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Abstract: This study employs scientometric analysis to investigate the current trajectory of research
on tunnel boring machine (TBM) performance and collaborative efforts. Utilizing software tools like
Pajek 5.16 and VOSviewer 1.6.18, it scrutinizes literature from 2000 to 2021 sourced from the Web
of Science (WOS). The findings illuminate TBM research as an interdisciplinary and intersectoral
field attracting increasing national and institutional attention. Notable contributions from China,
Iran, the United States, Turkey, and Australia underscore the global significance of TBM research.
The recent upsurge in annual publications, primarily driven by Chinese research initiatives, reflects
a renewed vigor in TBM exploration. Additionally, the paper presents a succinct evaluation of
TBM advantages and drawbacks compared to conventional drill and blast methods, discussing key
considerations in excavation methodology selection. Moreover, the study comprehensively reviews
TBM performance prediction models, categorizing them into theoretical, empirical, and artificial
intelligence-driven approaches. Finally, rooted in metaverse theory, the discourse delves into the
immersive learning model and the architecture of a TBM metaverse. In the future, the immersive
training and learning model diagram can be employed in scenarios such as employee training and the
promotion of safety knowledge. Additionally, the TBM metaverse architecture can simulate, monitor,
diagnose, predict, and control the organization, management, and service processes and behaviors of
TBMs. This will enhance efficient collaboration across various aspects of the project production cycle.
This forward-looking perspective anticipates future trends in TBM technology, emphasizing societal
impact and enhancement of economic benefits.

Keywords: TBM performance; tunneling excavation; conventional drilling and blasting; scientometric
analysis; visualized review

1. Introduction

With the continuous advancement of TBM technology, this excavation method has
achieved extensive utilization in underground projects worldwide. TBMs are primarily
employed for the excavation of hard geomaterials on a full scale. The essential components
of a TBM include the cutterhead, the cutterhead carrier (housing the cutterhead drive
motor), the frame, and the clamping and drive equipment. Rock excavation is achieved
through the rotation of discs and blades on these excavation tools, applying pressure to
the rock face [1]. Radial cracks emanate from the cutter ring where the blade interacts
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with the rock surface, leading to the fragmentation of the rock into coarse fragments along
these cracks.

For a project to achieve success and efficiency, it is crucial for TBM performance to
effectively address the challenges posed by lithologically and geomechanically heteroge-
neous rock masses. These heterogeneous environments are frequently encountered in
practice, and factors such as variations in lithology, faulting, and folding can significantly
impact the quality of the rock mass. This, in turn, can result in supply delays, downtime,
and overall progress rate reductions. Consequently, the successful execution of tunneling
projects is heavily reliant on the precise prediction of rock behavior.

Researchers actively engage in TBM performance prediction studies to ensure the
smooth execution of TBM construction projects. However, predicting TBM performance
solely based on theoretical considerations is a formidable challenge due to the complex
interaction between the TBM and the rock, as highlighted in previous studies [2,3]. Over
the years, the persistent efforts of numerous researchers [4–6] have led to the evolution
of predictive models, transitioning from single-factor prediction models to multifactor
prediction models. Various empirical models have been introduced to forecast TBM per-
formance, but these models typically rely on specific geographical locations, geological
characteristics, and limited data, resulting in imprecise predictions, particularly when
applied beyond their intended scope and without sound judgment [7,8]. To address this
challenge, certain artificial intelligence models based on real tunnel engineering data are
employed to establish mathematical relationships between rock behavior. This approach
helps overcome the limitations associated with site-specific models [9,10].

Amid the current diverse research directions in TBM performance, conventional litera-
ture reviews face increasing challenges when it comes to identifying trends and gaining
insights into the evolving landscape of research in this field [11]. Furthermore, the existing
TBM literature lacks a comprehensive visual presentation of research progress and publica-
tion trends, which prevents reading from obtaining a clearer understanding of the subject.
For newcomers to the field, comprehending prior developments in TBM performance and
staying updated on the latest research can be demanding, particularly when reading every
paper in detail. To address these challenges and provide a complementary approach to tra-
ditional literature reviews, visual survey analysis has gained popularity in various research
domains [12–15]. Diverging from conventional literature reviews, visual survey analysis
methods create detailed knowledge maps that highlight research trends, developments,
and prominent topics within the specified research area [16]. This paper serves to bridge
the existing gap in TBM performance research and available models by conducting a visual
survey and analysis of pertinent literature obtained from the WOS database spanning from
2000 to the end of 2021. The study delves into various aspects, including the collabora-
tion between countries and institutions in TBM research, the number of publications and
citations in this domain, and key works in the field. Additionally, the paper conducts a
comparative analysis of the advantages and drawbacks of TBM methods versus drill and
blast methods, followed by a summary of TBM performance predictive models. Finally, the
paper offers insights into the potential utilization of metaverse techniques for enhancing
TBM operations.

The remaining sections of this paper are structured as follows: Section 2 describes the
data sources and research tools; Section 3 presents the findings of the visual survey analysis;
Section 4 provides a brief review of the benefits and drawbacks of TBM performance
predictive models and TBM construction; Section 5 discusses the future prospects of TBMs
in relation to metaverse techniques; and Section 6 offers concluding remarks.

2. Materials and Methods
2.1. Data Source

This study utilized the Corevantage data platform of the Web of Science (WOS) to
conduct the research. The search was conducted on 15 July 2022, using the subject search
terms “TBM performance” and “tunnel boring machine”. No restrictions were applied to
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the source or type of literature, while the language was limited to English. The selected
time frame spanned from 2000 to 2021, covering a total of 22 years. By employing this
search strategy, a total of 528 documents were retrieved. The downloaded format for the
documents was in “full record” text format. Figure 1 displays the results obtained from the
visual search conducted within the WOS database. Among the various document types,
research articles and conference papers dominated, with 445 and 78 instances, respectively.
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2.2. Research Tool

This study employs scientometric methods to perform a statistical analysis of the
gathered literature data. Subsequently, the results are visualized using specialized tools like
VOSviewer and Pajek [17–19]. Scientometric analysis entails a quantitative examination of
various aspects, including the characteristics of output, research directions, and the authors
of the papers. This process is aimed at revealing the overarching dynamics within the
research discipline of interest and providing valuable scientific insights to researchers in
the field. Visual analysis of the literature complements scientometric analysis by utilizing
visualization software to enhance the visual appeal and intuitiveness of the obtained results.
Within the scope of this study, the collected literature on TBM performance is analyzed in
the following three distinct ways: (1) scientometric analysis of TBM performance literature
data, (2) visual analysis of TBM performance research areas, and (3) identification of key
literature in TBM performance research.

3. Results
3.1. Mainstream Area Analysis

In the domain dimension, an overlay analysis was conducted to explore the domains
that are involved in the literature related to TBM performance. The results reveal that
the 528 papers were distributed across 40 different domains. The number of records in
each domain reflects the frequency of articles within that domain. Notable domains, based
on the number of records, include Engineering (486), Construction Building Technology
(290), Mathematics (144), Business Economics (142), Mining Mineral Processing (132),
Computer Science Processing (132), Computer Science (199), and Geology (100). This
observation underscores that TBM performance research encompasses a wide spectrum of
research areas and displays a clear interdisciplinary nature. The study of TBM performance
requires the application of mathematical methods, consideration of construction processes,
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and attention to economic aspects, which elucidates the higher number of articles in
the fields of Construction Building Technology, Mathematics, and Business Economics.
Additionally, TBM software and hardware frequently rely on computer technology and
internet applications, leading to coverage in the domains of Computer Science Processing
and Computer Science.

3.2. Publication Analysis

Within the specified timeframe, according to the Web of Science citation analysis
report, the literature obtained a total citation frequency of 23,199, after the removal of
17,762 self-citations. The cited literature amounted to 12,393, with 11,536 self-citations
removed. The average citations per article were 18.28, and the h-index was 68.

The top fifteen countries, as illustrated in Figure 2, contributed a total of 810 articles,
representing 90% of the global total. These data provide an overview of the publication
trend based on the top fifteen countries. Notably, there is a consistent upward trend in the
number of published articles and citation frequency globally from 2000 to 2021. The most
substantial increase in the number of published articles and citations occurred primarily
after 2009, with the most significant growth observed after 2015. Statistical analysis reveals
that the total number of articles published after 2009 is approximately 18 times higher
than before 2009. Before 2009, TBM performance research faced significant technical
challenges that had not yet been resolved, leading to a smaller number of published articles,
citable articles, and corresponding citations. However, with the increasing recognition
of the challenges and issues encountered in tunneling, as well as the critical role of TBM
performance in selecting tunnel construction methods, construction scheduling, and cost
estimation, more countries have explored TBM performance prediction models. It is worth
noting that the rapid growth in TBM performance research can also be attributed to close
collaboration and cross-fertilization between countries, which will be further elaborated
upon in the subsequent discussion.

Appl. Sci. 2024, 14, x FOR PEER REVIEW  4  of  25 
 

(290), Mathematics  (144), Business Economics  (142), Mining Mineral Processing  (132), 

Computer Science Processing (132), Computer Science (199), and Geology (100). This ob-

servation underscores that TBM performance research encompasses a wide spectrum of 

research areas and displays a clear  interdisciplinary nature. The study of TBM perfor-

mance requires the application of mathematical methods, consideration of construction 

processes, and attention to economic aspects, which elucidates the higher number of arti-

cles in the fields of Construction Building Technology, Mathematics, and Business Eco-

nomics. Additionally, TBM software and hardware frequently rely on computer technol-

ogy and internet applications, leading to coverage in the domains of Computer Science 

Processing and Computer Science. 

3.2. Publication Analysis 

Within the specified timeframe, according to the Web of Science citation analysis re-

port, the literature obtained a total citation frequency of 23,199, after the removal of 17,762 

self-citations. The cited literature amounted to 12,393, with 11,536 self-citations removed. 

The average citations per article were 18.28, and the h-index was 68. 

The top fifteen countries, as illustrated in Figure 2, contributed a total of 810 articles, 

representing 90% of the global total. These data provide an overview of the publication 

trend based on the top fifteen countries. Notably, there is a consistent upward trend in the 

number of published articles and citation frequency globally from 2000 to 2021. The most 

substantial increase in the number of published articles and citations occurred primarily 

after 2009, with the most significant growth observed after 2015. Statistical analysis reveals 

that  the  total number of articles published after 2009  is approximately 18  times higher 

than before 2009. Before 2009, TBM performance research faced significant technical chal-

lenges that had not yet been resolved, leading to a smaller number of published articles, 

citable articles, and corresponding citations. However, with the increasing recognition of 

the challenges and  issues encountered  in  tunneling, as well as  the critical  role of TBM 

performance in selecting tunnel construction methods, construction scheduling, and cost 

estimation, more  countries  have  explored  TBM  performance  prediction models.  It  is 

worth noting that the rapid growth in TBM performance research can also be attributed 

to close collaboration and cross-fertilization between countries, which will be further elab-

orated upon in the subsequent discussion. 

 

Figure 2. Descriptive statistical distribution of the TBM performance literature. 
Figure 2. Descriptive statistical distribution of the TBM performance literature.

3.3. Study Countries

The distribution of TBM performance research among countries is illustrated in
Figure 3A. Presently, there are 49 countries that have contributed to the TBM performance
literature. China takes the lead with 442 articles, constituting 49.11% of the total. Iran
secures the second position with 90 articles, representing 10% of the total. The United States



Appl. Sci. 2024, 14, 4512 5 of 24

follows closely in third place with 67 articles, making up 7.44% of the total. Subsequently,
we have Turkey, Australia, Italy, Germany, the UK, Switzerland, South Korea, and Malaysia
as contributors in the field. The prominence of a country, its physical and geographical
context, and the specific tunneling challenges it faces all play pivotal roles in shaping the
development of TBMs and, by extension, TBM performance research. Consequently, TBM
performance research has been predominantly concentrated in regions such as Europe,
North America, East Asia, and South Asia, where tunneling activities and infrastructure
development are extensive.
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Figure 3. TBM performance literature published by major national and research institutions.
(A) Leading countries in the world that publish TBM performance literature. (B) The research
institution that published the most TBM performance literature. (Dalian University of Technology:
DUT; Colorado School of Mines: CSM; Wuhan University: WU; Central South University: CSU; Chi-
nese Academy of Sciences: CAS; Zhejiang University: ZU; Islamic Azad University: IAU; University
of Tehran: UT; Pennsylvania State University: PSU; Tarbiat Modaris University: TMU).

Close collaboration and cooperation among countries have played a pivotal role in
driving the progress of TBMs. During the period spanning from 2000 to 2021, numerous
international conferences have been convened, facilitating effective communication and
collaboration within the TBM research community. Prominent conferences such as the
Conference on Tunnel Boring Machines in Difficult Grounds, TBM Digs, World Tunnel
Congress (WTC), the 39th General Assembly of the International Tunnelling and Under-
ground Space Association (ITA), and the 2009 Rapid Excavations and Tunnelling Conference
have served as valuable platforms for scholars from diverse countries to exchange ideas and
insights. These conferences have had a profound impact on the progression of TBM perfor-
mance research by promoting cross-border knowledge sharing and fostering international
research cooperation.

China has emerged as the leading contributor of articles in the field of TBM perfor-
mance research from 2000 to 2021, making it a subject of significant analytical interest.
During this period, China contributed a total of 442 relevant articles, which garnered a
combined citation frequency of 3995, with an average of 14.53 citations per article and an
h-index of 34. The number of articles published in China has exhibited an overall upward
trajectory, with a notable surge after 2011, accounting for 95.02% of the total publications
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from China. In contrast, as depicted in Figure 2, the number of publications from countries
other than China has gradually plateaued over the past decade. This suggests that there is
still substantial potential for further development in the field of TBM performance research,
particularly in China. It is worth noting that China’s h-index in this domain is relatively low
when compared to the global average. This discrepancy can be attributed to the relatively
lower citation rate of articles published in China, which is inversely related to the number
of articles published. Consequently, there is ample room for China to enhance its influence
and impact within the realm of TBM performance research by improving the citation rates
and the quality of its publications.

As per the assessments made by funding organizations, China has made significant
strides in the realm of TBM performance research, even though it entered this field relatively
late. Table 1 presents a comprehensive overview of the top 20 global funders, where a
remarkable eight out of the top ten funders hail from China. These prominent contributors
include the National Natural Science Foundation of China, responsible for 155 articles, the
National Basic Research Program of China with 78 articles to its credit, the Fundamental
Research Funds for The Central Universities, which has sponsored 20 articles, and the
National Key Research and Development Program of China, having supported 18 articles.
Additionally, the National High Technology Research and Development Program of China
and the China Postdoctoral Science Foundation have both played a significant role with
10 and 8 articles, respectively, followed by the National Key Research and Development
Program of China with another 8 articles, and the China Scholarship Council with 7 articles.
Completing this list are two international funding bodies, namely the German Research
Foundation and the Scientific and Technical Research Council of Turkey, each having
supported seven articles. This array of funders underscores China’s strong commitment to
advancing TBM performance research on the global stage. The growth of TBM performance
research in China can be attributed to the favorable research environment and substantial
financial support that the nation has provided in this field.

Table 1. Top 20 global foundation funding agencies.

No. Fund Institutions Region Articles

1 National Natural Science Foundation of China China 155
2 National Basic Research Program of China China 78
3 Fundamental Research Funds for The Central Universities China 20
4 National Key Research and Development Program of China China 18

5 National High Technology Research and Development
Program of China China 10

6 China Postdoctoral Science Foundation China 8
7 National Key Research and Development Program of China China 8
8 China Scholarship Council China 7
9 German Research Foundation German 7

10 The Scientific and Technical Research Council of Turkey Turkey 7
11 China Postdoctoral Science Foundation Program China 6

12 Key Research and Development Program of
Shandong Province China 5

13 National Funded Program for Graduate Students Studying
Abroad of China Scholarship Council China 5

14 Malaysian University of Technology Malaysia 5
15 Natural Science Foundation of Hunan Province China 4
16 Natural Science Foundation of Liaoning Key Fund China 4
17 European Commission European 3
18 Hunan Provincial Innovation Foundation for Postgraduate China 3
19 Innovation Driven Project of Central South University China 3

20 Interdisciplinary Development Program of
Shandong University China 3
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3.4. Research Institutions

Conducting a co-occurrence analysis of research institutions offers valuable insights
into the core research strengths within a particular field and enables a scientific evaluation
of the academic impact of these institutions [20–22]. In Figure 3B, we present the top ten
research institutions globally in terms of the number of articles published, shedding light
on their pivotal role in the field of TBM performance research.

Leading the pack is Dalian University of Technology, holding the prestigious first
place with an impressive 51 publications. Following closely is the Colorado School of
Mines, securing second place with 48 articles to their name. Other notable institutions,
each contributing significantly with at least 15 publications, encompass Wuhan University
(47 articles), Central South University (40 articles), Chinese Academy of Sciences (35 articles),
Zhejiang University (20 articles), Islamic Azad University (19 articles), University of Tehran
(17 articles), Pennsylvania State University (16 articles), and Tarbiat Modaris University
(16 articles). Notably, all of these research institutes are affiliated with higher education
institutions, predominantly hailing from China, the United States, and Iran.

Furthermore, it is worth highlighting that 710 additional research institutions are
actively engaged in TBM performance studies; however, their individual contributions
consist of fewer than 15 articles. This extensive list underscores the global interest and
engagement in TBM performance research across various institutions worldwide.

Regarding institutional affiliation, it is noteworthy that five out of the top ten publish-
ers are Chinese institutions. This indicates that TBM performance research has garnered
significant attention and focus within China. In terms of publication volume, Chinese insti-
tutions collectively contribute a substantial 62.46% of the world’s top 10 publications. Over
the past two decades, Chinese research institutions have made noteworthy and substantial
contributions to the advancement of TBM performance research, solidifying their pivotal
role in shaping the field.

3.5. Research Hotspots

The research literature on TBM performance underwent a comprehensive terminology
analysis. The findings of this analysis are visually represented in Figure 4, while the
distribution of the primary keywords is detailed in Table 2. Keywords, in research, play
a pivotal role as they encapsulate the fundamental arguments and themes of a paper.
Analyzing the keywords in the relevant literature of a specific field serves as a valuable
tool for identifying research trends and focal points [23].

Table 2. Hot keywords in TBM performance studies.

No. Keyword Frequency Relevance No. Keyword Frequency Relevance

1 Prediction 152 0.3335 11 Accuracy 71 0.442
2 Test 126 0.4792 12 Estimation 71 0.6167
3 Efficiency 110 0.4838 13 Technique 68 0.4818
4 Disc cutter 100 0.9397 14 Simulation 66 1.1793
5 Force 99 0.6139 15 Database 62 1.0776
6 Cutter 93 0.6988 16 Interaction 61 0.5368
7 Index 88 0.4663 17 Coefficient 59 0.7648
8 Penetration rate 88 0.6442 18 Ground 58 0.9006

9 Algorithm 83 0.5215 19 Uniaxial compressive
strength 57 1.1401

10 Prediction model 74 0.3399 20 Mechanism 56 1.4459
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The process of extracting these keywords was carried out using VOSviewer, with a
predefined threshold of 15 occurrences (i.e., keywords that appeared at least 15 times), in-
volving the consolidation of keywords with similar meanings and the removal of keywords
not directly relevant to the current study. Through these operations, a total of 197 perti-
nent keywords were identified, forming a network of 9610 interconnected relationships.
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These relationships can be effectively categorized into the following three overarching
themes: “mining”, “TBM performance prediction”, and “testing”, as visually represented
in Figure 4A. The cumulative strength of these keyword connections amounts to 29,040,
indicating a notably strong interrelation among these keywords. Broadly speaking, the
examination of test studies encompassed the majority of the keywords, signaling a height-
ened level of research activity within this domain. This prevalence can be ascribed to the
inherent nature of most TBM performance prediction models, which tend to be theoretical
and intricately empirical. The inclusion of keywords such as “behavior”, “cutter head”,
“cutter wear”, “deformation”, “disc cutter”, “dynamic model”, “joint”, “hard rock”, “me-
chanics”, “numeric simulation”, “test result”, and others underscores the exploration by
researchers into rock and machine parameters. These investigations often take place in
laboratory settings and play a pivotal role in the development of the aforementioned pre-
diction models. This reflects the meticulous examination of factors that exert an influence
on TBM performance, further enriching the field’s knowledge base.

The temporal progression of keywords is visually presented in Figure 4B, with color
bars ranging from purple to yellow. In this color scheme, purple denotes the earlier ap-
pearance of a keyword, while yellow signifies more recent occurrences. Examining this
temporal evolution, we observe that keywords such as “cutter head”, “depth”, “orienta-
tion”, “rock”, “property”, and “joint spacing” emerge in the earlier stages, highlighting
the predominant focus of early studies on understanding rock mechanisms and related
factors. In the medium term, we notice an increased prominence of words like “prediction”,
“efficiency”, “index”, “tensile strength”, “UCS”, and “wear”. This shift reflects a transition
in researchers’ perspective from fundamental theoretical aspects towards performance
indicators. Moreover, the recent appearance of terms such as “algorithm”, “dataset”, “input
parameters”, “support vector machine”, “predictive model”, and “accuracy” signifies a
notable integration of machine learning techniques in the realm of TBM research. This
points to a contemporary emphasis on leveraging advanced computational methods for
improved analysis and prediction. Additionally, the emergence of keywords like “safety”
and “rock damage” indicates the sustained global concern for safety issues within the field,
reaffirming the ongoing importance of addressing safety considerations and minimizing
rock-related damages in TBM operations.

The visualization of keyword density, as depicted in Figure 4C, follows a network-
based approach. In this visualization, each point is assigned a color corresponding to the
density of the associated term, in line with the methodology by Van and Waltman [17].
The color spectrum spans from blue to green to yellow, with the shading indicating the
frequency and importance of a given keyword. Points closer to yellow represent keywords
with a high frequency and significant weighting, while those closer to blue denote keywords
with lower occurrence and impact. The pronounced presence and weighting of terms like
“prediction”, “test”, “efficiency”, “disc cutter”, “force”, “cutter”, “index”, “penetration rate”,
“algorithm”, “prediction model”, “accuracy”, “estimation”, “technique”, “simulation”, and
“database” underscore their central role in the current research hotspots within the realm
of TBM performance research. Furthermore, these keywords exhibit strong relevance to
those outlined in Table 2, offering additional confirmation of their significance in shaping
the field and underlining their relevance in contemporary TBM research.

3.6. Citation Frequency Analysis

The frequency of citations can serve as an indicator of a paper’s academic influence
to some extent. To identify highly cited papers, the citation frequency distribution of
528 papers was analyzed [24,25]. The analysis revealed that 73 papers, accounting for
13.83% of the sample size, had a citation frequency of 0 in the field of TBM performance
research. Furthermore, a significant portion of papers exhibited low citation frequencies,
while only a few papers garnered high citations.

Table 3 displays the top ten papers in terms of citation frequency. The most frequently
cited paper is “Disc cutting tests in Colorado red granite: Implications for TBM performance
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prediction” by Gertsch et al. [26], published in the International Journal of Rock Mechanics and
Mining Science in 2007. Gertsch et al. [26] conducted laboratory disc cutting experiments
using a 432 mm diameter disc cutter and granite. During these experiments, they measured
indicators such as single disc spacing, normal, rolling, and side forces, and subsequently
calculated other cutting parameters. The second most cited paper is “Development of
hybrid intelligent models for predicting TBM penetration rate in hard rock condition” by
Armaghani et al. [27], published in the Journal of Tunnel and Underground Space Technology
in 2017. This paper focuses on the development of an intelligent predictive model specif-
ically for water transfer tunnel projects in Malaysia. Additionally, numerical simula-
tions have garnered considerable interest in the TBM performance literature. Relevant
highly cited articles in this domain include those by Gong et al. [28], Gong et al. [29], and
Grima et al. [30].

Table 3. The top ten papers in terms of citation frequency.

No. First Author Time Title Journal Cited
Frequency

1 Gertsch, R 2007
Disc cutting tests in Colorado red

granite: Implications for TBM
performance prediction

INTERNATIONAL JOURNAL
OF ROCK MECHANICS AND

MINING SCIENCES
268

2 Armaghani, Danial
Jahed 2017

Development of hybrid intelligent
models for predicting TBM

penetration rate in hard
rock condition

TUNNELLING AND
UNDERGROUND SPACE

TECHNOLOGY
218

3 Gong, QM 2006
Numerical modelling of the effects

of joint spacing on rock
fragmentation by TBM cutters

TUNNELLING AND
UNDERGROUND SPACE

TECHNOLOGY
218

4 Gong, QM 2005
Numerical modeling of the effects

of joint orientation on rock
fragmentation by TBM cutters

TUNNELLING AND
UNDERGROUND SPACE

TECHNOLOGY
216

5 Gong, QM 2009
Development of a rock mass

characteristics model for TBM
penetration rate prediction

INTERNATIONAL JOURNAL
OF ROCK MECHANICS AND

MINING SCIENCES
208

6 Yagiz, Saffet 2008
Utilizing rock mass properties for
predicting TBM performance in

hard rock condition

TUNNELLING AND
UNDERGROUND SPACE

TECHNOLOGY
200

7 Yagiz, Saffet 2009
Application of two non-linear

prediction tools to the estimation of
tunnel boring machine performance

ENGINEERING APPLICATIONS
OF ARTIFICIAL INTELLIGENCE 182

8 Hassanpour, J. 2011
A new hard rock TBM performance

prediction model for
project planning

TUNNELLING AND
UNDERGROUND SPACE

TECHNOLOGY
181

9 Zhao, J. 2007
Tunnelling through a frequently
changing and mixed ground: A

case history in Singapore

TUNNELLING AND
UNDERGROUND SPACE

TECHNOLOGY
169

10 Grima, MA 2000
Modeling tunnel boring
machine performance by

neuro-fuzzy methods

TUNNELLING AND
UNDERGROUND SPACE

TECHNOLOGY
159

3.7. Key Literature Analysis

The highly cited research literature represents the foundational knowledge base in
TBM performance research. In this study, we have identified and analyzed the top ten
highly cited articles, which serve as key references in TBM performance research (Table 4).
These key documents have all been cited more than 49 times, with some exceeding
80 citations, indicating their significance. Notably, the top five highly cited articles focus
on the application of machine learning algorithms to TBM performance studies. Machine
learning algorithms have gained popularity in recent years as a promising avenue within
artificial intelligence techniques [31]. This trend also signifies the growing adoption of
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artificial intelligence in the TBM field. Researchers are utilizing machine learning methods
to optimize parameters and proactively predict machine performance in complex environ-
ments, aiming to minimize project costs. It represents a new and challenging endeavor.

Table 4. Key references in TBM performance studies.

No. First Author Time Title Journal Cited
Frequency

1
Armaghani, Danial
Jahed;Mohamad,

Edy Tonnizam
2017

Development of hybrid intelligent
models for predicting TBM

penetration rate in hard
rock condition

TUNNELLING AND
UNDERGROUND SPACE

TECHNOLOGY
218

2 Armaghani, Danial
Jahed 2019

Application of several optimization
techniques for estimating TBM
advance rate in granitic rocks

JOURNAL OF ROCK
MECHANICS AND
GEOTECHNICAL
ENGINEERING

107

3 Xu, Hai;Zhou, Jian 2019

Supervised Machine Learning
Techniques to the Prediction of

Tunnel Boring Machine
Penetration Rate

APPLIED SCIENCES-BASEL 98

4
Zhou, Jian; Qiu,

Yingui; Zhu,
Shuangli

2021

Optimization of support vector
machine through the use of
metaheuristic algorithms in

forecasting TBM advance rate

ENGINEERING APPLICATIONS
OF ARTIFICIAL INTELLIGENCE 86

5

Koopialipoor,
Moham-

madreza;Nikouei,
Sayed Sepehr

2019

Predicting tunnel boring machine
performance through a new model

based on the group method of
data handling

BULLETIN OF ENGINEERING
GEOLOGY AND THE

ENVIRONMENT
84

6 Koopialipoor,
Mohammadreza 2020

Development of a new hybrid ANN
for solving a geotechnical problem

related to tunnel boring
machine performance

ENGINEERING WITH
COMPUTERS 80

7 Zhou, J 2021

Predicting TBM penetration rate in
hard rock condition: A comparative

study among six XGB-based
metaheuristic techniques

GEOSCIENCE FRONTIERS 71

8 Liu, Bolong;Yang,
Haiqing 2020

Effect of Water Content on
Argillization of Mudstone During

the Tunnelling process

ROCK MECHANICS AND
ROCK ENGINEERING 57

9
Zhou, Jian; Qiu,

Yingui; Zhu,
Shuangli

2021
Estimation of the TBM advance rate
under hard rock conditions using

XGBoost and Bayesian optimization
UNDERGROUND SPACE 51

10 Elbaz, Khalid;
Shen, Shuilong 2020

Prediction of Disc Cutter Life
During Shield Tunneling with AI
via the Incorporation of a Genetic

Algorithm into a GMDH-Type
Neural Network

ENGINEERING 49

4. Understanding of TBM Performance
4.1. Selection of Excavation Methods

Rock collapse during deep rock excavation can be influenced by the release of strain
energy in the surrounding rocks. Several factors can trigger the release of strain energy in
tunnels, with the choice of excavation method being of particular significance. Presently,
there are two primary methods for tunnel excavation, the TBM method and the drill
and blast method. Each of these methods has distinct impacts on the surrounding rock,
leading to varying types of damage and necessitating unique reinforcement measures. The
advantages and disadvantages of these excavation methods are summarized in Table 5.
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Table 5. Comparison of different excavation methods.

Comparison Drill and Blast Method Tunnel Boring Machine

Advantages

• Flexible geometry. Geometries to suit any
project requirement.

• Short equipment delivery times.
Adaptation to different
geological conditions.

• Extensive background checks are
not required.

• Low investment in the project. No need to
prepare significant amounts of money.

• Low power consumption.

• The section is fixed and mainly circular. Generally
good stability and low disturbance of the
surrounding rock.

• Low frictional head loss. Suitable for water-bearing
tunnel excavations.

• There is no risk of explosion.
• Rock support is timely.
• Fast boring speed. Good for excavating

long tunnels.
• Low environmental disturbance. No

environmental hazards (blast vibrations, flying
rocks, etc.).

• A safe working environment.
• The working cycle is simple and easy to operate.

Disadvantages

• More unstable due to possible
blast-induced fractures.

• Low energy utilization. Large frictional
head loss.

• There are safety hazards associated with the
storage and transportation of explosives.

• Some areas of the underground work could
not be supported.

• Low advance rate.
• Secondary hazards caused by blasting.
• Toxic gases can be produced.
• The work process is complex, and the

preparation time is long.

• The section shape is restricted.
• Circular cross-sections do not meet the shape

requirements of road tunnels.
• Custom equipment takes a long time.
• Poor adaptation to geological conditions.
• A detailed pre-survey is required.
• The project is a great investment and affects cash

flow operations.
• High energy consumption, especially electricity.

In recent years, numerous scholars have conducted extensive research on the extent
of surrounding rock damage resulting from different excavation methods. For instance,
Kelsall et al. [32] investigated the thickness of the damage zone through the utilization of
seismic refraction techniques during tunnel excavations in sandstone formations employing
both TBM and drill and blast methods. Their test findings demonstrated that the damage
zone had a thickness of 0.3 m for the TBM method, whereas it ranged from 0.6 to 1.3 m for
the drill and blast method. In 2013, Ji et al. [33] and colleagues carried out a comprehensive
study involving electron microscope scanning tests, acoustic emission tests, and relaxation
depth tests on Jinping marble under diverse excavation conditions. Their observations
revealed that under TBM excavation conditions, the predominant damage mechanism was
characterized by shear forces, leading to significant deformation in the rocks near the point
of peak load. Bilgin et al. [34] conducted an experimental analysis, which led them to the
conclusion that the uniaxial compressive strength of the rock is closely associated with the
efficiency of TBM excavation. In general, the drill and blast method, while more complex to
coordinate and characterized by an extended construction period, offers a higher degree of
adaptability to various geological conditions. Conversely, the TBM method is distinguished
by its streamlined procedures, quicker construction pace, and enhanced safety measures.
Nevertheless, it exhibits less adaptability to diverse geological conditions and demands the
use of costly equipment, as highlighted by Zhou et al. [35]. Therefore, in the excavation
design phase of a tunnel project, the process of selecting the appropriate construction
method necessitates a thorough comparison of technical and economic indicators, all while
taking into account the crucial evaluation parameters presented in Table 6. This meticulous
approach is implemented to minimize potential project risks.
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Table 6. Important evaluation parameters for the selection of excavation methods.

Parameters to Be Considered When Choosing an Excavation Method

Project design factors Costs budget
Ultimate purpose Overbreak and tunnel profile quality

Excellent working environment Surrounding rock conditions
Boring speed Construction time and tunnel layout

Flexibility and acceptable risk Project contract conditions
Geological situation Protected buildings

TBMs have benefited from more than five decades of extensive research and devel-
opment, resulting in the establishment of highly efficient construction technology and
a wide array of product types. Owing to their remarkable speed and enhanced safety
features, TBMs have garnered widespread adoption in tunnel excavation projects for rail-
ways, highways, and water conservancy, making them the preferred choice in numerous
countries. The shift from traditional drill and blast technology to TBM technology has
been primarily motivated by the pursuit of safer and more efficient construction practices.
This transition has shaped the trajectory of TBM tunnelling technology, and its future will
continue to be guided by these fundamental principles. As a result, future TBM technology
is anticipated to surpass the current generation of TBMs in terms of functionality, cost-
effectiveness, automation, and flexibility of use, ultimately leading to substantial economic
and social benefits.

4.2. Current Developments in Performance Prediction

Precisely forecasting the performance of TBMs within specific geological contexts
holds immense significance in the decision-making process for choosing tunnelling meth-
ods, establishing construction schedules, and estimating project costs. This is primarily
due to the fact that TBMs are notably sensitive to geological variables and necessitate
substantial initial investments. During the feasibility stage, it is imperative for the project
owner to employ a predictive model for economic evaluation and method selection. As the
construction phase commences, the project owner can continue to utilize this prediction
model to assess the contractor’s progress, while the contractor, in turn, depends on the
model to make estimates for bid prices. Furthermore, the builder can conduct a compara-
tive analysis between the predicted progress and the actual construction progress, thereby
facilitating the identification of any potential issues. Nonetheless, the construction speed
is subject to the influence of multiple factors (as depicted in Figure 5), and the intricate
interplay and relationships among these factors make it a complex task to comprehensively
establish the correlation between TBM performance and each specific factor from a purely
theoretical standpoint. As stated by Robbins [36], “No task is more challenging than evalu-
ating rock characteristics and applying them to predict TBM performance”. Nelson [37]
further notes that “the current lack of a standardized method within the geotechnical engi-
neering sector for the quantitative assessment of the influence of rock variations on TBM
construction performance”.

TBM performance prediction encompasses the estimation of various parameters, in-
cluding the penetration rate (PR), advance rate (AR), utilization (U), and cutter wear
(H). In the initial stages, early prediction models primarily concentrated on PR alone.
However, in subsequent developments, multi-factor models were introduced, enabling a
comprehensive prediction of all facets of TBM performance. Since the 1970s, numerous
researchers have developed various types of TBM performance prediction models, evolv-
ing from simple to complex. As depicted in Figure 6, these models can be categorized
into three main types, theoretical models, empirical models, and artificial intelligence
models. Table 7 illustrates the advantages and disadvantages associated with each of
these models.
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Table 7. Comparison of different TBM performance prediction models. [38].

Comparison Drill and Blast Method Tunnel Boring Machine

Theoretical

• Flexible with cutter geometry and
machine specification.

• Can be used in trade off between thrust and
torque and optimization.

• Can be used for cutterhead design
and improvements.

• Can explain the actual working condition of the
discs and related forces.

• Unable to easily account for rock
mass parameters.

• Lack of accounting for joints.
• Can be off by a good margin in jointed rock.
• Inability to account for required

field adjustments.

Empirical

• Proven based on observed field performance of
the TBMs in the field.

• Accounts for TBM as the whole system.
• Many of field adjustments (i.e. average cutter

conditions) are implied.
• Ability to account for rock joints and rock mass

properties.

• Lower accuracy when used in cases when
input parameters are beyond what was in
the original field performance database.

• Unable to account for variations in cutter
and cutterhead geometry, i.e. cutter tip
width, diameter, spacing,
gage arrangement.

• Extremely sensitive to rock joint properties.

Artificial intelligence

• Highly complex and non-linear problems can
be solved.

• Introduction of optimization algorithms to
improve prediction accuracy.

• Performance can be predicted using multiple
input parameters.

• Low learning rate.
• Tends to fall into local minima.
• Subject to the "no free lunch" theorem, there

is a lot of experimentation with
different algorithms.
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4.2.1. Theoretical Model

Theoretical models in TBM performance prediction are based on the analysis of cutter
breaking mechanisms and cutting forces acting on a single cutter. Indentation tests or
indoor full-scale cutting tests are conducted to derive the cutter force balance equation.
One well-known theoretical model is the CSM model, developed by the Colorado School
of Mines [9]. Although the CSM model is primarily theoretical, the equation for calculating
the baseline pressure in the crush zone is obtained through multiple regression analysis.
The model was developed based on data from indoor full-scale linear cut tests. However,
the predictions of TBM performance using the CSM model tend to be conservative due
to discrepancies between the rock samples used in the indoor tests and the actual rock
conditions encountered during TBM field excavations. Moreover, the model disregards
the influence of rock discontinuities, such as joints, on TBM construction performance. Re-
searchers have recognized this limitation and made improvements accordingly. Yagiz [39]
developed an enhanced PR prediction model based on TBM construction performance
data and geological information from the Queens Tunnel in New York. The model incor-
porates additional indicators characterizing rock fragmentation and brittleness into the
original CSM model. Building upon this work, Ramezanzadeh [40] developed a new model
for predicting length per revolution, considering data from 11 TBM tunnels with a total
length exceeding 60 km and taking into account the influence of rock parameters on TBM
construction performance. This model significantly improves prediction accuracy. Indoor
full-scale linear cut tests provide the closest approximation to the field conditions in which
TBMs break rocks. Sanio [10] developed formulas to predict cutter breaking performance
in laminated and flaky rocks based on simple theoretical analysis and tests, assuming that
the primary cutter breaking mechanism is tensile damage. The Sanio model accounts for
the effects of rock anisotropy and discontinuities on cutter breaking performance. How-
ever, it relies only on point load strengths in different directions to predict the degree of
penetration per revolution, resulting in limited accuracy. Additionally, Boyd [41] utilized
quantitative analysis to predict PR. The Boyd model addressed issues related to inconsistent
magnitudes in regression analysis and fuzzy neural network modeling. However, it lacks
detailed specific energy values for each rock type, and the machine efficiency factor must
be carefully considered.

4.2.2. Empirical Model

Empirical formulas have proven to be valuable tools during the feasibility, design,
and construction stages of a project, as they are more practical and easier for construction
personnel to understand compared to theoretical analyses. In geotechnical engineering,
empirical formulas based on statistics are widely used to predict target variables. Empirical
models can be broadly categorized into two main groups, simple and complex models. Sim-
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ple empirical models typically consider only one or two rock mechanical parameters, such
as uniaxial tensile strength, compressive strength, or hardness of the rock, for simplicity
and convenience. For instance, Tarkoy [42] estimated the total rock hardness using Schmidt
hammer bounce hardness and Tabor abrasion hardness and examined the relationship
between PR and total hardness for limestones, shales, and sandstones with a total hardness
ranging from 2 to 242. Graham [43] developed a calculation formula by considering the
cutter feed per revolution as a function of the single cutter thrust and the uniaxial compres-
sive strength of the rock. Farmer and Glossop [7] proposed a prediction model based on
eight examples of TBM tunnel construction performance data and geological information,
which uses the average single cutter thrust and the rock tensile strength to calculate the
cutter feed per revolution. Cassinelli [44] studied the relationship between rock structure
scoring (RSR) systems and TBM performance, while Innaurato et al. [8] enhanced the
model proposed by Cassinelli [44] based on five TBM tunnel construction performance
data sets and geological information, using 112 sets of valid data obtained from a 19 km
tunnel. The upgraded model considered the effect of uniaxial compressive strength of the
rock in the PR prediction model. Nelson et al. [5] developed a TBM feed per revolution
prediction model based on four sedimentary rock TBM tunnelling performance data sets
and geological information, and they found that PR was not only related to rock type, but
also to the single cutter thrust. They therefore proposed a correlation formula between total
rock hardness and in situ penetration index. Based on construction performance data and
geological information from two TBM tunnels in Australia, Bamford [45] showed that PR
could be well predicted using Schmidt hammer bounce hardness, total TBM thrust, NCB
indentation hardness, and shear angle. However, these simple models are now mostly
obsolete due to their low predictive accuracy.

Empirical models developed at a later stage have created a large database of TBM
performance by collecting numerous rock and machine parameters and using advanced
techniques such as multiple regression analysis, fuzzy mathematics, and neural networks
to develop complex empirical models. Well-known examples include the NTNU model [4],
probabilistic model [5], Alber model [6], neuro-fuzzy model [30], Farrokh model [46], and
special case model [47–49]. Furthermore, some researchers have attempted to develop new
rock excavatability grading systems by linking TBM performance to rock excavatability
grading systems, based on the concept of rock quality grading. Examples of such systems
include the QTBM model [50] and the RME model [51,52].

4.2.3. Artificial Intelligence Model

There are still studies that rely on conventional statistical and linear methods to
forecast TBM performance [53,54]. However, these methods have been criticized for their
limitations in resolving complex and non-linear issues. Grima et al. [30] argue that statistical
models may not adequately describe non-linear and complex systems, while Xu et al. [55]
highlight the deterioration of their performance when outliers and extreme values are
present in the data. Farrokh et al. [46] suggest that multi-parameter models, compared
to simple models, make better use of available project data and are easier to implement.
Consequently, it can be argued that artificial intelligence computational models are the
most suitable choice for predicting TBM performance.

Artificial intelligence (AI) models offer substantial benefits in tackling the intricate,
multi-parameter challenges characteristic of TBM operations. These advantages can be
categorized into two principal aspects, as outlined below:

• Data processing and analysis. AI models, particularly machine learning algorithms,
excel in handling large datasets generated during TBM operations. These datasets
encompass numerous parameters such as geological conditions, machine performance
metrics, and environmental factors. AI models can efficiently process these data
to provide real-time insights, which is crucial for making informed decisions and
adjusting operational strategies dynamically.
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• Predictive modeling and optimization. AI-driven predictive models can forecast
the performance of TBMs under varying conditions, enabling operators to optimize
machine settings for different segments of a tunnel project. By simulating various
scenarios, AI models help in identifying the most efficient operational parameters,
which can lead to significant cost savings and improved project timelines. More-
over, optimization algorithms can continuously adjust TBM parameters in real-time,
ensuring optimal performance throughout the tunneling process.

Typically, due to the numerous factors influencing TBM performance and the com-
plex interrelationships among these factors, the introduction of AI models to handle these
intricate relationships is imperative. Artificial intelligence techniques, such as artificial
neural networks (ANNs), imperialist competitive algorithms (ICAs), support vector ma-
chines (SVMs), particle swarm optimization (PSO), and adaptive neuro-fuzzy inference
systems (ANFISs) (see Figure 6), have been widely applied to solve various geotechnical
engineering problems, including TBM performance prediction [56–69]. Currently, many
researchers have achieved promising results by utilizing AI technology to predict multiple
parameters related to TBM performance after collecting them. Simoes and Kim [70] employ
rule-based and parameter-based fuzzy inference systems (FISs) to predict TBM U using
data from three different TBM projects. Mahdevari et al. [71] further utilize the SVM
technique on the dataset obtained by Yagiz [49]. Mahdevari et al. [71] propose optimization
algorithms to enhance SVMs and utilize these hybrid models to evaluate TBM PR. Benardos
and Kaliampakos [72] suggest an ANN model for predicting tunnel boring rates using
data from Athens metro tunnels. Grima [30] and colleagues introduce the ANFIS, which
demonstrates significantly higher PR prediction accuracy compared to statistical methods.
Yagiz et al. [53] employ ANNs to forecast TBM PR using data from the Queens Water
Tunnel in the United States.

In recent times, researchers have been developing sophisticated artificial intelligence
models aimed at enhancing the predictive capabilities of TBM performance. To overcome
the low learning rate and the issue of getting stuck in local minima, Yagiz and Karahan [73]
introduce several optimization methods, including hybrid harmony search, differential
evolution (DE), and grey wolf optimizer (GWO), to estimate TBM PR. The hybrid har-
mony search technique is found to yield significantly better results compared to other
proposed PR prediction methods. Armaghani et al. [74] develop two hybrid models,
PSO-ANN and ICA-ANN, to predict TBM PR and TBM AR. The aforementioned models
employ optimization algorithms to dynamically adjust multiple hyperparameters, guided
by metaheuristic principles. Empirical evidence indicates that this approach markedly en-
hances the efficiency and effectiveness of multiparameter predictive models by facilitating
continuous optimization.

In summary, when selecting a multiparameter prediction method for TBM, it is es-
sential to strike a balance between the accessibility of input parameters, the complexity of
the model, and the accuracy of the predicted results [55]. Critical factors influencing TBM
construction performance must be carefully considered. Furthermore, most researchers
base their studies on performance data obtained from TBM construction sites and geolog-
ical information to investigate the impacts of various rock and machine parameters on
TBM construction performance. While these data can accurately reflect the outcomes of
rock–machine interactions, achieving precise TBM performance prediction with a limited
number of construction instances is challenging due to the intricate nature of rock–machine
interaction processes. For generalizability purposes, it is imperative to gather a substantial
amount of TBM construction site data to accurately predict TBM performance.

5. Future Perspectives

In the post-epidemic era, the importance of digital technology has been further high-
lighted and is once again experiencing rapid growth. The emergence of digital technology
has brought about a profound transformation in every aspect of human work and life.
Consequently, a group of technology companies and scientists have envisioned the future
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of human society, with the concept of the metaverse taking center stage. The metaverse,
initially conceptualized by renowned American science fiction author Stephenson [75] in
1992 in his novel “Snow Crash”, focuses on creating a virtual digital world that mirrors the
real physical world.

The evolution from Second Life, the virtual world introduced by Linden Lab in the
US, to the more recent concept of digital twin represents various stages in the development
of the metaverse. This journey spans from digital cities to smart cities and ultimately to
digital twin cities. Presently, the metaverse holds a strong commercial dimension, and
significant investments have generated excitement surrounding conceptual ideas that are
rapidly becoming realities. However, the metaverse has evolved through the integration
of advanced science and technology, with its potential harnessed for constructing virtual
worlds envisioned for future human societies.

As a prominent buzzword within the internet industry, the metaverse has also gar-
nered attention within scientific research. In recent years, alongside advancements in
artificial intelligence and VR/AR/MR/XR reality technologies, the metaverse has transi-
tioned from being a “dream” to a “reality”, emerging as a focal point in current internet
research. It provides valuable theories, methods, and technologies for the construction
and development of future TBMs. Given this context, this paper focuses on two perspec-
tives, i.e., the future application of metaverse technology in the TBM field, particularly
in immersive training and learning concepts, as well as the integration of TBM and the
metaverse system.

5.1. Immersive Training and Learning

Immersive learning refers to the process by which individuals engage in an immersive
learning experience within a physical or virtual interactive learning environment. The
creation of such an environment plays a crucial role in facilitating the immersive learning
experience and typically involves simulation, cognition, and association [76]. Additionally,
the design of immersive learning emphasizes the principles of realism, achievement, and
presence [77]. As the metaverse emerges as a new stage in the development of immersive
technology, it integrates various technologies such as 5G, VR/AR/MR/XR, big data,
blockchain, artificial intelligence, and digital twin. This integration empowers the high-
quality development of immersive learning and, to some extent, resolves challenges related
to immersion, presence, interactivity, and responsiveness. Furthermore, the metaverse
provides a robust network for 5G and AR, supporting a virtual–real overlay experience
and offering a more effective avenue for immersive learning to unfold.

Drawing upon metaverse theory, we have devised a model diagram for immersive
training learning (refer to Figure 7), which can be employed in future scenarios such as staff
training (e.g., TBM driver operation training and on-site accident hazard demonstration)
and the promotion of safety knowledge. The combination of 5G and AR overcomes the
technical barriers associated with AR. The 5G + AR foundation layer (red layer) encom-
passes low latency, precise positioning, and high quality, providing fundamental technical
support for immersive learning while enhancing the overall immersive learning experience.
The 5G + AR transformational layer (yellow layer) incorporates mobile ubiquity, sensory
internet, multimodal interaction, and personalized learning analytics with 5G technology,
bringing about further advancements in the development of immersive learning. Guided
by metaverse theory, immersive learning driven by 5G and AR is characterized by realism,
presence, interactivity, and adaptability, forming the characteristic layer (blue layer) of im-
mersive learning. At the elemental level (pink layer), immersive learning involves learners,
5G and AR technologies, mobile learning media, immersive learning environments, and
enriched learning resources.
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With the ongoing development and maturation of the metaverse and its applications,
immersive learning can be redefined, and metaverse-based immersive learning is poised
to become a new industry in the “Internet+” era. As two pivotal technologies within the
metaverse, 5G and AR synergistically enhance connectivity and expand the possibilities for
user engagement, thereby creating numerous opportunities for immersive learning.

5.2. TBM Metaverse Architecture

The TBM metaverse represents the ultimate goal and focal point of integrating TBM
and metaverse theory. Its essence lies in achieving the perception, mapping, simulation,
decision-making, and control of TBM through pervasive three-dimensional perception of
the TBM’s physical world. This includes accurate mapping of its state, digital identifica-
tion of the entire domain, real-time information analysis, collaborative data calculation,
service simulation, precise decision implementation, and the cultivation of self-wisdom.
These functionalities address a range of dynamic, complex, multifaceted, and uncertain
problems in organization, management, and services. Building upon this foundation, the
collaborative configuration and information interaction between TBM data, information,
knowledge, resources, and all related physical entities (such as tunnels, rock formations,
network equipment, office facilities, etc.) will be comprehensively enhanced [78]. This aims
to improve the closed-loop empowerment system of TBM’s physical entity resources and
data resources, gradually establishing a TBM metaverse network ecosystem characterized
by virtual–real integration, real-time mapping, and collaborative interaction.

While the application of the metaverse primarily remains within the domain of games
and entertainment, it has rapidly extended its reach into various fields such as smart edu-
cation, smart healthcare, smart manufacturing, culture and art, finance and trade, content
production, advertising and media, military simulation, and interactive social networking.
This expansion is driven by demand upgrades and technological evolution [79]. The in-
tegration of TBM and metaverse theory benefits from this development and serves as an
important reference for research. Accordingly, the architecture of the TBM metaverse is
designed and constructed based on the following four aspects of integration: integration
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structure, integration elements, integration technology, and integration capabilities (refer to
Figure 8). In terms of integration structure, the TBM metaverse, as a vital component of
the metaverse, inherits a corresponding technical structure comprising the following seven
layers: the infrastructure layer, human–computer interaction layer, decentralized layer,
“human–computer–object environment” spatial computing layer, content production layer,
knowledge management and service discovery layer, and immersive experience layer [80].
Regarding integration elements, all elements involved in the operation of the TBM and
its metaverse need to be modeled. This encompasses different models, elements, rules,
logic, attributes, and knowledge of the cloud universe space, among others. These models
simulate the TBM management and service processes within the metaverse. The integra-
tion technology of the TBM metaverse primarily encompasses the following four aspects:
multi-dimensional interaction technology, high-speed communication technology, efficient
computing power, and intelligent core algorithms. These technological innovations con-
verge to simulate, monitor, diagnose, predict, and control TBM organization, management,
and service processes and behaviors. They also establish the data foundation for quality
tracing and service model innovation throughout the knowledge production process, fun-
damentally driving efficient synergy across all aspects of the project production cycle and
fostering organizational, management, and service innovation. The integration capabilities
include the following: virtual–real mapping and integration capabilities; accurate map-
ping and representation capabilities; visual modeling and visual presentation capabilities;
multi-source heterogeneous data association and integration capabilities; spatial–temporal
analysis and collaborative computing capabilities; simulation and projection of future oper-
ation and development capabilities; virtual–real integration and collaborative interaction
capabilities; and self-optimizing wisdom growth capabilities. Understanding the core
capabilities that a metaverse can bring to a TBM is essential within the context of current
information technology developments and user knowledge service needs, as it provides
insights into the type of “metaverse” that a TBM requires [81,82].
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6. Conclusions

This research marks the inaugural attempt to conduct a scientometric analysis of
TBM performance. The analysis encompasses 528 English-language articles indexed in
the WOS from 2000 to 2021. With the goal of creating a comprehensive knowledge map
of the TBM research field, this study endeavors to portray the current landscape of TBM
performance research and to provide researchers with valuable insights into the most recent
developments in the field.

• This study illuminates the noteworthy contributions made by various nations and
institutions to TBM performance research, with a focus on leading contributors such as
China, Iran, the United States, and Turkey. The analysis underscores the global scope
of TBM research initiatives and emphasizes the necessity of tackling a wide array of
tunnelling challenges on a global scale.

• The examination of 40 distinct domains and significant focal points in the study of
TBM performance reveals its interdisciplinary character.

• By scrutinizing highly cited articles and essential references, this research offers nu-
anced insights into pivotal research directions and significant findings.

• Through a comparative analysis of the merits and drawbacks associated with drill and
blast methods as opposed to TBM methods, this research provides valuable guidance
for stakeholders in the selection of excavation techniques for tunneling projects. It
emphasizes the significance of weighing technical and economic indicators to mitigate
project risks and optimize efficiency.

• The study further accentuates the potential ramifications of metaverse technology on
the future of TBMs, particularly focusing on immersive training and learning concepts
and the conceptualization of a TBM metaverse architecture. This integration unveils
thrilling prospects for innovation in tunnelling technology and training methodologies.

In summary, this study enriches our comprehension of TBM performance research,
offering valuable insights into prevailing trends, emerging topics, and prospective direc-
tions within the field. Its discoveries serve as a guiding framework for researchers and
practitioners to propel tunnelling technology forward and effectively tackle the challenges
inherent in modern infrastructure development.
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