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One of the fundamental tasks in quantum information theory is quantumdata compression, which can
be realized via quantum autoencoders that first compress quantum states to low-dimensional ones
and then recover to the original ones with a reference state. When taking a pure reference state, there
exists an upper bound for the encoding fidelity, which limits the compression of states with high
entropy. To overcome the entropy inconsistency, we allow the reference state to be amixed state and
propose a cost function that combines the encoding fidelity and the quantummutual information. We
consider the reference states to be a mixture of maximally mixed states and pure states and propose
three strategies for setting the ratio of mixedness. Numerical simulations of different states and
experimental implementations on IBM quantum computers illustrate the effectiveness of our
approach.

Quantum machine learning which combines machine learning and quan-
tum computation has grown into a booming research topic1–7. Quantum
autoencoders (QAEs) inherit the spirit of classical autoencoders to compress
information into a latent space such that the original data can be recovered
from a reduced-dimension representation8,9. They have the potential to
reduce the requirements of quantum communication channels10 and the
size of quantum gates11,12 and thus have a practical value for various
applications including quantum simulation13, quantum communication
and distributed computation in quantum networks10,11.

Owing to the potential of QAEs in quantum information pro-
cessing, there is a growing interest in designing different schemes to
complete state compression tasks. An early work proposed a quan-
tum generalization of a classical neural network14 and another work
designed an autoencoder framework using programmable circuits15.
An enhanced QAE that encodes the feature vector of the input data
into single-qubit rotation gates has been implemented in variational
quantum circuits16. There have also been achievements in the
implementation of QAEs on photonic systems12,17,18. Apart from data
compression, QAEs have also been applied to other applications,
such as state denoise19,20 and error mitigation21. A novel method
based on QAEs has been devised to prepare the quantum Gibbs state
and estimate the quantum Fisher information22. A hybrid QAE has
been proposed to identify the emergence of order in the latent space
that can be utilized for clustering and semi-supervised classification23.
Recently, the execution of a QAE-facilitated teleportation protocol
has been implemented on a silicon photonic chip24. Furthermore, the
exploration of QAEs to analyze datasets originating from industrial
contexts demonstrates their potential in processing real-world data25.

In traditional QAE schemes15,17,18,26, pure states are utilized as reference
states for recovering the initial state. For each state to be compressed, there
exists an upper bound (hereafter, we call it QAE-pure bound) for the
encoding fidelity, i.e., the overlap between the trash state and the reference
state. Such a bound limits the compression of states with high entropy. To
compensate for the entropy inconsistency between the initial state and the
recovered state27, we allow the reference state to be amixed one. Instead of a
fixed mixed state, we configure different reference states for effective com-
pression of different states. To achieve this, we take advantage of quantum
mutual information that measures the disentanglement to guide the opti-
mization of the encoding transformation.Meanwhile, the conventional cost
function in standard QAEs aims to decouple the initial states into two parts
and provides information about the inner structure of initial states, which
can be useful for setting the reference state. Hence, we design a novel cost
function that combines the above two factors to guide the training of QAEs
towardsbetter performance. Inspired by the compressionof tensor products
of identical states on IBM quantum computers28, we experimentally realize
QAEs with mixed reference states on the IBM quantum simulator ibmq_-
qasm_simulator and quantum computer ibmq_quito.

In this work, we leverage mixed reference states to break the upper
bound of compression rate imposed by conventional QAEs26. In particular,
we use a mixture of a pure state and the maximally mixed state, with pure
reference states being a special case. Similarly, our proposed cost function
considers both quantum mutual information and the existing function in
conventional QAEs that favor pure reference states. Consequently, our
protocol exhibits flexibility, enabling its application to various quantum
states. We have observed the direct relationship between the optimal value
of the purity ratio in the reference state and the QAE-pure bound. This
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discovery empowers us with the insights gained from the training of QAEs
to adaptively configure mixed reference states for compressing different
unknown states. Our experimental implementations on IBM quantum
computers demonstrate the potential of the proposed protocol in saving
valuable quantum resources for real applications.

Results
QAEs using mixed reference states
Schematic. As illustrated in Fig. 1, we define the trash qubits as sub-
system A and the latent qubits as subsystem B, respectively. We denote
the dimensions of the original space, the latent space, and the trash space
as d, dB, and dA, respectively. The goal of aQAE is to compress (nA+ nB)-
qubit state ρ0 into nB-qubit state ρlatent via an encoder map Ue and then
recover to (nA + nB)-qubit state ρf via a decoder map Ud. After the
encoding operationUe, the trash state and the latent state are obtained as
ρtrash ¼ TrBðUeρ0U

y
e Þ and ρlatent ¼ TrAðUeρ0U

y
e Þ, respectively. Denote

F(ρ1, ρ2) as the state fidelity between ρ1 and ρ2
29. The efficiency of this task

can be quantified by the decoding fidelity between the original state and
the recovered state, i.e., F d ¼ Fðρ0; ρf Þ and the scheme is considered
reliable when F d approaches 1. During the whole process, a reference
state is utilized for two aspects: (i) measure the encoding fidelity between
the trash state and the reference state, denoted asF e ¼ Fðρtrash; ρref Þ; (ii)
reproduce the initial states with the combination of the latent state and
the reference state. When the unitary operationUe perfectly disentangles
ρ0 into two parts asUeρ0U

y
e ¼ ρlatent � ρref , the overlap between the trash

state and the reference state can achieve unity15,26 and the decoding
fidelity F d can also achieve unity. In this work, the unitary transforma-
tion Ue is realized through Hamitonian-based control (see Section
Methods for detailed information).

When taking a pure state as reference states ρref ¼ ∣ψref

�
ψref

�
∣ for

compressing the initial state ρ0. There exists an upperbound (i.e., QAE-pure
bound, abbreviated as Qbound

pure ) for the encoding fidelity between ρtrash and
ρref. From the previous work26, we have

Qbound
pure ðρ0Þ ¼ max

Ue

FðTrAðUeρ0U
y
e Þ; ∣ψref iÞ ¼

XdB
k¼1

λkðρ0Þ; ð1Þ

where λk(ρ) is the k-th (in descending order) eigenvalue of ρ. This bound is
determined by eigenvalues of the initial state ρ0, with no dependency on the
pure reference state ∣ψref

�
26.Hence, in traditionalQAEs, a commonpractice

is to utilize a fixed pure state as the reference state, e.g., ∣0i 0h ∣. According to
Eq. (1), if ρ0 has a rank larger than dB, the optimal encoder Ue can only
decouple the largest dB eigenvalues of ρ0, whose sum is less than one26,27. As
such, a high-rank state in this work means the rank of its density matrix is
larger than dB.

When compressing ρ0 with high entropy, the trash state ρtrash tends to
have high entropy and consequentially have low overlap with a pure
reference state (e.g., setting ρref ¼ ∣0i 0h ∣). In the decoding stage, the low
entropy of a pure state may also limit the entropy of the recovered state (see
ρf in Fig. 1). To overcome the entropy inconsistency between the initial state
ρ0 and the recovered state ρf

27, we remove the limitation of a pure reference
state and allow the reference state ρref to be mixed. The limitation of the
conventional QAEs also motivates us to adopt different mixed states rather
than a fixed state for compressing different initial states. In this way, the
entropy in the reference state can assist the decoder in achieving a high
fidelity for the recovered state. Here, the introduction of entropy offers an
intuitive strategy for setting mixed reference states. To ensure that the
recovered state ρf has high fidelity with ρ0, additional efforts are required to
optimize Ue. Instead of searching Ue and ρref together (a full encoding and
decoding procedure is required), we accomplish the task of QAEs with
mixed reference states within two stages.

Cost function. In conventional QAEs, the reference state is fixed as a
pure state, and F e is utilized as the cost function to train

QAEs15,17,18,26. However, F e is different from F d which characterizes
the effectiveness of QAEs in compressing and recovering quantum
data. When allowing the reference state to be a mixed state, F e can
achieve one by setting ρref = ρtrash, whereas F d is usually less than
one and can reach one only when perfect disentanglement is
realized15. Given that quantum mutual information (QMI) measures
the correlation between subsystems of quantum states30,31, it quanti-
fies the amount of noise that is required to erase (destroy) the cor-
relations completely. To facilitate QAEs using mixed reference states,
we aim to disentangle Ueρ0U

y
e , which is achieved by minimizing the

QMI, i.e., I ðUeρ0U
y
e Þ or equivalently maximizing

Jqmi ¼ �IðUeρ0U
y
e Þ; ð2Þ

where I ðρÞ ¼ SðTrAðρÞÞ þ SðTrBðρÞÞ � SðρÞ denotes the QMI of ρ and
SðρÞ ¼ �Trðρ lnðρÞÞ denotes the von Neumann entropy of ρ. Generally
I ðρÞ≥ 0, and I ðρÞ ¼ 0 when ρ ¼ TrAðρÞ � TrBðρÞ.

According to existing research26,when trainingQAEsusing the overlap
between the trash state and a pure reference state (e.g., taking the reference
state as ρref ¼ ∣0i 0h ∣), Jpure ¼ FðTrBðUeρ0U

y
e Þ; ∣0i 0h ∣Þ as the cost function,

the compression rate of QAEs can approach the theoretical QAE-pure
bound. Under that scheme, a high compression rate can be realized for low-
rank states26. Although this cost function fails to disentangle a high-rank
state with satisfactory performance, the optimization of Jpure leads to a
direction of reorganizing the information of initial states into two parts. To
combine the cases of low-rank states and high-rank states, we propose a cost
function,

ΦðwÞ ¼ wJpure þ ð1� wÞJqmi; ð3Þ

where w ∈ [0, 1] controls the ratio of different factors. This protocol is
termed QAE-qmi in this paper. Considering the potential of evolutionary
strategy (ES) in conventional QAEs26, we employ it to optimize the
parameters of Ue.

Reference states. Recall the nature of QAEs lies in disentangling15. The
encoding fidelity that measures the overlap between the trash states and
the reference states can reach one (i.e., F e ¼ 1) by setting ρref = ρtrash.
Although F d ≤F e, in the general case, F d can approach F e and they
both achieve one when perfect disentangling is realized26. When there is
no limitation for the reference state, it is helpful to investigate the per-
formance of QAE-qmi with ρref = ρtrash.

In practical applications, itmay be useful to utilize reference states with
somephysical constraints.According toourprevious study, a pure reference

Fig. 1 | Quantum circuit representation of a QAE using a mixed reference state.
The network includes two parts: (i) The encoderUe reorganizes the (nA+ nB)-qubit
initial state ρ0 into two parts, i.e., nB-qubit state ρlatent contains the useful information
(blue lines) that represent the latent qubits and nA-qubit state ρtrash contains the
superfluous information (green lines) that represent the trash qubits. Here, the trash
state is obtained by tracing out the latent space of nB qubits. The latent state is
obtained by tracing out the trash space of nA qubits. (ii) The decoderUd recovers the
state ρf by using the combination of the latent state and ancillary fresh qubits
(initialized to the reference state). The goal of QAEs is to maximize the overlap
between the recovered state ρf and the original state ρ0. Note that, we use the
common practice of taking the decoding as the inverse of the encoding
of Ud ¼ Uy

e
17,26.
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state, e.g., ∣0i 0h ∣ is effective in compressing low-rank states, with the com-
pression rate approaching the QAE-pure bound26, whose value is usually
high for low-rank states. For high-rank states with high entropy, the
introduction of mixed reference states helps increase the entropy of the
recovered states27. While the maximally mixed states I/dA has the highest
entropy among all states inHA and is effective for increasing the entropy in
the decoding stage. To achieve a goodQAE for different quantum states, we
take the following reference state

ρmix ¼ pr ∣0i 0h ∣þ ð1� prÞI=dA; ð4Þ

where pr represents the ratio of the pure state and (1 − pr) represents the
ratio of the mixed state in the reference state. I denotes the dA-dimensional
identity matrix. Different initial states with different inner structures may
have different optimal reference states following the form of Eq. (4). When
compressing initial stateswith high entropy, it is preferable to use low pr that
generates high entropy for ρmix. As such, it is desirable to specify an optimal
pr for different quantum states. Although mixed reference states cost
additional memories, our method aims to achieve high fidelity between the
recovered state and the initial state. This is particularly important for initial
states with lowQAE-pure bound. By constraining themixed reference state
in the formofEq. (4), one can transmit the compressed latent representation
and pr to facilitate the subsequent recovery.

Now, we focus on determining a good pr to recover quantum states
with high decoding fidelity. Intuitively, quantum states with different inner
structures (entropy) require different optimal pr to achieve optimal
decoding fidelity. Before deciding the optimal pr for recovering the state, we
first propose a grid-search strategy for setting pr (marked as grid). Under a
fixed cost function (e.g., Φ ¼ 0:5ðJpure þ JqmiÞ), we define a candidate set
(e.g., {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}) for pr. Then, following the
optimized Ue during the encoding process, the decoding process is per-
formed with different pr selected from the candidate pool. Eventually, the
optimal one is determined regarding its decoding fidelity, and this value is
defined as pgridr . In the following,we also introduce another two strategies: (i)
bound: to leverage theQAE-pure boundwhen prior knowledge of the initial
state is available; (ii) guess: to infer from the training process of QAEs. The
guess strategy acts as a practical solution that can be implemented in
different cases.

In summary, the optimization of QAEs using a mixed reference
state is accomplished within two stages. Firstly, the training of QAEs
using ΦðwÞ ¼ wJpure þ ð1� wÞJqmi is implemented in the encoding
stage, while the mixed reference state is introduced in the decoding
stage. After the optimization of Ue is finished by maximizing Φ, we
determine a reference state for recovery to maximize the overlap
between the initial state and the recovered state.

Numerical results
Quantum state settings. For the compression task, we consider three
classes of quantum states. Firstly, we consider thermal states as

ρ ¼ e�βH

Trðe�βHÞ ; ð5Þ

where β is the inverse temperature and H denotes the Hamitonian. Let
σ jz(σ

j
x) denote the composite value of σz(σx) on the j-th qubit with identity

matrices for the otherqubits. For example,we investigate thermal stateswith
the Hamiltonian of the one-dimensional transverse-field

H ¼ �
X
j

σ jzσ
jþ1
z þ

X
j

σ jx

 !
; ð6Þ

with couplings set to 1. Then, we investigate Werner states, which are
bipartite and are invariant under any unitary operator in the form of U ⊗
U32. Let ∣ki and ∣j

�
be the computational basis for two bipartite subspaces,

respectively. A Werner state can be parameterized by

ρðαÞ ¼ 1

d2 � dα
I � α

X
kj

∣kj
�

jk
�

∣

0
@

1
A; ð7Þ

where I denotes the d2-dimensional identity matrix and α varies between -1
and 1. Additionally, we also consider the initial states that have a similar
form to ρmix as

ρðp0Þ ¼ p0∣ψihψ∣þ ð1� p0ÞI=d; ð8Þ

where I denotes the d-dimensional identity matrix and the value of p0
controls the purity of the initial states. In this work, we randomly generate a
pure state ∣ψi andutilize it for different valuesofp0. By computation,wefind
that states with high p0 have a high QAE-pure bound. In this work, we
consider compressing 2-qubit states into 1-qubit states and 4-qubit states
into 2-qubit states. The density matrices of 2-qubit thermal states and
Werner states are presented in Supplementary Discussion 1.

Investigation of different w. Firstly, we investigate the performance of
ρref = ρtrash. In particular, we consider three different cases: (i) w = 1
considers the fidelity between the trash state and afixed pure state; (ii) w=
0 considers QMI of the encoding state Ueρ0U

y
e ; (iii) w = 0.5 considers

both factors and acts as a more general function. Comparsion results for
2/4-qubit thermal states and 2/4-qubit Werner states are provided in
Figs. 2 and 3, respectively. These results demonstrate that Φ = Jqmi and
Φ ¼ 0:5ðJpure þ JqmiÞ achieve a similar decoding fidelity, higher than that
ofΦ ¼ Jpure. The gaps betweenw= 0.5 andw= 1 suggest that introducing

Fig. 2 | Comparison ofQAE-qmi under different wusing ρref= ρtrash. a for 2-qubit
states, b for 4-qubit states. β controls the entropy of the thermal states, i.e., an
increase of β leads to a decrease of entropy in quantum states. F d represents the
decoding fidelity between the initial state and the recovered state.w denotes the ratio
of Jpure in the cost function Φ(w). The blue dashed line represents the theoretical
upper bound of compression rate when only considering pure reference states26.
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quantum mutual information to the cost function Φ(w) helps enhance
the decoding fidelity for 4-qubit states. These results suggest that the
introduction of QMI is effective in compressing and recovering quantum
states, especially for states with lowQAE-pure bounds (i.e., thermal states
with β approaching 0 and Werner states with ∣α∣ approaching 0). The
training curves of QAE-qmi under different w are summarized in Sup-
plementary Discussion 2.

Thenwe turn to the case of setting reference states as Eq. (4). Although
the disentanglement evaluation of Jqmi naturally follows the nature ofQAEs,
this function fails to achieve a perfect value of 1 for non-separable initial
states.When considering ρref = ρmix for low-rank states, the optimization of
Jqmi tends to bring the trash state far away from a pure state, in conflict with
the intuition that pure reference states are enough for low-rank states. To
combine the two scenarios together, w = 0.5 is a good solution.

We implement an example of low-rank states (with high QAE-pure
bound) using ρref = ρmix under different values of pr, with results in Fig. 4.

While, the best solution under w = 0 corresponds to a large pr (indicating
high entropy in ρmix) and the best solution under w = 0.5 corresponds to a
small pr (indicating low entropy in ρmix). The latter case is in line with our
conjecture that compressing states with low entropy and high QAE-pure
bound requires a reference state with high purity. As such, we consider
Φ ¼ 0:5ðJpure þ JqmiÞ to be useful for both ρref = ρtrash and ρref = ρmix.
Hereafter, without specific notation. QAE-qmi refers to the case
of Φ ¼ 0:5ðJpure þ JqmiÞ.

The cost function in Eq. (3) can be applied to compress initial states
with different purities. According to Eq. (1), states with high purity tend to
have eigenvalues close to 0 or 1, and have a high QAE-pure bound26, sug-
gesting that the conventional QAE approach (with only Jpure) still works. In
the unified approach, it is preferable to adopt a large w for compressing
initial states with high purities (e.g., thermal states with large β or Werner
stateswith ∣α∣ approaching 1). Furthermore,when compressing initial states
with high purity, for example, ρ(p0) with high p0, the existence ofQMI in the
cost function with ratio w = 0.5 brings in a negative effect, which can be
overcomeby reducing the ratio of Jqmi e.g., w=0.99. This originates from the
two stages of our protocol:firstly optimizeUe viaΦ(w) and thendetermine a
reference state for recovering. A large ratio of Jqmi tends to conflict with the
mechanism of setting reference states as pr∣0i 0h ∣þ ð1� prÞI=dA. This
conflict increases with the purity of states, as initial states with high purities
favor a high ratio of Jpure and a high value of pr. Nevertheless, we can avoid
this by adjusting w. Please refer to Supplementary Discussion 4 for detailed
information.

Investigation of different pr. The introduction of mixed states aims to
bring in appropriate entropy for recovering different states. Intuitively,
high-rank states with high entropy and low QAE-pure bounds require
more entropy for recovery, i.e., a low pr. Recall that each state has its inner
structure, and can be characterized by a QAE-pure bound26. Initially, we
tested Qbound

pure but found that its value does not align well with pgridr , and
their performance regardingFd exhibits a significant gap. Subsequently,
we find the square of Qbound

pure aligns more closely with pgridr , and their
decoding fidelities are comparably close. Hence, we propose a second
strategy (marked as bound) for setting pr by leveraging the QAE-pure
bound of the initial state ρ0, and we have pboundr ¼ ðQbound

pure ðρ0ÞÞ
2
.

To validate our conjecture that the optimal pgridr tends to approach the
square of the QAE-pure bound, we compare the two strategies, with their
actual values of pr and the associated decoding fidelity F d in one figure.
From the results in Figs. 5, 6, it is clear that pgridr has the same trend as pboundr ,
and their decoding fidelities are close to each other under different para-
meters. For states in the formofρ(p0),weobserve that thebestpr foundusing
the grid strategy (i.e., pgridr ) tends to be approaching p0. The comparison of
the two strategies (grid vs bound) regrading pr and F d is summarized in
Fig. 7. The two curves are close to each other with increasing p0. The
decoding fidelities for the two strategies of setting pr achieve similar values.

Based on the observation that taking pr as the square of QAE-pure
bound achieves good performance, Jpure among the unified cost function is
approaching the QAE-pure bound during the training process26. We

Fig. 4 | An example of QAE-qmi with ρref = ρmix

under different pr for 2-qubit thermal states. a for
w = 0, b for w = 0.5. pr represents the ratio of the pure
state in the reference state ρmix and (1 − pr) repre-
sents the ratio of the mixed state in the reference
state ρmix. F d represents the decoding fidelity
between the initial and recovered states. The red
dashed line represents the theoretical upper bound
of compression rate when only considering pure
reference states26. In this figure, some selected values
of pr from the candidate pool are used to clearly
demonstrate the trends of different values.

Fig. 3 | Comparison ofQAE-qmi under different w forWerner states under ρref=
ρtrash. a for 2-qubit states, b for 4-qubit states. w denotes the ratio of Jpure in the cost
function Φ(w). F d denotes the fidelity between the initial state and the recovered
state. The blue dashed line represents the theoretical upper bound of compression
rate when only considering pure reference states26.
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propose a third strategy (marked as guess) for adaptively configuring the
reference states as pguessr ¼ J2pure. The comparison results of different stra-
tegies of setting pr are summarized in Supplementary Discussion 3,
demonstrating that themanual and automaticways of settingpr are effective
in compressing and recovering different quantum states. By now, we have
three strategies for setting pr, and their comparsion for compressing thermal
states and Werner states is summarized in Supplementary Discussion 3.
Under the strategy of pr ¼ pguessr , we further compare the performance of
QAE-qmi under different w, with results shown in Supplementary Dis-
cussion 4. The decline of F d when p0 approaches one reveals that Φ ¼
0:5ðJpure þ JqmiÞ hinders the compression of quantum states with high p0.

Experimental results
Generally, it is assumed that quantumcircuits dealwithpure states.Weneed
to find a solution to generate mixed states, which is essential in preparing
initial states and reference states for encoding and decoding, respectively.
We use the technique of purification29 to associate amixed state with a pure
state in a large space. Given a state ρK of a quantum systemK, it is possible to
introduce another system R, and define a pure state ∣ψiKR for the joint
system KR such that ρK ¼ TrRð∣ψihψ∣KRÞ. The pure state ∣ψiKR reduces to
ρKwhenwe look at the systemK alone. Thismathematical procedure can be
done for any state. Please refer to Supplementary Discussion 5 for detailed
information about the construction of ∣ψ

�
KR for arbitrary ρK.

The quantum circuit for compressing 2-qubit states into 1-qubit states
is depicted in Fig. 8, where four qubits q0q1q2q3 are utilized to generate
mixed states on q2q3, on which the encoding gate and the decoding gate are
performed. The circuit can be divided into five parts: (a) prepare the initial
state, (b) perform the encoding operation, (c) prepare the reference state, (d)

perform the decoding operation, (e) perform quantum measurements to
obtain the density matrix of the recovered state. A set of complete mea-
surements is required to specify the density matrix of a quantum state7. In
Fig. 8, only a special case of local measurement of σz ⊗ σz on q2q3 is
performed. Adding some gates (such as theHadamard gate and the S† gate)
before the measurement part (i.e., between (d) and (e)) helps realize other
measurements. Hence, the quantum circuits are repeated several times until
a completemeasurement is accomplished. Feeding themeasureddata to the
built-in function for quantum state tomography in qiskit33, the density
matrix of the recovered state is finally obtained.

In this work, we do not perform the optimization loops on quantum
computers. Instead, we take the encoding transformation Ue and the
reference state in the formofEq. (4) that are learnednumerically on classical
computers, and then deploy them on IBM quantum simulators and
quantum computers, respectively. Note that, each green block in Fig. 8
represents quantum circuits composed of a sequence of quantum gates to
achieve unitary operations. Please refer to Supplementary Discussion 5 for
the transpiled circuits for the green blocks.

We implement the procedure of compressing and recovering
2-qubit states on ibmq_qasm_simulator and ibmq_quito, with 8192
shots. Each compression task is run 6 times on ibmq_quito. The com-
parison results are summarized in Fig. 9. The results of the simulators are
in agreement with the theoretical results obtained from classical com-
puters. However, gaps exist between the results of ibmq_qasm_simulator
and ibmq_quito. In particular, the gap becomes apparent for thermal
states with increasing β and Werner states with α approaching -1 or 1.
The underlying reason may be that compressing states close to maxi-
mally mixed states with a low QAE-pure bound, presents a large space
for improvement through the introduction of mixed reference states. By

Fig. 6 | Comparison results of two strategies of setting pr when compressing and
recoveringWerner states. a for 2-qubit states, b for 4-qubit states.F d represents the
fidelity between the initial and recovered states. pr represents the ratio of the pure
state and (1 − pr) represents the ratio of the mixed state in the reference state. The
solid blue line (dashed blue line) corresponds to the actual value of pr. The solid red
line (dashed red line) represents the value of F d through the bound information
(grid searching from a set of values).

Fig. 5 | Comparison of two strategies of setting pr for compressing and recovering
thermal states. a for 2-qubit states, b for 4-qubit states. pr represents the ratio of the
pure state and (1− pr) represents the ratio of the mixed state in the reference state.
F d represents the fidelity between the initial state and the recovered state. The solid
blue line (dashed blue line) corresponds to the actual value of pr. The solid red line
(dashed red line) represents the value of F d through the bound information (grid
searching from a set of values).
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contrast, initial states closer to pure states can achieve a high compres-
sion rate by utilizing pure reference states, while pure states can be
affected by various noise sources, e.g., CNOT noise. Then, we visualize
the densitymatrices of the initial states and the recovered states obtained
from ibmq_quito for Werner states in Supplementary Discussion 5.

Discussion
In this paper, we have investigated the performance of QAEs with mixed
reference states. One may consider employing a fixed mixed state as the
reference state as in conventionalQAEs.However, it is challenging to decide
on a fixed reference state for different initial states, and the proof that

arbitrary mixed reference states yield similar bounds remains elusive. The
way of merging all the operations into the encoder fails to reveal features of
QAEs with mixed reference states. By comparsion, the adaptive config-
uration of mixed reference states provides a clear clue about improving
fidelity via appropriate entropy compensations. Then, we summarize the
characteristics of our protocol as follows.

(i) The proposed function of ΦðwÞ ¼ wJpure þ ð1� wÞJqmi com-
bines the approximate QAE-pure bound function that reflects the
inner structure of the initial states and the quantum mutual infor-
mation that measures the correlation between subsystems. It is a
general function that can be applied to both low-rank states and high-
rank states. As demonstrated by the numerical results, training QAEs
using Φ(w) achieves high decoding fidelity under different reference
setting rules including ρref = ρtrash and ρref = ρmix. In addition, it has
been found that for initial states with high QAE-pure bounds (e.g.,
large p0 in Eq. (8)), it is preferable to increase w in
ΦðwÞ ¼ wJpure þ ð1� wÞJqmi, giving more importance to the
approximate QAE-pure bound. This is consistent with the fact that
pure reference states together with Jpure can realize a good compres-
sion rate for low-rank states26. However, it is crucial to recognize the
inherent limitation of employing QMI, whose value depends on the
von Neumann entropy that is not an observable. Consequently, this
limitation restricts its applications in experimental settings. In our
future work, we will explore an approximate function that can bemore
readily implemented in experimental contexts.

(ii)Thenumerical resultsdemonstrate that setting the reference state in
the form of Eq. (4) helps enhance the decoding fidelity for high-rank states.
Due to the special form of the reference states, it is intuitive that different
initial statesmay rely on different optimal purity ratios pr that helpmaintain
the entropy consistency between the initial states and the recovered states.
As demonstrated by the numerical results in Figs. 5, 6, and 7, the optimal pr
using via the grid strategy is close to the square of QAE-pure bound for
thermal states,Werner states andmaximallymixed states blendedwith pure
states. Such findings provide hints for adaptively setting reference states for
different quantum states.

(iii) When limiting the reference states to the form of Eq. (4), we can
take advantage of the prior information of the initial states to determine a
mixed reference state that achieves a high F d. For example, ðQbound

pure ðρ0ÞÞ
2

can be determined before the training process of QAEs. If no prior
knowledge is available, we can also approximate the QAE-pure bound by
inferring from the training process and taking Fðρtrash; ∣0iÞ2. From this
perspective, our protocol may have wide applications in practical quantum
applications. For example, the compressed latent representations can be
utilized to effectively denoise errors in the original states19, or act as inter-
mediate states to facilitate high-dimensional subspace teleportation24.

Our work illustrates the effectiveness of QAEs using mixed reference
states under different constraints and thus provides implications for

Fig. 8 | Quantum circuits for compressing 2-qubit states into 1-qubit states and
recovering to 2-qubit states using mixed reference states. Firstly, four qubits are
required to generate a 4-qubit pure state in a, whose partial trace on q0q1 leads to a
mixed state ρ0 on q2q3. Hereafter, the encoding operation in b and the decoding
operation are performed on q2q3, where q2 contains the trash state ρtrash and q3

contains the latent state ρlatent. Then, q1q2 are reused to generate a pure state whose
partial trace on q1 leads to a reference state ρref on q2 in c. Then, the decoding
operation in d is performed on the combination of q2 with ρref and q3 with ρlatent. In
e, measurements are performed on q2q3 for quantum state tomography to obtain the
density matrix of the recovered state.

Fig. 7 | Comparison of two strategies of setting pr for compressing maximally
mixed states blended with pure states. a for 2-qubit states, b for 4-qubit states. pr
represents the ratio of the pure state and (1 − pr) represents the ratio of the mixed
state in the reference state.F d represents the fidelity between the initial state and the
recovered state. The solid blue line (dashed blue line) corresponds to the actual value
of pr. The solid red line (dashed red line) represents the value of F d through the
bound information (grid searching from a set of values).
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practical applications. More work remains to be investigated in the future.
For example, other forms of mixed reference states are worthy of further
exploration. Imperfections in quantumsystemmodels are not considered in
this work. Our future work will also include general quantum channels to
deal with decoherence for mixed quantum states.

Methods
Quantum control model
Here, we use the density matrix ρ(t) (which is a Hermitian, positive semi-
definite matrix satisfying TrðρðtÞÞ ¼ 1 to describe the state of a closed
quantum system. The evolution equation for ρ(t) can be described by the
quantum Liouville equation34

i _ρðtÞ ¼ ρðtÞHðtÞ � HðtÞρðtÞ: ð9Þ

When we use control fields fujðtÞgMj¼1
to manipulate the system, the system

Hamiltonian in Eq. (9) can be divided into two parts, i.e., HðtÞ ¼
H0 þ HcðtÞ ¼ H0 þ

PM
j¼1 ujðtÞHj; whereH0 is the time-independent free

Hamiltonian of the system, Hc(t) is the control Hamiltonian representing
the interaction of the system with the control fields. For such a control
system, its solution is given as ρ(t) = U(t)ρ0U

†(t) with U(0) = I, where the
propagator U(t) is formulated as follows:

d
dt
UðtÞ ¼ �i H0 þ

XM
j¼1

ujðtÞHj

 !
UðtÞ: ð10Þ

For the compression task, we consider spin chain models with

H0 ¼
XnAþnB�1

i¼0

σxi σ
x
iþ1 þ σyi σ

y
iþ1 þ σzi σ

z
iþ1:

ChainswithHeisenberg coupling are known to be controllable given at least
two noncommuting controls acting on the first or the last spin in the
chain35,36, we exert control fields on the first two qubits towards X and Y
directions37, with the control Hamiltonian as

Hc ¼
X
k¼0;1

uxkσ
x
k þ uykσ

y
k:

As such, there are four control fields to be designed. We use piece-wise
control fields, which means that the total control time T is equally divided
into different periods, with each having dt = T/N duration times. In this
work, the total control time T = 20 is equally divided into 100 pieces. The

boundof controlfields is set as [−10, 10].Then, the encodingmap forQAEs
can be obtained by Ue = U(T) following Eq. (10).

Training QAEs using learning algorithms
In this work, the training of QAEs is reduced to searching for an optimalUe

that maximizes ΦðwÞ ¼ wJpure þ ð1� wÞJqmi;w 2 ½0; 1�. After the train-
ing is completed, injecting a mixed state ρref to the decoder helps maintain
the entropy consistency between the initial state ρ0 and the recovered state
ρf ¼ Uy

e ðρlatent � ρref ÞUe. Finally, the overlap between the recovered states
and the original states is measured to evaluate the efficiency of QAEs.
Denote the parameters for the encoder as a vector θ. The procedure ofQAE-
qmi using mixed reference states is as follows:
1. Randomly initialize θ, where θ represents the control fields for the

systems
2. Apply Ue(θ) to the initial states ρ0
3. Measure ρtrash and ρlatent and compute the cost func-

tion ΦðwÞ ¼ wFðρtrash; ∣0i 0h ∣Þ � ð1� wÞI ðUeρ0U
y
e Þ

4. Perform the optimization of Φ(w) using a learning algorithm and
obtain a better control parameter θ

5. Repeat steps 2-4 until convergence
6. Report the classical information θ and store the latent state ρlatent
7. Determine a suitable reference state ρref using different strategies (e.g.,

ρref = ρtrash or ρref = ρmix) and prepare the reference state
8. Perform Uy

e ðθÞ on the combined state ρlatent ⊗ ρref and obtain the
recovered state as ρf

The key is to optimize the cost function ofΦusing learning algorithms.
Evolutionary strategy (ES) methods exhibit an advantage in exploring
unknown environments in games38 and have been applied in optimizing
quantum control issues39. The comparison results in our previous work
suggest that ES has the potential to optimize QAEs towards the theoretical
upper bounds with high efficiency26. In this work, we utilize ES to optimize
the cost function Φ(w).

ES is a black-box optimization method that utilizes heuristic search
procedures inspiredbynatural evolution.At every iteration ("generation”), a
population of parameter vectors ("genotypes”) is perturbed ("mutated”) and
their objective function value ("fitness”) is evaluated. The highest-scoring
parameter vectors are then recombined to form the population for the next
generation, and this procedure is iterated until convergence38. The detailed
description for the ES method is provided in Supplementary Method 1.

It is worth noting that, the initialization process in Step 1 can be
formulated as θ ¼ umin þ Rand½0; 1�ðumax � uminÞ, where Rand[0, 1] is a
function to generate randomnumbers uniformly distributed between 0 and
1 to meet the physical restriction of control fields. In addition, boundary
checks and resetting values are required for every step that involves new

Fig. 9 | Results for QAEs on ibmq_qasm_simulator and ibmq_quito for encoding
anddecoding 2-qubit states. a for thermal states,b forWerner states.F d represents
the fidelity between the initial state and the recovered state. The blue dashed line
represents the upper bound of compression rate when only considering pure
reference states26. The orange line represents the theoretical results of simulating

QAEs on classical computers. The green line represents the numerical results
obtained from the IBM simulator ibmq_qasm_simulator. The red line with error
bars represents the average results of 6 times together with standard deviation when
quantum circuits are sampled with 8192 shots on IBM Quantum computer
ibmq_quito.
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parameters to guarantee that newly generated parameters lie in the con-
strained field. For the parameter setting of the ES method, we set the
population size as NP= 40 for 2-qubit states andNP = 50 for 4-qubit states.
The perturbation factor is set as δ = 0.01. The learning rate is set as χ1 = 0.5.
Themomentumfactor is set as χ2 =0.9.Theperturbation factor is decayed as
δ ← 0.98δ every 100 training iterations.

Data availability
Thedata generated in this studyhavebeendeposited in theFigshare database,
which can be accessed by https://doi.org/10.6084/m9.figshare.25183358.
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