify a factor's presence (or degree) in the PHIS project. For example, to
determine the pervasiveness of domain knowledge within the SE team, we may state that domain
knowledge exists sufficiently within the SE team. A resulting rating scheme would manifest as:

Strongly Disagree – The domain knowledge is not sufficient
Disagree – The domain knowledge is likely not sufficient
Neutral – The domain knowledge sufficiency is unknown
Agree – The domain knowledge is likely sufficient
Strongly Agree - The domain knowledge is sufficient

In addition, the assessment should highlight factor deficiencies to enable further investigation. For
example, when the SE team lacks expertise in implementing and testing SA. The validation of such a
rating scheme would include its understandability and ease of use.

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 5

3.4 Capability Assessment Score and Grade

A final capability assessment score should be provided once the conditions pertaining to the factors have
been rated. A comprehensible grading should be provided to accommodate the foreseeable possibility
that Framework Users may present the grading to other non-technical individuals (e.g. government
officials and politicians).

If all the factors are rated as Strongly Agree (factor is sufficiently satisfied), it suggests that the project
capability is High. Similarly, if all the factors are rated as Agree (factor is likely to be sufficiently
satisfied), it suggests that the project capability may be Moderate. Per contra, if all the factors are rated
Strong Disagree (factor is not sufficiently satisfied) or Disagree (factor is likely not sufficiently satisfied),
it suggests that the project capability is Very Low or Low, respectively. A somewhat uniform rating
distribution or centrally clustered distribution may indicate that the capability is unknown/unclear. This
grade is informative, suggesting that the factors should be addressed before continuing with the project.

3.5 Exemplars of Public Health Information Systems Failure

To evaluate the framework, it is imperative to assess its efficacy in scenarios where its performance is
anticipated. To this end, exemplars of PHIS failure were chosen, where the failure prompted the
production of a government audit report (an unstructured data source). Such reports provide valuable
insight and perspectives into project failures, including observations of the organisation, project
management, communication, and vendor performance.

The following criteria are selected to determine whether a chosen system was sufficient as an exemplar
of PHIS failure:

1. The system has been launched (made available for real-world use)

2. The system has substantially poor end-user outcomes pertaining to issues such as instability,
unreliability, lack of availability/access, poor performance, and data inconsistency.

3. The system’s failures have prompted the production of a government audit report, which
indicates severe problems with the system, such as instability, unreliability, lack of
availability/access, poor performance, and data inconsistency.

4 Framework Synthesis
In the previous section, we outlined a set of outcomes that characterise the capability assessment
framework. In this section, we delineate the iterative DSR build. At each iteration of the DSR build cycle,
the framework was validated and evaluated, ensuring it would function correctly within the conceptual
framework and design principles for which it was designed (see Section 3).

4.1 Iteration 1 - Synthesis of Preliminary Factors

Factors that characterise the socio-technical impacts on SA were identified. The synthesis utilised
literature that proposed mitigations to Technical Debt and Architectural Technical Debt. For example,
the grounded theory of Architectural Technical Debt (Verdecchia et al. 2021). The mitigations were
categorised according to our model (see Appendix 1). We synthesised these mitigations into concise
factor items in the form of conditions to be satisfied. Technical Debt papers that proposed mitigations
(Freire 2020; Ramač et al. 2022; Rios et al. 2018) were included. Indeed, similar causes and mitigations
appear in Architectural Technical Debt and Technical Debt papers, mapping coherently to our
conceptual model. We then examined Architectural Technical Debt and Technical Debt papers that
named causal factors that mapped to our model. For example, the cause “lack of code reviews” mapped
to the Practice category of our model. We deduced that the antithesis of “lacking code reviews” was to
conduct sufficient effective code reviews – A mitigation. Hence, we added these to our factor items.
Finally, the SA literature was also examined to extract additional factors. The final set of factor items
was assigned a preliminary desired state:

Exists - The item is present.
Identified - The item has been identified.
Defined - The item has been explicitly defined.

Understood - The item’s comprehensibility has been explicitly determined.
Two exemplars of PHIS failure were selected in the initial validation:

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 6

Exemplar 1 - A payroll system (Queensland, Australia) (Chesterman 2013). When the system was
launched, it had severe financial consequences for hospital staff. They were underpaid, overpaid, and
even not paid at all. It failed to handle contract permutations; hence, data corruption was apparent.
Exemplar 2 - A clinical Information and Communications Technology hospital system (Victoria,
Australia) (Doyle 2013). Among many problems, the system incorrectly considered patients as having
been discharged when they were transferred to other wards. Patients were also potentially at risk of
incorrect/missing medication doses.

The validation of the theoretical constructs was conducted utilising Exemplar 1. The report was reviewed
to extract pertinent information pertaining to the factor items’ constructs (see categories in Appendix
1). The extracted data was labelled with the appropriate factor category and then synthesised. Inferences
pertaining to the circumstances and events within the projects were documented. Each factor item was
marked with one of the predefined states according to the researcher’s understanding of the reports. The
evaluation procedure was comprised of the following:
For each factor in the framework,

1. Record excerpts that delineate or imply the conditions applicable to the factor.

2. Record one of the predefined states.
Where there is no apparent text regarding the factor item in question, inferences are drawn based on
the available information. If no reasonable inference can be made, a neutral/unknown label is assigned.

The framework detected failure when given the conditions in the report. This initial validation of the
theoretical constructs required confirmation. To this end, the framework was then applied to Exemplar
2, following the same procedure. Again, the framework detected failure.

The output of this iteration was a preliminary framework containing a list of factors (n=74) contributing
to SA failure/success. This preliminary framework provided evidence that the framework was efficacious
in detecting poor SA outcomes.

4.2 Iteration 2 – Operationalisation of the framework

The factor items were reformulated into conditions and presented as statements about the conditions.
The factor items were also refined to facilitate the assignment of ratings. That is the factors identified as
potentially ambiguous (or with low comprehensibility) were subsequently rephrased. The rating scale
was created as described in Section 3.3. The factors were organised and presented to show the category,
subcategory, factor name, and condition presented as a statement for evaluation. An excerpt of the
factors and the rating scale are shown in Figure 1. The figure shows two factors.

Figure 1 – Preliminary Operationalised Framework Example

The usefulness of the ratings was enhanced with a numerical component to facilitate the calculation of
an overall capability score (see Table 1). A simple sum is calculated using the weightings to provide a
total weighted score. The procedure for calculating the capability score is as follows:

1. Column count - For each rating column, sum the number of responses.

2. Weighted column score - Multiply the column count by the weighting for that column.
3. Total weighted score - Sum the weighted column counts.

Table 1 - Rating Scale Weightings

The validation and evaluation were conducted utilising the exemplars from Iteration 1 (see Section 4.1).
This ensured the framework's repeatability and efficacy while providing a test for the rating scale. Each
factor item statement was assessed for appropriateness, comprehensibility and answerability for the

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 7

Framework Users. To this end, personas were adopted to perform the evaluation. Namely, that of a
Technical Project Manager and a Software Architect. Note that the primary researcher is an industry
expert with experience in SE, SA, technical leadership, and project management. Thus, the features of
the adopted personas are grounded in practice. Specifically, they are assumed to have knowledge of the
end-to-end software development lifecycle, including quality assurance practices within the SE team. In
the case of a government organisation, we assume that the government organisation will have
individuals with a sufficient understanding of the technical aspects of the project. Such individuals may
reside within the larger organisation or perhaps in an adjacent or overarching IT organisation.
The following questions were asked about the statements:

1. Does the persona have sufficient knowledge and experience to understand the statement?
2. Can a rating response be selected for the statement?
3. Is there ambiguity in the statement which may confuse the responder?

The evaluation procedure was comprised of the following:
For each factor in the framework,

1. Record excerpts that delineate or imply the conditions applicable to the rating.

2. Record a rating.
3. Record a rationale for the above rating.

Where there is no explicit text pertaining to the factor item, then inferences may be made. Where there
is no feasible inference, then a neutral rating is given.
The completed factor ratings and capability assessment scores represent the validation and evaluation
of the theoretical constructs and the framework. The statements facilitated ratings appropriately. The
capability score provided an indication of failure in the scenarios. The comprehensibility of the
statements was open for debate among the authors. For example, a Technical Project Manager may
require further elaboration/instructions to understand the statements, whereas a Software Architect
may not. This potential need for supplementary information will be addressed in the next section.
The output of this iteration was a set of reformulated factor items and a rating scale for the factors
contributing to SA’s success/failure.

4.3 Iteration 3 – Final Iteration

The comprehensibility of the factors was addressed by providing supplementary information in the form
of assertions. The refinement of the factors illuminated the necessity to reorganise and consolidate some
factors between categories. For example, issues pertaining to stakeholders were moved from the Project
Characteristics category to the Organisation category. Similarly, some sub-categories were integrated
and reorganised to facilitate further comprehensibility. Importantly, some factors were also
consolidated to improve comprehensibility and conciseness.

A weighted score range of -136 to 136 is calculated using the number of consolidated factors (n=68) and
the weightings in Table 1. To increase the comprehensibility of the capability assessment, the weighted
score is mapped into a corresponding score in the range of 0 to 100. A capability grade is provided by
mapping the number to a grade: High, Moderate, Unknown/Unclear, Low, and Very Low. These are
shown in Table 2.

Capability
Grade

Lower
Weighted

Points

Upper
Weighted

Points

Lower Capability
Score

(out of 100)

Upper Capability
Score

(out of 100)

High 82 136 80.15 100.00

Moderate 28 81 60.29 79.78

Unknown/Unclear -28 27 39.71 59.93

Low -82 -29 19.85 39.34

Very Low -136 -83 0.00 19.49

Table 2 - Capability Assessment Ranges

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 8

The validation and evaluation were conducted utilising the exemplars from Iteration 1 (see Section 4.1).
Again, this ensured the framework's repeatability and efficacy while providing a test for the rating scale
and grade. As per the previous iteration, the personas of a Technical Project Manager and a Software
Architect were adopted. The capability score continued to indicate failure in the scenarios. The
comprehensibility changes facilitated the assignment of ratings; however, further rephrasing of the
factors followed this evaluation.
Finally, an industry expert (with SA experience) was consulted to validate the framework's
comprehensibility and usefulness at face value. The expert was provided with a random set of factor
items to validate yes/no for efficacy. The industry expert confirmed that the items were efficacious. The
expert also confirmed that a random set of inferences and assumptions made about the report were valid
and logically deducted. The expert confirmed that the framework appeared easy to use.
The output of this iteration is the elaboration of factor conditions, a consolidation of the factors (n=68),
and capability score and grade. The satisfaction of design principles (outlined in Section 3.1) thus
concluded the iterative DSR process. The output is hence considered Version 1 of the framework.

4.4 The Capability Assessment Framework

An excerpt of the final framework is shown in Figure 2. The figure shows the Organisation category of
the framework. In this category, there are five subcategories and nine factors. The design principles
(described in Section 3.1) underpinned the framework's design. They are described as follows.

Figure 2 – Capability Assessment Framework Excerpt

Comprehensiveness - The identified factors are socio-technical in nature, covering a large breadth of
inputs and processes of a project. The factors are grouped by category and sub-category. A condition is
named for each factor, in addition to assertions (observations/circumstances) that may indicate the
satisfaction of the condition. The categories may be seen in Appendix 1.
Simplicity and Clarity – The factors are organised by category and subcategory to provide context to
the Framework User. The factors are presented as conditions to be sufficiently satisfied. The statements
pertaining to the conditions are designed to be understandable by Technical Project Managers, Software
Architects, and technical people within government organisations. In addition, assertions are provided
for each factor to help guide the Framework User. A score (0 to 100) and human-comprehensible grade
are provided.
Reliability – The framework is derived from SE literature, containing Architectural Technical Debt and
Technical Debt causes and mitigations, and then mapped to PHIS literature. The synthesis was
conducted utilising exemplars of PHIS failure, indicating that its ability to detect SA development
capability is applicable across PHIS projects.

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 9

User-Centred Design - The artifact provides a visual colour scheme, indicating the capability of each
factor to the Framework User. Simply put, light green and dark green are positive, light red and dark red
are negative, and orange indicates ambiguity (see Figure 2). The applied framework is shown in Figure
3.

Actionability – The capability grade allows the Framework User to determine if a project should be
continued with the current set of circumstances. When a factor is not sufficiently satisfied, the
Framework User may use this as a data point for investigation and improvement of the circumstances
pertaining to that factor. The provided factor assertions may facilitate these actions for improvement.
In the following section, we evaluate and discuss the framework.

5 Evaluation and Discussion
In this section, we evaluate the final framework, followed by a discussion of the results and implications.

5.1 Evaluation

This evaluation determines the efficacy of the framework to detect failure scenarios. That is, to ensure
that the theoretical constructs in the framework are efficacious. We utilise an additional exemplar of SA
failure in PHIS – healthcare.gov (Office 2014) – A health insurance marketplace. When healthcare.gov
was launched, several critical and severe issues impacted its functionality. These issues included:

Instability - The website frequently crashed, with users being greeted by error messages and non-
functioning pages.
Poor scalability and unavailability - The high volume of users attempting to access the system resulted
in long downtimes.
Data Inconsistency - Data transmitted between other systems was often corrupted or incomplete. This
led to incorrect eligibility determinations and incorrect subsidy calculations. In addition, user data was
incorrectly saved, where some data was only partially saved, resulting in lost data.
Various circumstances lead to these problems, including insufficient planning, ineffective oversight
practice, insufficient identification of risks, commencing the development before regulatory
requirements were finalised or the number of participating states was known, and a lack of established
experience in Agile project management methodology. Applying the framework to this exemplar follows
the procedure established in Section 4.1. The evaluation confirms that the framework continues to
satisfy the requirement to detect a failure scenario. An excerpt of the evaluation is shown in Figure 3.
The excerpt shows apparent deficiencies in the project pertaining to the Project Characteristics and
Organisation. The applied ratings addressed circumstances such as the project commencing before
regulations were in place, the project commencing before the number of participating states was
known, and insufficient planning or risk considerations. These circumstances potentially impact
financial and technological concerns. Agile methodology was new to the government organisation, and
many change requests indicate that the stakeholders were not sufficiently involved in defining the
requirements. In Figure 4, the capability score and grade show that the framework could detect that the
project's circumstances led to SA failure.

5.2 Discussion

In the previous sections, we delineated the iterative process for developing our framework and evaluated
it utilising three exemplars of PHIS failure. The DSR procedure was advantageous, as it provided a
structured approach to facilitate the systematic design and evaluation of the framework. The initial
framework synthesis utilised literature across the multi-disciplinary fields of SE and PHIS. This focused
the framework on the PHIS domain regarding known failure and success factors. The unstructured data
source (government audit reports) provided a means of evaluating the framework’s theoretical
constructs against real-world cases. The framework performed well in all evaluations, detecting
scenarios resulting in poor end-user outcomes. It appears that many factors are
interrelated/interdependent. This confirms the importance of the framework in illuminating multi-
dimensional factors in PHIS projects. Interestingly, the most prevalent factors in each PHIS project
failure were pertaining to the Organisation, Requirements, and Project management.
Our evaluation procedure utilised exemplars from PHIS failures. These involved differing government
organisations, geographically distant, and differing system purposes and requirements. This provides
evidence to support a generalisation of the problem from specific instances to the wider PHIS domain.

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 10

When government organisations utilise the framework, it may be applied during the tender process and
at important project stages. Indeed, the framework may be utilised as a contractual agreement whereby
vendors must continue to satisfy the framework’s assessment grade. Vendor organisations may, in turn,
use the framework to self-assess and to also assess their technology partners. It should be noted that
government organisations will not necessarily have direct knowledge of the internal practices of their
vendors. Therefore, they will likely rely on vendor self-reporting. Importantly, PHIS projects tend to be
multi-year endeavours. During this time, many changes may occur to the organisations involved. Key
individuals may leave the government organisation and/or vendors, leaving skills and knowledge gaps.
New policies may also be introduced into law. A particular concern is when government departments
are created, merged, or disbanded. Therefore, we anticipate that our framework could be applied
periodically and when changes occur within the organisations.

Figure 3 - Evaluation Excerpt

Figure 4 - Evaluation Summary

Some degree of interpretation may be required for capability scores near the lower or upper limits of the
provided ranges. For example, as shown in Table 2, a score of 59/100 corresponds to an
Unknown/Unclear capability, whereas a score of 60/100 corresponds to a Moderate capability. Given
that the framework is presented as a colourised questionnaire, when the Framework User completes
their PHIS project assessment, the framework is effectively presented as an actionable factor-level
capability report (as can be seen in Figure 3). Therefore, it is recommended that the framework’s
capability report always be examined for potential factor-level deficiencies.

5.3 Limitations

PHIS failure reports tend to focus on project governance, management, and organisational factors, not
detailed software development practices. Therefore, some inferences and assumptions were necessary

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 11

to extrapolate events and circumstances within the projects. These inferences may be subject to human
bias. We mitigated this by utilising an industry expert to verify a random set of these assumptions. When
manually processing the reports, there is a potential for human error and bias. This was mitigated by
performing two iterations of the manual processing. The synthesis was also checked twice, and the
results were discussed with the secondary researcher. To mitigate human error and bias, future work
could involve using AI for evaluation.
While the evaluation confirmed the theoretical validity of the factor constructs, the framework was
evaluated post hoc – i.e., an already completed PHIS project. This may pose questions regarding the
efficacious value of the framework in a pre-PHIS project or as a monitoring tool during the project.
However, the framework conditions are manifested in the present tense. It follows that the framework
evaluates conditions at the time of applying the framework. These conditions were derived from
mitigation recommendations in the literature. Further evaluation may still be required for success
scenarios.
While the researchers thoroughly discussed the design principles, further study may be required to
assess how well the framework satisfied the principles. The perceived usefulness of the framework may
be influenced by human subjectivity. For example, the sufficient use of test cases may differ between
individuals. The vendor may deem their practice as sufficient, whereas the government organisation
may view the vendor's practice as insufficient. We do not prescribe a specific discrete level of what is
meant as “sufficient” or “effective”. We would recommend defaulting to industry best practices and
proven practices to support these assertions.

6 Conclusion and Future Work
Addressing SA development success factors within PHIS projects is necessary to improve end-user
outcomes. In this paper, we presented Capable - a framework for assessing the SA development
capability of PHIS projects. Our novel contribution utilised DSR to synthesise the framework from the
existing literature. The framework was empirically evaluated using exemplars of Australian and
American PHIS project failures. The framework successfully detected failure scenarios while providing
an indicative capability grade and score, as well as an actionable factor-level capability report. This work
is an important first step to help ensure that PHIS projects are capable of developing appropriate
software architectures - A real-world problem. Indeed, the framework is intended to be applied before
software development commences and continually assess capability throughout the project lifecycle.
The Framework Users may represent individuals from both government organisations and their
vendors. Thus, the contribution of this research (to both the literature and practice) can be summarised
as follows:

Individuals such as Chief Technical Officers, Technical Project Managers,
Software Architects, and technical individuals within government organisations

may use the framework to assess the capability of developing Software
Architecture in Public Health Information Systems projects before and during the

project lifecycle.

Future work will further examine the use of the framework in the field and further evaluate its efficacy,
specifically in success scenarios. Human subjectivity, when applying the framework, may necessitate
further examination. Guidance may be required when a vendor and government organisation cannot
agree on a satisfaction rating. Given that the framework’s factors were derived from Technical Debt,
Architectural Technical Debt mitigations, and IS success factors, the framework may be applicable more
generally. There may be some scope for trimming the framework to some core factors to enable the
development of a lightweight version. It may be speculated that some individual factors may
disproportionately impact the resulting SA. This warrants further investigation. Given the framework’s
ease of use and grounding in SE, it is also hoped that its applicability can be generalised to other
domains. Future evaluations (including generalisability) may also include the use of AI.

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 12

7 References
Bass, L., Clements, P., and Kazman, R. 2021. Software Architecture in Practice, Addison-Wesley

Professional.

Chesterman, R. N. 2013. “Queensland Health Payroll System Commission of Inquiry,” Queensland
Health Payroll System Commission of Inquiry, Queensland Health Payroll System Commission
of Inquiry, July.
(http://www.healthpayrollinquiry.qld.gov.au/__data/assets/pdf_file/0014/207203/Queenslan
d-Health-Payroll-System-Commission-of-Inquiry-Report-31-July-2013.pdf).

Dang, A., and Beydoun, G. 2023. “Toward Addressing the Software Architecture Blind Spot of
Information System Success Factors in the Public Health Domain,” in Australasian Conference
on Information Systems.

Demir, M. Ö., Chouseinoglou, O., and Tarhan, A. K. 2024. “Factors Affecting Architectural Decision-
Making Process and Challenges in Software Projects: An Industrial Survey,” Journal of Software:
Evolution and Process, Wiley Online Library, p. e2703.

Douglas, G. 2021. “An Insider’s Perspective: Governance of Large ICT Software Projects in the
Australian and New Zealand Public Sectors,” PhD Thesis, PhD Thesis, The Australian National
University (Australia).

Doyle, J. 2013. “Victorian Auditor-General’s Report Clinical ICT Systems in the Victorian Public Health
Sector,” Victorian Auditor-General’s Report, Victorian Auditor-General’s Office.
(https://www.audit.vic.gov.au/sites/default/files/20131030-Clinical-ICT-Systems.pdf).

Eden, R., and Sedera, D. 2014. “The Largest Admitted IT Project Failure in the Southern Hemisphere:
A Teaching Case,” in Proceedings of the 35th International Conference on Information Systems,
Association for Information Systems (AIS), pp. 1–15.

Freire, R. O., Salvio, Rios, Nicolli, Mendonça, Manoel, Falessi, Davide. ,. Seaman, Carolyn, Izurieta,
Clemente. ,. Spínola. 2020. “Actions and Impediments for Technical Debt Prevention: Results
from a Global Family of Industrial Surveys,” Proceedings of the 35th Annual ACM Symposium
on Applied Computing, pp. 1548–1555.

Galster, M., Tamburri, D. A., and Kazman, R. 2017. “Towards Understanding the Social and
Organizational Dimensions of Software Architecting,” ACM SIGSOFT Software Engineering
Notes (42:3), ACM New York, NY, USA, pp. 24–25.

Gregor, S., and Hevner, A. R. 2013. “Positioning and Presenting Design Science Research for Maximum
Impact,” MIS Quarterly, JSTOR, pp. 337–355.

Institute, C. 2024. CMMI V3.0: Capability Maturity Model Integration.
ISO. 2015. ISO 9001:2015 - Quality Management Systems -- Requirements.

(https://www.iso.org/standard/62085.html).

Kaplan, B., and Harris-Salamone, K. D. 2009. “Health IT Success and Failure: Recommendations from
Literature and an AMIA Workshop,” Journal of the American Medical Informatics Association
(16:3), BMJ Group BMA House, Tavistock Square, London, WC1H 9JR, pp. 291–299.

Li, E. Y. 1997. “Perceived Importance of Information System Success Factors: A Meta Analysis of Group
Differences,” Information & Management (32:1), Elsevier, pp. 15–28.

Ludlow, M. 2016. “IT Disasters Now Part of Modern Life,” Australian Financial Review.
(https://www.afr.com/technology/it-disasters-now-part-of-modern-life-20160628-gptyw6).

McManus, J., and Wood-Harper, T. 2007. “Understanding the Sources of Information Systems Project
Failure,” Journal of the Management Services Institute.

Nielsen, J. 1994. Usability Engineering, Morgan Kaufmann.
Norman, D. A., and Draper, S. W. 1986. User Centered System Design; New Perspectives on Human-

Computer Interaction, L. Erlbaum Associates Inc.

Office, U. S. G. A. 2014. “Ineffective Planning and Oversight Practices Underscore the Need for Improved
Contract Management,” Report to Congressional Requesters, , July.
(https://www.gao.gov/assets/gao-14-694.pdf).

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 13

Ombudsman, N. S. W. 2024. “Machinery of Government Changes and Maladministration Risks,” In
Focus. (https://www.ombo.nsw.gov.au/__data/assets/pdf_file/0010/145000/Machinery-of-
government-changes-and-maladministration-risks.pdf).

Petter, S., DeLone, W., and McLean, E. R. 2013. “Information Systems Success: The Quest for the
Independent Variables,” Journal of Management Information Systems (29:4), Taylor & Francis,
pp. 7–62.

Ramač, R., Mandić, V., Taušan, N., Rios, N., Freire, S., Pérez, B., Castellanos, C., Correal, D., Pacheco,
A., Lopez, G., and others. 2022. “Prevalence, Common Causes and Effects of Technical Debt:
Results from a Family of Surveys with the IT Industry,” Journal of Systems and Software (184),
Elsevier, p. 111114.

Rios, N., Spinola, R. O., de Mendonça Neto, M. G., and Seaman, C. 2018. “A Study of Factors That Lead
Development Teams to Incur Technical Debt in Software Projects,” 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), IEEE, pp. 429–436.

Siau, K., Long, Y., and Ling, M. 2010. “Toward a Unified Model of Information Systems Development
Success,” Journal of Database Management (JDM), pp. 80–101.
(https://doi.org/10.4018/jdm.2010112304).

Silvius, A. G., and Schipper, R. 2015. “A Conceptual Model for Exploring the Relationship between
Sustainability and Project Success,” Procedia Computer Science (64), Elsevier, pp. 334–342.

Soliman, M., Avgeriou, P., and Li, Y. 2021. “Architectural Design Decisions That Incur Technical Debt—
An Industrial Case Study,” Information and Software Technology (139), Elsevier, p. 106669.

Vaishnavi, V., and Kuechler, W. 2004. Design Research in Information Systems.
(http://www.desrist.org/design-research-in-information-systems/).

Varajão, J., Lourenço, J. C., and Gomes, J. 2022. “Models and Methods for Information Systems Project
Success Evaluation–A Review and Directions for Research,” Heliyon (8:12), Elsevier.

Verdecchia, R., Kruchten, P., Lago, P., and Malavolta, I. 2021. “Building and Evaluating a Theory of
Architectural Technical Debt in Software-Intensive Systems,” Journal of Systems and Software
(176), Elsevier, p. 110925.

Yeo, K. T. 2002. “Critical Failure Factors in Information System Projects,” International Journal of
Project Management (20:3), Elsevier, pp. 241–246.

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 14

Appendix 1 - The Capability Assessment Framework High-level
Categories from (Dang and Beydoun 2023)

Input Process
(Address SQA Tradeoffs) Output

Project Characteristics Software Architecture
Success

(Quality Attribute
Satisfaction)

Project Management

Practices

Techniques

Decision Making

Communication

Creation & Evolution,
Innovation & Creativity,

and Success Metrics

Legend

Impacts

Informs

Requirements

Organization

Team

Knowledge & Skills

Human Factors

Artefacts

Tactics

Documentation

Knowledge

Metrics

Australasian Conference on Information Systems Dang & Beydoun
2024, Canberra Assessing Software Architecture Development Capability

 15

Appendix 2 - Overview of Architectural Technical Debt Causes
(Verdecchia et al. 2021)

Acknowledgements
This research is supported by an Australian Government Research Training Program Scholarship.

Copyright
Copyright © 2024 Anthony Dang and Ghassan Beydoun. This is an open-access article licensed under
a Creative Commons Attribution-Non-Commercial 4.0 Australia License, which permits non-
commercial use, distribution, and reproduction in any medium, provided the original author and ACIS
are credited.

	Capable - A Framework for Assessing Software Architecture Development Capability for Public Health Information Systems Projects
	Recommended Citation

	tmp.1733835242.pdf._7DqN

