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Abstract: This work investigates the impact of rainfall on cellular communication links,
leveraging smartphone-collected measurements. While existing studies primarily focus on
line-of-sight (LoS) microwave propagation environments, this work explores the impact of
rainfall on typical signal metrics over cellular links when the LoS path is not guaranteed.
We examine both small-scale and large-scale variations in signal measurements across dry
and rainy days, considering diverse locations and time windows. Through statistical and
spectral analysis of a large dataset, we uncover novel insights into how rainfall influences
cellular communication links. Specifically, we observe a consistent daily fluctuation pattern
in key cellular metrics, such as the reference signal received quality. Additionally, spectral
features of key mobile metrics show noticeable changes during rainfall events. These
findings, consistent across three distinct locations, highlight the significant impact of
rainfall on everyday cellular links. They also suggest that the widely available by-product
signals from mobile phones could be leveraged for innovative rainfall-sensing applications.
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1. Introduction
Environmental changes, particularly meteorological disasters, significantly impact

human safety, infrastructure, and ecosystems. Timely and accurate monitoring is essential
for effective disaster management and damage mitigation. Environmental sensing plays a
key role in this process, covering areas such as pollution, barometric pressure, and water
level monitoring. Among these, rainfall monitoring is crucial for minimizing rainstorm
damage and supporting agriculture by providing actionable insights.

Traditional rainfall detection methods rely on physical devices to collect and calculate
precipitation rates but often require frequent maintenance and calibration, limiting their
reliability and scalability [1–3]. In recent years, leveraging ubiquitous communication
links for rainfall monitoring has emerged as a promising research area. The variation in
atmospheric conditions [4] can impact signal characteristics [5]. Raindrops, as a type of
atmospheric particles, attenuate signal strength during signal propagation. The relationship
between signal attenuation A (in dB) and rainfall is expressed as A = aRbL, where a and b
are related to the signal frequency, polarization state, and the drop size distribution of the
rain; R is the rainfall rate (in mm/h); and L is the path length (in km) [6]. The International
Telecommunication Union provides standardized parameter values to calculate rainfall
attenuation under different wireless configurations [7]. This attenuation effect allows base
stations (BSs) to function as virtual sensors for rainfall monitoring [8]. Exploiting the
interaction between wireless signals and environmental factors provides a cost-effective
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and sustainable approach, as it leverages existing infrastructure. The viability of commer-
cial microwave links (CMLs) for extended, widespread operational rainfall monitoring
purposes has been demonstrated [9]. Both model-based and data-driven methods for rain-
fall estimation using CML data have been comprehensively reviewed [10]. Furthermore,
studies have highlighted the accuracy, algorithms, and results of precipitation monitoring
based on CML signal levels [11–13].

However, acquiring CML data from BSs is often challenging. In many cases, access to
such data requires collaboration with local network operators. Moreover, the widespread
deployment of underground fiber-optic cables for inter-tower communication poses ad-
ditional challenges for obtaining CML data, even for network operators [14]. In contrast,
wireless communication links between user terminals and BSs are much more available
nowadays. Key signal indicators, such as reference signal received power (RSRP), received
signal strength indicator (RSSI), and reference signal received quality (RSRQ), are readily
available on mobile devices, as defined by cellular standards. Compared with CML data,
user terminal data can primarily provide measurements of the received signal. Research on
leveraging the above signal data collected from user devices for weather sensing is signifi-
cantly less explored. Investigations of the effect of rainfall on the above signal data collected
by user terminals are summarized in Table 1. For instance, the daily average RSSI values of
2G links decrease during rainfall events [15], while another study observed that average
RSSI values vary with rain intensity [16]. However, the predicted RSSI degradation during
rain is not always evident in practice, with occasional instances showing no significant
change [15]. An inverse relationship between rainfall and RSRP is observed under a line-
of-sight (LoS) scenario in the 3.5 GHz citizens broadband radio service (CBRS) [17]. Most
studies relying on smartphone-measured signals require locations with direct sight paths
between BSs and data collection points to ensure LoS conditions, limiting their applicability
for broader rainfall-sensing implementations.

In this work, we investigate the impact of rainfall on key mobile signal metrics under
realistic non-line-of-sight (NLoS) scenarios, which are more common in urban and suburban
environments. At the current stage, although 5G is rapidly developing, the primary network
coverage in Australia remains LTE [18]. In addition, 5G network coverage in some areas
might still be patchy and inconsistent. To ensure the generalizability and reliability of
our research, we have chosen to conduct this phase of the study under the LTE network
coverage that is more uniformly established across the region. We conduct measurements
of LTE signal indicators (RSRP, RSSI, RSRQ, and SNR) at three different locations under
NLoS conditions. Both small-scale and large-scale variations are analyzed during dry and
rainy days. Our findings reveal that daily patterns in LTE signal indicators are evident on
dry days. By employing spectrum analysis techniques, we find that rainy days display
increased power at lower frequencies for both RSSI and SNR measurements compared to
dry days.

The remainder of this paper is organized as follows: Section 2 introduces the physical-
layer basics and performance metrics of LTE BSs. Section 3 details the experimental setup
and data collection process, followed by data pre-processing in Section 4. The data-driven
results are presented in Section 5, with a comparison to previous work and discussion on
future directions in Section 6. Finally, Section 7 concludes the findings.
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Table 1. Research investigating the impact of rainfall on signal data collected by the user terminal.

Reference Signal
Frequency

Distance
Between BS and
User Terminal

Signal Features Insights

[19]
3G (2100 MHz)
WiFi (2.4 GHz,
5 GHz)

a few meters (LoS) received signal
level (RSL)

Measurements with 5 GHz WiFi signals
have more potential to detect regional
heavy rainfall.

[20]
GSM (1.8 GHz) 400 m received signal

strength
Traditional rain attenuation models
have largely discounted the impact of
precipitation on GSM signals.

[21]
GSM (800 MHz–
3 GHz)
GPS

- received signal
strength

The decision tree model infers there is
rain when signal strength is quite low.

[15]

2G - RSSI The average of RSSI in the rain is lower
than the average in the whole day,
but such decrease is not as significant as
expected from the theoretical analysis.

[22]
LTE 200 m received signal

strength
The hourly average received signal
level in rain is lower than that in no-
rain cases.

[16]

LTE 200 m (LoS) RSL The mean and variance of the prob-
ability density distributions in differ-
ent rain conditions are different but
not enough to distinguish different
rain intensities.

[23]
LTE - RSRP, RSL, Signal-

to-Noise Ratio
(SNR), RSRQ, Cell
ID

The separation of different rainfall
classes is not linear on signal data and
cell selection-related parameters.

[14]

LTE - proportions of
RSRP

Changes to the proportion of the weak
coverage samples could be impacted by
the propagation losses including rain-
fall influence attenuation.

[24] lower than
10 GHz

- RXL, RSRP, RSRQ,
SNR, quality

There is a strong correlation between
RXL and rainfall level (−0.78).

[25]

LTE (2630 MHz) 228 m (LoS) RSSI The precipitation induces a decline in
signal power, and the signal power
does not increase immediately after the
rain stops.

[17]

CBRS private
LTE network
(3560 MHz,
3640 MHz)

distance not men-
tioned (LoS)

RSRP There is an inverse relationship be-
tween rainfall and hourly sampled
RSRP upon the least squares regression
analysis based on signal data during
two rain events.

2. Basics of BS Information and LTE Performance Metrics
This section introduces the fundamentals of LTE physical-layer signals, which are

crucial for identifying the BS from which the signal is transmitted. Additionally, we will
cover the key performance metrics that assess the quality and strength of the received LTE
signal, which will be utilized in the rainfall sensing study presented in this work.
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2.1. BS-Related LTE Physical-Layer Basics

A public land mobile network (PLMN) [26] is a network that uses Earth-based BSs
to provide mobile communication services to terrestrial subscribers. It is identified by the
combination of a mobile country code (MCC), which represents a country or geographic
area, and a mobile network code (MNC), which is unique to each operator. The PLMN’s
structure and communication framework are critical for identifying and utilizing the signal
data transmitted by the LTE network. The LTE network is organized into tracking areas to
optimize mobility management and resource allocation. A tracking area is a logical region
that allows a user to move within it without notifying the network. Each tracking area
contains multiple BSs, which cooperate to manage the user equipment within the area.
The tracking area code (TAC) uniquely identifies each tracking area, and understanding its
distribution is important for interpreting signal data from different locations, particularly
when assessing the impact of rainfall on signal quality.

The evolved Node B (eNodeB) is the base station in the LTE network, each of which is
assigned a unique eNodeB ID. A single eNodeB typically covers several cells, and each cell
is identified by a cell ID. The physical Cell ID (PCI) is used as a physical-layer identifier for
a cell, enabling user equipment to decode the transmitted data. The knowledge of which
eNodeB and cell a user terminal is connected to is crucial for correlating changes in signal
quality to environmental factors (e.g., rainfall). When a smartphone moves between cells,
the PCI value changes, and these transitions can be tracked to detect variations in signal
parameters caused by weather conditions.

2.2. LTE Performance Metrics

After identifying a cell, the user terminal calculates performance metrics to facilitate
communications. A few signal strength and quality parameters for an LTE network,
as calculated in a mobile terminal, are briefly illustrated below. These metrics will be used
in this work to investigate the impact of rainfall on LTE signal quality.

(1) RSRP indicates the power level of the LTE reference signals. It is generally calcu-
lated by averaging the power of reference signals in a downlink frame [27]. In a
frequency-division duplexing LTE system, one downlink frame consists of ten sub-
frames, and each subframe contains two time slots with seven symbols. The cell-
specific reference signals are placed in symbols indexed at 0, 4, 7, and 11 in each
subframe. These reference signals are distributed across subcarriers, with every sixth
subcarrier carrying a reference signal. The placement of these signals depends on the
physical cell ID.

(2) RSSI measures the total average signal power, including both reference symbols and
other co-channel interferences. Thus, RSSI is the sum of RSRP and any additional
interference present in the channel. While RSRP focuses on the reference signals, RSSI
provides a broader measure of the overall received signal strength.

(3) RSRQ reflects the quality of the reference signals. It jointly considers RSRP, RSSI, and
the number of resource blocks (N) over the same bandwidth for measuring RSRP and
RSSI. The relationship between these parameters is given by [27]

RSRQ = (N × RSRP)/RSSI

RSRQ(dB) = RSRP(dBm)− RSSI(dBm) + 10 × log10N
(1)

Specifically, RSRP and RSRQ are calculated by LTE user terminals and reported to the
BS, acting as the criteria for the cell selection and handover algorithm [28].

(4) SNR is a metric used to indicate the quality of the received signal. It is defined as
the linear average over the power contribution of the resource elements carrying



Sensors 2025, 25, 375 5 of 23

cell-specific reference signals divided by the noise power. The noise power could be
estimated by the sum of the average linear power values of signals transmitted by
non-target BS over the OFDM symbols carrying cell-specific reference signals [29].
A higher SNR indicates better signal quality, while a lower SNR suggests greater
interference or attenuation.

In this work, these LTE performance metrics, including RSRP, RSSI, RSRQ, and SNR,
will be analyzed to determine how rainfall affects signal quality and whether they can be
used as reliable indicators for rainfall sensing.

3. Experimental Setup and Data Collection
This section outlines the methodologies and procedures implemented in our study to

ensure robust data collection and analysis. The experimental setup is designed to system-
atically investigate the relationship between LTE signal performance and environmental
conditions. We will detail the equipment used, the data collection methods, and the selected
measurement locations for our experiments.

3.1. Experimental Setup

Measurement Locations and Setup. Three different measurement locations were
selected for data collection to investigate the impacts of deployment environments on
mobile signal-based rainfall sensing. For each location, the signal data are captured by
smartphones. The mobile terminal used in our experiments is the Nokia X20 [30]. To miti-
gate the effects of phone motion on signal measurements, the smartphone is kept stationary
at a fixed location during the data collection process. The same device is used for the entire
duration of the experiment to maintain consistency in the collected data.

Signal Parameter Collection. Several mobile applications are available for measuring
LTE power metrics. Among them, G-Mon is the most widely used application for capturing
signal indicators [16,23,24]. G-MoN Pro [31] is used to achieve the extraction and saving
of signal measurements such as RSRP, RSSI, RSRQ, SNR, and other LTE metrics from the
serving BS since G-Mon is more suitable for the relatively old Andriod version. While
signal parameters from neighboring cells can be viewed on the screen, they cannot be saved
to files. The mobile application is configured to store each set of signal metrics along with a
timestamp at fixed intervals as Figure 1a, ensuring that the signal data are closely aligned
with the weather data.

Signal DataUser 
Terminal

LTE Base Station

Weather Station

Data Request

Data Return

Ecowitt Weather 
Server

Weather Data

(a) (b)

Figure 1. Experiment setup: (a) Signal data collection and transfer. (b) Weather data collection
and transfer.
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Ground Truth. Ground truth weather data are obtained from publicly accessible
weather stations shared on the Ecowitt platform [32]. Thanks to the widespread deployment
of Ecowitt Internet of Things (IoT) weather stations, we are able to locate stations near our
experimental sites. This allowed us to acquire rainfall data for each mobile terminal used
in our study, with a time resolution as fine as 5 min, as provided by Ecowitt’s weather data
shown in Figure 1b.

3.2. Data Collection

The data collection is carried out across three locations in Sydney, Australia, each
presenting distinct propagation environments. The experiment is conducted during the
frequent rainfall season from November 2023 to March 2024 [33]. Table 2 summarizes
the data collection conditions and results. The first experiment’s location is on the third
floor of a townhouse, where the mobile phone is put on the red desk shown in Figure 2a.
The second experiment’s location is in the yard of the same townhouse, with the phone tied
to a tree inside a plastic bag, as illustrated in Figure 2b. The third location is inside a typical
house with the collecting mobile phone placed on a table. These diverse environments
facilitate the investigations of how indoor and outdoor conditions affect mobile signal-
based rainfall sensing. They also help assess the robustness of our method in varying
scenarios with different mobile network configurations.

(a) (b)

Figure 2. Signal data collection locations: (a) Signal data collection location 1. (b) Signal data
collection location 2.

Table 2. Datasets for signal measurements at different locations.

Dataset Sample Interval (s) Indoor/Outdoor Collection Time Number of
Samples

1 5 Indoor 24 October 2023–20
March 2024 1,813,140

2 5 Outdoor 22 March 2024–25
June 2024 798,717

3 30 Indoor 28 March 2024–5
April 2024 20,319
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The signal data collection location, weather station location, and the location of cells
that the mobile terminal is most frequently connected to are shown in Figure 3. The lon-
gitude and latitude coordinates for the signal collection sites and weather stations are
recorded, while the cell locations can be identified using Opencellid [34], based on the
cell ID, MCC, MNC, and LAC (TAC). The distances between the weather stations and the
signal data collection locations are small enough to ensure that rainfall intensity in the
surrounding area is accurately captured.

33°53'10"S

33°53'05"S

L
a

ti
tu

d
e

151°11'45"E 151°11'50"E

Longitude

196.98m

211.12m

195.83m

181.08m

Esri, HERE, Garmin, USGS

 200 ft 

 50 m 

Location1

Location2

Weather Station

LTE Base Station

33°47'40"S

33°47'30"S

33°47'20"S

L
a

ti
tu

d
e

151°05'30"E 151°06'E

Longitude

70.74m

392.27m

Esri, HERE, Garmin, USGS

 1000 ft 

 200 m 

Location3

Weather Station

LTE Base Station

(a) (b)

Figure 3. Locations for data collection: (a) locations for Dataset1 and Dataset2; (b) location
for Dataset3.

In this work, the signal data are collected where an LoS path between the cell and
the smartphone is not guaranteed. This differs from most existing papers investigating
the relationship between signal data and weather based on the LoS propagation path
between BS and a mobile terminal. In these studies, maintaining an LoS path is generally
considered, but in practice, this can be quite challenging. Here, we adopt visual inspection
and ray-tracing simulation to confirm that there is no direct path between the cell and
the data collection location. The experimental location 1, as noted in Table 2, is selected
as an example. The surrounding environment for data collection is shown in Figure 4a.
We could not see the BS. A ray-tracing simulation is performed in MATLAB R2024a with
map and building files of experimental locations, as obtained from OpenStreetMap [35].
The simulation allows us to visualize the microwave propagation between the cell and the
user terminal. The red marker represents the BS while the blue marker represents UE in
Figure 4b,c. By configuring the simulation to ignore reflected paths, we can check for the
existence of an LoS between the BS and the user terminal. As shown in Figure 4b, there
is no LoS path between the BS (indicated in red) and signal data location 1 (indicated in
blue). Furthermore, when the simulation is configured to account for additional reflected
paths, we can observe the effects of path loss and signal degradation. Figure 4c illustrates
one reflected path in experimental location 1, when the maximum number of reflections is
set to two.

One of the raw signal data snippets is shown in Table 3, after removing columns with
invalid values or data that are irrelevant here. The table displays the key signal power
metrics, as detailed in Section 2. The column labeled ’BAND’ indicates the frequency bands
used for telecommunications. For example, ‘2600 B7’ refers to the uplink frequency range of
2500–2570 MHz and the downlink frequency range of 2620–2690 MHz. The ‘BANDWIDTH’
column represents the channel bandwidth, which defines the range of frequencies allowed
to pass through the channel. Finally, ‘LAT’ and ’LON’ refer to the latitude and longitude
coordinates of the device location, respectively.
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(a) (b) (c)

Figure 4. Radio propagation environment between cell and user terminal: (a) Cannot see the cell
through visual inspection. (b) No LoS path was found in the radio propagation simulation. (c) The
reflected path was found in the radio propagation simulation.

Table 3. A snippet of the cellular signal measurements.

PLMN XCI xNBID LOCAL_CID LAC_TAC

50,502 20,781,625 81,178 57 52,010

50,502 20,781,625 81,178 57 52,010

50,502 20,781,625 81,178 57 52,010

BAND RSSI RSRP_RSCP RSRQ_ECIO SNR LAT

2600 B7 −67 −101 −13 13 −33.886251

2600 B7 −67 −101 −13 13 −33.886251

2600 B7 −67 −101 −13 13 −33.886251

LON BANDWIDTH CA NR_STATE DATE TIME

151.195737 20,000 1 none 23 March 2024 10:02:56

151.195737 20,000 1 none 23 March 2024 10:03:01

151.195737 20,000 1 none 23 March 2024 10:03:06

Specifically, several important notes are outlined below. First, non-standalone 5G is
primarily used in Australia at the time of writing, which means 4G base stations may also
support 5G. To maintain consistency in our study, we have restricted the data collection
to 4G, as the network configuration, such as the power management strategy and the
advanced technology, might differ for non-standalone 5G and LTE. In the G-Mon Pro-
captured data, the ‘NR_STATE’ field can be used to filter out any 5G NR data. Second, cell
handovers may occur even when the mobile terminal remains stationary at the experimental
location. The ‘LOCLA_CID’ field, as shown in Table 3, can be used to categorize data entries
according to the connected cell.

4. Signal Pre-Processing
In this section, we introduce the signal pre-processing methods employed in this work

to better prepare the captured data for proceeding analysis.
The first step is cell separation. As mentioned in Section 3.2, different cells can be

recorded even when the mobile terminal is stationary. Therefore, it is necessary to group
the captured data entries by their associated cells and select the primary cell to which the
mobile terminal is most frequently connected. As shown in Table 3, the fields ’XCI’ and
’LOCAL_CID’ are used to identify and categorize the data entries under different cells.
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From the data collected at the three locations described in Section 3, we can identify the
main cell at each location. The results of this cell identification process are summarized
in Table 4.

Table 4. Main cell information for each dataset.

Dataset Main Cell
ID

Sample
Number Band Bandwidth

(MHz)

Distance to
User

Terminal (m)

1 20781625 1,339,744 2600 MHz B7 20 195.83
2 20781625 751,792 2600 MHz B7 20 181.08
3 135148290 9450 1800 MHz B3 15 392.27

For data entries associated with each cell, we begin by performing data cleansing,
which includes removing duplicate entries and interpolating missing values to ensure that
measurements are aligned to consistent time intervals. Typically, the start and end times of
the exported signal data file correspond to the moments when the control button on the
screen is pressed to initiate and terminate recording. However, there are instances where
the record does not end properly after the stop button is pressed. Consequently, only the
measurements from the most recent file are retained for analysis. Records containing ‘nan’
values for all signal measurements are excluded.

Since mobile data and weather data have different temporal resolutions, time synchro-
nization and alignment are necessary. The weather data resolution is limited to five-minute
intervals, as provided by the open database used [32], which is significantly lower than
the temporal resolution of the mobile data. To address this, interpolation is applied to
match the timestamps of the two datasets. Specifically, the values from the nearest avail-
able timestamp are used to fill in any missing mobile data. The Modified Akima Cubic
Hermite interpolation method [36] is then used to estimate the precipitation rate for each
corresponding mobile data entry. This interpolation is implemented using the ‘makima’
method of the ‘interp1’ function in MATLAB. Additionally, any interpolated precipitation
values that result in negative values are set to zero, ensuring that the data remain valid.

5. Data-Driven Analysis
In this section, we examine the impact of rainfall on the pre-processed mobile signal

metrics. Specifically, we explore the variations in signal measurements during dry periods,
analyzing both small- and large-scale fluctuations, as detailed in Section 5.1. Following this,
Section 5.2 analyzes the impact of rainfall on LTE signal indicators, focusing on standard
deviation and frequency.

5.1. Variations in Measurements During Dry Period

Before analyzing rain’s impact on mobile signals, it is important to understand how
the signals behave during dry periods, without the influence of rain. To achieve this, we
examine signal features within both short- and long-term windows, referred to as small- and
large-scale windows, respectively. Specifically, small-scale analysis focuses on variations
within an hour, while large-scale analysis investigates variations over several days.

5.1.1. Small-Scale Signal Features in Dry Days

The minimum sample interval is one second in the mobile application. A one-hour
continuous time window is selected to inspect the small-scale signal variations, as shown
in Figure 5.

Figure 5 shows significant fluctuations in signal measurements throughout the du-
ration of an hour. We see consistent signal variations on the second level, which is less
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likely to be caused by environmental factors to be sensed. Such variations hence need to be
suppressed or mitigated for accurate environmental sensing.
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Figure 5. One−hour signal measurements in Dataset1.

Environmental factors, like temperature and humidity, might influence signal mea-
surements. To investigate this, Dataset2, collected outdoors, is selected for analysis. At the
same time as mobile signal metrics are collected, temperature and humidity measurements
collected outdoors are recorded. Specifically, the time period from 1 a.m. to 2 a.m. is chosen
due to less human activity near the data collection devices. Figure 6 presents one hour of
signal measurement samples alongside matched temperature and relative humidity data
during dry conditions. The signal measurements fluctuate much more frequently than the
changes in temperature and relative humidity. Temperature only varies by 0.3 degrees
while remaining constant in relative humidity. Notably, signal measurements continue to
vary even when temperature and humidity remain stable from 1:20 a.m. to 1:40 a.m. This
is consistent with the indoor experiment, where fluctuations in the RSSI occur without
interference or disturbance [37].
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Figure 6. Signal measurements within an hour during the dry period in Dataset2.
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Figure 7 presents examples of signal samples from a one-hour dry period for the other
two datasets. It is evident that fluctuations in RSSI measurements are more than those in
RSRP measurements in Dataset1, as shown in Figure 7a, which aligns with findings from a
previous study [17]. Additionally, Dataset3 exhibits fewer oscillations in Figure 7b, likely
due to its larger sampling interval compared to the other two datasets.
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Figure 7. Signal measurements taken within one hour during dry period: (a) signal measurements in
Dataset1. (b) signal measurements in Dataset3.

The results illustrated above indicate that small-scale signal fluctuations exist even in
dry conditions. Such fluctuations should be suppressed or mitigated to avoid interfering
with rainfall sensing. Processing methods that mitigate non-weather-related variations,
such as averaging measurements within a specified time window [16,23] and employing
moving averages [25], have been utilized in previous studies. The moving average typically
employs a time window of several minutes, using overlapping samples to compute aver-
aged signal parameters from neighboring data points. In contrast, the averaging method
utilizes non-overlapping time windows, usually with a duration of one hour. In this work,
the average method among non-overlapping time windows has been employed.

5.1.2. Variations at a Large Scale

To investigate large-scale variations, it is critical to mitigate small-scale fluctuations.
In this study, a one-hour averaging method is employed. To further smooth the fluctua-
tions and highlight the overall trend from a broader perspective, a low-pass filter with a
normalized bandwidth of 0.3 is adopted. The lowpass filter uses a minimum-order filter
with a stopband attenuation of 60 dB and compensates for the delay introduced by the
filter. Using this narrower bandwidth facilitates better visualization of long-term trends in
the data. It is important to note that this filtering process is intended solely for enhancing
the visualization of the overall trend; the spectrum analysis is conducted on the averaged
data, not the filtered data. Specifically, the Fourier transform F of L-length hourly average
measurement sequence x(t) is utilized, and the Power Spectral Density (PSD) estimate
P( f ), calculated by Equation (2), is employed to analyze the distribution of power across
different frequency components.

P( f ) =
2|F (x(t))|2

fsL
(2)

The sample interval for hourly average measurements is set to one hour, corresponding
to a sampling frequency fs of 1/3600 Hz. For simplicity, the frequency unit is defined as



Sensors 2025, 25, 375 12 of 23

1/3600 Hz. If a pattern occurs every 24 h, it should be represented as a strong power at
1/24 (×1/3600) Hz when using data with an interval of an hour. Figure 8 displays the
raw signal measurements, hourly average measurements, filtered smooth data, as well
as temperature and relative humidity data, along with the PSD estimate for the hourly
average signal measurements.
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Figure 8. Signal measurements during dry periods in Dataset2: (a) 11–15 April. (b) 18–20 May.

Hourly averaged RSRP and RSSI values consistently drop after midnight each day
and increase in the morning, except April 14th, when the values remain stable until noon,
contrasting with the variations observed at other times. It is evident that the PSDs show
localized peaks around 0.0417 (≈1/24) for the one-hour sample interval of RSRP, RSSI, and
RSRQ. The higher power at this frequency component further confirms the presence of the
daily fluctuation pattern. According to the previous study, temperature does not have a
direct impact on LTE RSRP, while relative humidity has a stronger negative impact on LTE
RSRP [17]. However, these daily fluctuations do not demonstrate an inverse relationship
with relative humidity, suggesting that the observed daily changes may not be caused by
temperature or relative humidity. A similar daily pattern can also be seen in the hourly
averaged measurements and PSD for hourly average signal measurements in Datasets 1
and 3, as shown in Figure 9.
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Figure 9. Signal measurements during dry periods: (a) 3–6 March in Dataset1. (b) 31 March–1 April
in Dataset3.

The PSDs for the four signal quality and strength metrics show a declining trend at
higher frequencies. The SNR PSD estimate in Dataset1 does not have a peak at 0.0417
(×1/3600) Hz while the RSRP PSD estimate in Dataset3 does not show this peak. Since
the datasets are collected at different locations and on different dates, the observed daily
pattern in signal measurements is not a unique phenomenon. This may be attributed
to adjustments in signal transmission power from the LTE BS or variations in network
congestion at different times.

When analyzing the impact of rainfall on signal measurements at a large scale, it is
important to separate the daily pattern from the effects of rainfall. To mitigate repetitive
effects, the entire day is divided into four non-overlapping time windows [15]. However,
based on the collected data in this study, the timing and magnitude of drops and increases



Sensors 2025, 25, 375 14 of 23

in value vary from day to day. Typically, values begin to decline between 5 p.m. and 7 p.m.,
and then generally stop declining, starting to rise again between 5 a.m. and 7 a.m.

5.2. Rainfall Impact on Signal Measurements

Given the daily pattern observed in the signal measurements in Section 5.1.2, the aver-
age value is not an appropriate evaluation metric for investigating the relationship between
rainfall and signal measurements. This is because any decrease in the average could re-
sult from rainfall, the daily pattern, or a combination of both. Variance remains a viable
metric to explore, as rainfall intuitively induces greater diversities in signal fluctuations,
expecting to vary signal variance. This section analyzes rainfall’s influence on signal mea-
surements through standard deviation (SD). Additionally, the effects of rainfall on signal
measurements are examined through spectral time series analysis.

5.2.1. Standard Deviation for the Different Weather

To investigate signal features on rainy days, we begin by analyzing the SDs of RSSI,
RSRP, RSRQ, and SNR. However, this requires aligning the captured data based on time.

Although the sample interval can be set manually to a fixed number, the actual sample
interval may differ from this setting. This non-uniform sampling must be addressed before
calculating the SD. There are two primary reasons for the variation in sample intervals.
First, non-uniform sampling may arise from the device or application control. In this case,
the phone maintains a connection with the same cell, but the sample interval deviates from
the manual setting. Second, the switching of connected cells can interrupt data recording
from the main serving cell. However, this non-uniformity constitutes a small portion of the
overall dataset. For example, in Dataset1, over 94.37% of the sample intervals match the
manual setting after selecting the signal data from the main serving cell. Of the remaining
intervals, 5.48% of interval values deviate from the manual setting due to device control
issues, while only 0.15% of deviations correspond to cell switching, resulting in intervals
longer than the set value. Notably, more than 99% of the longer intervals caused by device
control issues are less than one minute, and approximately 98% of the intervals resulting
from cell switching are also less than one minute. In total, over 99.9% intervals are less than
one minute.

To address the non-uniform sampling, we first calculate the average measurement for
one-minute intervals, which also helps mitigate fluctuations at the seconds level. Then,
we apply linear interpolation to estimate any missing values within these one-minute
intervals, provided the missing duration is less than two minutes. Next, we compute
the SD over a five-minute time window using these one-minute average measurements.
If any missing values occur within the time window, that window is excluded from the SD
calculation. The SD values are further categorized into dry and rainy classes based on the
mean precipitation rate. Specifically, when the mean precipitation rate equals zero, the data
are labeled as dry; otherwise, they are labeled as rainy. The SD histograms, along with the
Probability Density Function (PDF) and the normal fit of the SD for dry and rainy periods
during rainy days across different datasets, are presented in Figure 10.

From Figure 10, we can see that there is no significant difference in signal SD between
rainy time and dry time. The distribution of the normal fit for different signal metrics under
different weather conditions looks quite similar. The signal SDs during rainy periods are
not larger than those during dry periods, similar to findings from an indoor experimental
study [38]. Even during dry periods, there are notable fluctuations in signal measurements
within an hour, as discussed in Section 5.1.1. The PDF distributions for the SD in rainy
and dry conditions are almost the same across all datasets. This observation suggests



Sensors 2025, 25, 375 15 of 23

the limitations of using SD alone to assess the impact of rainfall on signal measurements,
especially in complex microwave propagation environments like indoor locations.

(a)

(b)

(c)

Figure 10. SD statistic for signal measurements: (a) Histograms and PDFs for the SD for
13–14 December in Dataset1. (b) Histograms and PDFs for the SD for 4–6 April in Dataset2.
(c) Histograms and PDFs for the SD for 4–6 April in Dataset3.
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5.2.2. Frequency Difference for the Different Weather

In Section 5.1, a daily variation pattern is observed. The uncertainties regarding when
values change, and the extent of these changes complicate the estimation of variations and
the separation of rain-induced fluctuations from those caused by other factors. Treating
rainfall as an abnormal weather condition might disrupt the long-term pattern of signal
measurements, potentially introducing more frequency components, which would be
reflected as increased power at some frequencies in the PSD spectrum. Thus, the frequency
domain has been utilized to analyze the impact of rainfall on signal measurements.

To facilitate a comparison of the PSD during rainy and dry periods, we apply the
Fourier transform to an equal number of samples, 48 (2 days), from different weather
conditions. The PSD is normalized by dividing the total power across all frequencies
and converting the result to decibels unit. Two examples of signal measurements for dry
days, along with their normalized power spectral density (NPSD) spectra, are presented
in Figure 11. The NPSDs exhibit a tailing trend; generally, higher frequencies correspond
to lower power levels. This drop is more pronounced in RSSI and RSRP measurements
compared to RSRQ and SNR, signifying a greater disparity in power across different
frequency components.
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Figure 11. Hourly average signal measurements and NPSD spectrum during dry days:
(a) 4–6 December. (b) 3–5 March.

To compare the PSD during rainy and dry periods, the NPSD for rainy days is di-
vided by the NPSD for dry days, resulting in a subtraction between the two NPSD values
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expressed in decibels (dB). The difference between the NPSD values for rainy and dry
conditions being greater than zero indicates more power during rain than during dry con-
ditions at that frequency. The NPSD during rainy days and the NPSD difference between
the rainy and dry periods from different datasets are shown in the figures below.

Figures 12 and 13 illustrate the NPSD and the differences between rain events and
dry periods in Dataset 1. Two reference dry periods are from 4 December to 6 December
and from 3 March to 5 March, as indicated in the legend. For frequencies lower than
0.0417 (×1/3600) Hz, the power of RSSI and SNR measurements during rainy days is
higher than that observed on the reference dry day, as depicted in these figures.
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Figure 12. Signal measurements during rain (18–20 December): (a) NPSD for signal measurements.
(b) RSSI power difference of NPSD between rainy days and dry days. (c) RSRP power difference of
NPSD between rainy days and dry days. (d) RSRQ power difference of NPSD between rainy days
and dry days. (e) SNR power difference of NPSD between rainy days and dry days.
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Figure 13. Signal measurements during rain (30 December 2023–1 January 2024): (a) NPSD for signal
measurements. (b) RSSI power difference of NPSD between rainy days and dry days. (c) RSRP power
difference of NPSD between rainy days and dry days. (d) RSRQ power difference of NPSD between
rainy days and dry days. (e) SNR power difference of NPSD between rainy days and dry days.



Sensors 2025, 25, 375 18 of 23

There are two major rain events in Dataset2, from 4 April 2024 to 6 April 2024 and
from 10 May 2024 to 11 May 2024. The NPSD and the difference of NPSD between the rainy
and the dry period are shown in Figure 14 and Figure 15, respectively. Here, two reference
dry periods are selected, from 10 April 12 p.m. to 12 April 12 p.m. and 18 May 12 p.m. to
20 May 12 p.m. The power for RSSI and SNR measurements on rainy days is higher than
that of the reference dry day for frequencies below 0.0417 (×1/3600) Hz. Generally, there is
more power at lower frequencies, specifically below 0.15 (×1/3600) Hz, in hourly average
RSSI measurements, except at 0.0417 (×1/3600) Hz. Additionally, the hourly average RSRP
measurement shows greater power in the range of 0.1 to 0.3 (×1/3600) Hz during rain
compared to dry conditions.
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Figure 14. Signal measurements during rain (4–6 April): (a) NPSD for signal measurements. (b) RSSI
power difference of NPSD between rainy days and dry days. (c) RSRP power difference of NPSD
between rainy days and dry days. (d) RSRQ power difference of NPSD between rainy days and dry
days. (e) SNR power difference of NPSD between rainy days and dry days.
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Figure 15. Signal measurements during rain (10–12 May): (a) NPSD for signal measurements. (b) RSSI
power difference of NPSD between rainy days and dry days. (c) RSRP power difference of NPSD
between rainy days and dry days. (d) RSRQ power difference of NPSD between rainy days and dry
days. (e) SNR power difference of NPSD between rainy days and dry days.
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The power spectral density increase at low frequencies on RSSI and SNR can be at-
tributed to rain-related effects. Firstly, multipath scattering occurs when radio waves reflect
off various surfaces such as buildings and the ground, leading to the superposition of
multiple signal copies at the receiver. During rainy conditions, the increased atmospheric
moisture can further enhance these scattering effects, disrupting the original signal pattern.
Secondly, rain-induced attenuation is a critical factor affecting signal propagation. Rain-
drops absorb and scatter the radio waves, causing a decrease in signal strength. Different
propagation paths might have different rain-caused attenuation. RSRP is a measure of
the power level of the LTE reference signals, providing a direct indication of the signal
strength from the serving cell. RSSI captures the total average signal power, which includes
not only the reference symbols but also interference. In NLoS scenarios, the variations in
RSRP caused by rainfall can be less pronounced due to the complex nature of microwave
propagation and the daily variations observed. Interference is also influenced by rainfall,
and the rainfall effects on the reference signal and interference might be different and
result in a higher observed power in the low-frequency range of RSSI. RSRQ is an indicator
of signal quality, and it can be derived from RSRP and RSSI, as shown in Equation (1).
Consequently, the impact of rainfall on RSRQ may be drowned, given that both metrics are
intertwined. SNR measures the ratio of received signal strength to noise level. Rainfall can
affect both components of the SNR differently, which may lead to a higher proportion of
low-frequency components in the signal spectrum.

The NPSD and the difference between the rain event and the dry period in Dataset3
are shown in Figure 16. The reference dry days are from 31 March at 12 p.m. to 2 April at
12 p.m. During rainy periods, there is more power in frequencies below 0.0417 (×1/3600)
Hz for both RSSI and SNR measurements.
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Figure 16. Signal measurements during rain (4–6 April): (a) NPSD for signal measurements. (b) RSSI
power difference of NPSD between rainy days and dry days. (c) RSRP power difference of NPSD
between rainy days and dry days. (d) RSRQ power difference of NPSD between rainy days and dry
days. (e) SNR power difference of NPSD between rainy days and dry days.

Spectral analysis of the three datasets indicates that rainy days generally exhibit
more power at lower frequencies in both RSSI and SNR measurements. Lower frequen-
cies correspond to longer time intervals, and the increased power at these frequencies
suggests that signal measurement patterns during rain occur over extended periods com-
pared to dry days. This indicates that rainfall disrupts the signal patterns that typically
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emerge within shorter time intervals, reinforcing the conclusion that rainfall influences
signal measurements.

6. Discussion
This section provides an overview of the relevant studies and previous work. Potential

future research directions will also be discussed.
Rainfall would cause additional attenuation for radio signal propagation. Many papers

studying signal power from CML have observed that the decrease in the signal attenua-
tion and the increase in the precipitation rate matched very well with each other [39,40].
The stability of the measured signal level appears to be influenced by weather conditions,
particularly in the context of the 3G LoS scenario [19]. In studies that have collected LTE
signal data under the LoS scenario, a discernible difference in the average received signal
levels has been noted between rainy and non-rainy conditions [16]. Notably, a significant
drop in RSSI has been observed since the beginning of rain [25]. This highlights the sensi-
tivity of signal strength measurements to changes in weather, especially in scenarios where
the signal propagation path is not obstructed. However, in our study, where data were
collected under the NLoS scenario, such changes in signal measurements associated with
rainfall conditions are not apparent. This discrepancy could be attributed to the complexity
introduced by obstructions and reflections in the NLoS environment. The presence of
multiple signal paths in NLoS conditions could potentially average out the effects of rain,
leading to less noticeable fluctuations in signal strength compared to the more direct LoS
scenario. Thus, we start with investigating the signal measurements during dry time.
A daily signal fluctuation pattern has been observed in this work. Such no-rain-related
variations make it challenging to distinguish the signal attenuation increases from rain or
the daily pattern itself from the time domain.

One of the biggest differences between CML data and data collected by the smartphone
is their propagation environments, which makes the attenuation calculation difficult. Some
studies adopt signal measurement during the dry time or previous period as the baseline
and normalized the rain signal [16,25]. Such process techniques assume that the transmit
power does not change or the received power is not affected by other factors except rainfall
over time. In this paper, data collection is conducted in real-life situations, and a daily
pattern for the variation of the measured signal strength is found. This makes adopting
previous dry time signal measurements as the baseline for calculating the attenuation
unsuitable. Thus, we employed the spectral analysis method and found the increased
power at lower frequencies in rainy days compared to dry periods.

The diversity of the signal data could provide more information about the influence of
rain. For example, CML data usually consist of many links with different frequencies, link
distances, and polarization directions. These factors all impact the signal measurement [15].
A rainfall influence on the attenuation when transmitter and receiver are both indoors
with NLoS path in self-built 2 GHz horizontal polarization microwave link is studied [38].
Further developed applications with higher sample frequency might speed up the research.
Except for the atmospheric effects, network load might also impact the received signal
metric. Separation of such an impact would be a direction for future work.

Most existing works are conducted under the GSM/LTE network, which has been
gradually replaced by the 5G network. From the open literature, no rainfall prediction
study has been conductred based on signal data collected by a user terminal under a
commercial 5G network. The possibilities of utilizing sub-6GHz signals with NLoS links
as a rainfall monitoring method have been reviewed [41]. By investigating the impact of
rainfall on 5G network signal measurements, 5G base stations can be potentially repurposed
as opportunistic virtual rain gauges.
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7. Conclusions and Future Work
This paper studies rainfall impacts on key signal metrics widely available in mobile

terminals. The experiments are conducted in real-life scenarios. Both small-scale and large-
scale variations in measurements during dry periods are analyzed by comparing them with
variations in environmental factors using statistical methods. Our key findings include the
identification of a daily pattern in signal strength measurements during dry days, and rainy
days tend to show increased power at lower frequencies in signal measurement compared
to dry days. These findings have been confirmed by data analysis across various locations
and weather conditions. The results indicate novel interesting rainfall impacts on everyday
mobile links, potentially facilitating precise rainfall sensing using by-product signals in our
mobile devices.

In this work, we mainly exploit the experimental results to reveal novel insights of
rainfall’s impacts on cellular signal metrics available in modern mobile terminals. Diverse
experimental scenarios are considered to reflect the impacts of different propagation en-
vironments, though analytical modeling is not performed yet. Therefore, an interesting
future work would be establishing the statistical modeling of various cellular signal metrics
under different rainfall conditions as well as diverse channel models.
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