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ABSTRACT

Multi-objective optimization (MOO) has become an influential framework for
various machine learning problems, including reinforcement learning and multi-
task learning. In this paper, we study the black-box multi-objective optimization
problem, where we aim to optimize multiple potentially conflicting objectives
with function queries only. To address this challenging problem and find a Pareto
optimal solution or the Pareto stationary solution, we propose a novel adaptive
stochastic gradient algorithm for black-box MOO, called ASMG. Specifically, we
use the stochastic gradient approximation method to obtain the gradient for the
distribution parameters of the Gaussian smoothed MOO with function queries
only. Subsequently, an adaptive weight is employed to aggregate all stochastic
gradients to optimize all objective functions effectively. Theoretically, we explicitly
provide the connection between the original MOO problem and the corresponding
Gaussian smoothed MOO problem and prove the convergence rate for the proposed
ASMG algorithm in both convex and non-convex scenarios. Empirically, the
proposed ASMG method achieves competitive performance on multiple numerical
benchmark problems. Additionally, the state-of-the-art performance on the black-
box multi-task learning problem demonstrates the effectiveness of the proposed
ASMG method.

1 INTRODUCTION

Multi-objective optimization (MOO) involves optimizing multiple potentially conflicting objectives
simultaneously (Deb et al., 2016; Fliege & Svaiter, 2000). In recent years, MOO has drawn intensive
attention in a wide range of applications, including meta-learning (Ye et al., 2021; Yu et al., 2022),
reinforcement learning (Thomas et al., 2021; Prabhakar et al., 2022), learning-to-rank (LTR) problems
Mahapatra et al. (2023a;b), and multi-task learning (Momma et al., 2022; Fernando et al., 2022; Zhou
et al., 2022b; Lin et al., 2022; 2023; Ye et al., 2024). A typical MOO problem is formulated as

min
x∈X

F (x) := (F1(x), F2(x), . . . , Fm(x)) , (1)

where m ≥ 2 denotes the number of objectives, X ⊆ Rd and d represents the parameter dimension.
The objective function Fi : Rd → R satisfies Fi(x) ≥ −∞ for i = 1, . . . ,m.

Solving the MOO problem is challenging because in most cases it cannot find a common parameter
that minimizes all objective functions simultaneously. Therefore, a widely adopted strategy is to find
a Pareto optimal solution or a Pareto stationary solution. To achieve this goal, a typical gradient-based
method is the multiple gradient descent algorithm (MGDA) (Désidéri, 2012). The basic idea of
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MGDA is to iteratively update the variable x via a common descent direction for all the objectives
through a convex combination of gradients from individual objectives. Various MGDA-based MOO
algorithms (Yu et al., 2020; Liu et al., 2021; Fernando et al., 2022; Zhou et al., 2022b) have been
proposed to adjust the multiple gradients to seek a common descent direction that simultaneously
decreases all the objectives. Those gradient-based MOO algorithms have been successfully applied
in a wide range of applications, especially for multi-task learning (MTL) (Sener & Koltun, 2018;
Zhang & Yang, 2022).

However, in many MOO-based learning problems, the gradient of the objective F (x) w.r.t. the
variable x cannot be explicitly calculated, making problem (1) a black-box MOO problem (Wang
& Shan, 2004; Žilinskas, 2014). For instance, many large models such as large language models
(LLMs) (Devlin et al., 2018; Raffel et al., 2020; Yu et al., 2023) are released in the service and are
only allowed for access with APIs (Brown et al., 2020). In such scenarios, users can only query the
large models without accessing gradients to accomplish tasks of interest (Sun et al., 2022b;a), and
gradient-based MOO methods are no longer applicable since they all rely on the availability of true
gradients or stochastic gradients w.r.t. the variable x. Several kinds of approaches have been widely
studied for black-box MOO, such as Bayesian optimization (BO) (Konakovic Lukovic et al., 2020;
Zhang & Golovin, 2020) and genetic algorithms (GA) (Laumanns et al., 2002; Wang & Shan, 2004;
Chen et al., 2012; Arrieta et al., 2018). Among those methods, BO methods are good at dealing
with low-dimensional expensive black-box MOO problems, while GA is to explore the entire Pareto
optimal set, which is computationally expensive for machine learning problems, and usually lacks
convergence analysis. Therefore, those limitations motivate us to design an algorithm for black-box
MOO that can effectively reach a Pareto optimal solution or a Pareto stationary solution for relatively
high-dimensional learning problems with affordable evaluations and convergence guarantee.

To achieve that, in this paper, we propose a novel Adaptive Stochastic Multi-objective Gradient
(ASMG) algorithm for black-box MOO by taking advantage of gradient-based MOO methods.
Specifically, the ASMG method first smoothes each objective to their expectation over a Gaussian
distribution, leading to Gaussian smoothed objectives. Then it iteratively updates the parameterized
distribution via a common search direction aggregated by the approximated stochastic gradients for all
smoothed objectives. We explore the connections between the MOO and the corresponding Gaussian
smoothed MOO and provide a convergence analysis for the proposed ASMG algorithm under both
convex and non-convex scenarios. Moreover, experiments on various numerical benchmark problems
and a black-box multi-task learning problem demonstrate the effectiveness of the proposed ASMG
method.

The main contributions of this work are three-fold: (i) We propose a novel ASMG algorithm
for black-box multi-objective optimization. To the best of our knowledge, we are the first to
design a stochastic gradient algorithm for black-box MOO with a theoretical convergence guarantee.
(ii) Theoretically, we explicitly provide the connection of the Pareto optimal and stationary conditions
between the original MOO and the corresponding Gaussian-smoothed MOO. Moreover, we prove
the convergence rate for the proposed ASMG algorithm in both convex and non-convex cases.
(iii) Empirically, the proposed ASMG algorithm achieves competitive performances on multiple
numerical benchmark problems. Moreover, the state-of-the-art performance on black-box multi-task
learning problems demonstrates the effectiveness of the proposed ASMG method.

Notation and Symbols. ∥ · ∥1, ∥ · ∥2, and ∥ · ∥∞ denote the l1 norm, l2 norm, and l∞ norm for
vectors, respectively. ∥ · ∥F denote the Frobenius norm for matrices. ∆m denotes an m-dimensional
simplex. S+ denotes the set of positive semi-definite matrices. X

Y denotes the elementwise division
operation when X and Y are vectors, and the elementwise division operation for diagonal elements in
X and Y when they are diagonal matrices. For a square matrix X, diag(X) is a vector with diagonal
entries in X, and if x is a vector, diag(x) is a diagonal matrix with x as its diagonal entries. Define
∥X∥Y :=

√
⟨X,Y X⟩ for a matrix Y ∈ S+ or a non-negative vector Y , where ⟨·, ·⟩ denotes the inner

product under the l2 norm for vectors and the inner product under the Frobenius norm for matrices.

2 BACKGROUND

In this section, we introduce useful concepts of MOO and stochastic gradient approximation strategies
for black-box optimization.
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2.1 MULTI-OBJECTIVE OPTIMIZATION

In MOO (Deb et al., 2016), we are interested in finding solutions that can not be improved simultane-
ously for all the objectives, leading to the notion of Pareto optimality, which is defined as follows for
the problem (1).
Definition 2.1. For any two point x1,x2 ∈ X , we define that x1 dominates x2 if Fi(x1) ≤ Fi(x2)
holds for i = 1, . . . ,m, and Fi(x1) ̸= Fi(x2) holds for some i. A point x∗ ∈ X is called Pareto
optimal if it is not dominated by any other point in X . The set of all Pareto optimal solutions forms
the Pareto set. The set of objective values F (x∗) for all the Pareto optimal is called the Pareto front.

We then present the sufficient condition for determining Pareto optimal.
Proposition 2.2. For MOO problem (1), if all objective Fi(x) for i = 1, . . . ,m are convex functions
and there exists λ ∈ ∆m−1 such that x∗ = argminx λ⊤F (x), then x∗ is a Pareto optimal.

The above proposition implies that the minimizer of any linearization is Pareto optimal (Zhou et al.,
2022b). In the general nonconvex cases, MOO aims to find the Pareto stationary solution (Fliege et al.,
2019). If a point x̂ is a Pareto stationary solution, then there is no common descent direction for all
Fi(x)’s (i = 1, . . . ,m) at x̂. For the Pareto stationary condition, we have the following proposition
according to Proposition 1 in Zhou et al. (2022b).
Proposition 2.3. For MOO problem (1), (i) we say x∗ ∈ X is a Pareto stationary solution if there
exist λ ∈ ∆m−1 such that ∥

∑m
i=1 λi∇Fi(x

∗)∥ = 0 ; (ii) we say x∗ ∈ X is a ϵ-accurate Pareto
stationary solution if minλ ∥

∑m
i=1 λi∇Fi(x

∗)∥2 ≤ ϵ where λ ∈ ∆m−1.

2.2 STOCHASTIC GRADIENT APPROXIMATION STRATEGIES

Inspired by evolution strategy, the stochastic gradient approximation method (Wierstra et al., 2014;
Lyu & Tsang, 2021) for black-box optimization, instead of maintaining a population of searching
points, iteratively updates a search distribution by stochastic gradient approximation.

The stochastic gradient approximation strategies employed in black-box optimization typically follow
a general procedure. Firstly, a parameterized search distribution is utilized to generate a batch
of sample points. Then the sample points allow the algorithm to capture the local structure of
the fitness function and appropriately estimate the stochastic gradient to update the distribution.
Specifically, when θ denotes the parameters of the search distribution pθ(x) and f(x) denotes a
single objective function for sample x, the expected fitness under the search distribution can be
defined as J(θ) = Epθ(x)[f(x)]. Based on this definition, we can obtain the Monte Carlo estimate
of the search gradient as

∇θJ(θ) =
1

N

∑N

j=1
f(xj)∇θ log pθ(xj), (2)

where N denotes the number of samples, and xj denotes the j-th sample. Therefore, the stochastic
gradient ∇θJ(θ) provides a search direction in the space of search distributions.

3 METHODOLOGY

In this section, we introduce the proposed ASMG algorithm. Firstly, we formulate the black-box
MOO as a min-max optimization problem and solve it in Section 3.1. Then in Section 3.2, we derive
the update formula of parameters in the search distribution under the Gaussian sampling.

3.1 BLACK-BOX MULTI-OBJECTIVE OPTIMIZATION

We aim to minimize the MOO problem (1) with only function queries. Due to the lack of gradient
information in black-box optimization, we use the stochastic gradient approximation method. Specifi-
cally, the objective of the original MOO is smoothed to the expectation of F (x) under a parametric
search distribution pθ(x) with parameter θ, i.e., Ji(θ) = Epθ(x)[Fi(x)] for i = 1, . . . ,m. Then the
optimal parameter θ is found by minimizing the following smoothed MOO problem as

min
θ

J(θ) := (J1(θ), J2(θ), . . . , Jm(θ)). (3)
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By following Wierstra et al. (2014); Lyu & Tsang (2021), the search distribution is assumed to
be a Gaussian distribution, i.e., pθ(x) = N (x | µ,Σ) where µ denotes the mean and Σ denotes
the covariance matrix, and correspondingly θ includes µ and Σ, i.e., θ = {µ,Σ}. We denote
Ji(θ) = Ji(µ,Σ) for i = 1, . . . ,m. This Gaussian-smoothed MOO method can effectively estimate
stochastic gradients, and enable a more accurate search direction for the distribution to address
high-dimensional black-box MOO problems. The connection between this Gaussian smoothed MOO
problem (3) and problem (1) is shown in Section 4.

Here we aim to derive an update formulation for θ. To optimize all the Gaussian smoothed objective
functions effectively, inspired by MGDA, we can find a parameter θ to maximize the minimum
decrease across all smoothed objectives in each iteration as

max
θ

min
i∈[m]

(Ji(θt)− Ji(θ)) ≈ max
θ

min
i∈[m]

⟨∇θJi(θt),θt − θ⟩ , (4)

where ∇θJi(θt) = ∇θEpθt
[Fi(x)] denotes the derivative of Ji(θ) w.r.t. θ = {µ,Σ} at θt =

{µt,Σt}. In Eq. (4), the first-order Taylor expansion is used to derive the approximation with
an assumption that the variable θ is close to θt. To further make this assumption hold, we add a
regularization term to maximize − 1

βt
KL(pθ∥pθt) into Eq. (4), and then the objective function to

update θ is formulated as

min
θ

max
λt∈∆m−1

〈 m∑
i=1

λt
i∇θJi(θt),θ − θt

〉
+

1

βt
KL(pθ∥pθt). (5)

Note that problem (5) is convex w.r.t. θ and concave w.r.t. λ for Gaussian distribution pθ . Then using
Von Neumann-Fan minimax theorem (Borwein, 2016), we can switch the order of the min and max
operators, leading to an equivalent problem as

max
λt∈∆m−1

min
θ

〈 m∑
i=1

λt
i∇θJi(θt),θ − θt

〉
+

1

βt
KL(pθ∥pθt

). (6)

By solving the inner problem of problem (6), we can obtain the update formulations for µ and Σ in
the t-th iteration as

µt+1 = µt − βtΣt

m∑
i=1

λt
i∇µJi(θt), Σ−1

t+1 = Σ−1
t + 2βt

m∑
i=1

λt
i∇ΣJi(θt), (7)

where ∇µJi(θt) and ∇ΣJi(θt) denote the derivative of Ji(θ) w.r.t. µ and Σ at µ = µt and Σ = Σt,
respectively. To obtain those two gradients, in the following theorem, we prove that we only need
function queries.
Theorem 3.1. (Wierstra et al., 2014) The gradient of the expectation of an integrable function Fi(x)
under a Gaussian distribution pθ := N (µ,Σ) with respect to the mean µ and the covariance Σ can
be expressed as

∇µEpθ
[Fi(x)] = Epθ

[Σ−1(x− µ)Fi(x)], (8)

∇ΣEpθ
[Fi(x)] =

1

2
Epθ

[
(
Σ−1(x− µ)(x− µ)⊤Σ−1 −Σ−1

)
Fi(x)]. (9)

According to Theorem 3.1, to calculate the gradients, we need to calculate the inverse covariance
matrix, which is computationally expensive in high dimensions, and hence to reduce the computational
cost, we assume that the covariance matrix Σ is a diagonal matrix.

Then substituting Eq. (7) into problem (6), it can be approximated by the following quadratic
programming (QP) problem as

min
λt∈∆m−1

∥∥∥ m∑
i=1

λt
ip

t
i

∥∥∥2 + 2
∥∥∥ m∑

i=1

λt
ih

t
i

∥∥∥2, (10)

where pt
i = Σ

1
2
t ∇µJi(θt) and ht

i = diag(Σt∇ΣJi(θt)). The detailed derivation is
put in the Appendix A. Problem (10) is obviously convex and the objective function of
problem (10) can be simplified to λt⊤Λ⊤Λλt, where λt = (λt

1, . . . , λ
t
m)⊤ and Λ =

(((pt
i)

⊤,
√
2(ht

i)
⊤)⊤, . . . , ((pt

m)⊤,
√
2(ht

m)⊤)⊤). The matrix Λ⊤Λ is of size m × m, which is
independent of the dimension of µ. Therefore, the computational cost to solve problem (10) is
negligible since m is usually very small. Here we use the open-source CVXPY library (Diamond &
Boyd, 2016) to solve it.

4



Published as a conference paper at ICLR 2024

3.2 UPDATE FORMULATIONS FOR GAUSSIAN SAMPLING

Since pt
i and ht

i in problem (10) and the update formulation of µ and Σ in Eq. (7) need to calculate
expectations of the black-box function. However, those expectations do not have analytical forms,
and we estimate them by Monte Carlo sampling.

Specifically, according to Theorem 3.1, the stochastic approximation of pt
i and ht

i using Monte Carlo
sampling are given as

p̂t
i =

1

N

∑N

j=1
Σ

− 1
2

t (xj − µt)
(
Fi(xj)− Fi(µt)

)
, (11)

ĥt
i =

1

2N

∑N

j=1

[
diag

(
(xj − µt)(xj − µt)

⊤Σ−1
t − I

)
(Fi(xj)− Fi(µt))

]
, (12)

where xj denotes the j-th sample and inspired by Lyu & Tsang (2021), subtracting Fi(µt) is used to
improve the computational stability while keeping them as unbiased estimations. By incorporating
Theorem 3.1 into Eq. (7), the updated formulations for µ and Σ using Monte Carlo sampling are
rewritten as

µt+1 = µt − βt

∑m

i=1
λt
iΣtĝ

t
i , Σ−1

t+1 = Σ−1
t + 2βt

∑m

i=1
λt
iĜ

t
i, (13)

where the stochastic gradients ĝt
i and Ĝt

i are formulated as

ĝt
i =

1

N

∑N

j=1
Σ−1

t (xj − µt)
(
Fi(xj)− Fi(µt)

)
, (14)

Ĝt
i =

1

2N

∑N

j=1
diag

[
Σ−1

t

[
diag

(
(xj − µt)(xj − µt)

⊤Σ−1
t − I

)
(Fi(xj)− Fi(µt))

]]
. (15)

Note that ĝt
i is an unbiased estimator for the gradient ∇µJi(θt) as proved in Lemma B.4. To avoid the

scaling problem, in practice, we can employ monotonic transformation for the aggregated objective,
more details can be found in Appendix E.

To ensure the convergence, the sequence of weighted vector {λt}T−1
t=0 is usually required to be a

convergent sequence (Zhou et al., 2022b; Fernando et al., 2022; Liu & Vicente, 2021). However,
directly solving problem (10) in each iteration cannot guarantee that. Moreover, since solving the
composite weights λt depends on p̂t

i and ĥt
i, which are related to stochastic gradients ĝt

i and Ĝt
i,

the estimation of the composite stochastic gradient may contain some bias, i.e. E[
∑m

i=1 λ
t
iΣtĝ

t
i ] ̸=∑m

i=1 E[λt
i]E[Σtĝ

t
i ]. To generate a stable composite weights sequence and reduce the bias caused by

the correlation of weights and the stochastic gradients, we apply a momentum strategy (Zhou et al.,
2022b) to λ. Specifically, in k-th iteration, we first solve problem (10) to obtain λ̃k, and then update
the weights by λk = (1− γt)λ

k−1 + γtλ̃
k, where γt is a coefficient and γt ∈ (0, 1]. To preserve the

advantage of maximizing the minimum decrease across all the Gaussian smoothed objectives, the
coefficient γt is set as 1 at the beginning and then decays to 0 as t → +∞. In Lemma B.5, we show
that the bias caused by solving λt decreases to zero as γ → 0.

The complete algorithm is shown in Algorithm 1. Since the computational cost associated with
solving problem (10) in each iteration is negligible, the computational cost for the ASMG method per
iteration is on the order of O(mNd).

4 CONVERGENCE ANALYSIS

In this section, we provide a comprehensive convergence analysis for the proposed ASMG method.
All the proofs are put in Appendix C. Firstly, we make a standard assumption for problem (3).
Assumption 4.1. The functions Ji(θ), . . . , Jm(θ) are H-Lipschitz and L-smoothness w.r.t. θ =
{µ,Σ} ∈ Θ, where Θ := {µ,Σ | µ ∈ Rd,Σ ∈ S+}.

The smoothness assumption in Assumption 4.1 is widely adopted in MOO (Zhou et al., 2022b;
Fernando et al., 2022). Then, we provide a boundedness result for the covariance matrix Σ.

Theorem 4.2. Suppose that the gradient Ĝi are positive semi-definite matrix, i.e., Ĝi ⪰ ξI for
i = 1, . . . ,m, where ξ ≥ 0 and that the covariance matrix is a diagonal matrix. Then for Algorithm
1, we have ΣT ⪯ I

ξ
∑T

t=1 βt+Σ−1
0

.
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Algorithm 1 The ASMG Method
Require: number of iterations T , step size β, number of samples N .

1: Initialized θ0 = (µ0,Σ0) and γ0 = 1;
2: for t = 0 to T − 1 do
3: Take i.i.d samples zj ∼ N (0, I) for j ∈ {1, . . . , N};

4: Set xj = µt +Σ
1
2
t zj for j ∈ {1, . . . , N};

5: Query the batch observations {F1(x1), . . . , F1(xN ), . . . , Fm(x1), . . . , Fm(xN )};
6: Query the batch observations {F1(µt), . . . , Fm(µt)};

7: Compute p̂t
i =

1
N

∑N
j=1 Σ

− 1
2

t (xj − µt)
(
Fi(xj)− Fi(µt)

)
;

8: Compute ĥt
i =

1
2N

∑N
j=1[diag

(
(xj − µt)(xj − µt)

⊤Σ−1
t − I

)
(Fi(xj)− Fi(µt))];

9: Compute λ̃t by solving the QP problem (10);
10: Update the weights for the gradient composition λt = (1− γt)λ

t−1 + γtλ̃
t;

11: Compute the stochastic gradients ĝt
i and Ĝt

i according to Eqs. (14) (15), respectively;
12: Set µt+1 = µt − βt

∑m
i=1 λ

t
iΣtĝ

t
i and set Σ−1

t+1 = Σ−1
t + 2βt

∑m
i=1 λ

t
iĜ

t
i;

13: end for
14: return θT = (µT ,ΣT ).

Theorem 4.2 establishes the upper bound for Σ throughout the optimization process and is useful to
analyze the convergence properties in the non-convex scenario as shown in Section 4.2.

4.1 CONVEX CASES

In this section, we assume that each objective in problem (1), i.e., Fi(x) (i = 1, . . . ,m), is convex
w.r.t. x. Note that the proposed ASMG algorithm approximates the gradients of the objectives of the
Gaussian smoothed MOO problem, i.e., problem (3). It is necessary to study the relation between the
optimal solutions of the original MOO problem (1) and the corresponding Gaussian-smoothed MOO
problem (3), and we put the results in the following proposition.

Proposition 4.3. Suppose pθ(x) is a Gaussian distribution with θ = {µ,Σ} and the functions
Fi(x), i = 1, . . . ,m are all convex functions. Let Ji(θ) = Epθ

[Fi(x)]. Then for any λ ∈ ∆m−1 and
µ∗ ∈ X , we have

∑m
i=1 λi

(
Fi(µ)− Fi(µ

∗)
)
≤
∑m

i=1 λi

(
Ji(µ,Σ)− Ji(µ

∗,0)
)
, where 0 denotes

a zero matrix with appropriate size and Ji(µ
∗,0) = Fi(µ

∗).

When µ∗ is a Pareto-optimal solution of problem (1), Proposition 4.3 implies that the distance to
the Pareto-optimal objective values of the original MOO problem is upper-bounded by that of the
Gaussian smoothed MOO problem. Then the following theorem captures the convergence of µ for
convex objective functions.

Theorem 4.4. Suppose that Fi(x) (i = 1, . . . ,m) is a convex function, Ji(θ) is c-strongly convex
w.r.t. µ, Ĝi is positive semi-definite matrix such that ξI ⪯ Ĝi ⪯ cI

4 with ξ ≥ 0, Σ0 ∈ S+, and
Σ0 ⪯ RI where R > 0. If β ≤ 1

L and the sequence {µt} generated by Algorithm 1 satisfies that the
distance between the sequence {µt} and the Pareto set is bounded, i.e., ∥µt − µ∗∥ ≤ D where µ∗

denotes a Pareto optimal solution of problem (1), then with Assumption 4.1, we have

1

T

∑T−1

t=0
Ez

[∑m

i=1
λt
i

(
Ji(µt+1,Σt)− Ji(µ

∗, 0)
)]

= O
(

1

βT
+

log T

T
+ γ

)
. (16)

Based on Theorem 4.4 and Proposition 4.3, when β = O(1) and γ = O(T−1), we have

1

T

∑T−1

t=0
Ez

[∑m

i=1
λt
i

(
Fi(µt+1)− Fi(µ

∗)
)]

= O(
log T

T
). (17)

Therefore, the proposed ASMG algorithm possesses a convergence rate O( log T
T ) in convex cases.

Note that Theorem 4.4 does not require each objective function Fi(x) to be differentiable. Hence,
Theorem 4.4 holds for non-smooth convex functions {Fi(x)}. If Fi(x) is c-strongly convex, then
Ji(θ) is also c-strongly convex (Domke, 2020) and Theorem 4.4 holds.
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4.2 NON-CONVEX CASES

In many practical problems, the objective functions of problem (1) are non-convex, and we aim to
find a Pareto stationary solution. Similar to Proposition 4.3, we have the following result to reveal the
relation between Pareto stationary solutions of problems (1) and (3).
Proposition 4.5. Suppose pθ(x) is a Gaussian distribution with θ = {µ,Σ} and Fi(x) (i =
1, . . . ,m) is a LF -Lipschitz smooth function. Let Ji(θ) = Epθ

[Fi(x)] and Σ be a diagonal ma-
trix. If µ∗ is a Pareto stationary solution of problem (3) and there exists λ ∈ ∆m−1 such that
∥
∑m

i=1 λi∇µJi(µ
∗)∥ = 0, then we have ∥

∑m
i=1 λi∇Fi(µ

∗)∥2 ≤ L2
F ∥diag(Σ)∥1 and this implies

that µ∗ is a ϵ-accurate Pareto stationary solution of problem (1) with ϵ = L2
F ∥diag(Σ)∥1.

According to Proposition 4.5, a Pareto stationary solution of problem (3) is a ϵ-accurate Pareto
stationary solution of problem (1). The following theorem establishes the convergence of the
proposed ASMG method under the non-convex case.

Theorem 4.6. Suppose that Ji(θ) (i = 1, . . . ,m) is bounded, i.e., |Ji(θ)| ≤ B, Ĝi is positive
semi-definite matrix such that ξI ⪯ Ĝi ⪯ bI with b ≥ ξ > 0, Σ0 ∈ S+, and Σ0 ⪯ RI with R > 0.
If β ≤ 1

RL
√
d

, then with Assumption 4.1 we have

1

T

∑T−1

t=0
Ez

[∥∥∥∑m

i=1
λt
i∇µJi(θt)

∥∥∥2] = O
(
γ

β
+

1

βT
+ γ + β

)
. (18)

According to Theorem 4.6, if β = O(T− 1
2 ) and γ = O(T−1), the proposed ASMG method possesses

a O(T− 1
2 ) convergence rate to reach a Pareto stationary solution for problem (3), which is a ϵ-accurate

Pareto stationary solution of problem (1). According to Theorem 4.2, when β = O(T− 1
2 ), diagonal

entries of ΣT converge to zero as T → ∞ and hence ϵ → 0, leading to a Pareto stationary solution
for problem (1).

5 RELATED WORKS

Several kinds of approaches have been studied for black-box optimization, such as Bayesian opti-
mization (BO) (Srinivas et al., 2009; Lyu et al., 2019), evolution strategies (ES) (Back, 1991; Hansen,
2006), and genetic algorithms (GA) (Srinivas & Patnaik, 1994). BO-based methods are inefficient in
handling high-dimensional problems and GA methods lack convergence analysis. ES-based methods
are better for relatively high-dimensional problems and have been applied in many applications
such as reinforcement learning (Liu et al., 2019) and prompt learning (Sun et al., 2022b;a). Al-
though BO achieves good query efficiency for low-dimensional problems, it often fails to handle
high-dimensional problems with large sample budgets (Eriksson et al., 2019). The computation of
GP with a large number of samples itself is expensive, and the internal optimization of the acquisition
functions is challenging.

Among ES-based methods, CMA-ES (Hansen, 2006) is a representative one. It uses second-order
information to search candidate solutions by updating the mean and covariance matrix of the likelihood
of candidate distributions. The CMA-ES method is widely adopted in many learning tasks (Won et al.,
2017; Sun et al., 2022b;a; Han et al., 2023). Though it is designed for single-objective black-box
optimization, it is also applied to black-box multi-task learning (Sun et al., 2023), where all objectives
are aggregated with equal weights. Therefore, we consider CMA-ES as an important baseline method
in our experiments.

6 EMPIRICAL STUDY

In this section, we empirically evaluate the proposed ASMG method on different problems. The
experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU.

6.1 SYNTHETIC PROBLEMS

We compare the proposed ASMG method with CMA-ES (Hansen, 2006), ES (Salimans et al., 2017),
BES (Gao & Sener, 2022), and MMES (He et al., 2020) methods on the following three d-dimensional
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synthetic benchmark test problems:

F (x) =
(∑d

i=1
10

2(i−1)
d−1 |xi − 0.01|,

∑d

i=1
10

2(i−1)
d−1 |xi + 0.01|

)
, (19)

F (x) =
(∑d

i=1
|xi − 0.1| 12 ,

∑d

i=1
|xi + 0.1| 12

)
, (20)

F (x) =
(∑d

i=1
10

2(i−1)
d−1 |xi|

1
2 , 10d+

∑d

i=1

(
(10

(i−1)
d−1 xi)

2 − 10 cos(2π10
(i−1)
d−1 xi)

))
. (21)

Test problems (19)-(21) are called the shift l1-ellipsoid, shift l 1
2

-ellipsoid, and mixed ellipsoid-
rastrigin 10, respectively.

For the baseline methods, by following Sun et al. (2023), we aggregate multiple objectives with
equal weights to become a single objective. The results are evaluated by calculating the Euclidean
distance between the solution x and the optimal solution set P , i.e., E = dist(x,P). Due to the page
limitation, the details of the evaluation metric and implementation are put in Appendix F.1.
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(c) Mixed Ellipsoid-Rastrigin 10.

Figure 1: Results on the synthetic problems with 50 samples (i.e., N = 50).

Results. Figure 1 shows the results on those three d-dimensional synthetic problems with 50
samples (i.e., N = 50) and d = 100. The proposed ASMG method approximately achieves a linear
convergence rate in the logarithm scale and can arrive at solutions with a high precision, i.e., 10−4,
on three cases. The CMA-ES method can converge with high precision on problem (19) but only
achieve 10−1 precision on problem (20). The MMES method also cannot reach a high precision on
these problems. Moreover, the CMA-ES and MMES methods fail on problem (21) and the ES and
BES methods fail on all three problems. The results show that it could be challenging for ES and
BES to optimize non-smooth or non-convex test functions without adaptively updating mean and
covariance. Those results consistently demonstrate the effectiveness of the proposed ASMG method.

6.2 BLACK-BOX MULTI-TASK LEARNING

In this section, we apply the proposed ASMG method to black-box multi-task learning. Multi-task
learning (MTL) (Caruana, 1997; Zhang & Yang, 2022) is a widely adopted paradigm and aims to train
a single model to handle multiple tasks simultaneously. Given m tasks, task i has a training dataset
Di. Let Li(Di;MΦ) denote the average loss on Di for task i using the model M with parameter
Φ. Then MTL can be formulated as a MOO problem with m objectives as minΦ(Li, . . . ,Lm). For
the conventional MTL setting, the model M is available for backward propagation, allowing the
optimization problem to be solved using the gradients of the model parameters, i.e., ∇ΦLi. However,
in many practical scenarios, such as multi-task prompt tuning for extremely large pre-trained models
(Sun et al., 2023), part of the model M remains fixed in the service and is only accessible through an
inference API. This results in the gradient of the objectives Li with respect to the local parameters
ϕ ⊂ Φ being unavailable. For cases where the gradients of task losses with respect to the learned
parameter ϕ cannot be explicitly calculated in MTL, we refer to black-box MTL.

Problem Formulation. We consider a specific black-box MTL problem, where our focus is to learn
a shared prompt for all tasks using pre-trained vision-language models (Sun et al., 2023; Wang et al.,
2023; Liu et al., 2023). Following the setup in Liu et al. (2023), we employ the CLIP model (Radford
et al., 2021) as the base model. In this context, our model M can be expressed as M = {Mc,p},
where Mc represents the fixed CLIP model, and p ∈ RD is the token embedding of the prompt. Note
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that the CLIP model is treated as a black-box model, making it impossible to calculate the gradient
of the token embedding p in the text encoder using backward propagation. Inspired by Sun et al.
(2022b;a), we optimize v ∈ Rd and employ a fixed randomly initialized matrix A ∈ RD×d to project
v onto the token embedding space instead of directly optimizing the prompt p. Consequently, the
corresponding black-box MTL problem can be formulated as

min
v∈Rd

(
L1(D1; {Mc,Av}), . . . ,Lm(Dm; {Mc,Av})

)
. (22)

The details of the CLIP model with token embedding and the loss function Li are put in Appendix F.2.

Baselines. The proposed ASMG method is compared with (i) the zero-shot setting, which evaluates
the model on the downstream datasets that were not seen during the training phase without prompt
tuning (Radford et al., 2021); (ii) four ES-based black-box optimization methods, i.e., ES (Salimans
et al., 2017), BES (Gao & Sener, 2022), MMES (He et al., 2020) and CMA-ES (Hansen, 2006),
where we simply transform multiple objectives into one single objective by equal weights; (iii) the
ASMG-EW method, where we fix the weighted vector as λt = 1

m for ASMG during optimization.
The implementation details are put in Appendix F.2.

Table 1: Results on the Office-31 and Office-home datasets. Each experiment is repeated over 3
random seeds and the mean classification accuracy (%) is reported. The best result across all groups
is in bold and the best result in each comparison group is underlined.

Method
Office-31 Office-home

A D W Avg Ar Cl Pr Rw Avg
Zero-shot 73.68 79.51 66.67 73.28 73.06 51.68 83.79 81.41 72.48

Dimension d = 256
ES 75.10 80.05 71.67 75.61 ±1.18 71.16 47.96 80.33 80.90 70.09±0.51

BES 72.65 80.60 73.52 75.59±0.90 68.94 45.97 81.53 79.42 68.97±1.40

MMES 75.90 83.33 76.67 78.63±0.59 71.85 49.26 82.10 81.37 71.14±0.69

CMA-ES 76.24 87.98 75.93 80.05±1.34 69.26 50.09 85.73 82.13 71.80±0.22

ASMG-EW 76.52 83.88 77.22 79.21±1.20 70.02 47.13 80.23 79.50 69.22±1.39

ASMG 77.83 86.61 80.56 81.67±0.64 74.26 53.52 86.23 83.03 74.26 ±1.06

Dimension d = 512
ES 75.95 81.69 75.37 77.67 ±0.91 70.78 48.39 82.06 81.15 70.60±0.36

BES 75.73 82.51 74.81 77.68±1.88 69.39 48.18 82.94 80.29 70.20±0.51

MMES 76.01 84.70 77.22 79.31±0.34 70.40 50.45 85.10 82.56 72.13±1.19

CMA-ES 76.75 87.16 77.22 80.38±0.48 70.46 50.02 86.26 82.02 72.19±0.27

ASMG-EW 78.01 84.70 76.67 79.79±1.45 69.20 46.91 80.51 80.68 69.33±0.52

ASMG 78.63 87.43 78.33 81.47±0.37 73.50 52.84 85.88 83.78 74.00±0.81

Dimension d = 1024
ES 72.59 78.14 74.81 75.18±1.91 70.34 47.38 82.59 80.54 70.21±0.08

BES 72.14 79.51 71.67 74.44±0.84 70.27 48.25 79.94 80.00 69.62±0.81

MMES 77.09 81.42 75.74 78.09±0.95 71.03 49.19 84.29 81.95 71.61±0.41

CMA-ES 76.87 87.16 77.59 80.54±0.41 71.28 50.92 85.73 82.49 72.61±0.39

ASMG-EW 77.15 82.51 77.78 79.15±1.48 69.20 47.09 81.36 80.86 69.63±0.88

ASMG 76.30 87.70 80.19 81.40±0.49 73.18 51.82 85.84 83.21 73.51 ±0.07

Results. Table 1 presents experimental results on the Office-31 and Office-home datasets for three
different dimensions of z. We can see that the ASMG method consistently outperforms all baselines in
terms of average classification accuracy across different settings, highlighting its effectiveness. When
comparing ASMG with ASMG-EW, the results demonstrate the effectiveness of adaptive stochastic
gradient. Notably, even in the high-dimensional setting (i.e., d = 1024), our method maintains
good performance. Remarkably, ASMG achieves the highest average classification accuracy when
d = 256, surpassing zero-shot by 8.4% on Office-31 and 1.8% on Office-home. This further validates
the effectiveness of the proposed ASMG method.

7 CONCLUSION

In this paper, we propose ASMG, a novel and effective adaptive stochastic gradient-based method
for solving the black-box MOO problem. Specifically, we smooth the black-box MOO problem
to a Gaussian smoothed MOO and we propose a novel adaptive stochastic gradient approximation
approach to solve it. Theoretically, we explore the connections between the MOO and the corre-
sponding Gaussian smoothed MOO, and we provide a convergence guarantee for ASMG under both
convex and non-convex scenarios. Moreover, empirical studies on synthetic problems and black-box
MTL demonstrate the effectiveness of the proposed ASMG method.
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APPENDIX

A PROOF OF THE RESULT IN SECTION 3.1

A.1 PROOF OF UPDATED RULE

The objective of the inner minimization of problem (6) can be rewritten as〈
m∑
i=1

λi∇θJi(θt),θ

〉
+

1

βt
KL(pθ∥pθt) = µ⊤(

m∑
i=1

λi∇µJi(θt)) +

m∑
i=1

λitr(Σ∇ΣJi(θt))

+
1

2βt

[
tr(Σ−1

t Σ) + (µ− µt)
⊤Σ−1

t (µ− µt) + log
|Σt|
|Σ|

− d

]
, (23)

where ∇µJi(θt) and ∇ΣJi(θt) denotes the derivative w.r.t µ and Σ taking at µ = µt and Σ = Σt,
respectively. We can see the above problem is convex with respect to µ and Σ. Taking the derivative
w.r.t µ and Σ and setting them to zero, we can obtain that

m∑
i=1

λi∇µJi(θt) +
1

βt
Σ−1

t (µ− µt) = 0, (24)

m∑
i=1

λi∇ΣJi(θt) +
1

2βt
[Σ−1

t −Σ−1] = 0. (25)

Substituting the above equalities into the regularization term of the objective of the outer optimization
problem we have

1

βt
KL(pθ∥pθt

) =
1

2βt

[
tr(Σ−1

t Σ) + (µ− µt)
⊤Σ−1

t (µ− µt) + log
|Σt|
|Σ|

− d

]
(26)

=
1

2βt
tr
(
I − 2βt

m∑
i=1

λi∇ΣJi(θt)Σ
)
− 1

2
(µ− µt)

⊤
m∑
i=1

λi∇µJi(θt)

+
1

2βt
log

(
|Σt(Σ

−1
t + 2βt

m∑
i=1

λi∇ΣJi(θt))|

)
− d

2βt
(27)

=
d

2βt
−

〈
m∑
i=1

λi∇ΣJi(θt),Σ

〉
− 1

2
(µ− µt)

⊤
m∑
i=1

λi∇µJi(θ)

+
1

2βt
log(|I + 2βtΣt

m∑
i=1

λi∇ΣJi(θt)|)−
d

2βt
(28)

= −

〈
m∑
i=1

λi∇ΣJi(θt),Σ−Σt

〉
− 1

2
(µ− µt)

⊤
m∑
i=1

λi∇µJi(θ) +
Qt

2βt
(29)

where Qt is given as below.

Qt = log(|I + 2βtΣt

m∑
i=1

λi∇ΣJi(θt)|)− 2βt

〈
m∑
i=1

λi∇ΣJi(θt),Σt

〉
(30)

= log(|I + 2βtΣt

m∑
i=1

λi∇ΣJi(θt)|)− tr(2βtΣt

m∑
i=1

λi∇ΣJi(θt)). (31)

Since Σt and ∇ΣJi(θt) are both diagonal matrix, we denote diag(Σt

∑m
i=1 λi∇ΣJi(θt)) =

(v1t , . . . , v
d
t ) in t-th iteration, then we have

Qt = log(

d∏
i=1

(1+2βtv
i
t))−

d∑
i=1

2βtv
i
t =

d∑
i=1

(
log(1+2βtv

i
t)−2βtv

i
t

)
=

d∑
i=1

−2β2
t (v

i
t)

2+O(β3
t (v

i
t)

3),

(32)
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where the last equality is due to the Taylor expansion. Note that O(β3
t (v

i
t)

3) decrease to zero when
βt → 0. We can approximate Qt by

∑d
i=1 −2β2

t (v
i
t)

2. Then substituting Eqs. (24) (29) and Qt into
the outer optimization problem of problem (6), we have〈

m∑
i=1

λi∇θJi(θt),θ − θt

〉
+

1

βt
KL(pθ∥pθt) (33)

=

〈
m∑
i=1

λi∇µJi(θt),µ− µt

〉
+

〈
m∑
i=1

λi∇ΣJi(θt),Σ−Σt

〉
+

1

βt
KL(pθ∥pθt

) (34)

=
1

2

〈
m∑
i=1

λi∇µJi(θt),µ− µt

〉
+

Qt

2βt
(35)

= −βt

2

〈
m∑
i=1

λi∇µJi(θt),Σt

m∑
i=1

λi∇µJi(θt)

〉
− βt

〈
Σt

m∑
i=1

λi∇ΣJi(θt),Σt

m∑
i=1

λi∇ΣJi(θt)

〉
.

(36)

Therefore, the outer optimization problem is equivalent to the following problem

min
λt∈∆m−1

∥∥∥Σ 1
2
t

m∑
i=1

λi∇θJi(θt)
∥∥∥2 + 2

∥∥∥diag(Σt

m∑
i=1

λi∇ΣJi(θt))
∥∥∥2, (37)

where we reach the result in Eq. (10).

A.2 PROOF OF THEOREM 3.1

We now provide the proof of the gradient of Epθ
[Fi(x)] w.r.t µ and Σ.

∇µEpθ
[Fi(x)] = Epθ

[Fi(x)∇µ log(p(x;µ,Σ))] (38)

= Epθ
[Fi(x)∇µ(−

1

2
(x− µ)⊤Σ−1(x− µ)] (39)

= Epθ
[Σ−1(x− µ)Fi(x)]. (40)

We further have

∇ΣEpθ
[Fi(x)] = Epθ

[Fi(x)∇Σ log(p(x;µ,Σ))] (41)

= Epθ
[Fi(x)∇Σ(−

1

2
(x− µ)⊤Σ−1(x− µ)− 1

2
log det(Σ))] (42)

=
1

2
Epθ

[
(
Σ−1(x− µ)(x− µ)⊤Σ−1 −Σ−1

)
Fi(x)], (43)

where we reach the conclusion.

B TECHNICAL LEMMAS

In this section, we introduce the following technical lemmas for analysis. The proof of all technical
lemmas is put in Appendix D.

Lemma B.1. Suppose Σ and Σ̂ are two d-dimensional diagonal matrix and z is a d-dimensional
vector, then we have ∥Σz∥ ≤ ∥Σ∥F ∥z∥ and ∥ΣΣ̂∥F ≤ ∥Σ∥F ∥Σ̂∥F .

Lemma B.2. Given a convex function f(x), for Gaussian distribution with parameters θ := {µ,Σ 1
2 },

let J̄(θ) := Ep(x;θ)[f(x)]. Then J̄(θ) is a convex function with respect to θ.

Lemma B.3. Suppose that the gradient Ĝi are positive semi-definite matrix and satisfies ξI ⪯ Ĝi ⪯
bI . Then for algorithm 1, we have the following results.

(a) The (diagonal) covariance matrix ΣT satisfies

1

2b
∑T

t=1 βtI +Σ−1
0

⪯ ΣT ⪯ 1

2ξ
∑T

t=1 βtI +Σ−1
0

.
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(b) ∥Σt∥F ≤
√
d

2ξ
∑T

t=1 βt
.

(c) ∥Σt+1 −Σt∥F ≤ bβtd
3
2

2ξ2(
∑T

t=1 βt)2
.

Lemma B.4. Suppose the gradient estimator ĝt
i for the i-th objective in t-th iteration as

ĝt
i = Σ

− 1
2

t z
(
Fi(µt +Σ

1
2
t z)− Fi(µt)

)
,

where z ∼ N (0, I). Suppose assumption 4.1 holds, the gradient Ĝi are positive semi-definite matrix
and satisfies ξI ⪯ Ĝi ⪯ bI and Σ0 ⪯ RI , where ξ, b, R ≥ 0. Then we have

(a) ĝt
i is an unbiased estimator of the gradient ∇µEpθt

[Fi(x)].

(b) Ez[∥Σtĝ
t
i∥2] ≤

H2(d+4)2

4ξ2(
∑t

k=1 βk)2
.

(c) Vz[ĝ
t
i ] = Ez[∥ĝt

i −∇µJi(θt)∥2] ≤ H2C(d+4)2

N , where C = max( bξ , ∥Σ
−1
0 ∥∞).

Lemma B.5. Suppose λt = (1−γt)λ
t−1+γtλ̃

t, then we have Vz[λ
t] = Ez[∥λt−Ez[λ

t]∥2] ≤ 2γ2
t .

Lemma B.6. Suppose assumption 4.1 holds, if ĝt
1, . . . , ĝ

t
m are unbiased estimates of

∇µJ1(θt), . . . ,∇µJm(θt). Further suppose that each gradient variance is bounded by Vz[ĝ
t
i ] =

Ez[∥ĝt
i − ∇µJi(θt)∥2] ≤ δ, i = 1, . . . ,m and let Vz[λ

t] = Ez[∥λt − Ez[λ
t]∥2]. Then for any

gradient descent algorithm updated with composite gradient qt = −
∑m

i=1 λ
t
iĝ

t
i with λt ∈ ∆m−1,

we have following inequality in t-th iteration,

(a) ∥Ez[−qt]− Ez[
∑m

i=1 λ
t
i∇µJi(θt)]∥2 ≤ Vz[λ

t]
∑m

i=1 Vz[ĝ
t
i ].

(b) Ez[(
∑m

i=1 λ
t
i∇µJi(θt))

⊤qt] ≤ 2H
√
Vz[λt]

∑m
i=1 Vz[ĝt

i ]− Ez[∥
∑m

i=1 λ
t
i∇µJi(θt)∥2].

(c) Ez[∥qt∥2 − ∥
∑m

i=1 λ
t
i∇µJi(θt)∥2] ≤

∑m
i=1 Vz[ĝ

t
i ] + 4H

√
Vz[λt]

∑m
i=1 Vz[ĝt

i ].

C PROOF OF THE RESULT IN SECTION 4

In this section, we provide the proof of the result in Section 4.

Theorem 4.2 can be directly obtained by Lemma B.3 (a).

C.1 PROOF OF THE PROPOSITION 4.3

From the definition of Ji(µ,Σ), we know that Fi(µ
∗) = Ji(µ

∗,0). Note that Fi(x) is a convex
function, we have that

Fi(µ) = Fi(Ex∼N (µ,Σ)[x]) ≤ Ex∼N (µ,Σ)[Fi(x)] = Ji(µ,Σ). (44)
It follows that

Fi(µ)− Fi(µ
∗) ≤ Ji(µ,Σ)− Ji(µ

∗,0). (45)
Then we have

m∑
i=1

λi(Fi(µ)− Fi(µ
∗)) ≤

m∑
i=1

λi(Ji(µ,Σ)− Ji(µ
∗,0)), (46)

where we reach the conclusion.

C.2 PROOF OF THE PROPOSITION 4.5

Note that ∥
∑m

i=1 λi∇µ∗Ji(µ
∗)∥ = 0, we have∥∥ m∑

i=1

λi∇Fi(µ
∗)
∥∥2 =

∥∥∥∥∥
m∑
i=1

λi∇Fi(µ
∗)−

m∑
i=1

λi∇µ∗Ji(µ
∗) +

m∑
i=1

λi∇µ∗Ji(µ
∗)

∥∥∥∥∥
2

(47)

=

∥∥∥∥∥
m∑
i=1

λi∇Fi(µ
∗)−

m∑
i=1

λi∇µ∗Ji(µ
∗)

∥∥∥∥∥
2

. (48)
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It follows that

∥
m∑
i=1

λi∇Fi(µ
∗)∥22 ≤

m∑
i=1

λi ∥∇Fi(µ
∗)−∇µ∗Ji(µ

∗)∥2 (49)

=

m∑
i=1

λi

∥∥∇Fi(µ
∗)− Ex∼N (µ∗,σ)∇Fi(x)

∥∥2 (50)

≤
m∑
i=1

λiEx∼N (µ∗,σ)∥∇Fi(x)−∇Fi(µ
∗)∥2 (51)

≤ L2
FEx∼N (µ∗,σ)∥x− µ∗∥2 (52)

= L2
F ∥diag(Σ)∥1, (53)

where the equality in Eq. (50) is due to ∇µ∗Ji(µ
∗) = Ex∼N (µ∗,σ)∇Fi(x) in Rezende et al. (2014).

C.3 PROOF OF THEOREM 4.4

We denote qt = −
∑m

i=1 λ
t
iĝ

t
i , then the update rule of µ can be represented as µt+1 = µt + βtΣtqt.

According to assumption 4.1, the function Ji(θ) is L-smooth w.r.t {µ,Σ}, then we have

λt
iJi(µt+1,Σt) ≤ λt

i

(
Ji(µt,Σt) + βt∇µJi(θt,Σt)

⊤Σtqt +
Lβ2

t

2
∥Σtqt∥2

)
. (54)

Since Fi(x) is convex function, we have Ji(θ) is convex w.r.t θ = {µ,Σ 1
2 } by Lemma B.2, together

with Ji(θ) is c-strongly convex w.r.t µ we obtain

Ji(θt) ≤ Ji(µ
∗, 0) +∇µJi(θt)

⊤(µt − µ∗) +∇
Σ

1
2
Ji(θt)

⊤Σ
1
2
t − c

2
∥µt − µ∗∥2. (55)

Note that ∇
Σ

1
2
J(θt) = Σ

1
2
t ∇ΣJ(θt) +∇ΣJ(θt)Σ

1
2
t , we have

Ji(θt) ≤ Ji(µ
∗, 0) +∇µJi(θt)

⊤(µt − µ∗) + 2∇ΣJi(θt)Σt −
c

2
∥µt − µ∗∥2. (56)

Substituting Eq. (56) into Eq. (54), we have

λt
iJi(µt+1,Σt) ≤ λt

iJi(µ
∗, 0) + λt

i∇µJi(θt)
⊤(µt − µ∗) + 2λt

i∇ΣJi(θt)
⊤Σt

+ βtλ
t
i∇µJi(θt,Σt)

⊤Σtqt +
Lλt

iβ
2
t

2
∥Σtqt∥2 −

c

2
∥µt − µ∗∥2. (57)

Let At =
∑m

i=1 λ
t
i

(
Ji(µt+1,Σt)− Ji(µ

∗, 0)
)

and βt ≤ 1
L , we have

Ez[At] ≤ Ez[

m∑
i=1

λt
i∇µJi(θt)

⊤(µt − µ∗)] + βtEz[

m∑
i=1

λt
i∇µJi(θt,Σt)

⊤Σtqt]

+
βt

2
Ez[∥Σtqt∥2] + Ez[

m∑
i=1

λt
i∇ΣJi(θt)

⊤Σt]−
c

2
∥µt − µ∗∥2. (58)

Note that

∥µt − µ∗∥2
Σ−1

t
− ∥µt+1 − µ∗∥2

Σ−1
t

(59)

= ∥µt − µ∗∥2
Σ−1

t
− ∥µt + βtΣtqt − µ∗∥2

Σ−1
t

(60)

= ∥µt − µ∗∥2
Σ−1

t
−
(
∥µt − µ∗∥2

Σ−1
t

+ βt ⟨µt − µ∗, qt⟩+ β2
t ⟨Σtqt, qt⟩

)
(61)

= −2βtq
⊤
t (µt − µ∗)− β2

t (Σtqt)
⊤qt. (62)

Therefore we have

−q⊤
t (µt − µ∗) =

1

2βt

(
∥µt − µ∗∥2

Σ−1
t

− ∥µt+1 − µ∗∥2
Σ−1

t

)
+

βt

2
(Σtqt)

⊤qt (63)

≤ 1

2βt

(
∥µt − µ∗∥2

Σ−1
t

− ∥µt+1 − µ∗∥2
Σ−1

t

)
+ βt∥Σt∥F ∥qt∥2, (64)

17



Published as a conference paper at ICLR 2024

where the inequality is due to βt ≥ 0 and Lemma B.1. Note that we have

Ez

[
(

m∑
i=1

λt
i∇µJi(θt) + qt)

⊤(µt − µ∗)
]
≤ ∥µt − µ∗∥

√√√√Ez[∥
m∑
i=1

λt
i∇µJi(θt) + qt∥2] (65)

≤ D

√√√√Ez[∥
m∑
i=1

λt
i∇µJi(θt) + qt∥2] (66)

≤ D

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ], (67)

where the first inequality is due to the Cauchy-Schwarz inequality, the second inequality is due to
∥µt − µ∗∥ ≤ D and the last inequality is due to Lemma B.6 (a). Then we have

Ez

[ m∑
i=1

λt
i∇µJi(θt)

⊤(µt − µ∗)
]

(68)

= Ez

[
− q⊤

t (µt − µ∗) + (

m∑
i=1

λt
i∇µJi(θt) + qt)

⊤(µt − µ∗)
]

(69)

≤ 1

2βt
Ez[∥µt − µ∗∥2

Σ−1
t

− ∥µt+1 − µ∗∥2
Σ−1

t
] + βt∥Σt∥FEz∥qt∥2] +D

√√√√Vz[λt]

m∑
i=1

Vz(gti),

(70)

where the inequality is due to Eq. (64) and Eq. (67). Note that

Ez

[ m∑
i=1

λt
i∇ΣJi(θt)

⊤Σt

]
≤ Ez

[
∥

m∑
i=1

λt
i∇ΣJi(θt)∥

]
∥Σt∥F ≤ H∥Σt∥F , (71)

where the first inequality is due to Lemma B.1 and the second inequality is due to the Lipschitz
continuous assumption of the function Ji(θ). By using Lemma B.1 and Lemma B.6 (b), we further
have

Ez[

m∑
i=1

λt
i∇µJi(θt,Σt)

⊤Σtqt] ≤ ∥Σt∥F

2H

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ]− Ez[

m∑
i=1

λt
i∇µJi(θt)∥2]

 .

(72)

Then substituting Eqs. (70) (71) (72) into Eq. (58) and multiplying βt on both sides of the inequality,
we have

βtEz[At] ≤
1

2
Ez[∥µt − µ∗∥2

Σ−1
t

− ∥µt+1 − µ∗∥2
Σ−1

t
]− cβt

2
∥µt − µ∗∥2 + β2

tH∥Σt∥F

+ (2Hβ2
t ∥Σt∥F + βtD)

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ] +

β2
t

2
Ez[∥Σtqt∥2]

+ β2
t ∥Σt∥FEz∥qt∥2]− β2

t ∥Σt∥FEz[

m∑
i=1

λt
i∇µJi(θt)∥2] (73)

≤ 1

2
Ez[∥µt − µ∗∥2

Σ−1
t

− ∥µt+1 − µ∗∥2
Σ−1

t
]− cβt

2
∥µt − µ∗∥2 + β2

tH∥Σt∥F

+ (2Hβ2
t ∥Σt∥F + βtD)

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ] +

β2
tH

2(d+ 4)2

8ξ2(
∑t

k=1 βk)2

+ β2
t ∥Σt∥F

 m∑
i=1

Vz[ĝ
t
i ] + 4H

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ]

 , (74)
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where the second inequality is due to Lemma B.4 (b) and Lemma B.6 (c). We further obtain that
T−1∑
t=0

[
1

2
Ez[∥µt − µ∗∥2

Σ−1
t

− ∥µt+1 − µ∗∥2
Σ−1

t
]− cβt

2
∥µt − µ∗∥2

]
(75)

≤ 1

2

T−1∑
t=0

[
∥µt − µ∗∥2

Σ−1
t

− ∥µt−1 − µ∗∥2
Σ−1

t−1

− cβt

2
∥µt − µ∗∥2

]
+

1

2

[
∥µ0 − µ∗∥2

Σ−1
0

− ∥µT − µ∗∥2
Σ−1

T−1

]
(76)

≤ 1

2

T−1∑
t=0

[
∥µt − µ∗∥2

2βt
∑m

i=1 λt
iĜ

t
i

− cβt

2
∥µt − µ∗∥2

]
+ ∥Σ−1

0 ∥FD2 (77)

≤ 1

2

T−1∑
t=0

[
cβt

2
∥µt − µ∗∥2 − cβt

2
∥µt − µ∗∥2

]
+ ∥Σ−1

0 ∥FD2 (78)

= ∥Σ−1
0 ∥FD2, (79)

where the second inequality is due to the update rule of Σt and ∥µt − µ∗∥ ≤ D, and the third
inequality is due to Cauchy-Schwarz inequality and Ĝi ⪯ c

4I . Let C = max( c
4ξ , ∥Σ

−1
0 ∥∞), we have

T−1∑
t=0

βtEz[At] ≤ ∥Σ−1
0 ∥FD2 +

T−1∑
t=0

(
β2
tH

√
d

2ξ
∑t

k=1 βk

+
β2
tH

2(d+ 4)2

8ξ2(
∑t

k=1 βk)2

+ (6Hβ2
t ∥Σt∥F + βtD)

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ] + β2

t ∥Σt∥F
m∑
i=1

Vz[ĝ
t
i ]

)
(80)

≤ ∥Σ−1
0 ∥FD2 +

T−1∑
t=0

(
β2
tH

√
d

2ξ
∑t

k=1 βk

+
β2
tH

2(d+ 4)2

8ξ2(
∑t

k=1 βk)2

+ (6Hβ2
t

√
dR+ βtD)γt

√√√√2

m∑
i=1

Vz[ĝt
i ] +

β2
t

√
d
∑m

i=1 Vz[ĝ
t
i ]

2ξ
∑t

k=1 βk

)
(81)

≤ ∥Σ−1
0 ∥FD2 +

T−1∑
t=0

(
β2
tH

√
d

2ξ
∑t

k=1 βk

+
β2
tH

2(d+ 4)2

8ξ2(
∑t

k=1 βk)2

+Hγtβt(d+ 4)(6Hβt

√
dR+D)

√
2Cm

N
+

β2
t

√
dH2C(d+ 4)2m

2Nξ
∑t

k=1 βk

)
, (82)

where the first inequality is due to Eq. (79) and Lemma B.3 (a), the second inequality is due to
Lemma B.3 (b) and Lemma B.5, and the third inequality is due to Lemma B.4 (c).

Therefore, we have

1

T

T−1∑
t=0

Ez[At] ≤
∥Σ−1

0 ∥FD2

Tβt
+

1

T

T−1∑
t=0

(
βtH

√
d

2ξ
∑t

k=1 βk

+
βtH

2(d+ 4)2

8ξ2(
∑t

k=1 βk)2

+Hγt(d+ 4)(6Hβt

√
dR+D)

√
2Cm

N
+

βt

√
dH2C(d+ 4)2m

2Nξ
∑t

k=1 βk

)
. (83)

Let βt = β and γt = γ. Since we have
∑T

t=1
1
t ≤ 1 + log(T ), we obtain

1

T

T−1∑
t=0

Ez

[
m∑
i=1

λt
i(Ji(µt+1,Σt)− Ji(µ

∗, 0))

]
=

1

T

T−1∑
t=0

Ez[At] = O
(

1

βT
+

log T

T
+ γ

)
,

(84)

where we reach the conclusion.
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C.4 PROOF OF THEOREM 4.6

We denote qt = −
∑m

i=1 λ
t
iĝ

t
i , then the update rule of µ can be represented as µt+1 = µt + βtΣtqt.

According to assumption 4.1, the function Ji(θ) is L-smooth w.r.t {µ,Σ}, then we have

λt
iJi(µt+1,Σt) ≤ λt

i

(
Ji(µt,Σt) + βt∇µJi(θt,Σt)

⊤Σtqt +
Lβ2

t

2
∥Σtqt∥2

)
. (85)

Let Bt = Ez[
∑m

i=1 λ
t
i(Ji(µt+1,Σt)− Ji(µt,Σt))], then we have

Bt ≤ βt∥Σt∥FEz[(

m∑
i=1

λt
i∇µJi(θt))

⊤qt] +
Lβ2

t ∥Σt∥2F
2

Ez[∥qt∥2] (86)

≤ 2Hβt

√
dR

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ]− βt

√
dREz[∥

m∑
i=1

λt
i∇µJi(θt)∥2]

+
Lβ2

t dR
2

2
Ez[∥qt∥2] (87)

≤ (2Hβt

√
dR+ 2HLβ2

t dR
2)

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ] +

Lβ2
t dR

2

2

m∑
i=1

Vz[ĝ
t
i ]

+
Lβ2

t dR
2 − 2βt

√
dR

2
Ez[∥

m∑
i=1

λt
i∇µJi(θt)∥2], (88)

where the first inequality is due to Lemma B.1, the second inequality is due to ∥Σt∥F ≤ ∥Σ0∥F ≤√
dR and Lemma B.6 (b), and the last inequality is due to Lemma B.6 (c). Let βt ≤ 1

LR
√
d

, and
rearrange Eq. (88) we obtain

βt

√
dR

2
Ez

[
∥

m∑
i=1

λt
i∇µJi(θt)∥2

]
≤ Bt + 4HR

√
dβt

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ] +

Lβ2
t dR

2

2

m∑
i=1

Vz[ĝ
t
i ].

(89)

So we have

βtEz

[
∥

m∑
i=1

λt
i∇µJi(θt)∥2

]
≤ 2Bt√

dR
+ 8Hβt

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ] +

Lβ2
t

√
dR

2

m∑
i=1

Vz[ĝ
t
i ]. (90)

Note that we have

T−1∑
t=0

m∑
i=1

λt
i(Ji(θt+1)− Ji(θt)) =

T−1∑
t=0

m∑
i=1

(λt
i − λt+1

i )Ji(θt+1) +

m∑
i=1

(λT−1
i Ji(θT )− λ0

iJi(θ0))

(91)

≤
T−1∑
t=0

m∑
i=1

|λt
i − (1− γt)λ

t
i − γtλ̃

t+1
i |B + 2B (92)

≤
T−1∑
t=0

γt

m∑
i=1

|λt
i − λ̃t+1

i |B + 2B, (93)
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where the first inequality is due to the update rule of λt and |Ji(θ)| ≤ B. Then we have

T−1∑
t=0

Bt =

T−1∑
t=0

Ez[

m∑
i=1

λt
i(Ji(θt+1)− Ji(θt))] +

T−1∑
t=0

Ez[

m∑
i=1

λt
i(Ji(µt+1,Σt)− Ji(µt+1,Σt+1))]

(94)

≤
T−1∑
t=0

γt

m∑
i=1

|λt
i − λ̃t+1

i |B + 2B +

T−1∑
t=0

Ez[

m∑
i=1

λt
iH∥Σt+1 −Σt∥F ] (95)

≤ 2mB

T−1∑
t=0

γt + 2B +

T−1∑
t=0

H∥Σt+1 −Σt∥F , (96)

where the first inequality is due to Eq. (93) and the Lipschitz continuous assumption of the function
Ji(θ). Substituting Eq. (96) into Eq. (90), we have

1

T

T−1∑
t=0

βtEz[∥
m∑
i=1

λt
i∇µJi(θt)∥2] ≤

2mB
∑T−1

t=0 γt + 2B +
∑T−1

t=0 H∥Σt+1 −Σt∥F√
dRT

+
1

T

T−1∑
t=0

8Hβt

√√√√Vz[λt]

m∑
i=1

Vz[ĝt
i ] +

Lβ2
t

√
dR

2

m∑
i=1

Vz[ĝ
t
i ]

 . (97)

According to Lemma B.3 (c), B.4 (c), and B.5. We know that ∥Σt+1 − Σt∥F ≤ bβtd
3
2

2ξ2(
∑t

k=1 βk)2
,

Vz[ĝ
t
i ] ≤

H2C(d+4)2

N , where C = max( bξ , ∥Σ
−1
0 ∥∞), and Vz[λ

t] ≤ 2γ2
t . Then we have

1

T

T−1∑
t=0

βtEz

[
∥

m∑
i=1

λt
i∇µJi(θt)∥2

]
≤

2mB
∑T−1

t=0 γt + 2B +
∑T−1

t=0 H bβtd
3
2

2ξ2(
∑t

k=1 βk)2√
dRT

+
1

T

T−1∑
t=0

(
8H2C(d+ 4)γtβt

√
2m

N
+

β2
tH

2C(d+ 4)2L
√
dRm

2N

)
. (98)

Let βt = β and γt = γ, we obtain

1

T

T−1∑
t=0

Ez

[
∥

m∑
i=1

λt
i∇µJi(θt)∥2

]
= O

(
γ

β
+

1

βT
+ γ + β

)
, (99)

where we reach the conclusion.

D PROOF OF TECHNICAL LEMMAS

In this section, we provide the proof of lemmas in Appendix B.

D.1 PROOF OF LEMMA B.1

Since Σ and Σ̂ are both diagonal matrix. Denote σ = diag(Σ) and σ̂ = diag(Σ̂). Then we have

∥Σz∥2 =

d∑
i=1

(σizi)
2 ≤

d∑
i=1

(σi)
2

d∑
i=1

(zi)
2 = ∥σ∥2∥z∥2 = ∥Σ∥2F ∥z∥2. (100)

We further have

∥ΣΣ̂∥2F =

d∑
i=1

(σiσ̂i)
2 ≤

d∑
i=1

(σi)
2

d∑
i=1

(σ̂i)
2 = ∥σ∥2∥σ̂∥2 = ∥Σ∥2F ∥Σ̂∥2F . (101)

Then we reach the conclusion.
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D.2 PROOF OF LEMMA B.2

For λ ∈ [0, 1], we have

λJ̄(θ1) + (1− λ)J̄(θ2) = λEz∼N (0,I)[f(µ1 +Σ
1
2
1 z)] + (1− λ)Ez∼N (0,I)[f(µ2 +Σ

1
2
2 z)]

(102)

= E[λf(µ1 +Σ
1
2
1 z) + (1− λ)f(µ2 +Σ

1
2
2 z)] (103)

≥ E[f
(
λµ1 + (1− λ)µ2 + (λΣ

1
2
1 + (1− λ)Σ

1
2
2 )z

)
] (104)

= J̄(λθ1 + (1− λ)θ2), (105)

where we reach the conclusion.

D.3 PROOF OF LEMMA B.3

(a): Since we have Σ−1
t+1 = Σ−1

t + 2βt

∑m
i=1 λ

t
iĜ

t
i and λt ∈ ∆m−1. We obtain

Σ−1
t + 2bβtI ⪰ Σ−1

t+1 ⪰ Σ−1
t + 2ξβtI. (106)

Summing up it over t = 0, . . . , T − 1, we have

Σ−1
0 + 2b

T∑
t=1

βtI ⪰ Σ−1
T ⪰ Σ−1

0 + 2ξ

T∑
t=1

βtI. (107)

Therefore, we have

1

2b
∑T

t=1 βtI +Σ−1
0

⪯ ΣT ⪯ 1

2ξ
∑T

t=1 βtI +Σ−1
0

. (108)

(b): We have

∥Σt∥F ≤

∥∥∥∥∥ 1

2ξ
∑T

t=1 βtI +Σ−1
0

∥∥∥∥∥
F

≤

∥∥∥∥∥ 1

2ξ
∑T

t=1 βtI

∥∥∥∥∥
F

=

√
d

2ξ
∑T

t=1 βt

. (109)

(c): We have

∥Σt+1 −Σt∥F =∥ 1

Σ−1
t + 2βt

∑m
i=1 λ

t
iĜ

t
i

−Σt∥F ≤ ∥
−2βtΣtΣt

∑m
i=1 λ

t
iĜ

t
i

I + 2βtΣt

∑m
i=1 λ

t
iĜ

t
i

∥F (110)

≤ 2βt∥Σt∥2F ∥
m∑
i=1

λt
iĜ

t
i∥F . (111)

Since ∥Σt∥ ≤
√
d

2ξ
∑T

t=1 βt
and ∥

∑m
i=1 λ

t
iĜ

t
i∥F ≤ b

√
d. Then we have

∥Σt+1 −Σt∥F ≤ bβtd
3
2

2ξ2(
∑T

t=1 βt)2
. (112)

D.4 PROOF OF LEMMA B.4

(a). We first show that ĝt
i is a unbiased estimator of ∇µEpθt

[Fi(x)].

Ez[ĝ
t
i ] = Ez[Σ

− 1
2

t zFi(µt +Σ
1
2
t z)]− Ez[Σ

− 1
2

t zFi(µt)] (113)

= Ez[Σ
− 1

2
t zFi(µt +Σ

1
2
t z)] (114)

= Ex∼N (µt,Σt)[Σ
−1
t (x− µt)Fi(x)] (115)

= ∇µEpθt
[Fi(x)]. (116)

22



Published as a conference paper at ICLR 2024

(b). Since the σ is the diagonal elements of Σ, then we have

∥Σtĝ
t
ij∥2 = ∥σt ⊙ σ

− 1
2

t ⊙ zj(Fi(µt + σ
1
2
t ⊙ zj)− Fi(µt))∥2 (117)

= ∥σ
1
2
t ⊙ zj∥2(Fi(µt + σ

1
2
t ⊙ zj)− Fi(µt))

2 (118)

≤ ∥σ
1
2
t ⊙ zj∥2H2∥σ

1
2
t ⊙ zj∥2 (119)

≤ H2
∥∥σ 1

2
t

∥∥2
∞ ×

∥∥σ 1
2
t

∥∥2
∞ ×

∥∥zj∥∥4 = H2
∥∥σt

∥∥2
∞

∥∥zj∥∥4. (120)

It follows that

∥Σtĝ
t
i∥22 =

∥∥∥∥∥∥ 1

N

N∑
j=1

Σtĝ
t
ij

∥∥∥∥∥∥
2

≤ 1

N

N∑
j=1

∥Σtĝ
t
ij∥2 ≤ H2

∥∥σt

∥∥2
∞

∥∥zj∥∥4. (121)

Noticed that Ez[∥z∥4] ≤ (d+ 4)2 and

∥σt∥∞ ≤ 1

∥σ−1
0 ∥min + 2(

∑t
k=1 βk)ξ

, (122)

where ∥ · ∥min denotes the minimum element in the input. Then we have

E∥Σtĝ
t
i∥22 ≤ H2

∥∥σt

∥∥2
∞(d+ 4)2 ≤ H2(d+ 4)2

4ξ2(
∑t

k=1 βk)2
, (123)

where we reach the conclusion.

(c): We have

∥ĝt
ij∥2 = ∥σ− 1

2
t ⊙ zj(Fi(µt + σ

1
2
t ⊙ zj)− Fi(µt))∥2 (124)

= ∥σ− 1
2

t ⊙ zj∥2(Fi(µt + σ
1
2
t ⊙ zj)− Fi(µt))

2 (125)

≤ ∥σ− 1
2

t ⊙ zj∥2H2∥σ
1
2
t ⊙ zj∥2 (126)

≤ H2
∥∥σ− 1

2
t

∥∥2
∞ ×

∥∥σ 1
2
t

∥∥2
∞ ×

∥∥zj∥∥4. (127)

Then we obtain

Ez[∥ĝt
ij∥2] ≤ H2

∥∥σ− 1
2

t

∥∥2
∞ ×

∥∥σ 1
2
t

∥∥2
∞ × E[

∥∥zj∥∥4] (128)

≤ H2
∥∥σ− 1

2
t

∥∥2
∞ ×

∥∥σ 1
2
t

∥∥2
∞(d+ 4)2. (129)

Note that for N i.i.d samples zj , we have

Vz[
1

N

N∑
j=1

ĝt
ij ] =

1

N
Vz[ĝ

t
ij ] ≤

1

N
Ez[∥ĝt

ij∥22] (130)

≤ H2(d+ 4)2∥σ− 1
2

t ∥2∞∥σ
1
2
t ∥2∞

N
. (131)

Note that we have

σ−1
0 + 2b

t∑
k=1

βt1 ≥ σ−1
t ≥ σ−1

0 + 2ξ

t∑
k=1

βt1. (132)

Then, we have

∥σ− 1
2

t ∥2∞ = ∥σ−1
t ∥∞ ≤ ∥σ−1

0 ∥∞ + 2(

t∑
k=1

βk)b. (133)

And

∥σ
1
2
t ∥2∞ = ∥σt∥∞ ≤ 1

∥σ−1
0 ∥min + 2(

∑t
k=1 βk)ξ

, (134)
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where ∥ · ∥min denotes the minimum element in the input.

we then have

∥σ
1
2
t ∥2∞∥σ− 1

2
t ∥2∞ ≤

∥σ−1
0 ∥∞ + 2(

∑t
k=1 βk)b

∥σ−1
0 ∥min + 2(

∑t
k=1 βk)ξ

(135)

=
b

ξ
+

∥σ−1
0 ∥∞ − b

ξ∥σ
−1
0 ∥min

∥σ−1
0 ∥min + 2(

∑t
k=1 βk)ξ

. (136)

If ∥σ−1
0 ∥∞ − b

ξ∥σ
−1
0 ∥min ≥ 0, we have

∥σ
1
2
t ∥2∞∥σ− 1

2
t ∥2∞ ≤ b

ξ
+

∥σ−1
0 ∥∞ − b

ξ∥σ
−1
0 ∥min

∥σ−1
0 ∥min

≤ ∥σ−1
0 ∥∞. (137)

If ∥σ−1
0 ∥∞ − b

ξ∥σ
−1
0 ∥min < 0, we have

∥σ
1
2
t ∥2∞∥σ− 1

2
t ∥2∞ ≤ b

ξ
. (138)

Therefore, let C = max( bξ , ∥σ
−1
0 ∥∞), we have

Vz[∥
1

N

N∑
j=1

ĝt
ij∥2] ≤

H2(d+ 4)2C

N
, (139)

where we reach the conclusion.

D.5 PROOF OF LEMMA B.5

We have

Vz[λ
t] = Ez[∥λt − Ez[λ

t]∥2]] ≤ Ez[∥λt − λt−1∥2] (140)

= Ez[∥γt(λ̃t − λt−1)∥2] ≤ γ2
t Ez[∥λ̃t − λt−1∥2] ≤ 2γ2

t , (141)

where we reach the conclusion.

D.6 PROOF OF LEMMA B.6

According to Lemma B.4 (a) and (c), we know that ĝt
i is an unbiased estimator of the gradient

∇µJi(θt) and the variance of ĝt
i is bounded. Therefore let qt = −

∑m
i=1 λ

t
iĝ

t
i , the results in Lemma

B.6 can be directly obtained by Lemma 1, 7, and 8 in Zhou et al. (2022b).

E UPDATED RULE UNDER TRANSFORMATION

To avoid the scaling problem, we can employ monotonic transformation for the aggregated objective,
i.e. h(λ⊤F (xj)) =

λ⊤F (xj)−µ̂
σ̂ , where µ̂ and σ̂ denote mean and stand deviation of aggregated

function values λ⊤F (xj) =
∑m

i=1 λiFi(xj), j = 1, . . . , N . Then by applying this rescaling strategy,
the update rule for µt and Σt in t-th iteration can be written as

µt+1 = µt −
βt

N

N∑
j=1

(xj − µt)

∑m
i=1 λ

t
iFi(xj)− µ̂t

σ̂t
, (142)

Σ−1
t+1 = Σ−1

t +
βt

N

N∑
j=1

diag
[
Σ−1

t

[
diag

(
(xj − µt)(xj − µt)

⊤Σ−1
t

)∑m
i=1 λ

t
iFi(xj)− µ̂t

σ̂t

]]
.

(143)
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F ADDITIONAL MATERIALS FOR SECTION 6

F.1 SYNTHETIC PROBLEMS

Evaluation Metrics. The Pareto optimal set of problem (19) is P1 = {x | xi ∈ [−0.01, 0.01]}.
Therefore. the result is evaluated by calculating the Euclidean distance between solution x and the
set P1, which is denoted E = dist(x,P1). We denote the Pareto optimal set of problem (20) as
P2. Since the Pareto front of problem (20) is concave, the solution of the ASMG method will go
to the boundary of its Pareto optimal set, i.e. P̂2 = {x | xi ∈ {−0.1, 0.1}} ⊂ P2. Moreover, For
ES and CMA-ES methods, since their optimization objective is F1(x) + F2(x), the corresponding
solution set is P̂2. Therefore, the result of these three methods on problem (20) is evaluated by
E = dist(x, P̂2). The Pareto optimal set of problem (21) is P3 = {x | x = 0}. Therefore, the result
is evaluated by E = dist(x,P3).

Implementation Details. For all the methods, we initialize µ0 from the uniform distribution
Uni[0, 1], and set Σ0 = I . The ASMG method uses a fixed step size of β = 0.1 and γt = 1/(t+ 1).
For the ES method, we employ the default step size from Salimans et al. (2017), i.e., β = 0.01.
For the BES method, we adopt the default step size from Gao & Sener (2022), i.e., β = 0.01. We
employ the default hyperparameter setting from He et al. (2020) for the MMES method. We then
assess these methods using varying sample sizes, i.e. N ∈ {10, 50, 100}. The mean value of E over
3 independent runs is reported.

Result. Figure 2 and 3 show the results on three 100-dimensional synthetic problems with sample
sizes N = 10 and N = 100, respectively. Combining these results with the result from Figure
1, we observe consistent performance from the proposed ASMG method, consistently achieving
high precision across all three cases, i.e. 10−4, for N = 10, 50, 100. The CMA-ES method shows
convergence with high precision on the Shift l1-Ellipsoid problem when N = 10 and 50. However,
it fails to converge when the sample size is very small, i.e., N = 10. The same performance also
occurs on the Shift l 1

2
-Ellipsoid problem for the CMA-ES method. It can achieve 10−1 precision

when N = 50 and 100, but only achieve 101 precision when N = 10. It still fails on the Mixed
Ellipsoid-Rastrigin10 problem when N = 50 and 100. The MMES method also cannot reach a
high precision on these problems. The ES and BES methods do not converge in any of the settings,
indicating that it could be challenging for these methods to optimize these non-smooth or non-convex
problems. These results show the effectiveness of the proposed ASMG method.

Figure 4 presents the results for the shift l 1
2

-ellipsoid problem with a sample size of N = 100

across various problem dimensions, i.e. d ∈ {200, 500, 1000}. The CMA-ES method can still
converge when d = 200, but it does not converge when d = 1000. In contrast, the ASMG method
consistently achieves high precision across all three settings, demonstrating its effectiveness in
handling high-dimensional problems.
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(c) Mixed Ellipsoid-Rastrigin 10.

Figure 2: Results on the synthetic problems with 10 samples (i.e., N = 10).
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(c) Mixed Ellipsoid-Rastrigin 10.

Figure 3: Results on the synthetic problems with 100 samples (i.e., N = 100).
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(a) d=200.

0 1 2 3 4 5
Iteration. T (×103)

5

4

3

2

1

0

1
Lo

g 1
0

CMA-ES
ES
BES
MMES
ASMG

(b) d=500.
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(c) d=1000.

Figure 4: Results on the shift l1-ellipsoid problem with N = 100 and different problem dimension d.

F.2 BLACK-BOX MULTI-TASK LEARNING

Details of CLIP. CLIP is a widely adopted vision-language model that trains an image encoder
himage(·) and a text encoder htext(·) jointly by aligning the embedding space of images and text.
Given an image x and a set of class names {yi}Ki=1, CLIP obtain image features himage(x) and a
set of text features {htext(p;yi)}Ki=1 where p ∈ RD represents the token embedding of the shared
prompt. The image x is classified into the class yi that corresponds to the highest similarity score
himage(x) · htext(p;yi) among the cosine similarities between the image features and all the text
features. In the zero-shot setup, the shared token embedding p is transformed from the prompt “a
photo of a”, while in the prompt tuning setup, the token embedding of the shared prompt is optimized
directly to enhance performance.

Loss function Li. In the context of multi-task learning, we consider a scenario involving m tasks,
each having its own dedicated training dataset. For task i, we have dataset Di = {(xk, ŷk)}. For
each training epoch, we sample a mini-batch Bi from Di and the function Li in Eq. (22) can be
formulated as

Li(Bi; {Mc,Av}) =
∑

(x,ȳ)∈Bi

ℓ(Mc(Av;x), ȳ),

where ℓ can be cross-entropy function for classification problem and Mc denotes CLIP model in our
setting.

Datasets. We conduct experiments on two MTL benchmark datasets (Lin & Zhang, 2023), i.e.,
Office-31 (Saenko et al., 2010) and Office-home (Venkateswara et al., 2017). The Office-31 dataset
includes images from three different sources: Amazon (A), digital SLR cameras (D), and Webcam
(W). It contains 31 categories for each source and a total of 4652 labeled images. The Office-home
dataset includes images from four sources: artistic images (Ar), clip art (Cl), product images (Pr),
and real-world images (Rw). It contains 65 categories for each source and a total of 15,500 labeled
images. For those two datasets, we treat the multi-class classification problem on each source as a
separate task.
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Implementation Details. Following the setup of Zhou et al. (2022a), we conduct experiments
based on the CLIP model with ResNet-50 as the image encoder and use a prompt with 4 tokens for
the text encoder where both the image and text encoders are kept frozen during the experiments. For
zero-shot, we apply the default prompt “a photo of a {class}”.

For all methods, we set µ0 = 0 and Σ0 = I as initialization. For all baseline methods except the
zero-shot setting, we optimize the prompt with a batch size of 64 for 200 epochs, the population size
N is set as 20 for Office-31 and 40 for Office-home, while A is sampled from the normal distribution
as described in the Sun et al. (2022a), i.e. N (0, σe√

d
), where σe is the standard deviation of word

embeddings in CLIP. For ASMG and ASMG-EW methods, the step size is fixed as β = 0.5. The
coefficient γ in the ASMG method is set as γt = 1/(t + 1). For the ES method, we employ the
default step-size of ES in Salimans et al. (2017), i.e., 0.01. For the BES method, we perform grid
search on step size, i.e., β is chosen from {0.5, 0.1, 0.01}. For the MMES method, we employ the
default hyperparameter setting from He et al. (2020). Additionally, we evaluate the performance of
the method on different dimensions of z, specifically d ∈ {256, 512, 1024}. The CMA-ES method
is implemented using the official implementation available 1 while we implement the ES and BES
method by ourselves.

G RELATIONSHIP TO GRADIENT-BASED MOO

For previous methods on MOO, the most relevant method to our approach is gradient-based MOO
methods (Yu et al., 2020; Liu et al., 2021; Fernando et al., 2022; Zhou et al., 2022b), as they also
aim at finding the Pareto optimal solution or the Pareto stationary solution. A typical gradient-based
method is the MGDA method (Désidéri, 2012), which also solves a max-min optimization problem to
obtain the weights. However, the proposed ASMG method is not a typical MGDA-type method. The
max-min optimization problem proposed in MGDA-type methods is related to the true gradient of
the parameters. They add a regularization term ∥d∥2 to control the norm of the aggregated gradient.
In our case, the update is conducted on a Gaussian distribution, and we need to jointly update the
mean and covariance matrix. We use Kullback-Leibler divergence to regularize the distance between
two distributions, i.e. θ and θt. Therefore, the form of the proposed max-min optimization, i.e. Eq.
(4), differs from MGDA-type methods, and the solution process is also different. However, our
max-min problem can also lead to a simple quadratic programming problem for the aggregation
weights computation.

1https://github.com/CMA-ES/pycma
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