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A B S T R A C T

Elastic-Plastic-Damage material models are widely adopted for the numerical modelling of
concrete because of their capability of representing pressure sensitive 3D material behaviour
considering permanent inelastic deformations as well as degradation of material moduli beyond
the elastic range. In this paper, we develop a non-associative multi-surface plastic-damage
material model for the 3D solid element based finite element analysis of reinforced concrete
structural components. For the non-associative plastic flow, a linear potential function is
adopted, while Menetrey–Willam and Rankine surfaces are adopted as the yield surfaces in
compression and tension regimes, respectively. The degradation in the material stiffness under
cyclic loading is incorporated by the damage component of the material model, which is
generally anisotropic and assumed to be directly dependent on the evolution of the plastic
strains. This assumption leads to a computationally efficient algorithm in terms of circumventing
iterations to equate the stresses between the coupled damage and plasticity components of the
material model. The rigorous details of the developed return-mapping methodology considering
both the Cutting-Plane as well as the Closest-Point-Projection algorithms are provided. The
material model is employed for the structural level analysis, in which case the concrete
bulk is modelled by using an Eight-Node, Six-Degrees-Of-Freedom per-node solid element,
and the reinforcement bars and stirrups are modelled by using the conventional Two-Node,
Six-Degrees-Of-Freedom per-node Euler–Bernoulli beam-bar element. The inelastic behaviour
of the reinforcements is determined by using a simpler elasto-plastic-damage based material
model under the assumption of uni-axial stress-strain relations. An in-house fortran software
is developed for the computer implementation. Comparisons with results from literature are
shown for validation purposes. The validation cases include static analyses of a beam and a
column under monotonic loading as well as a shear-wall under cyclic loading.

. Introduction and literature review

In the phenomenological modelling of materials, inelastic behaviour is attributed to two distinct mechanical processes, namely;
lasticity (i.e. dislocations along slip planes) and damage (i.e. nucleation and coalescence of cracks). Coupled elasto-plastic-
amage theory based phenomenological models have the capability of representing both the permanent deformations due to plastic
omponent and the degradation of elastic moduli due to damage component. Therefore, elasto-plastic-damage models have been
idely adopted for the simulation of concrete structural components. In particular for the concrete material, several failure criteria
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have been proposed by researchers including [1–4]. On the other hand, plasticity theory based simulation of the concrete behaviour
requires non-associative flow rule due to the significance of dilatation effects and pressure sensitive material response. Therefore,
 potential function generally different from the yield surface is often required to more accurately determine the volumetric
omponent of the plastic flow. Studies that developed non-associative plasticity models based on pressure sensitive yield criteria for
he compressive behaviour of concrete include [5–8].

On the other hand, to capture the reduction in stiffness under cyclic loading a damage component is required within the
henomenological material model. To incorporate damage into the behaviour, in [9] the constitutive equations were constructed

by partitioning the total strain into the elastic, plastic and damage strain components. Later, several researchers followed this
approach including [10] who proposed a methodology to decompose the inelastic strains into plastic and damage components
where their contribution to the total inelastic strain was pre-determined based on experimental calibrations. [11] simulated the
inelastic behaviour of concrete under cyclic loading in both tension and compression. [12] used a coupled plasticity-damage model
for the simulation of the fracture process of plain concrete. [13] developed an elastoplastic-damage model to capture the behaviour
f metals considering finite strains and anisotropic damage development. Later, [14] improved the model to capture the behaviour
f concrete in both tension and compression. Other coupled plasticity and damage models include the works of [15,16,16–18].

One of the main distinctions between the alternative elastoplastic-damage models in the literature is the way the strain tensor
s decomposed. [19] introduced a novel framework for coupled elasto-plastic-damage phenomenological modelling in which the

sharing of the total strain was determined based on equilibrium conditions between the updated stresses of the plastic and damage
components of the model. The damage evolution problem is posed in a similar form to evolution of plasticity, such that given the
damage strain, flow rule and Kuhn–Tucker conditions are applied to determine the damage evolution and stress update within the
damage component. The damage strain component is reversible in parallel to the elastic strain, however, the damage evolution
is irreversible which is represented by a separate damage variable. Ibrahimbegovic e.g., [20] and his co-workers adopted the
framework proposed in [19]. This approach was employed for different material types, including mild steel in [21] and concrete
in [22]. Later, [23] identified the necessary predefined relations for the decomposition of the inelastic strains to be able to obtain
the widely adopted direct and simple coupling approach introduced for the analysis of concrete material in [11] as a special case
within the general elasto-plastic-damage coupling framework of [19]. In [11,23] a single failure surface, potential function and
ardening/softening criterion were adopted in order to characterize the inelastic behaviour of concrete, however, the formulations
re limited to isotropic damage. In isotropic damage models, the material stiffness matrix is degraded by a scalar damage parameter.
owever, to simulate direction dependent stiffness degradation effect, anisotropic damage model should be adopted. Several studies
dopted symmetric second order damage tensor to consider the damage variations in different directions in the material, which
ncludes the works of [12,24–28]. Damage tensors higher than second order were also developed by [29–31], and [32]. Use of

second order damage tensors for anisotropic damage evolution were discussed in detail in [33] and [34]. In this work, we extend
he algorithmically efficient elastoplastic damage model introduced in [23] to include anisotropic damage behaviour. Proposed
xtension to anisotropic damage requires the damage tensor to be built consistent with the plastic return algorithm so that efficiency
n circumventing iterations between the damage and plastic evolution can be maintained.

For a full structural level analysis, the tensile behaviour of the concrete material needs to be accurately represented by the
material model. The experimental and theoretical works on the concrete plasticity and failure criteria often treats the compressive
and tensile behaviour separately due to their different phenomenological characteristics. Studies on the development of the failure
criteria for concrete often prioritize the compressive behaviour considering the relative insignificance of the tensile behaviour in
reinforced concrete structural capacity. Therefore, to control the tensile behaviour, rather simpler tension cut-off strategy based
on Rankine’s maximum tensile stress is often deemed sufficient e.g., [35]. As the carefully selected compressive yield surface of
oncrete grows and shrinks under the hardening and softening law a tensile cut-off is a way to avoid unrealistic tensile strength due
o the growth of the compressive surface. Such multi-surface plasticity based modelling approaches for concrete material have been
eveloped by many researchers including [8,36–39]. Elasto-plastic damage based material modelling of concrete with multi-surface

yield criteria have been successfully adopted to 3D structural level analysis by several researchers including [40–42]. Introduction
f multiple yield surfaces into the material model requires special return mapping algorithms. For geo-materials and concrete in
articular, multi-surface return mapping methodologies that involve cut-off surfaces have been developed in [43–47], and [48].

In this paper, we develop a new multi-surface plasticity return mapping procedure for the 3D analysis of reinforced concrete
structural components. For the concrete material modelling, we employ the compressive yield surface of [4] with the hardening
law developed in [6]. We adopt the Rankine surface for tensile cut-off and the direct elasto-plastic-damage coupling methodology
developed by the senior authors in [23]. We also extend the methodology to include anisotropic damage evolution. The methodology
is implemented by developing an in-house Fortran program. We present validation case studies by comparing the obtained results
with those from the literature.

The outline of this paper is as follows: In Section 2, we review the non-associative multi-surface elasto-plastic-damage material
odel and set forth the equations. The development of the anisotropic damage compliance is also provided in detail under Section 2.

In Section 3, the numerical integration and the return mapping algorithm is presented for the developed non-associative multi-surface
elasto-plastic-anisotropic-damage material model. Section 4 is allocated for the specifics of the concrete and steel materials used in
the modelling of structural components according to the developed methodology. In Section 5, we describe the solution procedure
or the global non-linear equilibrium equations and introduce the finite element types used for the structural level analysis. In

Section 6, we present the case studies. We conclude in Section 7.
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2. Multi-surface elasto-plastic-damage model

2.1. Indicial notation of tensor operations

Under this section tensor notations are used and when deemed necessary tensor-orders are also mentioned. We follow the
sual convention for the tensorial product operations between second- third- and fourth-order tensors. For clarification, we start by
resenting the indicial notation that will be used in future tensor operations under this section. For example, between two second-
rder tensors when expressed in indicial notation the tensorial product, i.e., C = r⊗ s is a fourth-order tensor which can be written
s 𝐶𝑖𝑗 𝑘𝑙 = 𝑟𝑖𝑗𝑠𝑘𝑙 and double dot product, i.e., 𝑚 = r:s is a scalar, i.e. 𝑚 = 𝑟𝑖𝑗𝑠𝑖𝑗 . Between two fourth-order tensors the double dot
roduct (or tensorial inner product), i.e., C = J:H is a fourth order tensor, i.e. 𝐶𝑖𝑗 𝑘𝑙 = 𝐽𝑖𝑗 𝑚𝑛𝐻𝑚𝑛𝑘𝑙 or B = J ∶ HT is 𝐵𝑖𝑗 𝑘𝑙 = 𝐽𝑖𝑗 𝑚𝑛𝐻𝑘𝑙 𝑚𝑛
r Z = JT:H is 𝑍𝑖𝑗 𝑘𝑙 = 𝐽𝑚𝑛𝑖𝑗𝐻𝑚𝑛𝑘𝑙. Between a fourth-order and a second-order tensor the double dot product, i.e. s = H:r is a
econd-order tensor 𝑠𝑖𝑗 = 𝐻𝑖𝑗 𝑘𝑙𝑟𝑘𝑙. Between a first-order and second-order tensors when expressed in indicial notation the tensorial

product, i.e., V = â⊗ s is a third-order tensor which can be written as 𝑉𝑖𝑗 𝑘 = 𝑎𝑖𝑠𝑗 𝑘. Between a third-order and a second-order tensor
he double dot product, i.e. b̂ = V:r is a first-order tensor 𝑏𝑖 = 𝑉𝑖𝑗 𝑘𝑟𝑗 𝑘. Multiplication with a scalar 𝑚, i.e., s = 𝑚r can be denoted by
sing indicial notation as 𝑠𝑖𝑗 = 𝑚𝑟𝑖𝑗 .

2.2. Non-associative multi-surface plasticity

For materials that manifest different strengths under tensile and compressive loads, it is a convenient approach to utilize separate
yield surfaces to characterize the stress–strain relation for different loading regime. An advantage of such multi-surface plasticity
or composite material models is that they are easier to constitute and calibrate as compared to a single, complicated yield surface.
Therefore, composite yield surfaces have been frequently utilized in the modelling of a large variety of geomaterials including
oil, rock and concrete. Following the elasto-plastic-damage framework of [19], the second-order total strain increment tensor is

additively decomposed as

𝑑𝜺 = 𝑑𝜺𝑒 + 𝑑𝜺𝑝 + 𝑑𝜺𝑑 (1)

where 𝜺 is the total strain 𝜺𝑒 is the elastic strain component, 𝜺𝑝 is the plastic strain component, 𝜺𝑑 is the damage strain component
and 𝑑 is the total differential operator.

2.2.1. Plastic flow rule
The non-associative approach is adopted to consider the dilation effects and pressure sensitivity of the concrete material.

Accordingly, the direction of the plastic flow is determined from the plastic potential function. For multi-surface plasticity the
flow rule can be generalized by using multiple plastic function. Accordingly, the rate independent plastic strain increment can be
written using the Koiter’s rule (see [49]) as

𝑑𝜺𝑝 =
𝑀
∑

𝑖=1
𝑑 𝜆𝑝𝑖𝑔𝑝𝑖 ,𝝈 (2)

where 𝑔𝑝𝑖
(

𝝈, 𝜅𝑝𝑖
)

is an active potential surface, 𝑑 𝜆𝑝𝑖 is the corresponding proportionality factor and 𝑀 is the number of total active
potential surfaces. In Eq. (2) the terms having indices with a comma denote partial differentiation, i.e. 𝑔𝑝𝑖 ,𝝈 = 𝜕 𝑔𝑝𝑖∕𝜕𝝈 is the gradient
of the potential function with respect to the stress tensor. Throughout the document, we refer to each of the active yield surfaces
as 𝑓𝑝𝑖

(

𝝈, 𝜅𝑝𝑖
)

and for associative flow rule the potential function 𝑔𝑝𝑖 is identical to the corresponding yield function 𝑓𝑝𝑖 . Both the

potential and the hardening surfaces are functions of the stress state 𝝈 and a hardening function 𝜅𝑝𝑖 which is a measure of the
evolution of plasticity for each active surface. This indicates that we can write the increment in the plastic hardening function 𝜅𝑝𝑖
in terms of the plastic proportionality factor as

𝑑 𝜅𝑝𝑖 = 𝑑 𝜆𝑝𝑖 𝑐𝑝𝑖 (3)

where 𝑐𝑝𝑖 (𝝈, 𝑑 𝜆𝑝𝑖 ) is the corresponding hardening factor to be calibrated based on physical experiments.

2.2.2. Consistency condition
During the inelastic deformations, the stresses should stay on the yield surface and therefore, the value of the yield surface

stays zero. The proportionality factor is always non-negative as plastic unloading cannot occur due to the irreversibility of plastic
deformations and zero proportionality factor indicates elastic only deformations. These conditions known as Kuhn–Tucker conditions
of plasticity are summarized below.

𝑑 𝜆𝑝𝑖 ≥ 0, 𝑓𝑝𝑖 ≤ 0, 𝑑 𝜆𝑝𝑖𝑓𝑝𝑖 = 0, 0 < 𝑖 ≤ 𝑁 (4)
3 
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where 𝑁 is the number of total surfaces out of which only 𝑀 surfaces can be plastically active at a time but one of the Kuhn–Tucker
conditions always apply. If the first 𝑀 surfaces are plastically active and the rest are inactive, one can write the following equations
for each group, i.e.

𝑓𝑝𝑖 = 0, 𝑑 𝜆𝑝𝑖 > 0, 0 < 𝑖 ≤𝑀

𝑓𝑝𝑖 < 0, 𝑑 𝜆𝑝𝑖 = 0, 𝑀 < 𝑖 ≤ 𝑁 (5)

As the yield surface function value stays zero during a plastic process, the increment in the yield function is also zero, i.e. 𝑑 𝑓𝑝𝑖 = 0.
Considering that the yield surface is a function of the stress state 𝝈 and the corresponding hardening function 𝜅𝑝𝑖 , the total increment
of each of the active yield surfaces during plastic deformations can be written as

𝑑 𝑓𝑝𝑖 =
𝜕 𝑓𝑝𝑖
𝜕𝝈

∶ 𝑑𝝈 +
𝜕 𝑓𝑝𝑖
𝜕 𝜅𝑝𝑖

𝑑 𝜅𝑝𝑖 = 0, 0 < 𝑖 ≤𝑀 (6)

Note that in Eq. (6) both 𝜕 𝑓𝑝𝑖∕𝜕𝝈 and 𝝈 are second order tensors and we indicate tensorial inner product with the symbol (:).
Considering that the stress increments can only be elastic, i.e. 𝑑𝝈 = 𝐄 ∶ 𝑑𝜺𝑒 and using Eqs. (1), (2) and from Eq. (6) one obtains

𝑑𝝈 = 𝐄 ∶

(

𝑑𝜺 −
𝑀
∑

𝑗=1
𝑑 𝜆𝑝𝑗 𝐠𝑝𝑗 ,𝝈 − 𝑑𝜺𝑑

)

(7)

that satisfies the plastic consistency condition, where 𝐄 is the fourth order elasticity tensor. By using Eqs. (3) and (6) in Eq. (7), the
consistency condition can be re-written as

𝑑 𝑓𝑝𝑖 =
𝜕 𝑓𝑝𝑖
𝜕𝝈

∶ 𝐄 ∶

(

𝑑𝜺 −
𝑀
∑

𝑗=1
𝑑 𝜆𝑝𝑗 𝐠𝑝𝑗 ,𝝈 − 𝑑𝜺𝑑

)

+
𝜕 𝑓𝑝𝑖
𝜕 𝜅𝑝𝑖

𝑑 𝜆𝑝𝑖 𝑐𝑖 = 0, 0 < 𝑖 ≤𝑀 (8)

which is an equation for each of the 𝑀 active surfaces from which 𝑀 proportionality factor 𝑑 𝜆𝑝𝑖 needs to be determined. Thus, in
Eq. (8) the proportionality factors 𝑑 𝜆𝑝𝑖 are treated as the primary unknowns because the increments in the plastic strain and the
ardening function given in Eqs. (2) and (3), respectively can be determined once the proportionality factors are known. As we

will see next, we will also be able to determine the damage evolution as a result of the plastic evolution and, the damage strain
component in Eq. (1) is treated herein such that it is indeed conveniently calculated once the proportionality factor 𝑑 𝜆𝑝𝑖 is known.
As a result the stresses can be updated from Eq. (7). However, Eq. (8) is a non-linear differential equation which generally requires
 numerical procedure to solve for 𝑑 𝜆𝑝𝑖 .

2.3. Damage component of the material model

The role of the damage component of the material model is to effectively cause reduction in the elastic material moduli according
o the progress of damage. For that purpose, we define the fourth-order damage compliance tensor 𝐃 and additively decompose it
nto isotropic and anisotropic components as

𝐃 = 𝜙𝐄−1 + 𝐘 (9)

in which, 𝜙 is the isotropic damage parameter and 𝐘 is the anisotropic damage contribution. Accordingly, the total damage strain
an then be obtained as

𝜺𝑑 = 𝐃 ∶ 𝝈 (10)

The effect of damage on the stress tensor can also be cast into the incremental form similar to plasticity, by substituting Eq. (9) into
the increment of the damage strain 𝑑𝜺𝑑 using Eq. (10) and also using the product rule for differentiation in 𝐃 ∶ 𝑑𝝈 = 𝑑(𝐃 ∶ 𝝈) −𝑑𝐃 ∶

, i.e.

𝑑𝝈 = 𝐃−1 ∶ 𝑑𝜺𝑑 − 𝐃−1 ∶
𝑀
∑

𝑖=1
𝑑 𝜆𝑑𝑖𝐠𝑑𝑖 ,𝝈 (11)

where

𝑑𝐃 ∶ 𝝈 =
𝑀
∑

𝑖=1
𝑑 𝜆𝑑𝑖𝐠𝑑𝑖 ,𝝈 (12)

defines the damage flow that satisfies the damage consistency condition, considering 𝑀 active damage surfaces, in which 𝑑 𝜆𝑑𝑖 are the
amage proportionality factors, 𝑔𝑑𝑖

(

𝝈, 𝜅𝑑𝑖
)

are the corresponding potential functions and 𝜅𝑑𝑖 are the damage hardening functions.
One can refer to the framework proposed in [19] for this incremental setting in parallel to plasticity equations and the works of [20]
and his co-workers for its implementation. In this setting, the damage evolution is also controlled by a damage surface and in the
ase of non-associative flow, a separate damage potential surface. According to the damage consistency condition, i.e., 𝑑 𝑓𝑑𝑖 = 0, the
amage proportionality factors 𝑑 𝜆𝑑𝑖 are determined similar to plasticity equations. In the following, we adopt a special case of this
eneral framework where a separate group of surfaces are not required.
4 
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2.3.1. Direct coupling
In our approach, we determine the damage as a result of the evolution of plasticity parameter. To be able to achieve that as a

pecial case of a more general frame-work of [19], we set the following relations

𝑓𝑝
(

𝝈, 𝜅𝑝
)

= 𝑓𝑑
(

𝝈, 𝜅𝑑
)

(13)

𝑔𝑝
(

𝝈, 𝜅𝑝
)

= 𝑔𝑑
(

𝝈, 𝜅𝑑
)

(14)

𝑐𝑝
(

𝝈, 𝜅𝑝
)

= 𝑐𝑑
(

𝝈, 𝜅𝑑
)

(15)

𝑑𝜺𝑑 = 𝐏 ∶ 𝑑𝜺 (16)

𝑑 𝜆𝑑 = �̄�𝑑 𝜆𝑝 (17)

𝑑 𝜅𝑑 = �̄�𝑑 𝜅𝑝, (18)

which is a result of Eqs. (3) and (17). The operator 𝐏 in Eq. (16) can be written as

𝐏 = 𝐃 ∶ 𝐌 ∶ 𝐄 (19)

in which 𝐌 = (𝐈 + 𝐄 ∶ 𝐃)−1 (see [19]). The operator 𝐏 is adopted herein to determine the damage component of the strain directly
rom the total strain so that plastic strain update can be processed independent of the damage update, after which the damage
volution follows according to the operator 𝐏 which will later be defined as a function of total plastic strains. The scalar �̄� introduced

in Eq. (17) can be written as

�̄� =
𝜺𝑝𝑇 ∶ 𝐄 ∶ 𝜺𝑝

𝜺𝑝𝑇 ∶ 𝐃−1 ∶ 𝜺𝑝
(20)

which is also a function of total plastic strains. Later, we will prove that these conditions provide consistency of evolution between
he damage and plasticity components of the material within the frame-work of [19]. This approach is the extension of the method
ntroduced in [23], which was limited to isotropic damage, to anisotropic damage. The motivation behind this approach is the

computational efficiency of splitting the plastic return and damage update operations such that after satisfying the plastic consistency
conditions no further iterations are required to satisfy the consistency between the plastic and damage update.

2.3.2. Consistency between damage strain rate and evolution of plasticity
The stress–strain relationship considering the damage strain can be written as

𝝈 = 𝐄 ∶
(

𝜺 − 𝜺𝑝 − 𝜺𝑑
)

(21)

The strain equivalence hypothesis (see [50]) states that the strain associated with a damaged state under the applied stress is
equivalent to the strain associated with its fictitious undamaged state under effective stress, which is defined as �̄� = 𝐌−1 ∶ 𝝈.
In-line with the hypothesis of strain equivalence the effective stress is �̄� = 𝐄 ∶ (𝜺 − 𝜺𝑝), i.e. 𝝈 = 𝐌 ∶ 𝐄 ∶ (𝜺 − 𝜺𝑝). By using this
elation, the damage strain becomes

𝜺𝑑 = 𝐏 ∶
(

𝜺 − 𝜺𝑝
)

(22)

Using Eqs. (21) and (22), the stress–strain relationship of damaged material, i.e., 𝝈 = 𝐄 ∶
(

𝜺 − 𝜺𝑝 − 𝜺𝑑
)

can be exchanged with that
of the fictitious undamaged state, i.e.,

𝝈 = 𝐄 ∶ (𝐈 − 𝐏) ∶ (

𝜺 − 𝜺𝑝
)

(23)

It should be noted that the stress as expressed in Eq. (23) is the result of operator splitting, which is the result of the imposed
ondition in Eq. (16). However, for the total damage strain expression of Eq. (10) to be consistent with the damage strain rate
resented in Eq. (16), the last three terms in the total derivative of the damage strain expression should vanish, which can be

obtained from Eq. (22), i.e., 𝑑𝜺𝑑 = 𝐏 ∶ 𝑑𝜺 + 𝑑𝐏 ∶ 𝜺 − 𝐏 ∶ 𝑑𝜺𝑝 − 𝑑𝐏 ∶ 𝜺𝑝, from which one obtains the relation

𝑑𝐏 ∶
(

𝜺 − 𝜺𝑝
)

= 𝐏 ∶ 𝑑𝜺𝑝 (24)

From Eqs. (12) and (17), one obtains

𝑑𝐃 ∶ 𝝈 = �̄�𝑑𝜺𝑝 (25)

By using Eqs. (10), (21) and (22), and substituting into Eq. (23), one obtains

𝑑𝐃 ∶ 𝐄 ∶ (𝐈 − 𝐏) ∶ (𝜺 − 𝜺𝑝) = �̄�𝑑𝜺𝑝 (26)
5 
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From Eqs. (10), (19), (22) and (23), one obtains

𝐄 ∶ (𝐈 − 𝐏) = 𝐌 ∶ 𝐄 (27)

Under the assumption of 𝑑𝜺𝑑 = 𝐏 ∶ 𝑑𝜺, the stress update based on plasticity in Eq. (7) can be written as

𝑑𝝈 = 𝐄 ∶
[

(𝐈 − 𝐏)𝑑𝜺 − 𝑑𝜺𝑝
]

(28)

On the other hand, under the assumption of 𝑑𝜺𝑑 = 𝐏 ∶ 𝑑𝜺 the stress update based on plasticity in Eq. (11) can be alternatively
written as

𝑑𝝈 = 𝐃−1 ∶ 𝐏 ∶ 𝑑𝜺 − �̄�𝐃−1 ∶ 𝑑𝜺𝑝 (29)

The condition of agreement between the two alternative stress rates in Eqs. (28) and (29) can be found by using Eq. (27) in Eq. (28)
and then using Eq. (19) in Eq. (29) which reduces to

𝐃 ∶ 𝐄 ∶ 𝑑𝜺𝑝 = �̄�𝑑𝜺𝑝 (30)

2.3.3. Anisotropic damage component
For the purpose of computational efficiency, we adopt Eq. (30) for the total plastic strain and develop an anisotropic damage

compliance 𝐃 based on the relationship

𝐃 ∶ 𝐄 ∶ 𝜺𝑝 = �̄�𝜺𝑝 (31)

in which plastic strain 𝜀𝑝 is the eigenvector and �̄� is the eigenvalue. Based on Eq. (31), the compliance matrix is directly related
o the accumulated plastic deformations. To satisfy the above relation at any stage of loading, we formulate the anisotropic part of

the damage compliance, i.e. 𝐘 as

𝐘 = 𝜔𝜺𝑝 ⊗ 𝜺𝑝 ∶ 𝐄−1 (32)

in which 𝜔 is designated as a calibration scalar. On the other hand, the isotropic component of the damage compliance identically
satisfies Eq. (31). Thus, by substituting Eq. (32), into Eq. (9), it can be shown that Eq. (31) is always satisfied.

2.3.4. Isotropic damage component
For isotropic only damage it can be verified that �̄� = 𝜙, and

𝐃 ∶ 𝐄 = 𝜙𝐈 (33)

In [23], Eq. (33) was proven to be a special case of Eq. (22), and the damage strain was conveniently described in terms of the total
nd plastic strains as

𝜺𝑑 = 𝜑𝜺 − 𝜑𝜺𝑝 (34)

Note that for only isotropic damage, the effective stress, i.e. 𝝈∕(1 − 𝜑) considering the load carrying area is reduced by the factor
of (1 − 𝜑) and Eq. (23) becomes

𝝈 = (1 − 𝜑)𝐄 ∶
(

𝜺 − 𝜺𝑝
)

(35)

For isotropic damage, the equivalence of Eq. (35) to Eq. (21) under the hypothesis of strain equivalence and conditions set in
Eqs. (13) to (34) was proven in [23]. Many authors e.g. [11,17] preferred the relationship in Eq. (35) instead of (21), where the
development of damage can also be defined directly as a function of the plastic evolution in the form of

𝜑 = 𝜑(𝜅𝑝𝑖 ), 0 < 𝑖 ≤𝑀 (36)

Following the conventional meaning of the isotropic damage parameter 𝜙 introduced in Eq. (9), we relate it to the measure of
eduction in the load carrying area, i.e. 𝜑 as 𝜙 = 𝜑∕(1 − 𝜑), where 𝜑 ∈ [0, 1].

Next, we provide the detailed numerical procedure for the stress update, in which the anisotropic damage compliance is also
introduced in matrix form under Section 3.4. Further specifics of the plasticity dependent damage evolution functions for the concrete
nd steel materials will be presented later under Section 4.

3. Computational algorithm for the material model

For the numerical algorithm, we cast the equations in finite incremental form

𝝈(𝑛) = 𝐄(𝐈 − 𝐏(𝑛))(𝜺(𝑛) − 𝜺𝑝(𝑛) ) (37)

where we use the subscript (𝑛) to refer to the last converged step of the material level stress return algorithm. Thus, 𝝈(𝑛) is the last
converged stress. It should be noted that algorithm related indices are written in parenthesis. We use sub-scripts for the step and
superscripts for iterations within the step. Within the next step after convergence, i.e., in the current step of interest (𝑛 + 1), we
6 
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collect the strain 𝜺(𝑛+1) from the global algorithm and initially we assume the strain increment 𝛥𝜺(𝑛+1) = 𝜺(𝑛+1) − 𝜺(𝑛) is fully elastic.
Thus, we define the trial stress assuming a full elastic increment, i.e.

𝝈trial
(𝑛+1) = 𝝈(𝑛) + 𝐄𝛥𝜺(𝑛+1) (38)

Note that for the numerical calculations, we drop the tensor notation and treat the stress, strain and elastic tensors as vectors and
matrices by adopting the Voigt notation. If the trial stress in Eq. (38) is elastic within the yield surface limits (which might be due
o unloading or re-loading), then we make a correction to the final stress considering the existing damage state as

𝝈(𝑛+1) = 𝝈(𝑛) + 𝐄(𝐈 − 𝐏(𝑛))𝛥𝜺(𝑛+1) (39)

where 𝐏(𝑛+1) = 𝐏(𝑛) due to the fact that no plastic deformations occurred during the last step. If the trial stress calculated in Eq. (38)
is within the elastic limit, then we assume that the updated stress in Eq. (39) is also within the elastic limit. This procedure assures
omplete independence of the plastic return operations from the damage update.

On the other hand, if the trial stress state exceeds the elastic limit the plastic return mapping algorithm is activated and the
stress is updated as

𝝈(𝑛+1) = 𝝈(𝑛) + 𝐄(𝛥𝜺(𝑛+1) − 𝛥𝜺𝑝(𝑛+1) ) (40)

where 𝝈(𝑛+1) is the stress after convergence of the plastic return mapping at the end of the current step (𝑛 + 1). In Eq. (40), 𝛥𝜺𝑝(𝑛+1)
is the total plastic strain accumulated within step (𝑛 + 1), which often requires iterative calculations, i.e.

𝛥𝜺(𝑘)𝑝(𝑛+1) = 𝛥𝜺(𝑘−1)𝑝(𝑛+1)
+ 𝛿𝜺(𝑘)𝑝(𝑛+1) (41)

where the symbol 𝛿 indicates increment within each iteration (𝑘) referred with a superscript, which should be contrasted with the
use of the symbol 𝛥 which refers to the total increment within the step (𝑛 + 1). Thus, after final iteration leading to convergent
mapping, the updated strain in Eq. (41) produces 𝛥𝜺𝑝(𝑛+1) = 𝛥𝜺(𝑘𝑓 𝑖𝑛𝑎𝑙 )𝑝(𝑛+1) . So, the problem at hand is to find the plastic strain increment,
i.e. 𝛿𝜺(𝑘)𝑝(𝑛+1) in each iteration (𝑘) of the current step (𝑛 + 1), which is explained next.

3.1. Determination of plastic deformations

To find the plastic strain change in each iteration, we first refer to the incremental–iterative form of Eq. (2), i.e.

𝛿𝜺(𝑘)𝑝(𝑛+1) =
𝑁
∑

𝑗=1
𝛿 𝜆(𝑘)𝑝𝑗 𝐠

(𝑘)
𝑝𝑗 ,𝝈

(42)

Note the sub-script (𝑛 + 1) is dropped on the right hand side of Eq. (42) for simplicity in notations. However, it should be trivial
hat the iterations are taking place always within the current step (𝑛 + 1). In Eq. (42), both the proportionality factor and the

gradient of the potential function carry the superscript (𝑘) to indicate that their values are updated in each iteration. The iterative
proportionality factor is indeed the primary unknown which is to be extracted from the iterative incremental form of Eq. (8), which
can be written as

𝛿𝐟 (𝑘) = 𝛿𝐛(𝑘) − 𝐀(𝑘)𝛿𝝀(𝑘) (43)

in which 𝛿𝐟 (𝑘) is a zero vector as a result of the consistency condition. From Eq. (43), the proportionality factor 𝛿𝝀(𝑘) can be solved
s

𝛿𝝀(𝑘) = 𝐀(𝑘)−1𝛿𝒃(𝑘) (44)

At this point, to write the components in Eq. (44) explicitly, we bring the assumption that the total number of active surfaces can
at most be two. Later in Section 4, we specify our multi-surface plasticity model for the concrete with only two surfaces, i.e. 𝑁 = 2.
For a general two-surface plasticity model, the matrix 𝐀(𝑘) in Eq. (43) can be explicitly written as

𝐀(𝑘) =

[

𝑎(𝑘)11 𝑎(𝑘)12

𝑎(𝑘)21 𝑎(𝑘)22

]

=

[

𝐧(𝑘)1
T𝐑(𝑘)𝐦(𝑘)

1 + 𝑓𝑘𝑝1 ,𝜅1 𝑐
(𝑘)
1 𝐧(𝑘)

T

1 𝐑(𝑘)𝐦(𝑘)
2

𝐧(𝑘)
T

2 𝐑(𝑘)𝐦(𝑘)
1 𝐧(𝑘)

T

2 𝐑(𝑘)𝐦(𝑘)
2 + 𝑓 (𝑘)

𝑝2 ,𝜅2 𝑐
(𝑘)
2

]

(45)

in which

𝐦(𝑘)
𝑖 = 𝐠(𝑘)𝑝𝑖 ,𝝈 , 0 < 𝑖 ≤ 2 (46)

𝐧(𝑘)𝑖 = 𝐟 (𝑘)𝑝𝑖 ,𝝈
, 0 < 𝑖 ≤ 2 (47)

𝐑(𝑘) =
(

𝐄−1𝐐(𝑘))−1 (48)

were defined. We note that in deriving Eq. (45) the hardening functions are assumed uncoupled. In Eq. (48), the matrix 𝐐𝑖 is defined
s

𝐐(𝑘) =

(

𝐈 + 𝐄
𝑁=2
∑

𝛥𝜆(𝑘)𝑝𝑗 𝐇
(𝑘)
𝑗

)

(49)

𝑗=1
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in which 𝐈 is the identity matrix and 𝐇𝑖 is the Hessian matrix of the active potential surface, i.e.

𝐇(𝑘)
𝑖 = 𝐦(𝑘)

𝑖,𝝈 , 0 < 𝑖 ≤ 2 (50)

On the other hand, the vector 𝛿𝐛(𝑘) in Eq. (43) can be written as

𝛿𝐛(𝑘) = 𝐟 (𝑘) − 𝐡(𝑘) (51)

in which 𝐟 =
⟨

𝑓𝑝1 𝑓𝑝2
⟩T

and the superscript (𝑘) indicates that the yield surface values used in Eq. (51) are updated in each iteration,
.e.

𝑓 (𝑘)
𝑝𝑖

= 𝑓𝑝𝑖 (𝝈
(𝑘)
(𝑛+1), 𝜅(𝑘)𝑝𝑖

), 0 < 𝑖 ≤ 2 (52)

where

𝝈(𝑘)
(𝑛+1) = 𝝈(𝑛) + 𝐄(𝛥𝜺(𝑛+1) − 𝛥𝜺(𝑘)𝑝(𝑛+1) ) (53)

and

𝜅(𝑘)𝑝𝑖
= 𝜅(𝑘−1)𝑝𝑖

+ 𝛿 𝜅(𝑘)𝑝𝑖
, 0 < 𝑖 ≤ 2 (54)

In Eq. (51) the vector 𝐡(𝑘) is defined as

𝐡(𝑘) =
{

ℎ(𝑘)1

ℎ(𝑘)2

}

(55)

whose components can be written as

ℎ(𝑘)𝑖 = 𝐧(𝑘)𝑖
T𝐑(𝑘)

𝑖 𝐄−1𝐫(𝑘)𝑖 , 0 < 𝑖 ≤ 2 (56)

To derive vector 𝛿𝐛(𝑘) in Eq. (43) in finite incremental form, we replace the consistency condition, 𝑑𝐛 = 𝒇 ,𝝈 ∶ 𝐄 ∶ 𝑑𝜺 with the
finite incremental form of the consistency condition. For this purpose, first we refer to the finite form of the yield condition i.e.

𝑓 (𝑘)
𝑝𝑖

= 0 (57)

which is then truncated using first order Taylor series approximation in the neighbour of the trial stress 𝝈trial
(𝑛+1). From Eq. (40), the

converged stress state that satisfies the consistency condition can be written in terms of the trial stress as

𝝈(𝑛+1) = 𝝈trial
(𝑛+1) − 𝐄𝛥𝜺𝒑(𝑛+1) (58)

Backward-Euler finite difference procedures derived from the first order Taylor series expansion are commonly adopted as time-
stepping procedures, e.g., in [43], which in our context lead to Eq. (43). Furthermore, two of the most commonly adopted time
stepping procedures for plasticity are Closest Point Projection and Cutting Plane Algorithms. Both are Elastic-Prediction-Plastic-
Correction procedures in which, when triggered the return mapping to yield surface is performed after a full elastic assumption, for
which the second term on the right of Eq. (58) is pursued. Thus, plastic strain is assumed zero for the initial iteration, i.e. 𝛿𝜺(0)𝑝(𝑛+1) = 𝟎.
On the other hand, the stress state in the gradients of the potential and yield surfaces in Eqs. (46) and (47), respectively determine
whether the algorithm is Cutting Plane or Closest Point Projection. For calculating the gradients, while the former algorithm uses
the stress state at the end of the previous iteration, i.e. 𝝈(𝑘−1)

(𝑛+1) , the later uses the updated stress state, i.e. 𝝈(𝑘)
(𝑛+1). To implement the

utting Plane Algorithm, one enforces the satisfaction of the yield condition in iterations i.e., 𝑓 (𝑘)
𝑝𝑖 < 𝑡𝑜𝑙. In addition, the Closest

oint Projection Algorithm employs the first order Taylor approximation of the finite form of the flow rule so that the direction
etween the trial and the converged stress is enforced to be the closest-point projection direction from the trial stress point 𝝈trial

(𝑛+1)
owards the last updated stress 𝝈(𝑘)

(𝑛+1), i.e.

𝐫(𝑘) = 𝝈(𝑘)
(𝑛+1) − 𝝈trial

(𝑛+1) + 𝐄
𝑁=2
∑

𝑗=1
𝛥𝜆(𝑘)𝑝𝑗 𝐦

(𝑘)
𝑗 (59)

where 𝐫(𝑘) is a residual vector that should also vanish at the end of the iterations, i.e. ‖

∑𝑁=2
𝑗=1 𝛥𝜆(𝑘)𝑝𝑗 𝐦

(𝑘)
𝑗 − 𝛥𝜺(𝑘)𝑝(𝑛+1)‖ < 𝑡𝑜𝑙. The

proportionality factor components in Eqs. (49) and (59) are updated as

𝛥𝜆(𝑘)𝑝𝑖 = 𝛥𝜆(𝑘−1)𝑝𝑖
+ 𝛿 𝜆(𝑘)𝑝𝑖 , 0 < 𝑖 ≤ 2 (60)

To find a solution that satisfies both conditions 𝑓 (𝑘)
𝑝𝑖 = 0 and ‖𝐫(𝑘)‖ = 0 of Closest Point Projection Algorithm, one can implement

the Newton–Raphson solution scheme. Thus, from the linearization of Eqs. (57) and (59), respectively one obtains

𝑓 (𝑘)
𝑝𝑖

+ 𝐧(𝑘)𝑖
T𝛿𝝈(𝑘) + 𝑓𝑘𝑝𝑖 ,𝜅𝑖 𝑐

(𝑘)
𝑖 𝛿 𝜆(𝑘)𝑝𝑖 = 0, 0 < 𝑖 ≤ 2 (61)

and

𝐫(𝑘) + 𝛿𝝈(𝑘) + 𝐄
𝑁=2
∑

𝛥𝜆(𝑘)𝑝𝑗 𝐇
(𝑘)
𝑗 𝛿𝝈(𝑘) + 𝐄

𝑁=2
∑

𝛿 𝜆(𝑘)𝑝𝑗 𝐦
(𝑘)
𝑗 = 0 (62)
𝑗=1 𝑗=1
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Fig. 1. Two surface model in Rendulic plane.

where Eq. (3) was used in iterative–incremental form, i,e, 𝛿 𝜅𝑝𝑖 = 𝛿 𝜆𝑝𝑖 𝑐𝑝𝑖 . Solving for 𝛿𝝈(𝑘) from Eq. (62) produces

𝛿𝝈(𝑘) = −𝐐−1

(

𝐫(𝑘) + 𝐄
𝑁=2
∑

𝑗=1
𝛿 𝜆(𝑘)𝑝𝑗 𝐦

(𝑘)
𝑗

)

(63)

Substituting Eq. (63) into Eqs. (61) produces the vector of proportionality factors as in Eq. (44), i.e.,

𝛿𝝀(𝑘) =

{

𝛿 𝜆(𝑘)𝑝1
𝛿 𝜆(𝑘)𝑝2

}

(64)

The solutions of 𝛿 𝜆(𝑘)𝑝𝑖 are then used in Eq. (42) to update the plastic strain increment within the current step (𝑛 + 1). On the other
hand, to implement the Cutting Plane Algorithm as a special case, one needs to assume that the residual vector 𝐫(𝑘) in Eq. (59)
a-priori vanishes and 𝐑 = 𝐄 in all iterations, which bypasses the need for the calculation of the Hessian matrix 𝐇𝑖 of the active
surfaces in Eq. (50), which might be difficult to obtain analytically if the potential surface function is complicated. Nevertheless,
the potential surfaces function adopted in this study conveniently vanishes, i.e. 𝐑 = 𝐄 is valid also for the Closest-Point Projection
Algorithm by virtue of the concrete material model adopted in Section 4 due to the fact that selected potential functions are low
order. Thus, which of the algorithms used in this study is only a matter of whether the vanishing of the residual vector 𝐫(𝑘) is adopted
as a condition or not.

It is also important to note that to obtain a unique solution for 𝛿𝝀(𝑘) from Eq. (44), the matrix 𝐀(𝑘) should be invertible.
In associative perfect plasticity, the uniqueness conditions are automatically met. For the case with associative plasticity with
hardening, hardening-related terms enforce a limit on uniqueness of the solution (see [51]). On the other hand, for the general
case, where plastic flow is non-associative and hardening takes place, the uniqueness of the solution relies on all terms of the matrix
𝐀(𝑘). For the matrix 𝐀(𝑘) to be invertible, the conditions can be written as

𝑎(𝑘)11 > 0, 𝑎(𝑘)22 > 0, det (𝐀(𝑘)) = |𝐀(𝑘)
| = 𝑎(𝑘)11 𝑎

(𝑘)
22 − 𝑎(𝑘)12 𝑎

(𝑘)
21 > 0 (65)

in which the first two conditions are related to the single-surface plasticity while the third condition arises when both surfaces are
active. If any of the three conditions in Eq. (65) is not satisfied due to the fact that 𝑓𝑘𝑝1 ,𝜅1 𝑐

(𝑘)
1 < 0 or 𝑓𝑘𝑝2 ,𝜅2 𝑐

(𝑘)
2 < 0 in the softening

regions, then we assign 𝑓𝑘𝑝1 ,𝜅1 𝑐
(𝑘)
1 = 0 and/or 𝑓𝑘𝑝2 ,𝜅2 𝑐

(𝑘)
2 = 0, where necessary to prevent premature convergence failures.

3.2. Return mapping in haigh–westergaard coordinates

As we adopt isotropic material assumption, we will use Haigh–Westergaard coordinates for its convenience. Fig. 1 depicts a
generic two surface model in Rendulic plane, where 𝜉 is a measure of the volumetric component of the stress state and 𝜌 is a
measure of deviatoric component of the stress state, i.e.

𝜉 = 1
√

3𝑓𝑐
t r (𝝈) (66)

𝜌 =

√

2𝐽2
𝑓𝑐

(67)

Haigh–Westergaard coordinates are related to the principal stress components as

⎧

⎪

⎨

⎪

⎩

𝜎1
𝜎2
𝜎3

⎫

⎪

⎬

⎪

⎭

= 1
√

3

⎧

⎪

⎨

⎪

⎩

𝜉
𝜉
𝜉

⎫

⎪

⎬

⎪

⎭

+
√

2
3
𝜌

⎧

⎪

⎪

⎨

⎪

⎪

cos 𝜃
cos

(

𝜃 − 2𝜋
3

)

cos
(

𝜃 + 2𝜋
)

⎫

⎪

⎪

⎬

⎪

⎪

(68)
⎩

3
⎭
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in which 𝜃 is the Lode angle that defines the orientation according to the polar coordinate system within the deviatoric plane of the
Haigh–Westergaard space. For further details about Haigh–Westergaard coordinate system one is referred to [35]. The Lode angle
𝜃 is related to the deviatoric stress tensor components as

cos 3𝜃 =
3
√

3
2

𝐽3
𝐽 3∕2
2

(69)

In Eqs. (67), (69) and (71), the following stress tensor invariants have been used.

𝜎𝑉 =
𝐼1
3

= 1
3
t r (𝝈)

𝐽2 =
1
2
t r (𝒔2)

𝐽3 =
1
3
t r (𝒔3) = det (𝒔) (70)

in which tr() is the trace operator, 𝜎𝑉 is the volumetric stress and 𝒔 is the deviatoric stress components of the stress tensor 𝝈, i.e.

𝒔 = 𝝈 − 𝜎𝑉 𝜹 (71)

where 𝜹 is the Kronecker’s delta

𝛿𝑖𝑗 =

{

1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

(72)

3.2.1. Material parameters in terms of Bulk and Shear Moduli
By virtue of the material model selected in Section 4, the matrix 𝐀 used in Eq. (44) for plastic stress return calculations can be

conveniently expressed in terms of the bulk and shear moduli. For the alternative expression of 𝐀, we first refer to the elastic stress
due to elastic strain. From Eq. (71), one obtains

𝝈 = 𝒔 + 𝜎𝑉 𝜹 = 𝐄 ∶ 𝜺 = 3𝐾 𝜖𝑉 𝜹 + 2𝐺𝒆 (73)

where

𝐾 = 𝐸
3(1 − 2𝜈) (74)

and

𝐺 = 𝐸
2(1 + 𝜈) (75)

written above in terms of the Elasticity Modulus 𝐸 and Poisson’s ratio 𝜈 and in Eq. (73), volumetric strain

𝜖𝑉 =
t r (𝜺)
3

(76)

and deviatoric strain

𝒆 = 𝜺 − 𝜖𝑉 𝜹 (77)

definitions were used. From the definition in Eqs. (73) to (77), one obtains the relation

𝜎𝑉 = 3𝐾 𝜖𝑉 (78)

𝒔 = 2𝐺𝒆 (79)

Note that for shear stress–shear strain relations in Voigt vector notation Eq. (79) should be evaluated as

𝝉 = 𝐺𝜸 (80)

Note that the relations between shear strain and stress are expressed differently in tensor and vector notations. In vector notations
the shear strain components are 𝛾 = 2𝒆, in which 𝒆 refers to the last three components of the six dimensional deviatoric strain
ensor. Thus, shear strains should be treated with caution in numerical calculations. By using Eqs. (68), (78) and (79), we can write
𝑝,𝝈

T𝐄𝑔𝑝,𝝈 alternatively as

𝑓𝑝𝑖 ,𝝈
T𝐄𝑔𝑝𝑖 ,𝝈 = 3𝐾 𝑓𝑝𝑖 ,𝜉𝑔𝑝𝑖 ,𝜉 + 2𝐺 𝑓𝑝𝑖 ,𝜌𝑔𝑝𝑖 ,𝜌 +

2𝐺
𝜌2
𝑓𝑝𝑖 ,𝜃𝑔𝑝𝑖 ,𝜃 , 0 < 𝑖 ≤ 2 (81)

from which by substituting into Eq. (45), one obtains

𝐀(0) =
⎡

⎢

⎢

⎣

3𝐾 𝑓 0
𝑝1 ,𝜉

𝑔0𝑝1 ,𝜉 + 2𝐺 𝑓 0
𝑝1 ,𝜌

𝑔0𝑝1 ,𝜌 + 𝑓
0
𝑝1 ,𝜅1

𝑐01 3𝐾 𝑓 0
𝑝1 ,𝜉

𝑔0𝑝2 ,𝜉 + 2𝐺 𝑓 0
𝑝1 ,𝜌

𝑔0𝑝2 ,𝜌

3𝐾 𝑓 0
𝑝2 ,𝜉

𝑔0𝑝1 ,𝜉 + 2𝐺 𝑓 0
𝑝2 ,𝜌

𝑔0𝑝1 ,𝜌 3𝐾 𝑓 0
𝑝2 ,𝜉

𝑔0𝑝2 ,𝜉 + 2𝐺 𝑓 0
𝑝2 ,𝜌

𝑔0𝑝2 ,𝜌 + 𝑓
0
𝑝2 ,𝜅2

𝑐(0)2

⎤

⎥

⎥

⎦

(82)
10 
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where 𝑔𝑝𝑖 ,𝜃 = 0 for 0 < 𝑖 ≤ 2 was used to eliminate the last term in Eq. (81). In Eq. (82), the superscript indicates the initial iteration,
.e., (𝑘) = 0. We have obtained Eq. (82) for the initial iteration for the purpose of identifying the target yield surface. As we will
iscuss next, in our algorithm we select the return surface at the initial iteration based on Eq. (82), after which the procedure
xplained in Section 3.1 above, is used to update the stresses. It should be noted that 𝑓𝑝,𝝈 and 𝑔𝑝,𝝈 are generally tensors, however,
ll terms on the right hand side of Eq. (81), e.g. 𝑓𝑝,𝜉 , are conveniently scalar quantities which are provided in Section 4.

It is interesting to note that as a result of the selected potential function the corrective stress terms in Eq. (58) are independent
of the Lode angle 𝜃. That is because, the plastic return strains, i.e., 𝛿𝜺(𝑘)𝑝(𝑛+1) in Eq. (42) are independent of the Lode angle 𝜃. However,
uring plastic return process, unless the Poisson’s ratio is zero the stresses drift from the Rendulic plane, which is initially determined
ased on the orientation of the trial stresses. It can be verified from Eq. (73) that only when the Poisson’s ratio 𝜈 = 0, the elastic

stress tensor would become a scaling of the strain tensor with the Elasticity Modulus 𝐸, and thus, the corrected stresses in Eq. (63)
would have the same directions with the plastic strains. However, in general 𝜈 ≠ 0 and therefore, there is a drift from the Rendulic
plane of the trial stress, i.e. 𝜃(𝑛+1) ≠ 𝜃trial

(𝑛+1).

3.3. Four possible scenarios of the return algorithm

When both surfaces are active we refer to it as the first scenario, which is when the non-converged stresses are in the corner zone
region of the stress space. On the other hand, during the return mapping process at the intermediate iterations, if the stress state
is outside of the corner zone, then it yields to the classical single-surface plasticity problem. When only the first surface is active,
we refer to it as the second scenario and when only the second surface is active we refer to it as the third scenario. Finally, when
no surface is active and thus, the stress is in the elastic region, we refer to it as scenario zero. In Fig. 1, the boundaries between
orner zone and single-surface zones are denoted with the symbols 𝜕 𝐶1 and 𝜕 𝐶2 on both sides. In the following, we introduce the
riteria for the selection of the active surface. Note that the Cutting Plane and Closest Point Projection Algorithms are identical for
he initial iteration. In our algorithm, we do not change the targeted yield surface during the iterations of return mapping despite

the fact that at intermediate stages of the return process, the stresses may fall out of the initially selected zone. This possibility have
been reported in literature e.g., [43]. If at the end of the return process any of the yield conditions is still violated, then another
round of return process is triggered. If another round is triggered the trial stresses at the initial iteration of the current round is
taken as the stress of the final iteration of the previous round as in Fig. 2.

3.3.1. Scenario 1 - both surfaces are active
When both surfaces are active at the initial iteration, the Kuhn–Tucker conditions given in Eq. (5) for 𝑀 = 2 produces

𝑓 0
1 > 0, 𝛿 𝜆01 > 0

𝑓2
0 > 0, 𝛿 𝜆02 > 0 (83)

It should be noted that Eq. (83) is implemented in a finite incremental fashion therefore, before convergence is achieved both
yield conditions are violated which makes the surfaces active during the iterations. As mentioned above, we select the scenario to
implement out of the four possible scenarios after evaluating the yield surface values of the initial iteration, i.e. 𝑓 0

𝑖 > 0. On the
other hand, from, Eq. (44), requirement of a solution for positive proportionality factors, i.e., 𝛿 𝜆0𝑖 > 0, produces

𝛿 𝜆01 =
𝑎022𝛿 𝑏01 − 𝑎012𝛿 𝑏02

|

|

𝐀0|
|

𝛿 𝜆02 =
−𝑎021𝛿 𝑏01 + 𝑎011𝛿 𝑏02

|

|

𝐀0|
|

(84)

From Eq. (84), the criteria to activate Scenario 1 can be obtained as

𝑎022𝑓
0
1 ≥ 𝑎012𝑓

0
2

𝑎011𝑓
0
2 ≥ 𝑎021𝑓

0
1 (85)

which are in addition to the uniqueness conditions provided in Eq. (65) and violation of yield conditions in Eq. (83) for the initial
iteration. It is also interesting to note that as can be seen from Fig. 1, when both surfaces are active there is only one return point
within the corner zone that satisfies both yield conditions. Therefore, the corner return point is not affected by whether the algorithm
is Closest-Point-Projection or Cutting-Plane.

3.3.2. Scenario 2 - only surface 1 is active
When only the first surface is active at the initial iteration, the Kuhn–Tucker conditions given in Eq. (5) produces

𝑓 0
1 > 0, 𝛿 𝜆01 > 0

𝑓2
0 = 0, 𝛿 𝜆02 = 0 (86)

From, Eq. (44) requirement of a solution for positive proportionality factor for 𝑖 = 1, i.e., 𝛿 𝜆01 > 0, produces
0 0 0 0
𝑎22𝑓1 ≥ 𝑎12𝑓2 (87)

11 
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Fig. 2. Return mapping algorithm.

𝑎021𝑓
0
1 > 𝑎011𝑓 0

2 (88)

It is also interesting to note that, in this case the return point is affected by whether the algorithm is Closest-Point Projection or
Cutting-Plane.

3.3.3. Scenario 3 - only surface 2 is active
For when only the second surface is active, the Kuhn–Tucker conditions produces

𝑓 0
2 = 0, 𝛿 𝜆01 = 0
𝑓1

0 > 0, 𝛿 𝜆02 > 0 (89)

From, Eq. (44) requirement of a solution for positive proportionality factor for 𝑖 = 2, i.e., 𝛿 𝜆02 > 0, produces

𝑎012𝑓
0
2 > 𝑎022𝑓 0

1 (90)

𝑎011𝑓
0
2 ≥ 𝑎021𝑓

0
1 (91)

3.3.4. Scenario 0 - No surface is active
When the Kuhn–Tucker conditions at initial iterations are such that

𝑓 0
1 < 0, 𝛿 𝜆01 = 0
𝑓 0
2 < 0, 𝛿 𝜆02 = 0 (92)

then there is no active surface and we accept the trial stress as the final stress within the incremental step (𝑛 + 1).

3.4. Damage compliance matrix

Based on 𝐘 introduced in Eq. (32), the Damage Compliance can be written in matrix form as

𝐃 =
[

𝜙𝐄−1 + 𝜔𝜺𝑝𝜺𝑇𝑝 𝐄
−1
]

(93)

where 𝜺𝑝 is now a column vector. Note that 𝐃𝐄 takes a symmetrical form. From Eq. (31), i.e. 𝐃𝐄𝜺𝑝 = (𝜙 + 𝜔𝜒)𝜺𝑝, where 𝜒 = 𝜺𝑇𝑝 𝜺𝑝,
one obtains �̄� = 𝜙 + 𝜔𝜒 . It is also interesting to note that the anisotropic damage compliance term, i.e. 𝐘 in Eq. (93) is a rank-1
12 
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matrix. An example of the use of rank-1 anisotropic damage compliance matrix can be found in [12]. From Eq. (93), and by using
Sherman–Morison–Woodbury formula in the relation 𝐌 = (𝐈 + 𝐄𝐃)−1, one obtains

𝐌 = 1
1 + 𝜙

[

𝐈 − 𝛾𝐄𝜺𝑝𝜺𝑇𝑝 𝐄
−1
]

(94)

in which 𝛾 = 𝜔
(1+𝜙+𝜔𝜒) . Again, by using the Sherman–Morison–Woodbury formula in Eq. (93), one obtains the inverse of the damage

tensor as

𝐃−1 = 𝜙−1𝐄
[

𝐈 − 𝛽𝜺𝑝𝜺𝑇𝑝
]

(95)

in which 𝛽 = 𝜔
(𝜙+𝜔𝜒) . By using Eq. (95) and substituting into Eq. (20), one obtains

�̄� =
𝜺𝑝𝑇 ∶ 𝐄 ∶ 𝜺𝑝

(𝜙−1 − 𝜙−1𝛽 𝜒)𝜺𝑝𝑇 ∶ 𝐄 ∶ 𝜺𝑝
=

𝜙
1 − 𝛽 𝜒 (96)

From Eqs. (93) and (94), by using 𝐏 = 𝐃𝐌𝐄, one obtains

𝐏 = 1
1 + 𝜙

[

𝜙𝐈 + 𝛾𝜺𝑝𝜺𝑇𝑝
]

(97)

By using the relation 𝜙 = 𝜑∕(1 − 𝜑) in Eq. (97), one obtains.

𝐏 =
[

𝜑𝐈 + (1 − 𝜑)𝛾𝜺𝑝𝜺𝑇𝑝
]

(98)

We use Eq. (98) in Eq. (39) to introduce damage update to the stress state, when the trial stress is elastic. On the other hand, matrix
is updated according to the plastic strains, further details of which are provided according to the material type under Section 4.

3.5. Viscous regularization

The viscous behaviour can be considered as a modification to the values obtained after the above time integration algorithm
escribed based on the rate-independent plasticity assumption. This approach is often referred to as Duvaut and Lions model
see [20]), in which the final value of stresses as well as hardening parameters are expressed as a linear combination of the trial

elastic value and the converged stress of the rate independent algorithm, where the weighting factors are functions of the time step
and the retardation time. Introducing viscous effects improves the numerical stability which may be required in the case of strain
softening (see [51]). According to Duvaut and Lions model, the updated stress and evolution parameters can be written as

𝝈𝑓 𝑖𝑛𝑎𝑙(𝑛+1) = 𝝈(𝑛)𝑒
−𝜓 𝛥𝑡 + 𝝈(𝑛+1)(1 − 𝑒−𝜓 𝛥𝑡) +

(1 − 𝑒−𝜓 𝛥𝑡)
𝜓 𝛥𝑡 𝐄𝛥𝜺(𝑛+1) (99)

and

𝜅𝑓 𝑖𝑛𝑎𝑙𝑖 = 𝜅𝑖(𝑛)𝑒
−𝜓 𝛥𝑡 + 𝜅𝑖(𝑛+1) (1 − 𝑒−𝜓 𝛥𝑡) (100)

in which 𝜓 = 1∕𝜏, where 𝜏 is the retardation time and 𝛥𝑡 is the time increment of the step. The retardation time is a viscosity related
aterial property which refers to the necessary time for complete stress relaxation to the final state. Thus, under the rate independent
lasticity assumption of no relaxation, i.e., 𝜏 → 0, for any 𝛥𝑡, Eqs. (99) and (100) regenerate 𝝈(𝑛+1) and 𝜅𝑖(𝑛+1) , respectively, which

are the last converged values of the rate-independent plasticity algorithm described above. It will be shown in case studies that
by selecting a positive value for 𝜓 𝛥𝑡, the numerical stability of the algorithm can be improved. We also adopt the formulation to
update the damage matrix, i.e.

𝐏𝑓 𝑖𝑛𝑎𝑙𝑖 = 𝐏𝑖(𝑛)𝑒
−𝜓 𝛥𝑡 + 𝐏𝑖(𝑛+1) (1 − 𝑒−𝜓 𝛥𝑡) (101)

The complete flow chart of the developed procedure is provided in Fig. 2.

4. Specifics of the material model

Concrete is a pressure-sensitive material, and its responses to compressive and tensile loads are considerably different. In
particular, under uniaxial tensile load, tensile cracks start to form perpendicular to the dominant tensile stress and they can coalesce
to form larger cracks. Consequently, when the tensile strength is reached, the loss of strength is observed in the form of rapid
softening in the stress–strain curve. Furthermore, the presence of tensile cracks also causes degradation in material moduli. To reflect
these characteristics of concrete in the plastic-damage constitutive modelling, softening is generally simulated through the evolution
of yield criteria, and degradation of material moduli is captured by the use of damage variables. On the other hand, under uniaxial
compression loading, the inelastic response of concrete is generally manifested by compression cracks that commonly develop
arallel to the compressive stress direction. Tangential stiffness reduces as the material is pushed further to its elastic limit, and the

compression stress reaches to its maximum value at the compressive strength. Under persistent loading, a softening regime follows.
imilar to the tensile case, material moduli also degrade as a result of inelastic processes. When multiaxial loading takes place,

concrete’s behaviour can change significantly, especially for the triaxial compressive loading. As the confining pressure increases, the
strength and ductility of concrete grows significantly. It is important to reflect this characteristic of concrete in constitutive models
13 
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where confinement pressure can become significant. Due to the reasons explained above, Rankine-type yield surfaces (which are
triangular in the deviatoric plane) are common in tensile modelling whereas Drucker–Prager type yield surfaces (which are round
n the deviatoric plane) provide better performance in compressive modelling of concrete because of their pressure dependency,

however, it does not account for the intermediate principal stress in failure. The yield surface proposed by [4] is commonly adopted
or the simulation of concrete also considers the intermediate principal stresses in compression failure, which is an extension of

the Drucker–Prager type failure criterion. It is also common to use a set of yield criteria simultaneously (e.g., Rankine for tension
and Drucker–Prager type for compression) to capture compressive and tensile characteristics more accurately. This multi-surface
approach also allows the use of different damage evolutions in tension and compression, offering more control on the model for
capturing the actual behaviour.

4.1. Menetrey–Willam surface for concrete compression

The yield surfaces are described in terms of Haigh–Westergaard in stress space. Haigh–Westergaard coordinates are (𝜉 , 𝜌, 𝜃), where
is the hydrostatic stress invariant, 𝜌 is the deviatoric stress invariant, 𝜃 is the deviatoric polar angle as described in Section 3.2.

The yield surface proposed by [4] is given by the following equation:

𝑓𝑝1 (𝜉 , 𝜌, 𝜃) = 1.5
(

𝜌
𝑓𝑐

)2
+ 𝑞ℎ(𝜅𝑝)𝑚

(

𝜌

𝑓𝑐
√

6
𝑟 +

𝜉

𝑓𝑐
√

3

)

− 𝑞ℎ(𝜅𝑝)𝑞𝑠(𝜅𝑝) ≤ 0 (102)

where 𝑓𝑐 is the uniaxial compressive strength. In Eq. (102), 𝑚 is introduced as a measure of frictional strength in [4] and it can be
written as

𝑚 = 3𝑓
2
𝑐 − 𝑓 2

𝑡
𝑓𝑐𝑓𝑡

𝑒
𝑒 + 1 (103)

in which 𝑓𝑡 is the uniaxial tensile strength and 𝑒 is called eccentricity which describes the out-of-roundness of the yield surface in
he deviatoric plane (see Fig. 3) i.e.

𝑒 = 1 + 𝜖
2 − 𝜖 (104)

where

𝜖 =
𝑓𝑡
𝑓𝑏

𝑓 2
𝑏 − 𝑓 2

𝑐

𝑓 2
𝑐 − 𝑓 2

𝑡
(105)

In Eq. (102), 𝑟 is the radius in the deviatoric plane which is a function of the deviatoric polar angle 𝜃 and the eccentricity 𝑒 i.e.

𝑟(𝜃 , 𝑒) = 𝑣(𝜃 , 𝑒)
𝑠(𝜃 , 𝑒) + 𝑡(𝜃 , 𝑒) (106)

where

𝑣(𝜃 , 𝑒) = 4 (1 − 𝑒2) cos2 𝜃 + (2𝑒 − 1)2 (107)

𝑠(𝜃 , 𝑒) = 2 (1 − 𝑒2) cos 𝜃 (108)

𝑡(𝜃 , 𝑒) = (2𝑒 − 1) [4 (1 − 𝑒2) cos2 𝜃 + 5𝑒2 − 4𝑒]1∕2 (109)

4.1.1. Hardening and softening functions
We adopt an isotropic hardening law based in which the hardening and softening functions are 𝑞ℎ and 𝑞𝑠 respectively. Thus,

nly the size of the yield surface change, which is controlled by the hardening/softening parameter 𝜅𝑝1 . Following [6], we select
the hardening parameter to be the plastic volumetric strain 𝜀𝑝𝑣. i.e.

𝑑 𝜅𝑝1 = 𝑑 𝜀𝑝𝑣 = 𝑑 𝜆𝑝
√

3
𝑞ℎ𝑞𝑠

(110)

The function 𝑞ℎ is active in the hardening region and it is unity beyond the peak strain whereas 𝑞𝑠 is active in the softening region.
According to the hardening law in [6] (see Fig. 4), the hardening function in Eq. (102) can be written as

𝑞ℎ
(

𝜅𝑝1
)

= 𝑞ℎ
(

𝜀𝑝𝑣
)

= 𝑘𝑜 +
(

1 − 𝑘𝑜
)

√

√

√

√1 −
(

𝜀𝑝𝑣𝑜 − 𝜀
𝑝
𝑣

𝜀𝑝𝑣𝑜

)2

(111)

where

𝑘𝑜 = 𝜎𝑐𝑜∕𝑓𝑐 (112)
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Fig. 3. Deviatoric plane of the yield surface.

Fig. 4. The split of hardening function into the hardening and softening part.

in which 𝜎𝑐𝑜 is the uniaxial concrete stress at the onset of plastic flow. In Eq. (111), 𝜀𝑝𝑣𝑜 is the threshold value for the volumetric
plastic strain at uniaxial concrete strength, i.e.

𝜀𝑝𝑣𝑜 =
𝑓𝑐
𝐸𝑐

(1 − 2𝜈𝑐 ) (113)

where 𝐸𝑐 and 𝜈𝑐 are the Young’s modulus and Poisson ratio for concrete, respectively.

𝑞(𝜅𝑝1 ) = 𝑞ℎ(𝜅𝑝1 )𝑞𝑠(𝜅𝑝1 ) (114)

The softening function 𝑞𝑠 is unity during the hardening range and its value is updated only beyond the peak compressive strain, i.e.

𝑞𝑠
(

𝜅𝑝1
)

=

⎛

⎜

⎜

⎜

⎝

1

1 +
(

𝑛1−1
𝑛2−1

)2

⎞

⎟

⎟

⎟

⎠

2

(115)

where

𝑛1 =
𝜀𝑝𝑣
𝜀𝑝𝑣𝑜

(116)

and

𝑛2 =
𝜀𝑝𝑣𝑜 + 𝑡𝑐
𝜀𝑝𝑣𝑜

(117)

in which 𝑡 is a calibrated parameter and considering MPa as the stress unit, it is recommended to use 𝑡 = 𝑓 ∕15000 (see [38]).
𝑐 𝑐 𝑐
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4.2. Potential function for concrete compression

We adopt the linear potential function proposed in [11], which can be expressed in Haigh–Westergaard coordinates as

𝑔𝑝1 (𝜉 , 𝜌) = −𝐵 𝜌 + 𝜉 − 𝑎 (118)

where 𝐵 controls the slope in Rendulic Plane and it is chosen to give proper dilatancy. In [11] a value between −6.6 and −5 is
uggested in their case studies, which we adopt herein. The effect of slope 𝐵 will be shown in Section 6 case studies. It should
e noted that more sophisticated potential functions that describe the confined concrete behaviour more accurately can be found
n literature e.g. [6,38], which may cause some differences in results when the concrete is confined. However, in our experience

the linear potential function selected herein performs well in numerical simulations as will be shown in Section 6, while other
alternatives may cause convergence issues especially when tensile stresses are involved. It should also be noted that as we use the
gradient of the potential function and not the potential function value itself, the value of 𝑎 in Eq. (118) has no influence in the
derivation of equations and results. It is a constant introduced to adjust the position of the potential function to be meaningful,
i.e., to meet with the point of current stress state.

4.3. Rankine surface for concrete tension

In tensile region, we also adopt non-associative flow rule to be able to use a potential function that is independent of the polar
angle 𝜃, while using the Rankine yield surface to limit the maximum stress at the tensile strength. In Haigh–Westergaard coordinates
the Rankine surface can be written as

𝑓𝑝2 (𝜉 , 𝜌, 𝜃) =
√

2𝜌 cos 𝜃 + 𝜉 −
√

3𝑓𝑡 (119)

On the other hand, the potential function is obtained by removing the dependence to angle 𝜃 in Eq. (119) as

𝑔𝑝2 (𝜉 , 𝜌) =
√

2𝜌 + 𝜉 − 𝑏 (120)

By adopting the potential function in Eq. (120), we assure that the condition 𝑔𝑝2 ,𝜃 = 0, which was used in the derivation of Eq. (82)
is valid in the tension zone. Similar to the compressive potential surface constant 𝑎, the value of 𝑏 in Eq. (120) has no influence in
the derivation of the equations.

4.4. Evolution of the damage for concrete

The damage parameter 𝜑, is updated based on the volumetric plastic strain proposed for concrete material in [17], i.e.

𝜑 =

(

1 − 𝑒−𝐶
𝜅𝑝
𝜖𝑝𝑣𝑜

)

(121)

where 𝐶 is a parameter to be calibrated based on cyclic tests. It should be noted that the same damage function in Eq. (121) is
used for both compressive and tensile behaviour of concrete, however, their calibration parameters 𝐶 are adjusted differently. On
he other hand, the coefficient 𝜔 is used to calibrate the anisotropic component in Eq. (98). The coefficient 𝛾 in Eq. (98) can be

updated according to the evolution of 𝜑, i.e.

𝛾 =
(1 − 𝜑)𝜔

1 + (1 − 𝜑)𝜔𝜒 (122)

in which 𝜒 = 𝜺𝑇𝑝(𝑛)𝜺𝑝(𝑛) is calculated based on the last converged plastic strain update.

4.5. Material model for the steel reinforcement bars

The uniaxial material model for the reinforcement is based on a relatively simpler yield function for the steel material, i.e.

𝑓𝑟
(

𝜎𝑟, 𝜅𝑟
)

= |𝜎𝑟| − (𝜎𝑦 + 𝜅𝑟) (123)

where 𝜎𝑟 is the axial stress acting on the integration points of the cross-section of the reinforcement bars, 𝜎𝑦 is the yield stress limit
for the steel material and 𝜅𝑟 is the hardening modulus for steel. The plastic hardening function which is assumed a linear function
of the plastic proportionality factor as

𝑑 𝜅𝑟 = 𝑑 𝜆𝑟𝐾𝑟 (124)

where 𝐾𝑟(𝜎𝑟, 𝑑 𝜆𝑟) is the corresponding hardening modulus for the steel material. Due to the uniaxial stress state, the return mapping
of the axial stress to the yield surface is a special case of the algorithm introduced in Section 3. Thus, the return mapping of the
trial stress at the current step 𝜎𝑟trial

(𝑛+1), on to the yield surface is a matter of simple scaling i.e.

𝜎𝑟
trial
(𝑛+1) = 𝜎𝑟(𝑛) + 𝐸𝑟𝛥𝜀𝑟(𝑛+1) (125)
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where 𝜎𝑟(𝑛) is the last converged bar stress, 𝐸𝑟 is the elasticity modulus of the steel material and 𝛥𝜀𝑟(𝑛+1) is the total strain increment
of the reinforcement bar within the current step (𝑛 + 1). We would like to note that in order to be able to have variety in the
applications, e.g. cases of metal fatigue etc., we keep the damage terms also for the rebars. Accordingly, if the trial stress on the
rebar is within the yield surface limits, then the final stress considering the existing damage state can be written as

𝜎𝑟(𝑛+1) = 𝜎𝑟(𝑛) +
𝐸𝑟

1 + 𝜙𝑟
𝛥𝜀𝑟(𝑛+1) (126)

where 𝜙𝑟 is the damage parameter for the steel material at the last converged step. Exponential damage evolution is also often
ssumed for the steel material (see [52]). Reduction of the elasticity modulus under cyclic loading based on an exponential function

of similar form was also proposed in several works e.g., [53,54]. Therefore, for the steel reinforcement, we also adopt Eq. (121) by
replacing 𝜅𝑝∕𝜖

𝑝
𝑣𝑜 in Eq. (121) with 𝜅𝑟, for which the parameter 𝐶 should be calibrated specifically for the reinforcement behaviour.

5. Solution of the global equilibrium equations

5.1. Variational form of the equilibrium equations

To generate the finite element solution, we first start with the general equilibrium equations based on the principle of virtual
ork i.e.,

𝛿Π = 𝛿W𝑖𝑛𝑡 − 𝛿W𝑒𝑥𝑡 = 0 (127)

where 𝛿W𝑖𝑛𝑡 is the variation of the internal work, i.e.,

𝛿W𝑖𝑛𝑡 = ∫𝑉
𝛿𝜺T𝝈𝑑 𝑉 + ∫𝐿 ∫𝐴

𝛿 𝜀𝑟𝜎𝑟𝑑 𝐴𝑑 𝐿 (128)

in which, first term on the right-hand side is the contribution of the concrete bulk over the volume 𝑉 , whereas the second term on
the right-hand side is the contribution of the reinforcement bars over the span 𝐿 whose cross-sectional area is represented with 𝐴.

inematic relations can be directly built between the variations of strains and the variations of nodal displacements as

𝛿𝜺 = B𝛿de (129)

and

𝛿 𝜀𝑟 = srBr𝛿de (130)

where de is the element displacement vector and matrices B and Br form the element level discretized strain–displacement relations,
which depends on the selected finite element interpolation field. In Eq. (130), sr is a row vector of the generalized cross-sectional
coordinates that imposes linear strain distribution over the cross-section based on the Euler–Bernoulli beam kinematics adopted
or the rebars. The variation of strains for the beam-type rebar formulation is decomposed such that matrix Br is independent
f the cross-sectional coordinates. Thus, by substituting Eq. (130) in to Eq. (128), and collecting the functions of cross-sectional

coordinates of the rebar, we generate the expression ∫𝐴 sr
T𝜎𝑟𝑑 𝐴, which produces the vector of stress-resultants according to linear

train distribution across the section. That is, the stress-resultants of the rebar e.g., bending moment, axial force etc. are consistent
ith the kinematics of the Euler–Bernoulli beam theory. It should be noted that at the material level the elasto-plastic-damage
aterial relationship is established between the axial strain and axial stress, which is the normal stress acting on the cross-section

of the rebar. It should also be noted that for strain displacement relations, we have adopted geometrically linear small-strain
ssumption. In Eq. (127) 𝛿W𝑒𝑥𝑡 is the virtual work done by the external loads, i.e.,

𝛿W𝑒𝑥𝑡 = 𝛿dTf𝑒𝑥𝑡 (131)

where f𝑒𝑥𝑡 is the vector of the external nodal forces and 𝛿d is the vector of the displacement variations. In the finite element form,
we refer to vector 𝛿d as the nodal displacement vector. We adopt conventional displacement based finite element formulations with
standard assemblage procedures. Therefore, the transition from element level vector and matrices to global level vector and matrices
is a result of the standard assemblage procedure. For more details in standard finite element assemblage procedures see [55].

5.2. Linearization of the of equilibrium equations

Linearization of Eq. (127) produces

𝛿d ⋅ ∇𝑑𝛿Π = ∫𝑉
BT𝐂𝑒𝑝𝑑B𝑑 𝑉 + ∫𝐿

BrTCrBr𝑑 𝐿 = 𝛿dTK𝐺𝑡𝛿d (132)

Again, the transition from the element level vectors and matrices in Eq. (129) to the global level relations in Eq. (132) is a result of
he standard assemblage procedure. In Eq. (132), K𝐺𝑡 denotes the tangent stiffness matrix and ∇𝑑 is the gradient with respect to the

nodal displacement vector. In Eq. (132), 𝐂𝑒𝑝𝑑 is the material level tangent moduli for the concrete material, which can be obtained
y substituting Eq. (7) into Eq. (11) and eliminating 𝑑𝜺𝑑 , i.e.

[ ]−1
𝐂𝑒𝑝𝑑 = 𝐂𝑒𝑑 𝐂𝑒𝑑 + 𝐂𝑒𝑝 𝐂𝑒𝑝 (133)
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in which

𝐂𝑒𝑝 = 𝐄
[

𝐈 −mb𝐀−1𝐧𝐚TE
]

(134)

where

𝐧𝐚T =

{

𝐧T1
𝐧T2

}

(135)

and

mb
T =

{

𝐦T
1

𝐦T
2

}

(136)

were used and under the direct coupling assumptions in Eqs (13) to (22), one obtains 𝐂𝑒𝑑 = 𝐏−1𝐂𝑒𝑝. In deriving Eq. (133), the
differential equations 𝑑𝝀 = 𝐀−1𝐧𝐚TE𝑑𝜺, 𝑑𝜺𝑝 = mb and 𝑑 𝜆𝑑𝑖 = 𝜙𝑑 𝜆𝑝𝑖 were substituted into 𝑑𝝈 = 𝐄

(

𝑑𝜺 − 𝑑𝜺𝑝 − 𝑑𝜺𝑑
)

.
On the other hand, in Eq. (132), Cr = ∫𝐴 sr

T𝐸𝑟𝑝𝑑sr𝑑 𝐴 is a matrix of bar material and cross-sectional properties, in which for the
elasto-plastic uniaxial steel material one obtains the tangent material modulus as

𝐸𝑟𝑝𝑑 =
𝐸𝑟𝐾𝑟

𝐾𝑟𝜙𝑟 + 𝐸𝑟 +𝐾𝑟
(137)

The Newton–Raphson solution of the non-linear equilibrium equation in Eq. (127) produces
[

K𝐺𝑡 −f𝑒𝑥𝑡

aT(𝑗) 𝑏(𝑗)

]

{

𝛿d(𝑗)
𝛿 𝛬(𝑗)

}

= −
{

r(𝑗)d
𝑐(𝑗)

}

(138)

where 𝛬(𝑗) is a scaling factor that sets up the applied load level within each global iteration (𝑗) and r(𝑗)d is the residual of the global
quilibrium condition in Eq. (127) calculated at the end of each iteration. To solve the above augmented system of equations more

efficiently the iterative displacement vector can be decomposed as

𝛿d(𝑗) = 𝛿 𝛬(𝑗)𝛿dp(𝑗) + 𝛿dr(𝑗) (139)

where 𝛿dp(𝑗) = K𝐺𝑡
−1f𝑒𝑥𝑡 and 𝛿dr(𝑗) = K𝐺𝑡

−1r(𝑗)d . From the second row of the augmented equation in Eq. (139) and using the
displacement components, one obtains

𝛿 𝛬(𝑗) =
𝑐(𝑗) − aT(𝑗)𝛿dr(𝑗)

aT(𝑗)𝛿dp(𝑗)
(140)

In Eqs. (139) and (140), the vector a(𝑗) and the constant 𝑐(𝑗) enforces a constraint condition at each global iteration (𝑗), which
allows selection of alternative control parameters while keeping the load scaling factor 𝛬 a variable. It should be noted that we
olve the equations in an incremental–iterative manner, where we adopt a modified Newton–Raphson procedure and thus, update
he stiffness matrix only at the beginning of the initial iteration. Therefore, 𝐂𝑒𝑝𝑑 and 𝐸𝑟𝑝𝑑 , and accordingly K𝐺𝑡 are presented without

any reference to iteration (𝑗). However, they are updated after each converged increment. We have adopted the displacement control
method to be able to trace the load–deflection curve beyond the peak strength. For the displacement-control method, the constraint
onditions are such that the vector a(𝑗) is composed of zero components except a unity at the controlled degree-of-freedom and

the constant 𝑐(𝑗) takes the prescribed displacement value. To terminate the iterations in the global/finite element level solution, we
have measured the ratio of the Euclid norm of each iterative increment in the displacement vector to the total increment in the
displacement vector of the step. Further details on the displacement-control algorithm can be found in [56].

5.3. Finite element types for structural level modelling

For the analysis of structural components presented in the case studies, two types of elements are utilized. The elements are
fully connected at their respective nodes. The concrete bulk is modelled using the 8-node solid element introduced in [57]. This
element type is chosen for its capability to capture the complex three-dimensional stress states within the concrete material. The solid
elements incorporate drilling degrees of freedom, which allow for the representation of rotational effects, maintaining a consistent
6-Degrees-Of-Freedom (6-DOFs) per node. The inclusion of rotational DOFs ensures that the solid elements are compatible with the
beam elements used for the rebars. The integration scheme used for the solid elements is 3 × 3 × 3. The standard two-node, 6-DOFs
per node Euler–Bernoulli beam-bar elements are employed for the steel reinforcement. Thus, in-plane bending deformations are
based on Hermitian interpolation whereas axial and twist deformations are based on linear interpolation, e.g. [55]. The torsional
deformations induced by the loading are assumed negligible in comparison to axial deformations of the rebars. Therefore, the shear
tress and shear strain relationships induced by the torsion are assumed to stay within the linear elastic range and are not involved
n the return mapping of the axial trial stress. Thus, for the steel reinforcement bars, the elasto-plastic-damage material behaviour

is established only between the axial stress and strains as explained in Section 4.5 and the effect of torsion induced shear stresses
re neglected. Two Gauss integration points are used for the beam elements along their axis. The cross-sectional grids are taken as
-by-4 where the integration points are taken at the centre of each grid segment. In all cases, the mesh is adjusted to generate nodes
t the reinforcement locations so that the beam elements and solid elements are directly connected at the nodes. The implementation
nd assembly of these finite element types are carried out by developing a software using the Fortran programming language.
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Fig. 5. Geometry, boundary conditions and loading of the beam.

Table 1
Material properties of the reinforced concrete beam.

Material Properties Values Unit

Concrete Young modulus, 𝐸𝑐 29 730 MPa
Poisson ratio, 𝜈 0.2 –
Compression strength, 𝜎𝑐 40 MPa
Tensile strength, 𝜎𝑡 3.15 MPa
Strain at compression peak 0.003 –
Strain at tensile peak 0.0002 –

Steel Young modulus, 𝐸𝑠 210 000 MPa
Ultimate strength, 𝜎𝑦 420 MPa
Compressive rebar section area, 𝐴𝑠1 1.02 cm2

Tension rebar section area, 𝐴𝑠2 4.52 cm2

6. Case studies

We consider three cases from the literature, referred in the following as four-point beam bending, eccentrically loaded column,
and laterally loaded shear-wall, which are used to validate the developed tool. We introduce a fourth case to illustrate the differences
in structural response under isotropic under anisotropic damage assumptions. For each case, we first introduce geometrical and
material descriptions, loading and boundary conditions of the structural component. Secondly, we present the material specifications
and analysis parameters used in the developed software and finally, we present the qualitative deformed shapes and load–deflection
curves obtained from the developed software. It should be noted that only within the cross-sectional planes corresponding to the
locations of applied external loads and boundary conditions, we impose Multiple-Point Constraints to avoid localized deformations
and stress concentrations, absence of which was observed to create convergence problems. By the suggested application of Multiple-
Point Constraints, we have managed to avoid convergence issues due to localizations and stress concentrations, and thus the
presented results were obtained without interrupting the analysis procedure. To terminate iterations in both local material element
level and global/finite level, we have introduced an error margin of maximum 10−4, i.e. in solving Eqs. (57) and (127). For the
material level return-mapping, we have tested both the Cutting-Plane and the Closest-Point Projection algorithms. We have not
observed any noticeable differences in the load–deflection curves. However, the Cutting-Plane algorithm generally required fewer
iterations which in some cases significantly reduced the analysis time.

6.1. Four-point load beam bending test

The first case study is the four-point bending test of a simply-supported reinforced concrete beam presented in [41], which has
an overall span of 2.4 m. The loading points are located at 0.8 meters and 1.6 meters from the end supports as shown in Fig. 5. The
ectangular cross-section has a width of 200 mm and a height of 300 mm. The beam has no stirrups and it is reinforced with four
ongitudinal bars in tension and two in compression sides. The area of each of the tensile reinforcements is 4.52 cm2 and the area of
ach of the compression reinforcements is 1.02 cm2. The material properties of the concrete bulk and the steel reinforcements are
rovided in Table 1. The first numerical model is comprised of 6 × 6 element-mesh over the cross-section and 10-element mesh along

the span resulting with 360 solid elements for the concrete bulk and in total of 6 × 10 = 60 beam elements for the reinforcements.
Alternatively, we have used a 14-element mesh along the span resulting with 504 solid elements for the concrete bulk and in total
of 84 beam elements for the reinforcements. The key analysis parameters used in the developed software are provided in Table 2.
19 



A. Torabizadeh et al. Finite Elements in Analysis & Design 242 (2024) 104271 
Table 2
Parameters of the software for the four-point beam bending test.

Parameters Values Units

Onset ratio plastic flow 𝑘𝑜 in Eq. (112) 0.05 –
Slope linear potential surface 𝐵 in Eq. (118) −6.66 –
Controlled displacement location Mid-span –
Controlled displacement increment 0.1 mm
Number of solid elements for the concrete bulk 360|504 –
Number of beam-bar elements for the reinforcement 60|84 –

Fig. 6. Uni-axial stress-strain relationship of the beam’s concrete material.

Fig. 7. Deformed shape of the beam.

The stress–strain diagram of the concrete material used in the beam analysis is depicted in Fig. 6, which is obtained under
uni-axial stress conditions. Although concrete’s tensile capacity is not expected to have any significant influence on the structural
behaviour, alternatively we have used a single surface concrete material model by removing the Rankine cut-off surface in the plastic
return process, whose uniaxial test is also shown in Fig. 6.

6.1.1. Results of the beam analysis
The developed model is compared against two other numerical models presented in [41] as MAFEM, Precon3D, as well as

experimental results presented in [58]. The model MAFEM, is based on Modified Mohr–Coulomb yield surface capturing the
compression and Rankine yield surface capturing the tensile regime of the concrete material. Thus, the compared MAFEM numerical
model is also based on a multi-surface plasticity approach and implemented within a 3D solid element-based software, making it
particularly relevant for our analysis. Secondly, Precon3D results also reported in [41] were used for comparisons with the currently
developed tool. Precon3D can also simulate the three-dimensional concrete material behaviour. Thirdly, the experimental results
reported in [58] were used for the purpose of validating our model’s accuracy in predicting the behaviour of real reinforced concrete
beams. We present the deformed shape of the beam element in Fig. 7, which is obtained by using an amplification factor for the
deflections to provide a graphical confirmation of the expected behaviour.

The load–deflection curves are depicted in Fig. 8, which shows that the developed model demonstrates a high level of accuracy
in capturing the initial stiffness of the material, closely mirroring the nonlinear response observed in the experimental study as well
as in the numerical studies in [41,58]. Fig. 8 also shows that mesh refinement did not have significant effect on the results and thus,
the adopted meshes can be deemed sufficient. The level of precision in the results confirms that the developed model is accurate in
simulating the behaviour of the reinforced concrete beam subjected to the four-point bending test. In Fig. 8, we have also shown
the results of the single surface model based on the 360 solid-element mesh. It can be verified that the increased tensile strength of
the single-surface model shown in the material test in Fig. 6 has very little influence on the results.
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Fig. 8. Force - mid-span displacement diagram of the beam.

Table 3
Material properties of the reinforced concrete column.

Material Properties Values Unit

Concrete Young modulus, 𝐸𝑐 25 000 MPa
Poisson ratio, 𝜈 0.18 –
Compression strength, 𝜎𝑐 30.61 MPa
Tensile strength, 𝜎𝑡 3.15 MPa
Strain at compression peak 0.0027 –
Strain at tensile peak 0.0002 –

Steel Young modulus, 𝐸𝑠 210 000 MPa
Yield strength (longitudinal), 𝜎𝑦 490 MPa
Yield strength (stirrups), 𝜎𝑦 206 MPa
Diameter of the longitudinal rebars 25 mm
Diameter of the stirrups 12 mm

Table 4
Parameters of the software for the column analysis.

Parameters Values Units

Onset ratio plastic flow 𝑘𝑜 in Eq. (112) 0.03 –
Slope linear potential surface 𝐵 in Eq. (118) −10.00 –
Controlled displacement location Mid-span –
Controlled displacement increment 0.1 mm
Number of solid elements for the concrete bulk 288|544 –
Number of beam-bar elements for the reinforcement 216|288 –

6.2. Eccentrically loaded column test

The second case study is the analysis of an eccentrically loaded reinforced column that was also investigated both experimentally
and numerically in [59]. The column is simply supported as shown in Fig. 9, which has a square cross-section of 300 mm by 300 mm
and a height of 2000 mm. It was reinforced with longitudinal bars and transverse stirrups. The compressive force was applied to
the concrete column at both ends with an eccentricity of 60 mm. By introducing the eccentric loading, the experimental set up
aims to induce bending moments alongside compressive internal forces, providing a combined case. The detail of the column’s
reinforcements is depicted in Fig. 9. The material properties of the column are provided in Table 3. The numerical model developed
for the column case study is constructed first by using a 4 × 4 element-mesh over the cross-section and 18-element mesh along the
span resulting with 288 solid elements for the concrete bulk. Considering the 50 mm cover on both sides, there are 4 × 16 =64 beam
elements used for the longitudinal rebars and 152 beam elements used for the stirrups. Alternatively, we have used a refined mesh
by further dividing the column span into 34 elements, resulting with a 544 solid-element mesh for the concrete bulk. Accordingly,
in the refined mesh, 128 beam elements used for the longitudinal bars and 288 beam elements were used for the stirrups. The
configuration of longitudinal bars and stirrups within the model is carefully aligned with the column’s set up, as detailed in Fig. 9,
ensuring that the numerical model replicates the physical experiment. The key analysis parameters are provided in Table 4.
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Fig. 9. Geometry, boundary conditions and loading of the column.

Fig. 10. Uni-axial stress-strain relationship of the column’s concrete material.

The stress–strain diagram of the concrete material used in the column analysis is depicted in Fig. 10, which is obtained under
uni-axial stress conditions. Alternatively, we have used a single surface concrete material model by removing the Rankine cut-off
surface in the plastic return process, whose uniaxial test is also shown in Fig. 10.

6.2.1. Results of the column analysis
The deformed shape of the finite element model of the RC column is presented in Fig. 11, which has been magnified by using

an amplification factor. The figure confirms that the bending behaviour is significant, which is a direct consequence of the applied
eccentric load. The asymmetry in the deflection profile is particularly noteworthy, as it suggests the influence of the eccentric load
in generating a non-uniform distribution of internal stresses and strains within the column. In examining the column’s response, we
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Fig. 11. Deformed shape of the column.

Fig. 12. Force - mid-span displacement diagram of the column.

have produced the force-midspan displacement diagram in Fig. 12, which provides a comparison between the experimental data and
the current numerical model. The experimental curve indicates a linearly elastic behaviour up to approximately 100 kN, followed
by a nonlinear response leading to a peak force near 2100 kN, before a gradual decrease in force indicating the progressive failure
of the column. The current model shows a similar initial linear trend, indicating an accurate representation of the details of the
column. However, the model predicts a slightly higher peak force, reaching this maximum at a smaller displacement in the model
compared to the experiment. Overall, the graphs align closely in terms of general characteristics of the column’s behaviour. It can
also be seen from Fig. 12 that the difference between the results of two alternative meshes are not significant. It should be noted
that the results without the viscous regularization depicts significant oscillatory behaviour beyond the peak strength. On the other
hand, viscous regularization completely suppresses the oscillations and for both meshes we have obtained smooth curves as shown
in Fig. 12. In Eqs. (99) and (100), we have used 𝜓 𝛥𝑡 = 1 which was decided after numerical experimentation. It should be noted
that overly large values can create significant damping influence and artificially increase the observed strength. Therefore, we have
tried to pick a 𝜓 𝛥 that is large enough to suppress the oscillations and small enough not to influence the strength. As also presented
in Fig. 12 the difference between the results based on multi-surface and single surface plasticity assumptions are not significant.

6.3. Laterally loaded shear-wall test

In the third case study, we apply cyclic load on a reinforced concrete slender shear-wall tested in [60] under cyclic load. The
analysed shear-wall has 1750 mm height, 700 mm width, and 100 mm thickness. The concrete cover is maintained at 10 mm. The
load application point is situated 1750 mm above the base, aligning with the experimental set up. A constant axial load of G = 287
kN is applied at the top of the shear-wall as shown in Fig. 13. The arrangement of longitudinal bars and stirrups within the model
precisely matches the configuration of the shear-wall, to make sure that the numerical analysis closely reflects the experimental test.
The reinforcement layout includes four Ø10 mm longitudinal bars at the wall’s boundaries and six Ø8 mm bars arranged in two layers
for vertical web reinforcement, supplemented by Ø5 mm bars spaced at 90 mm intervals for horizontal reinforcement. The vertical
reinforcement bars, classified as A630-420H, have a yield strength of 420 MPa, whereas the horizontal bars, identified as AT560-
500H, boast a yield strength of 500 MPa. The concrete utilized has a confirmed mean strength of 27.4 MPa. To capture the change
in the stiffness during unloading, we have included the damage component of the material. We have used isotropic only damage for
its ease of calibration while comparing our results with those of the experiment. The stress–strain diagram of the concrete material
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Fig. 13. Geometry, boundary conditions and loading of the shear-wall.

Table 5
Material properties of the reinforced concrete shear-wall.

Material Properties Values Unit

Concrete Young modulus, 𝐸𝑐 32 700 MPa
Poisson ratio, 𝜈 0.15 –
ConcreteCompressiveStress, 27.4 MPa
Tensile strength, 𝜎𝑡 3.0 MPa
Strain at compression peak 0.00275 –
Strain at tensile peak 0.0001 –

Steel Ø5 Young modulus, 𝐸𝑠 225 000 MPa
Yield strength, 𝜎𝑦 608.9 MPa

Steel Ø8 Young modulus, 𝐸𝑠 225 000 MPa
Yield strength, 𝜎𝑦 445.6 MPa

Steel Ø10 Young modulus, 𝐸𝑠 224 000 MPa
Yield strength, 𝜎𝑦 469.2 MPa

used in the shear-wall analysis is depicted in Fig. 14, which is obtained under uni-axial stress conditions. Additional properties for
the material modelling are provided in Table 5. Two alternative meshes were considered for the finite element modelling of the
shear-wall. The first model was built with 672 solid elements and 630 beam elements by dividing the cross-section into 4 × 8 = 32
mesh and using 21 elements along the height. In the second more refined mesh we have used 32 elements along the height which
resulted with 1024 solid elements and 784 beam elements for the total reinforcement. The essential solution parameters guiding
the numerical investigation, are provided in Table 6.

6.3.1. Results of the shear-wall analysis
The exaggerated deformed shape of the finite element model of the reinforced concrete shear-wall is depicted in Fig. 15. From

the examination of the cyclic force - displacement diagram in Fig. 16, it can be confirmed that the damage component of the material
model causes stiffness reduction within each cycle. The predicted behaviour of the shear-walls by the developed model can be seen
to generally agree well with the experimental results presented in [60]. It can be observed from Fig. 16 that the differences caused
by the single surface assumption and mesh refinement accumulate under cyclic loading and therefore, the differences are more
noticeable towards the later cycles.
24 



A. Torabizadeh et al. Finite Elements in Analysis & Design 242 (2024) 104271 
Table 6
Parameters of the software for the shear-wall analysis.

Parameters Values Units

Onset ratio plastic flow 𝑘𝑜 in Eq. (112) 0.2 –
Slope linear potential surface 𝐵 in Eq. (118) −12.5 –
Damage coefficient for compression 𝐶 in Eq. (121) 0.36 –
Damage coefficient for tension 𝐶 in Eq. (121) 0.16 –
Controlled displacement location Tip –
Controlled displacement increment 0.25 mm
Number of cycles 21 –
Number of solid elements for the concrete bulk 672|1024 –
Number of beam-bar elements for the reinforcement 630|784 –

Fig. 14. Uni-axial cyclic stress-strain relationship of the wall’s concrete material.

Fig. 15. Deformed shape of the shear-wall.

6.4. Cyclic column compression test

In our final case study, we have modelled a concentrically loaded reinforced column under cyclic loading to illustrate the effect
of anisotropic damage assumption. We have used the 1000 mm high, square column of 300 mm by 300 mm cross-section. We have
used Ø25 steel for the longitudinal rebars as well as the stirrups as shown in Fig. 17, whose properties are given in Table 7. However,
to illustrate the effect of anisotropic damage, we have also removed the confinement. The material properties of the column are
provided in Table 7. The numerical model developed for the column case study is constructed by using 275 solid elements and
84 beam elements for the longitudinal rebars, and when exist 88 beam elements for the stirrups. The key analysis parameters are
provided in Table 8.

We have used three alternative assumptions for the damage behaviour, namely; isotropic-only, anisotropic-only and anisotropic,
corresponding to 𝐶 values of 0.36|0|0.25 and 𝜔 values of 0|10 × 104|5 × 104 as given in Table 8, respectively. The last case referred to
as anisotropic is the combination of isotropic and anisotropic components calibrated by using 𝐶 = 0.25 and 𝜔 = 5 × 104. As shown in
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Fig. 16. Force - tip displacement diagram of the shear-wall.

Fig. 17. Geometry, boundary conditions and loading of the column.

Table 7
Material properties of the reinforced concrete column.

Material Properties Values Unit

Concrete Young modulus, 𝐸𝑐 32 700 MPa
Poisson ratio, 𝜈 0.15 –
ConcreteCompressiveStress, 27.4 MPa
Tensile strength, 𝜎𝑡 3.0 MPa
Strain at compression peak 0.00275 –

Steel Ø25 Young modulus, 𝐸𝑠 210 000 MPa
Yield strength, 𝜎𝑦 490 MPa

Fig. 18, all three material models were intended to have almost identical behaviour under uni-axial stress–strain test and calibrated
accordingly.

6.4.1. Results of the cyclic column analysis
The deformed shape of the finite element model of the RC column is presented in Fig. 19, which has been magnified by

using an amplification factor. The figure confirms that the loading is only axial. In examining the column’s response, we have
produced the force-midspan displacement diagram in Fig. 20 for both confined and unconfined models. It can be verified from
Fig. 20 that during unloading the slopes of the confined model differ more significantly between isotropic-only, anisotropic-only
and (combined) anisotropic damage assumptions, which approximately correspond to, 2.6 × 103 kN/mm, 1.5 × 103 kN/mm and
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Table 8
Parameters of the software for the column analysis.

Parameters Values Units

Onset ratio plastic flow 𝑘𝑜 in Eq. (112) 0.2 –
Slope linear potential surface 𝐵 in Eq. (118) −12.5 –
Isotropic damage coefficient 𝐶 in Eq. (121) 0.36|0|0.25 –
Anisotropic damage coefficient 𝜔 in Eq. (32) 0|10 × 104|5 × 104 –
Controlled displacement location Tip –
Controlled displacement increment 0.05 mm
Number of cycles 3 –
Number of solid elements for the concrete bulk 160 –
Number of elements for the axial reinforcement 40 –
Number of beam elements for the stirrups 88 –
Number of beam elements for the ties 22 –

Fig. 18. Uni-axial stress-strain relationship of the column’s concrete material.

Fig. 19. Deformed shape of the column.

2.2 × 103 kN/mm, respectively. For the unconfined test the slopes of the isotropic-only, anisotropic-only and (combined) anisotropic
damage assumptions, can be calculated from Fig. 20 as 1.82 × 103 kN/mm, 1.6 × 103 kN/mm and 1.7 × 103 kN/mm, respectively.
From the identified numbers, it can be verified that between isotropic only and anisotropic only assumptions the ratio of the slopes
is 2.6∕1.5 = 1.72 is for the confined column, whereas the same comparison provides the ratio of 1.82∕1.6 = 1.14 for the unconfined
column. As the calibrations were made based on the uni-axial material test it is expected for different damage assumptions to agree
for the unconfined case. It is however, interesting to note that when confinement is increased the predictions of different damage
assumptions start to differ more significantly.

7. Conclusions

We have developed a novel Elastic-Plastic-Anisotropic-Damage material model where the evolution of both the isotropic and
anisotropic components of the damage are completely based on accumulated plastic strains. In the case of plastic evolution during
loading, the procedure assures complete independence of the plastic return operations from the damage update. On the other hand,
in the case of elastic unloading, the damage component of the strain can be obtained directly from the total strain and a matrix of
damage evolution. We have adopted the novel Elastic-Plastic-Anisotropic-Damage material to model the three-dimensional behaviour
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Fig. 20. Force - tip axial displacement diagram of the column.

of the concrete material. For this purpose, we have used multi-surface non-associative plasticity. The pressure-sensitive concrete
material model is based on the Menetrey–Willam criterion for the dominant compression stresses and the Rankine criterion for
dominant tension stresses. Effects of the loading history can be reflected by the hardening/softening and damage variables of the
model, which are conveniently updated after convergence. Calibration parameters of the material model conveniently depend only
on the uni-axial stress–strain relationship. As a result, the concrete material behaviour is determined by the elementary material
parameters i.e., Elasticity modulus, Poisson’s ratio, maximal uni-axial tensile and compression stresses and the plastic stress limit. A
simple linear potential function was adopted which depends only on one calibration parameter. We have identified that the linear
potential surface provides efficiency in terms of the computational procedure as the Hessian matrix vanishes and tangent modulus
is easier to calculate. The developed concrete material model was successfully integrated in the developed in-house fortran finite
element software and was applied for the analysis of a reinforced beam, column and shear-wall. Monotonic as well as cyclic loading
cases were included in the case studies. The results based on the developed methodology has generally provided very good agreement
with physical experiments as well as numerical results from the literature. The case studies have shown that the ultimate strength
and deformation capacity of various structural components can be captured, which verifies the suitability of the developed tool for
the capacity analysis of reinforced concrete structures under various conditions. We have also demonstrated the method’s numerical
performance by running mesh refinement tests on the case studies. Furthermore, we have introduced a viscous regularization strategy
to provide numerical stability when oscillatory behaviour is observed due to material softening. The effect of anisotropic damage
assumption as opposed to isotropic only damage assumption was also illustrated on a column cyclic test, which was shown to have
influence on the slopes of the load deflection curves during unloading depending on the confinement of the column.
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