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Renewable energy-powered DC microgrids have emerged as a sus-
tainable alternative for standalone power systems in remote locations,
which were traditionally reliant on diesel generators (DIG) only. To en-
sure power quality and reliability, energy storage systems (ESS) and
demand-side management (DSM) techniques are employed, address-
ing the intermittent nature of renewable energy sources (RES). This
manuscript presents a novel multi-objective optimisation framework to
determine the equipment sizing, depth of discharge (DoD) of ESS, and
share of controllable loads contributing to DSM in a standalone DC
microgrid incorporated with RES as a primary energy source and a
backup DIG. The proposed optimisation strategy utilises genetic al-
gorithm with the objectives of minimizing lifecycle cost and carbon
footprint. A novel battery energy storage system (BESS) management
criterion is introduced, which accounts for battery degradation in the
lifecycle cost calculation. The minimum allowable DoD of the BESS is
considered a decision variable in the optimisation problem to assess the
impact of higher DoD on lifecycle cost improvement. MATLAB simu-
lation results demonstrate that the proposed optimisation model signifi-
cantly reduces the levelized cost of electricity and per unit carbon foot-
print compared to previous models. Additionally, it identifies an optimal
range of DoD for the BESS to enhance the lifecycle cost of a standalone
DC microgrid.

Introduction: Standalone power systems are essential for powering re-
mote areas where grid connections are not feasible due to inaccessibil-
ity. Traditionally, diesel generators (DIGs) have been the primary en-
ergy source for these systems, valued for their ease of deployment, op-
erational reliability, and the global availability of diesel fuel. However,
DIGs pose several issues, including high fuel costs, noise pollution, and
a significant carbon footprint when used as the sole energy source [1].
Renewable energy sources (RES) have emerged as a sustainable alter-
native for replacing DIGs in standalone power systems. RESs offer ad-
vantages such as low operational costs, zero carbon emissions, and min-
imal environmental impact. Despite these benefits, integrating RES into
power systems is challenging due to their intermittent nature. To ad-
dress these challenges, energy storage systems (ESS) and demand-side
management (DSM) technologies have been incorporated within the mi-
crogrid framework. For standalone power systems, the islanded micro-
grid concept has been employed. Key ESS technologies, such as batter-
ies, supercapacitors, flywheels, and hydrogen energy storage, are used
to store excess energy generated by RES when generation exceeds de-
mand and to supply energy when demand is higher. Since ESS outputs
and RES like solar PV often produce direct current (DC), DC micro-
grids are advantageous, especially if most loads can be easily converted
to DC.

DSM technologies play a crucial role in managing demand during
peak periods when the available generation and energy storage are in-
sufficient. DSM encompasses three main strategies: (a) energy conserva-
tion, (b) load management, and (c) demand response (DR). DR involves
modifying electricity consumption patterns in response to signals from
grid operators or suppliers and is typically categorized into incentive-
based and time-based programs [2]. However, many standalone DC mi-
crogrids, often built-own-operate (BOO) projects, face challenges in in-
tegrating traditional DR programs. Direct load control (DLC) presents
a viable DR strategy for standalone microgrids which allows utilities or

grid operators to directly control or adjust specific appliances or equip-
ment, providing a practical solution [3].

The main outcome of the design of a microgrid is to reduce costs
and the carbon footprint. Optimisation techniques and energy manage-
ment strategies can be utilised to design the microgrids to achieve the
expected outcomes. The design of the microgrid should minimize the
levelized cost of electricity (LCOE, a measure of the lifetime cost of a
microgrid) and carbon footprint using optimisation algorithms while im-
proving performance by utilising suitable energy management strategies
[4].

Integration of DSM techniques into a DC microgrid may have a pos-
itive impact on cost reduction. However, there is still a cost associated
with shedding the loads in terms of operational behaviour changes in
the microgrid. When designing the operation of the microgrid, it is nec-
essary to incorporate the associated cost of DSM into the optimisation
[5].

There were only limited number of DSM studies for standalone
microgrids found in the current literature. An optimisation strategy
based on HOMER software was developed for a standalone residen-
tial microgrid in India, as detailed in [6]. This strategy optimises the
microgrid using only a rule-based approach to battery energy stor-
age system (BESS) management, assuming full charging and discharg-
ing cycles without any set limits on the depth of discharge. In [7], a
multi-objective optimisation approach for designing a standalone DC
microgrid was developed, incorporating a BESS management strat-
egy that uses a DIG when the BESS reaches its minimum designed
state of charge (SOC) until it is fully charged. However, this approach
does not account for DSM and battery degradation over its cycle
life.

Therefore, a significant research gap remains in integrating battery
degradation into lifecycle cost assessments for standalone microgrid de-
sign, and in applying DSM techniques for optimization. This manuscript
proposes a multi-objective genetic algorithm-based optimization tech-
nique that determines the optimal capacities of equipment in a renew-
able energy-powered DC microgrid, while incorporating a novel BESS
management algorithm accounting for battery degradation by analysing
the cycle life. Depth of discharge (DoD) of the BESS is considered as a
decision variable (DEV) to optimize the BESS management algorithm.
The upper and lower bounds for DoD are selected based on the safe
operating range provided by the BESS manufacturers. Furthermore, the
proposed method employs DLC as a DSM strategy to reduce demand by
shutting down some controllable loads.

Model of the standalone DC microgrid: There are three major parts of a
DC microgrid: generation, loads, and energy storage. In this study, solar
PV and wind energy are utilised as the primary energy sources. A DIG
has been used as a backup power source. BESS has been used as the
ESS. The proposed microgrid is controlled via a centralized controller
as shown in Figure 1. In addition to the loads, a dynamic load (DYL) has
been utilised in the design to absorb the surplus generation from renew-
able energy sources and to dissipate power transients when the BESS is
fully charged.

When designing the required capacity of a solar PV system for a mi-
crogrid, the maximum power output that can be obtained in a certain
location by a solar module should be calculated [8]. It can be calculated
by the measured values of solar irradiance and temperature on a given
location using Equation (1).

PPV = η × PRPV × APV × Irr × (
1 − (

k × TC − Tre f

))
(1)

where PPV is the maximum power output of the solar PV system, η is
the efficiency of a solar panel, PRPV is plant’s performance ratio, APV

is the required area of the solar panels, Irr is the solar irradiance, k is
the temperature coefficient, Tc is the cell temperature, and Tref is the
reference cell temperature.

Wind turbine converts the kinetic energy of the wind to electrical
energy by a generator coupled to the turbine shaft [9]. The total power
output of a wind turbine system can be calculated by measuring the
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Fig. 1 Schematic of the standalone DC microgrid being proposed

wind speed at the location as given in Equation (2).

PWind−T =
⎧⎨
⎩

1
2 .ηGen × ηGB × CP × As × ρAir × V 3

Wind ; Vcut−in ≤ VWind

≤ Vrated Prated ; Vrated ≤ VWind ≤ Vcut−of f

0; Vwind 〈 Vcut−in or Vwind 〉 Vcut−of f

(2)

where PWind − T is the cumulative power generated by the wind turbine
setup, ηGen is the wind generator’s efficiency, ηGB is the gear system’s ef-
ficiency of a wind turbine, CP is the wind turbine’s power coefficient, AS

is the rotor-swept area of the wind turbine, ρAir is the density of air, Vwind

is the wind speed, Prated is the rated power of the wind turbine, Vrated is
the rated speed of the wind turbine, Vcut − in is the cut in velocity of the
wind turbine and Vcut − off is the cut-off velocity of the wind turbine.

The inclusion of a DIG in this microgrid design ensures power relia-
bility during emergency situations. To optimise its efficiency, the DIG is
designed to operate within the 75%–85% load range, with capacity set
to cater to 80% of the peak demand in the DC microgrid [10].

In this study, commonly used Li-ion BESS has been employed. Fur-
thermore, DLC has been selected as the DR strategy to assess the effec-
tiveness of DSM.

Optimisation approach: The aim of this optimisation study is to de-
sign a standalone DC microgrid while minimizing the lifetime cost and
carbon footprint. Multi-objective genetic algorithm-based optimisation
problem has been solved. A total of six DEVs have been defined in this
optimisation problem: number of solar PV panels (NPV), number of wind
turbines (NWT), full load rating of DIG (PDG), total capacity of BESS
(EBS), designated minimum SOC limit for BESS (DODBat), and the per-
centage of controllable loads under DLC (PDLC).

Two objective functions were defined to design the optimisation prob-
lem. Equation (3) represents the first objective function that addresses
the minimization of the total lifetime cost of the DC microgrid. C repre-
sents the total lifecycle cost including the investment costs, replacement
costs as well as operation and maintenance costs.

C = CPV + CWind + CDG + CBESS + CDLC (3)

where CPV is the lifetime cost related to solar PV system, CWind is the
lifetime cost related to wind energy system, CDG is the lifetime cost re-
lated to DIG system, CBESS is the lifetime cost related to BESS, and CDLC

is the total cost associated with the curtailment of controllable loads with
DLC in the lifetime of DC microgrid. The individual cost item in (3),
is related to separate systems within the DC microgrid, and each cost

related to DLC is calculated in the following Equations (4)–(8), respec-
tively. Any future costs will be converted to net present value considering
the interest rate.

CPV = NPV × PPV

(
iPV +

TMG−1∑
n=0

omPV

(1 + r)TMG−n

)
(4)

where iPV is the capital cost of solar PV per kW, omPV is the annual op-
erational and maintenance cost of solar PV per unit, TMG is the expected
lifetime of the DC microgrid, and r is the interest rate.

CWind = NW T × PWind−T

(
iW T +

TMG−1∑
n=0

omW T

(1 + r)TMG−n

)
(5)

where iWT is the capital cost of wind energy per kW, and omWT is the
annual operational and maintenance cost of wind turbine per kilowatt.

CDG = PDG

(
αTMG∑
n=0

iDG

(1 + r)(TMG− n
α )

+
TMG−1∑

n=0

αFCDGPDRHDG + omDG

(1 + r)TMG−n

)

(6)

where iDG is the capital cost of DIG per kilowatt, omDG is the annual
operational and maintenance cost of DIG per kilowatt, FCDG is the fuel
consumption of the DIG, PD is the unit price of diesel, RHDG is the rated
maximum running hours per one DIG, and α is the usage of DIG per
year, that is, the ratio between running hours per year and maximum
running hours.

CBESS = EBS

⎛
⎝βTMG∑

n=0

iBS

(SOCMax − DODBat ) × (1 + r)
(

TMG− n
β

)

+
TMG−1∑

n=0

omvar

(1 + r)TMG−n

)
+ PMG

(
iCV T +

TMG−1∑
n=0

om f ixed

(1 + r)TMG−n

)

(7)

where iBS is the capital cost of BESS per kilowatt hour, omvar is the an-
nual variable O&M cost of BESS per kilowatt hour, omfixed is the annual
fixed O&M cost of BESS, SOCMax is the maximum allowed SOC for
BESS, PMG is the rated capacity of the DC microgrid, iCVT is the capi-
tal cost of all power converters per kilowatt, and β is the inverse of the
lifetime of BESS.

CDLC = PMG × KCon × PDLC ×
TMG−1∑

n=0

UCDLC

(1 + r)TMG−n (8)

where KCon is the percentage of controllable loads from the rated capac-
ity of DC microgrid, and UCDLC is the cost of interrupting the control-
lable loads per kilowatt.

In this research, a novel strategy has been applied for the BESS man-
agement to account for the state of charge (SOC). In the design of a stan-
dalone microgrid, battery degradation must be considered to prevent pre-
mature failures of the BESS, which would incur high replacement costs.
While maintaining a lower DoD in lithium-ion (Li-Ion) batteries extends
their lifespan, sustaining in deep DoD for extended periods reduces the
life of BESS [11]. To address this, DODBat has been considered as a
DEV for the optimisation problem. Specifically, it recommends the con-
tinuous operation of the DIG when the BESS reaches DODBat until it
achieves the SOCMax. Table 1 presents the actions of BESS, DIG, and
DYL according to the instant value of PDEF(t) in this optimisation prob-
lem according to the designed BESS management strategy. Equation (9)
determines the power that BESS should supply in an instant (PDEF(t))
where PL(t) is the total power demand at the instant t.

PDEF (t ) = PL (t ) − PDLC (t ) − [PPV (t ) + PWind (t )] (9)

To assess the enhancement in the cycle life of the BESS, the rain-
flow cycle counting algorithm, which is a well-established method for

2 ELECTRONICS LETTERS August 2024 Vol. 60 No. 15 wileyonlinelibrary.com/iet-el

 1350911x, 2024, 15, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ell2.13290 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com/iet-el


Table 1. Designed BESS management strategy

Criteria SOC level BESS action Action of DIG Action of DYL

PDEF (t) = 0 All No action No action No action

PDEF(t) < 0 SOC(t) <

SOCMax

Charging No action No action

Otherwise No action No action Dissipate
excess power

PDEF(t) > 0 SOC(t) >

DODBat

Discharging No action No action

SOC(t) ≤
DODBat

Charging Operating until
SOC reaches
SOCMax

No action

counting cycles in BESS, is utilised [12]. The required number of re-
placements in BESS in the lifetime of the microgrid is then calculated
using Equation (10).

NRBat = CycBESS

(Cycmax)avg−DOD

(10)

where NRBat is the required number of replacements of BESS throughout
the lifetime of a standalone microgrid, CycBESS is the total number of
cycles of BESS in the lifetime of the microgrid, and (Cycmax)avg − DOD

is the maximum achievable number of cycles of BESS according to the
average DoD before failure.

The second objective of the optimisation problem in this study is to
minimize the carbon footprint from the DC microgrid. In this design,
the utilisation of the DIG leads to carbon emissions. The amount of CO2

emissions, measured in metric tonnes, can be computed using the Equa-
tion (11) provided below.

CFMG = FCDG × ECFDiesel × EFDiesel × TMG

1000
(11)

where CFMG is the carbon footprint of the microgrid throughout its life-
time, FCDG denotes the yearly fuel consumption of DIG, EFDiesel is the
diesel’s emission factor, and ECFDiesel is the energy content of diesel.

Minimising the energy wastage due to curtailment of RES can be
done to utilise the maximum output of RES. A resistive DYL has been
integrated to dissipate the additional energy content generated by RES.
Energy wastage is calculated as in Equation (12) below where EWST is
the energy wastage throughout the designated lifetime of the DC micro-
grid.

EW ST =
TMG−1∑

t=0

Max{0, [PPV (t ) + PWind (t )] − [PL (t ) − PDLC (t )]},

when SOC (t ) = SOCMax (12)

To minimize energy wastage from RES in the optimisation problem,
the following constraint (13) has been added, defining a maximum al-
lowable energy wastage from the microgrid, denoted as EWTmax.

EW ST ≤ EW Tmax (13)

LCOE of the standalone DC microgrid has been calculated as in the
below Equation (14) to analyse the performance of the proposed method
compared to previous works.

LCOE = C

Total energy consumption in the li f espan
(14)

The following inequalities (15) and (16) represent the constraints
added based on the load flow equation and BESS management.

PL (t ) ≤ PPV (t ) + PWind (t ) + PDG (t ) + PBS (t ) + PDLC (t ) (15)

DODBat ≤ SOCmin < SOC (t ) ≤ SOCMax (16)

Fig. 2 Variation of total cost and carbon footprint for the 30 optimised cases

Fig. 3 Pareto optimal chart for total cost and carbon footprint

MATLAB simulation: This study proposes a multi-objective optimisa-
tion approach based on a genetic algorithm to optimise the sizing of
equipment in a DC microgrid comprising wind energy, solar PV, and a
DIG as energy sources, BESS as energy storage, and DLC as demand-
side management technology. Simulations have been conducted to assess
the performance of the method in two cases: area of (a) high penetration
of RES and (b) low penetration of RES. To analyse the effectiveness of
the proposed method in achieving the objectives, results have been com-
pared with a baseline approach [6], and a modified version of the base-
line approach [7]. The difference of the proposed method with those two
approaches is presented in Table 2.

The simulation was conducted for a duration of 7 days for both cases
of high and low renewable energy outputs, with input data available at
5-min intervals. The load demand data exhibited a peak load of 1196
kW, sourced from freely available power datasets in IEEE PES [13]. The
upper boundary (UB) and lower boundary (LB) values used for DEVs
are detailed in Table 3. The simulation was performed using MATLAB
software version R2023a, employing a multi-objective genetic algorithm
solver.

Results and discussion: In this section, approach utilised to solve the
optimisation problem has been described considering high-RES output
scenario. The optimisation problem was solved multiple times, resulting
in nearly seven hundred optimised cases. Among these solutions, the
thirty most optimised cases were identified by minimizing the sum of
the ratios of three objective function outputs to the average values of
objective function outputs. The variation in the total cost and carbon
footprint for the life cycle of the DC microgrid, for these 30 optimisation
cases has been depicted in Figure 2.

To determine the most optimum solution from the thirty optimised
cases, a Pareto optimal chart was constructed, employing the total cost on
the horizontal axis and carbon footprint on the vertical axis, as depicted
in Figure 3. The green hachure line represents the Pareto front, which
showcases the trade-offs between total cost and carbon footprint. Within
the Pareto front, five extreme solutions are identified as ‘S1’, ‘S2’, ‘S3’,
‘S4’, and ‘S5’ which are circled in green colour.

To determine the most optimised solution among the five extreme so-
lutions, a carbon tax was added to the carbon footprint, and the total life
cycle cost, including the carbon tax, was compared. A benchmark rate
of 39 USD/tCO2 was used for the carbon tax calculation [14]. Table 4
presents the lifecycle cost including carbon tax for each five optimum
solutions.
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Table 2. Difference of the proposed method with previous two approaches

BESS management algorithm Consideration of battery
degradation

Allowable minimum
DoD

DSM

Baseline approach [6] Rule based No 10% No

Modified Version [7] Rule based with DIG operation
as cyclic charging

No 10% No

Proposed Method Rule based with DIG operation
as cyclic charging

Yes DEV DLC

Table 3. Lower and upper boundaries for decision variables

DEV LB UB Selection criteria

NPV 0 12770 UB—No. of modules required for supply
total demand with 5 peak sun hours

NWT 0 80 UB—No. of turbines required to cater to the
total demand alone

PDG 1650 2200 LB—Capacity required to supply the total
load with 10% LOLP

UB—Capacity required to supply total load
with 10% overloading (80% of full load
operation is assumed)

EBS 0 12770 UB—Capacity required to supply half of
daily energy demand

DODBat 20% 90% LB/UB—Minimum and maximum levels of
DoD to reduce the impact of battery
degradation [9]

PDLC 0 0.5 UB—Assumption of 50% of controllable
non-critical loads can always be
disconnected from the system

Table 4. Optimum capacities of solutions in Pareto front in high RES
output scenario

S1 S2 S3 S4 S5

NPV (No. of PV Modules) 5093 4910 4623 4803 4651

NWT (No. of wind turbines) 53 52 50 51 49

EBS (kWh) 11,428 11,674 12,234 11,962 12,525

DODBat (Min) 37.4% 41.5% 42.3% 43.7% 43.5%

PDG (kW) 2184 2174 2182 2168 2166

PDLC (% from controllable loads) 48.4% 47.9% 48.1% 47.8% 48.5%

Lifecycle cost (USD millions) 32.9 32.4 31.5 31.9 30.5

Carbon footprint (tCO2, eq) 9908 10,368 11,125 10,715 11,561

Carbon tax (USD millions) 0.4 0.4 0.4 0.4 0.5

Lifecycle cost including carbon
tax (USD millions)

33.2 32.8 31.9 32.4 31.0

From the results, the optimum DODBat is turned out as 43.5%. This
indicates that maintaining a higher DoD for the BESS can increase the
lifetime of BESS in a standalone microgrid system. The optimal range
for DoD is approximately around 40%–45%.

The proposed methodology was then applied to a different dataset
from the IEEE PES datasets, which has a lower output of RES [13]. The
same methodology used for the high-RES output dataset was applied
in this optimisation as well. The most optimal result for the low-RES
output dataset is shown in Table 5 below.

As previously mentioned, the solution derived from the proposed
method is compared with two previous approaches: a baseline approach
[6] and a modified version [7]. To compare the results, LCOE and per
unit carbon footprint have been utilised, as the proposed model includes
the shutdown of some loads due to DSM. The comparison of results
for both high-RES output and low-RES output scenarios is presented in
Table 6.

Table 5. The most optimum solution of Pareto front in a low RES
output scenario

Parameter Most optimum solution for low RES output

NPV (No. of PV modules) 12,734

NWT (No. of wind turbines) 33

EBS (kWh) 12,513

DODBat (Minimum) 43.1%

PDG (kW) 2197

PDLC (% from controllable loads) 49.9%

Lifecycle cost (USD millions) 34.6

Carbon footprint (tCO2, eq) 45,793

Fig. 4 Comparison of LCOE from the proposed method with previous works

As shown in the comparison, the LCOE of the microgrid has been
significantly reduced by utilising the proposed multi-objective optimisa-
tion method, which includes a novel BESS management algorithm and
DSM. For the high-RES output scenario, the proposed methodology re-
duced the LCOE by more than 10% compared to the benchmark ap-
proach. Additionally, the per unit carbon footprint has also been slightly
reduced compared to previous approaches. A graphical comparison of
LCOE from the proposed method with previous works is presented in
Figure 4.

In previous research, the average LCOE for renewable energy-based
hybrid standalone microgrids was found to range between 0.15 to 0.25
USD/kWh [15]. However, in this optimisation problem, the LCOE of
the microgrid is below 0.15 USD/kWh. This indicates a significant im-
provement in the cost of standalone microgrids, representing a notable
achievement. The main reason for this is the integration of DSM for the
DC microgrid design.

Conclusion: In this manuscript, we propose a DC microgrid for a
standalone power system consisting of solar PV, wind as RES, DIG, and
BESS. A novel multi-objective optimisation strategy based on a genetic
algorithm has been introduced to determine the optimal sizes of the dif-
ferent components within the DC microgrid. The objective functions of
this optimisation problem aim to minimize both the lifecycle cost and the
carbon footprint of the DC microgrid. To address battery degradation,
the DoD of the BESS is included as a DEV in the optimisation algorithm.
The rainflow counting algorithm was used to calculate the cycles and
determine the cycle life of the BESS. DLC has been incorporated as a
DSM technique to shut down a portion of controllable loads from the
demand.
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Table 6. Comparison of results from the proposed method with previous work in both scenarios

Baseline approach Modified version
(Previous)

Proposed method

High-RES Output scenario LCOE (Cents/kWh) 15.55 14.77 (5.02% ↓) 13.34 (14.21 ↓)

Per unit carbon footprint
(kgCO2, eq/kWh)

0.056 0.054 (4.13% ↓) 0.050 (11.89% ↓)

Low-RES output scenario LCOE (cents/kWh) 16.18 15.36 (5.04% ↓) 14.84 (8.20%)

Per unit carbon footprint
(kgCO2, eq/kWh)

0.2150 0.2017 (6.16% ↓) 0.1965 (8.57% ↓)

Simulations were conducted under two scenarios: high-RES output
and low-RES output. For the high-RES output scenario, the LCOE of the
DC microgrid was found to be 13.34 cents/kWh, with a per unit carbon
footprint of 0.05 kgCO2 eq/kWh. In the low-RES output scenario, the
LCOE was 14.84 cents/kWh, with a per unit carbon footprint of 0.1965
kg CO2 eq/kWh. This represents a 14.21% reduction in LCOE compared
to the baseline approach in the high-RES scenario and an 8.2% reduction
in the low-RES scenario. In terms of carbon footprint, the proposed ap-
proach shows an 11.89% reduction in the high-RES output scenario and
an 8.57% reduction in the low-RES output scenario. These results indi-
cate that incorporating proper BESS management strategies and DSM
into the design of standalone DC microgrids can significantly reduce
lifecycle costs and carbon emissions compared to current approaches.
The proposed method is particularly advantageous for designing stan-
dalone DC microgrids with higher RES output. Additionally, the opti-
mum value of the minimum DoD for the BESS was found to be 43.5%
for the high-RES scenario and 43.1% for the low-RES scenario. This
suggests that maintaining the DoD within the range of 40%–45% in stan-
dalone DC microgrids will enhance the life of BESS and reduce lifecycle
costs.
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