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H I G H L I G H T S  

• A machine learning-aided uncertainty quantification framework is proposed for engineering structures. 
• The effects of material and geometric randomness on structural performance are quantified simultaneously. 
• Data imperfections, i.e., noise and outliers within observations, are considered within the proposed framework. 
• A novel machine learning technique is developed to handle the datasets with imperfection. 
• The applicability and computational efficiency of the proposed approach are well demonstrated.  
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A B S T R A C T   

In real-world engineering, uncertainty is ubiquitous within material properties, structural ge-
ometry, load conditions, and the like. These uncertainties have substantial impacts on the esti-
mation of structural performance. Furthermore, information or datasets in real life commonly 
contain imperfections, e.g., noise, outliers, or missing data. To quantify these impacts induced by 
uncertainties on structural behaviours and reduce the effects of data imperfections simulta-
neously, a machine learning-aided stochastic analysis framework is proposed. A novel supervised 
machine learning technique, namely the Capped Extended Support Vector Regression (CX-SVR) 
technique, is developed to effectively suppress the effects of outliers and noise in datasets. Its 
inherent convexity in optimization and capped strategy theoretically supports the accuracy of CX- 
SVR, especially in handling datasets with imperfections. Once the effective surrogate model is 
established, subsequent analyses, like sampling-based methods, can circumvent the cumbersome 
physical model, which is potentially the nest of computational burden and errors in engineering 
applications. The high robustness of the proposed approach can be summarized in four main 
aspects: unrestrictive selection of the system inputs and their statistical information, ‘perfect’ or 
‘imperfect’ data, enough statistical information (including statistical moments, probability 
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density functions, and cumulative distribution functions) of the system outputs, and physical 
problems from various engineering fields.   

1. Introduction 

The blossom of technology facilitates heterogeneous access in engineering practices to tremendous data of high diversity [1–3]. 
However, uncertainty exists within almost any information [4–7]. Appropriate consideration of the system uncertainty and relevant 
quantification is always an essential task for engineering applications. 

In addition to the inherent uncertainty, it is undeniable that real-world data collection systems are imperfect [8–10]. These im-
perfections may present as wrong data, missing data, outliers in data, lack of variability in data, etc., and indeed the datasets that 
appear perfect may contain noise [8]. Moreover, data imperfections can also occur in numerical simulation due to errors in every step 
during the numerical simulation. An ill-posed or ill-defined initial condition may result in simulation results that are completely 
different from the actual physical system being simulated. Generally, the sources of the data imperfection in numerical simulation 
results can be summarized as inaccurate or incomplete input data, improper simulation setup, mathematical modelling errors, nu-
merical errors, inappropriate simulation assumptions, human errors, software limitations, etc. Regardless of various sources from 
real-world engineering or numerical simulation, inaccurate, incomplete, and even contradictory data may lead to wrong estimations 
without appropriate consideration. 

Engineering mechanic problems by considering the continuous random variation of system properties do not yield easy analytical 
solutions. The challenge to the analyst is formidable, even for the most simplified structural configurations. Thus, to seek possible 
access to tackle such sophisticated problems, over the past decades, uncertainty quantification has been continuously investigated 
without any rupture [11–13]. The stochastic finite element method (SFEM) is developed to initially estimate adequate information 
about the statistical moments (e.g., means, standard deviations) of the concerned structural response [14,15]. Then, SFEM has been 
successfully applied to a wide variety of problems, such as solid, structural, and fluid mechanics, acoustics, heat transfer, etc. [16–22]. 
Several variants of the SFEM have been developed and three of these are the most used and accepted: the Monte Carlo simulation 
(MCS) method [23,24], the perturbation method [25,26], and the spectral stochastic finite element method (SSFEM) [27,28]. Each 
method adopts a different approach to represent, solve, and study the randomness of the system [29]. The MCS method is the most 
general and straightforward approach for SFEM, while tremendous computational power is required to achieve credible estimations. 
Another widely applied branch of the SFEM is the perturbation method [30–33]. Within the framework of the perturbation method, 
randomness is introduced into the system via Taylor series expansions, and the accuracy of the perturbation method increases with the 
number of terms used to calculate the response variables. Due to the computational costs, the perturbation method is widely used to 
obtain the means and covariance, yet rarely high-order moments, of the structural responses. The method is also limited to the values 
of random variables that do not exhibit large variations. Furthermore, the SSFEM, mainly concerned with representing the random 
material properties of a structure [29], uses spectral methods, such as the Karhunen-Loève (KL) expansion or polynomial chaos 
expansion (PCE), to reduce the computational power used in other methodologies such as MCS [34–38]. The investigation of system 
uncertainty has been developed for decades, while the consideration of data imperfections is familiar for data analysts [39–41], yet 
merely in structural analysis. 

To conquer such a real-life engineering-stimulated challenge, a novel machine learning-aided strategy is proposed to provide a 
possible solution. Effective surrogate model construction from imperfection-involved datasets can be one of the primary issues. 
Accordingly, a novel supervised machine learning algorithm, namely the Capped Extended Support Vector Regression (CX-SVR) 
technique, is developed. By succeeding the merits of the Extended Support Vector Regression (X-SVR) technique [7,42,43], the 
proposed CX-SVR technique can be formulated by solving a convex optimization problem, which means the optimal solution can be 
theoretically guaranteed. Then, by integrating with the capped strategy [44,45], the outliers in training datasets can be removed and 
the noise can be suppressed effectively. This feature greatly benefits the proposed framework in handling datasets with imperfections, 
e.g., missing data, outliers, noise, etc. Furthermore, the kernelized strategy extends the proposed CX-SVR technique to tackle nonlinear 
problems. 

The established surrogate model alternatively describes the relationship, which used to be underpinned, implicit, and sophisticated 
in most engineering applications, between the system uncertainties and the structural responses of interest in an explicit mathematical 
expression. High computational efficiency and explicit mathematical expression of the established surrogate model greatly benefit the 
subsequent sampling-based analysis, sensitivity analysis, optimization programming, etc. Another significant advantage of the pro-
posed scheme is that once the surrogate model has been established, the subsequent analyses can circumvent the intricate calculation 
process of the original physical model, and correspondingly avoid the potential for resulting errors and additional computational 
burdens. In addition, the proposed framework can serve with high robustness, mainly in four aspects: unrestrictive selection of the 
system inputs and corresponding statistical information (e.g., statistical moments, distribution types), ‘perfect’ or ‘imperfect’ system 
outputs, enough statistical information, involving not only the mean, standard deviation, but also probability density function (PDF), 
cumulative distribution function (CDF), of the concerned system outputs, and physical problems from various engineering fields. 
Convincingly, the proposed stochastic uncertainty quantification strategy integrating material, geometric randomness, and data im-
perfections, in conjunction with the newly developed regression technique can greatly benefit real-world engineering applications, 
over the stages of design, analysis, service life, maintenance, and even recycling. 

The remainder of this manuscript is organized as follows. The stochastic uncertainty quantification involving material, geometric 
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randomness, and data imperfections is introduced in Section 2. In Section 3, the algorithms of the newly proposed regression technique 
are thoroughly presented. Then, Section 4 illustrates the proposed machine learning-aided generalized stochastic uncertainty quan-
tification framework. To demonstrate the applicability and computational efficiency of the proposed approach, two engineering- 
stimulated applications: fracture analysis for a holed plate and bandgap analysis for a 3D lattice-based elastic metamaterial (EMM) 
are thoroughly investigated in Section 5. At last, some conclusions are drawn in Section 6. 

2. Stochastic uncertainty quantification involving material-geometric randomness and data imperfection 

2.1. System uncertainty: material and geometric randomness 

Given a complete probability space (Ω, Ξ, P), it is characterized by the sample space Ω, σ-algebra of events Ξ, and the probability 
measure P : F→[0, 1], P(Ω) = 1. Then, a physical problem is defined on a random domain Ω(ξR), in which ξR refers to a finite set of 
uncorrelated random variables with known probability distributions, 

ξR ∈ Ω:=
{

ξR ∈ R
n
⃒
⃒
⃒ξR

j ∼ fξR
j
(x), for j= 1, 2, ..., n

}
(1)  

where n denotes the dimension of the random variables and fξR
j
(x) denotes the PDF of the jth random variable ξR

j . In this research, the 

random variables ξR constitute a parameterization of the material properties and geometry, simultaneously. 
Considering a mechanical system whose structural performance can be modelled by a set of governing equations, typically partial 

differential equations (PDEs), and utilizing some suitable solution scheme, the computational model can be generally expressed as, 

y = F(x) (2)  

where x denotes a vector of input parameters of the model. These parameters can be related to the system geometry, material 
constitutive behaviour or the applied loading conditions. y denotes the vector of response of interest which may generally involve the 
displacement, strain, stress, spatial, temporal variations, or their associated components. The computational model, F, in real-world 
engineering applications, is commonly sophisticated, and cannot be modified by the analyst but only run for a given set of input 
parameters. 

Taking the stochastic dynamic analysis as an example, the governing equations are established as, 

M
(
ξR)ÜR

+ C
(
ξR)U̇R

+ K
(
ξR)UR = P

(
ξR) (3)  

where M(ξR), C(ξR), and K(ξR) ∈ R
Df×Df denote the random mass, damping, and stiffness matrices, respectively. UR, U̇R, and ÜR

∈ R
Df 

denotes the random displacement, velocity, and acceleration vectors, respectively. P(ξR) ∈ R
Df denotes the random load vector. Df 

denotes the degree of freedom of the structure. By involving the random inputs, Eq. (3) is a stochastic structural dynamic problem. To 
the best knowledge of the authors, there are no theoretical supports or algorithms to directly solve it. Theoretically, there are infinite 
sets of possible realizations of the random variables, which can lead to infinite calculations. Thus, it is computationally intractable to 
solve Eq. (3) for all possible solutions. Instead, the statistical characteristics, e.g., the statistical moments (means, standard deviations), 
PDF, and CDF, of the structural responses appear more meaningful in engineering applications. 

The geometric uncertainty that cooperates with the material uncertainty may lead the system to be a mesh-varying random system, 
of higher chaotic performance. The response sensitivity concerning shape variables is acknowledged to be more difficult to compute 
[46,47]. Thus, the underpinned relationship from geometry and material properties to structural response is often more challenging to 
describe than a single source of uncertainty. Since the generation of the mesh for random geometry is out of the scope of this research, 
an automatic mesh generation strategy is adopted [48]. 

2.2. Data imperfection: imperfection of the system output datasets 

In practice, most of the datasets possess imperfections because real-world data collection systems are imperfect [49]. It may be 
inaccurate, incomplete, and possibly contradictory as obtained from a variety of sources, which leads to wrong results. Thus, imperfect 
data is a generic problem, in which information extraction and decision-making are difficult tasks. The components that could be 
considered in discussing imperfect datasets are shown in Fig. 1. 

Fig. 1. Ideal versus real data collection systems.  
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In Fig. 1, the data source shown as the leftmost block includes the physical world and numerical simulation. This data source feeds 
two parallel paths. The ideal path as the upper one leads from the data source, through an ideal data acquisition system, into perfect (i. 
e., error-free) datasets DI. The lower path leads from the same data source through a real data acquisition system, generating the real 
datasets DR, which is imperfect. Imperfections in the datasets corresponding to differences between DI and DR can be divided into five 
kinds, as summarized in Appendix A. 

Throughout this research, simple missing data, coded missing data, and disguised missing data are treated as a manner of gross 
errors. Gross errors, noisy data, or outliers refer to the data being considered meaningless, due to the existence of too much variation. 
The missing data or corrupt data, which refers to any data that is not machine-readable, are also treated as outliers. The term ‘noise’ 
refers to the unexplained variability within a data sample, which is often considered as random data. Correspondingly, some common 
sources of data imperfections in engineering applications can be summarized: (1) Measurement errors: errors can occur due to 
inaccuracies in measuring devices or human errors during data collection. (2) Incomplete data capture: data may be incomplete due to 
issues such as system failure or power outages. (3) Recording errors: errors can occur during data recording, such as typos or incorrect 
units of measurement. (4) Data inconsistencies: data may be inconsistent due to differences in data sources, changes in measurement 
techniques, theorems, assumptions, calculation platforms, etc. Moreover, improper data processing, noise in the data collection sys-
tem, etc., may also lead to data imperfections. These data imperfections degrade the quality of the data and subsequently affect the 
decision-making to various extents. By taking these data imperfections into account, the original uncertainty quantification problem 
would become of higher applicability in real-world engineering. 

3. Capped extended support vector regression (CX-SVR) 

To investigate the effects of the material and geometric randomness for real-life engineering applications where data are often 
collected with imperfections, a machine learning-aided uncertainty quantification strategy is proposed. Within the proposed frame-
work, a supervised machine learning technique, namely the Capped Extended Support Vector Regression (CX-SVR) technique, is newly 
developed to generate an effective surrogate model based on datasets with imperfections. 

3.1. Linear capped extended support vector regression (CX-SVR) 

Given the training datasets with inputs A = [x1, x2, ..., xi, ..., xm]
T
∈ ℜm×n and output y = [y1, y2, ..., yi, ..., ym]

T
∈ R

m, the tar-
geted hyperplane model is defined as, 

f̂ (x) = wTx − δ (4)  

where w = [w1, w2, ..., wj, ..., wn]
T
∈ ℜn and δ ∈ R denote the normal to the hyperplane and bias, respectively. m and n denote the 

number of training samples and the dimension of the inputs, respectively. Then, by implementing the ε-insensitive loss function and 
elastic-net penalty which contains both L1 and L2-norms penalty, the linear regression function can be established by solving the 
optimization problem in the form of, 

min
w,δ,ξ,ξ∗

:
1
2
‖ w ‖

2
2 + λ‖ w ‖1 +

c
2
(
ξTξ + ξ∗Tξ∗

)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

Aw − δem − y ≤ εem + ξ

y − Aw + δem ≤ εem + ξ∗

ξ, ξ∗ ≥ 0m

(5)  

where λ and c denote two tuning parameters, which balance the L1 and L2-norms of w, and the flatness of hyperplane and the amount 
up to which deviations larger than the tolerance ε, respectively. ε denotes the tolerable deviation between the observations y and 
model prediction ŷ = f̂ (x). ξ = [ξ1, ξ2, ..., ξi, ..., ξm]

T
∈ R

m and ξ∗ = [ξ∗1, ξ∗2, ..., ξ∗i , ..., ξ∗m]
T
∈ R

m denote two non-negative vectors 
which collect slack variables ξi and ξ∗i . These slack variables are used to allow certain constraints to be violated. em and 0m ∈ R

m denote 
ones and zeros vectors in the dimension of m, respectively. 

Then, a decomposition strategy is used to eliminate the computation of the L1-norm of w. Two non-negative variables p and q ∈ R
n 

are defined in the form of, 

pj :=
(
wj
)

+
=

{
0,wj ≤ 0
wj,wj > 0 and qj :=

(
wj
)

−
=

{
− wj,wj < 0

0,wj ≥ 0 , for j = 1, 2, ..., n (6) 

It is indicated by the definition in Eq. (6) that wj = pj − qj and pjqj = 0 can be promised ∀j. Thus, the computation of L1 and L2-norms 
of w can be alternatively calculated as, 

‖ w ‖1 = |w1| + |w2| + ...+ |wn| ‖ w ‖
2
2 = ‖ p − q ‖

2
2

= p1 + q1 + p2 + q2 + ...+ pn + qn and = ‖ p ‖
2
2 + ‖ q ‖

2
2 − 2pTq

= eT
n (p + q) = ‖ p ‖

2
2 + ‖ q ‖

2
2

(7) 
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Subsequently, the optimization problem in Eq. (5) can be simplified as, 

min
p,q,δ,ξ,ξ∗

:
1
2
(
‖ p ‖

2
2 + ‖ q ‖

2
2

)
+ λeT

n (p + q) +
c
2
(
ξTξ + ξ∗Tξ∗

)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

A(p − q) − δem − y ≤ εem + ξ

y − A(p − q) + δem ≤ εem + ξ∗

p,q ≥ 0n; ξ, ξ∗ ≥ 0m

(8) 

Till now, the original optimization problem of the Extended Support Vector Regression (X-SVR) technique [7,42,43] has been 
achieved. However, a common challenge in real-life engineering is noisy data with extreme outliers, as presented in Fig. 2. 

When there is noise or outliers in training datasets, squared L2-norm distance used in X-SVR will exaggerate the effects of outliers. 
Consequently, the construction of optimum regression hyperplanes would be significantly affected. Inspired by the capped strategy 
used in the L1-norm support vector machine [44,45], a novel variation of the X-SVR technique, namely the Capped Extended Support 
Vector Regression (CX-SVR) is introduced. 

Then, the problem in Eq. (8) is reformulated as the following optimization problem, 

min
p(t) ,q(t) ,δ(t) ,ξ(t) ,ξ∗(t)

:
1
2

(
‖ p(t)‖

2
2 + ‖ q(t)‖

2
2

)
+ λeT

n

(
p(t) + q(t)

)
+

c
2

(
ξT
(t)D(t)ξ(t) + ξ∗T

(t)D
∗
(t)ξ

∗
(t)

)

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x
(

p(t) − q(t)

)
− δ(t)em − y ≤ εem + ξ(t)

y − x
(

p(t) − q(t)

)
+ δ(t)em ≤ εem + ξ∗(t)

p(t),q(t) ≥ 0n; ξ(t), ξ(t) ≥ 0m

(9)  

where the subscript (t) denotes the tth iteration. The matrices D(t) and D∗
(t) are used to ‘discard’ outliers or noisy data points. When the 

points exceed the soft margin and are statistically far from the hyperplane, they will be suspected as outliers and their contributions in 
regression will be eliminated or degraded. More specifically, two diagonal matrices D(t) and D∗

(t) ∈ R
m×m contain diagonal elements as 

d(t), i and d∗
(t), i (for i = 1, 2, ..., m) in the tth iteration. For the first iteration, i.e., t = 1, D(1) and D∗

(1) are initialized as two identity 
matrices Im ∈ R

m×m, which means that ∀i, d(t), i = d∗
(t), i = 1. For later iterations, i.e., t > 1, 

d(t+1), i =

⎧
⎪⎨

⎪⎩

smallval, if suspected outlier

1 or
1

⃒
⃒ξ(t), i

⃒
⃒
, otherwise

(10)  

d∗
(t+1), i =

⎧
⎪⎨

⎪⎩

smallval, if suspected outlier

1 or
1

⃒
⃒
⃒ξ∗(t), i

⃒
⃒
⃒
, otherwise (11)  

in which ‘smallval’ denotes a small constant, and the two most straightforward options built-in CX-SVR to determine its value are 
given: (1) set to a small constant, e.g., 1e− 5, (2) weaken the weights by a multiplier less than 1, e.g., d(t+1), i = 0.5 ⋅ d(t), i. Moreover, for 
those unsuspected points, it should be mentioned that by replacing the weights with the L1-norm of ξ(t), i or ξ∗(t), i, the objective function 

Fig. 2. Diagram of a one-dimensional linear regression model.  
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in Eq. (10) can be regarded as the L1-norm distance. Therefore, the proposed CX-SVR technique can customize the empirical risk in L1- 
norm or L2-norm. 

As for the criteria for outliers, within the proposed CX-SVR technique, there are two main built-in manners, including z-score [51] 
and quartile analyses [52]. The z-score is often used to measure the variance of an observation from the mean in terms of standard 
deviation, assuming a normal distribution [51]. Accordingly, the z-score of the ith point in the tth iteration can be calculated in the 
form of 

z(t), i =
ξ(t), i − μ

(
ξ(t)
)

σ
(

ξ(t)
) (12)  

where μ(⋅) and σ(⋅) denote the mean and standard deviation of (⋅), respectively. The observations with greater absolute z-scores are 
marked as outliers. Referring to the ‘three-sigma rule’ or 68-95-99.7 rule [53], approximately 68% of the values lie within 1 standard 
deviation from the mean, 95% of values are within 2 standard deviations, and 99.7% are within 3. The observations with greater 
absolute z-scores are marked as outliers, and the commonly adopted threshold τ of z-score in CX-SVR included 2.5, 3, and 3.5. 
Mathematically, it is expressed that if 

⃒
⃒z(t), i

⃒
⃒ > τ (13)  

then the ith observation is suspected to be an outlier. 
Another built-in strategy is the quartile analysis [52]. The interquartile range in the ith iteration (IQR(t)) is preliminarily defined as, 

IQR(t) = Q3

(
ξ(t)
)
− Q1

(
ξ(t)
)

(14)  

where Q1(⋅) and Q3(⋅) denote the first quartile and third quartile, corresponding to the 25th and 75th percentiles of the datasets (⋅), 
respectively. The values falling outside the k×IQR(t) are suspected to be outliers. A commonly used value for the multiplier k is 1.5, 
which is also adopted in CX-SVR. Hence, the criteria by quartile analysis for suspected outliers is that if 

ξ(t), i < Q1

(
ξ(t)
)
− k × IQR(t) or ξ(t), i > Q3

(
ξ(t)
)
+ k × IQR(t) (15)  

then the ith observation is suspected to be an outlier. 
Generally, the tolerance of soft margin ε and coefficient τ for z-score analysis or k for quartile analysis, control the criterion of 

whether an observation is suspected or unsuspected to be an outlier or a noisy point. Moreover, not limited to these two methods, other 
outlier detection techniques, such as the clustering approach, isolation forest method, etc., can also be integrated. 

Then, for each iteration, the established optimization problem of the CX-SVR method in Eq. (9) is alternatively expressed to achieve 
a simplified formulation, 

min
ẑ(t) ,δ(t)

:
1
2

(
ẑT
(t) Ĉ ẑ(t) + δ2

(t)

)
+ λâT ẑ(t)

s.t.(Â + I2m+2n)ẑ(t) +
(

εI2m+2n + δ2
(t)Ĝ

)
b̂ + d̂ ≥ 02m+2n

(16)  

where the matrices Ĉ, Ĝ, and Â∈ R
(2n+2m)×(2n+2m) are defined as, 

Ĉ =

⎡

⎢
⎢
⎣

I2n

cD(t)

cD∗
(t)

⎤

⎥
⎥
⎦, Ĝ =

⎡

⎣
02n×2n 02n×m 02n×m
0m×2n Im 0m×m
0m×2n 0m×m − Im

⎤

⎦, Â =

⎡

⎣
02n×n 02n×n 02n×2m
− A A 0m×2m
A − A 0m×2m

⎤

⎦ (17)  

and the vectors â, b̂, d̂, and ẑ(t) ∈ R
2n+2m are defined as: 

â =

⎡

⎢
⎣

en

en

02m

⎤

⎥
⎦, b̂ =

⎡

⎢
⎣

02n

em

em

⎤

⎥
⎦, d̂ =

⎡

⎢
⎣

02n

y
− y

⎤

⎥
⎦, ẑ(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p(t)

q(t)

ξ(t)
ξ∗(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18) 

The square of the bias parameter δ2 is added to the objective function to provide the benefits of optimizing the orientation and 
location of the hyperplane simultaneously. In addition, the constraints that p(t) and q(t) are non-negative in Eq. (9) have been rein-
forced by Eq. (16). Alternatively, by using the Lagrange method with the Karush-Kuhn and Tucker (KKT) condition [50], the problem 
in Eq. (16) can be solved through its dual formulation, which can be expressed in the form of, 
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min
φ(t)

:
1
2
φT

(t)Qφ(t) − mTφ(t)

s.t.φ(t) ≥ 02m+2n

(19)  

where φ(t) ∈ R
2n+2m denotes the Lagrange multiplier vector for the tth iteration; the matrices Q ∈ R

(2n+2m)×(2n+2m) and m ∈ R
2n+2m are 

defined as, 

Q = (Â + I2m+2n)Ĉ
− 1
(Â + I2m+2n)

T
+ Ĝb̂ b̂

T
Ĝ (20)  

m = λ(Â + I2m+2n)Ĉ
− 1

â − εb̂ − d̂ (21) 

It can be noticed the constraints are significantly simplified into purely non-negative constraints for the optimization variable φ(t). 
Moreover, the optimization problem in Eq. (19) possesses a quadratic objective and affine inequality constraints, which is a common 
standard form of the quadratic programming problem. As a convex optimization problem, the global optimal solution can be theo-
retically guaranteed for the established optimization problem. 

Therefore, the global optimum of the proposed CX-SVR technique can be efficiently obtained by solving the associated dual 
problem through any available quadratic programming solver. Let φ∗ ∈ R

2n+2m be the solution of Eq. (19), then the variables ẑ(t)and 
δ(t) can be calculated as, 

ẑ(t) = Ĉ
− 1[

(Â + I2m+2n)
Tφ∗ − λâ

] (22)  

δ(t) = b̂
T

Ĝφ∗ (23) 

The coefficients w(t), ξ(t), and ξ∗(t) can be calculated as, 

w(t) = p(t) − q(t) = ẑ(t)(1 : n) − ẑ(t)((n+ 1) : 2n) (24)  

ξ(t) = ẑ(t)((2n + 1) : (2n + m)) (25)  

ξ∗(t) = ẑ(t)((2n + m + 1) : (2n + 2m)) (26) 

The iterations can be stopped for a maximum number of iterations t or according to convergence study with acceptable tolerance. 
Let p∗, q∗, and δ∗ be the solutions after iterations, the linear regression function by the proposed CX-SVR technique can be obtained in 
the form of, 

f̂ (x) = xT(p∗ − q∗) − δ∗ (27)  

3.2. Kernelized capped extended support vector regression (CX-SVR) 

Through the kernel mapping strategy, the proposed linear CX-SVR technique can be extended to tackle nonlinear problems. The 
input datasets x would be transferred from the low-dimension input space to a higher-dimension Euclidian space or even infinite- 
dimension Hilbert space through the mapping function ϕ(x). The adopted empirical kernelization can be expressed as, 

xi =
[
xi, 1, xi, 2, ..., xi, n

]T ↦ κ(x, xi) =

⎡

⎢
⎢
⎣

ϕ(x1) ⋅ ϕ(xi)

ϕ(x1) ⋅ ϕ(xi)

⋮
ϕ(xm) ⋅ ϕ(xi)

⎤

⎥
⎥
⎦, for i = 1, 2, ..., m (28) 

Thus, for an arbitrary set of training inputs and given kernel function, the kernelized input datasets κ can be expressed as, 

κ = [κ(x, x1), κ(x, x2), ..., κ(x, xm)]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ϕ(x1) ⋅ ϕ(x1) ϕ(x1) ⋅ ϕ(x2) ⋯ ϕ(x1) ⋅ ϕ(xm)

ϕ(x1) ⋅ ϕ(x1) ϕ(x2) ⋅ ϕ(x2) ⋯ ϕ(x2) ⋅ ϕ(xm)

⋮ ⋮ ⋱ ⋮

ϕ(xm) ⋅ ϕ(x1) ϕ(xm) ⋅ ϕ(x2) ⋯ ϕ(xm) ⋅ ϕ(xm)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
m×m (29) 

Equivalently, the kernelized nonlinear CX-SVR technique is solved by its dual formulation by using the Lagrange method with the 
KKT condition. Thus, by replacing the input datasets with the kernelized input datasets, the optimization problem in Eq. (19) can be 
alternatively expressed as, 
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min
φ(t)

:
1
2
φT

(t)Qκφ(t) − mT
κ φ(t)

s.t.φ(t) ≥ 02m+2n

(30)  

where Qκ and mκ are calculated from the kernelized input datasets, more specifically, 

Qκ = (Âκ + I2m+2n)Ĉ
− 1
(Âκ + I2m+2n)

T
+ Ĝ b̂ b̂

T
Ĝ (31)  

mκ = λ
(

Âκ + I(2m+2n)×(2m+2n)
)

Ĉ
− 1

â − εb̂ − d̂ (32)  

in which Âκ is defined as, 

Âκ =

⎡

⎢
⎢
⎣

02n×n 02n×n 02n×2m

− κ κ 0m×2m

κ − κ 0m×2m

⎤

⎥
⎥
⎦ (33) 

It is worth mentioning that the kernelized input matrix κ is in the dimension of m× m. Thus, in kernelized CX-SVR, the dimension of 
input datasets equals the number of observations, i.e., n = m. Moreover, the convexity feature of the optimization program is still 
satisfactory in the kernelized CX-SVR technique. 

After the construction of the kernelized CX-SVR prototype model, the capped strategy can be implemented on the established 
kernelized prototype model to remove extreme outliers and suppress the effect of the noise data. Eventually, by obtaining the solutions 
of the variables in the targeted hyperplane (i.e., p∗, q∗, and δ∗), the kernelized CX-SVR model can be formulated as, 

f̂ (x) = κ(xtrain, x)(p∗ − q∗) − δ∗ (34) 

The subscript ‘train’ is added in case of misunderstanding. 
The proposed CX-SVR successes the kernel functions used in the X-SVR. Some kernel functions commonly used are summarized in 

Appendix B. Moreover, other Mercer’s kernels can also be easily embedded into the proposed CX-SVR technique. The cross-validation 
strategy and Bayesian hyperparameter tuning are integrated within the proposed CX-SVR technique to avoid over-fitting and fulfil the 
feature of auto-tuning, respectively. As they are secondary contributions to this research, the detailed algorithms can be referred to in 
the works [54–57]. 

Fig. 3. The flowchart of the proposed CX-SVR technique.  
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3.3. Flowchart of the kernelized cx-svr technique 

To more effectively illustrate the proposed kernelized CX-SVR technique, the detailed program is presented in the flowchart in 
Fig. 3. 

From Fig. 3, the program of the proposed CX-SVR technique is well-demonstrated. Various data pre-processing techniques can be 
easily embedded into the proposed CX-SVR technique, such as the dimensionality reduction (e.g., principal component analysis), 
normalization method, clustering method, etc. These data pre-processing techniques can be used in a targeted manner according to the 
characteristics of the data or requirements of the tasks. Then, the CX-SVR prototype model is constructed, which is equivalent to the X- 
SVR model. Within this step, the cross-validation and Bayesian hyperparameter tuning would be integrated to avoid overfitting and 
fulfil the feature of hyperparameter auto-tuning, respectively. In addition to three hyperparameters in the linear CX-SVR model, the 
number of additional hyperparameters by introducing a specific kernel function into the kernelized CX-SVR model can vary from 0 to a 
large integral correspondingly. 

Within the loop of the capped strategy, the outliers are detected, and for those suspected outliers, the corresponding components in 
the matrices D(t) and D∗

(t) would be adjusted to eliminate or suppress the effects of the outliers and noise data. Then, the CX-SVR model 
would be reconstructed, until the termination condition is met. The terminate condition in this research is set by the maximum 
iteration number. 

4. Stochastic uncertainty quantification strategy through the CX-SVR technique 

A machine learning-aided uncertainty quantification strategy is proposed herein for engineering structures involving material, 
geometrical uncertainty, and data imperfection. As a data-driven method, the proposed scheme requires a sufficient supply of training 
datasets. Before the presentation of the proposed uncertainty quantification approach, the method in numerical simulation to generate 
the training datasets by implementing the brute Monte Carlo simulation (MCS) on the finite element analysis (FEA) model is presented 
as a flowchart in Fig. 4. 

The consideration of both material and geometric uncertainty simultaneously leads to a mesh-varying random system. Quantifying 
the probabilistic performance of such a sophisticated system possesses several challenges:  

(1) The re-meshing process would aggravate the computational costs for each calculation.  
(2) The re-meshing process may lead to computational error, and then the system output datasets would be presented with 

imperfections.  
(3) The underpinned relationship between the system geometric variables and the structural response normally is more difficult to 

depict, in comparison to the randomness in the material.  
(4) The mesh-varying random system would present a more chaotic performance.  
(5) Based on the proposed CX-SVR technique, the proposed generalized uncertainty quantification framework is presented in Fig. 5. 

Fig. 4. The flowchart of the MCS on FEM.  
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Fig. 5 illustrates the processes of the proposed machine learning-aided generalized uncertainty quantification framework. There are 
heterogeneous accesses to generate the database, such as historical records, information, communication techniques (sensors, mon-
itors, actuators, etc.), experiments and so on. However, in this research, the database involving the training and testing datasets is 
generated by implementing the brute MCS method on the FEM model, as presented in Fig. 4. To consider the data imperfections in real- 
world engineering, the data imperfections, more specifically, noisy data and outliers, are added to the generated training datasets in 
Fig. 5, to test the performance of the developed CX-SVR technique in handling these out-of-system factors. 

The calculation process in FEA has been inherently underpinned within the generated surrogate model. Thus, the MCS can be 
implemented on the established surrogate model in a much more efficient manner, instead of repetitively running the cumbersome 
FDA, as well as the re-meshing processes. Moreover, the computational errors or unstable results induced by the re-meshing process or 
FEA study can be effectively avoided. 

High compatibility of the proposed framework should also be emphasized: various statistical information (e.g., means, standard 
deviations, distribution types, etc.) of the system inputs can be considered; there is no obvious limitation on the selection of the 
quantities of system inputs and outputs; a variety of physical problems from interdisciplinary or multidisciplinary fields can be 
investigated; multiple data pre-processing technique or machine learning techniques can be embedded or added; and a sufficient 
amount of statistical information (the statistical moments, PDF, CDF, etc.) of the concerned structural response can be effectively 
estimated. In addition, different to the previous generation of uncertainty quantification strategies, the proposed machine learning- 
aided generalized scheme possesses an inherent feature of information update. With the established surrogate model, the pre-
dictions on the newly collected system inputs following the updated statistical information can be easily achieved, without re-running 
the physical simulation. 

5. Numerical investigation 

To demonstrate the applicability of the proposed machine learning-aided uncertainty quantification strategy for problems with 
material-geometric randomness and data imperfections, two engineering applications have been fully investigated. In Section 5.1, 
stochastic brittle fracture analysis for a holed plate, involving structural material nonlinearity, material, and geometric randomness, 
and further considering the training output datasets with outliers, is thoroughly studied. Correspondingly, some statistical information 
on the FEM mesh of the holed plate presents the feature of randomness, which is also discussed in the same section. Then, the 
investigation of the probabilistic bandgap characteristics for a 3D elastic metamaterial (EMM) is implemented on ‘perfect’ (error-free) 
training datasets and training datasets with outliers and noise. 

Fig. 5. The flowchart of the generalized uncertainty quantification through the proposed CX-SVR technique.  
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5.1. Brittle fracture analysis for a holed plate 

The brittle fracture analysis for a holed plate made of a cement mortar is investigated herein by considering the system uncertainty 
within geometric and material properties simultaneously. The experimental specimen, presented in Fig. 6(a) and (b), is the prototype 
of this numerical investigation. The setup of the model is based on experimental data from previous research [58]. Loading is applied 
through displacement-controlled metal pins inserted into the two smaller holes. As the plate is loaded, a mixed-mode fracture is 
induced with a crack propagating from the predefined notch to the unsymmetrically placed hole in the centre of the plate. Fracture is 
modelled using a damage model that regularizes the sharp geometry of the crack by the phase field approximation [59]. 

The width and height of the plate are 65 and 120 mm, respectively. A plane stress condition is assumed, and the thickness of the 
plate is a unit constant. Two small holes for upper and lower pins are located 20 mm to the left, upper, and bottom edges, and the radius 
is 10 mm. Some other geometric characteristics of the holed plate, including the features of the initial notch (the height hn, width wn, 
and location ln) and the middle hole (the radius rh and location of the centre xh and yh), are marked in Fig. 6(d). 

To properly resolve the phase field and achieve stable material behaviour, a high mesh density is required in the vicinity of the 
propagating crack. Eventually, the holed plate is discretised into 11,907 triangular elements, as shown in Fig. 6(c). The convergence 
study for the FEM mesh is implemented based on the deterministic model. For the deterministic model, the crack trajectory can be 
estimated as shown in Fig. 6(d), through the phase field damage method. 

The considered system uncertainty contains geometric parameters (hn, wn, ln, rh, xh, and yh), and material parameters (Young’s 
modulus E, Poisson’s ratio ν, and density ρ). For surrogate model construction, the generated training input datasets are expected to be 
more evenly distributed, and thus, the Latin hypercube sampling (LHS) method is adopted to generate the training input datasets 
uniformly distributed within the bounds (lower bound i.e., LB, and upper bound i.e., UB), as summarized in Table 1. 

By considering the system uncertainty within the material and geometric parameters, the whole system of the holed plate possesses 
the feature of randomness. This feature of randomness is presented in the domain, material resistance, and fracture performance of the 
holed plate. Through the brute MCS with 1e3 iterations, the probabilistic fracture performance of the holed plate during the loading 
process has been depicted in Fig. 7. 

From Fig. 7, it can be noticed that the whole curves possess the feature of randomness. Moreover, the critical values (locally 
maximum) would be achieved at various loading steps under the probabilistic problem. Then, the random critical loads (marked as red 
points) at regions I and II (namely Pcr, 1 and Pcr, 2, respectively) are investigated. Under the same system uncertainty during the loading 
process of the holed plate, Pcr, 1 presents a larger deviation in the load axis, while Pcr, 2 in the displacement axis. 

Through the proposed CX-SVR technique, the convergence study is implemented to determine the size of training samples for 
surrogate model construction for Pcr, 1. R2 and RMSE are estimated. The initial training size is set as 40 and increases to 500 gradually. 
For each size of the training sample, the surrogate model construction is repetitively implemented 20 times. The computational results 
are depicted in Fig. 8. 

From Fig. 8, the proposed CX-SVR technique presents sharp convergence trends for both R2 and RMSE in constructing the surrogate 

Fig. 6. The holed plate: (a) Experiment setup, (b) fractured specimen (c) experimentally observed crack patterns [58], (d) numerical model, (e) the 
adopted FEM mesh, and (f) the estimated crack phase field at the last parameter step for the deterministic model. 
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model for Pcr, 1. More specifically, when the size of the training samples reaches 200, the convergence trends can be captured for both 
estimation metrics. Similarly, 200 training samples are also determined to construct the surrogate model for Pcr, 2. Then, the PDFs, 
CDFs and REs of CDFs of Pcr, 1 and Pcr, 2 are estimated based on the established CX-SVR models, and the computational results are 
presented in Fig. 9. The brute MCS results with 1e3 iterations are considered as the benchmark. 

From Fig. 9, it can be demonstrated that the proposed CX-SVR technique is capable of estimating PDFs and CDFs of both Pcr, 1 and 
Pcr, 2 with nearly overlapped estimations in reference to the brute MCS results. The same conclusions can be drawn from the scatter 
subplots, R2 and RMSE-values annotated in Fig. 9. By further referring to REs of the CDFs of Pcr, 1 and Pcr, 2, the maximum magnitude of 
RE is kept lower than 0.4% through the proposed CX-SVR technique. It is worth mentioning that when the CDF goes to 0, the reference 

Table 1 
The statistical information of system uncertainties for the plate.  

Geometric Property of the Notch 
Bounds hn (mm) wn (mm) ln (mm)

LB 0.49 9.9 64.7 
UB 0.51 10.1 65.3 

Geometric Property of the Central Hole 
Bounds rh (mm) xh (mm) yh (mm)

LB 9.9 36.3 50.7 
UB 10.1 36.7 51.3 

Material Property 
Bounds ρ (kg /m3) E (GPa) ν 

LB 1900 5.7 0.19 
UB 2100 6.3 0.21  

Fig. 7. The probabilistic load versus displacement curves.  

Fig. 8. The boxplots of the (a) estimated R2 and (b) RMSE for Pcr, 1 by CX-SVR.  
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and estimation are both extremely small, in such cases, RE-value may lose the effects to reflect the performance of the model. Thus, we 
calculate the RE on the (1-CDF) instead of CDF directly when the CDF is lower than 0.5. Such calculation enhances the interpretability 
of the statistics. In addition to the whole PDFs and CDFs of the concerned structural responses, the local probabilistic information can 
be obtained through the proposed approach without additional computational efforts. The estimated probabilistic information at 
specific thresholds is calculated and summarized in Table 2. 

From Table 2, the specific statistical information of Pcr, 1 and Pcr, 2 by considering the system material and geometrical uncertainties 
can be effectively estimated through the proposed strategy. In reference to the brute MCS results in 1e3 iterations, the proposed 
approach estimates the statistical information of Pcr, 1 and Pcr, 2 with high accuracy. 

In addition to computational effectiveness, supreme computational efficiency should be highlighted. All computation is imple-
mented in the workstation equipped with Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz. The brute MCS costs 29.82 days to complete 
1e3 iterations in total. However, the proposed approach only uses 9.30 min to construct the surrogate model from 200 training 
datasets, which requires approximately 5.96 days to generate, and subsequent predictions for 1e3 samples on the established surrogate 
model only cost several milliseconds. Thus, it can be concluded that the main computational costs of the proposed approach are 
occupied by the generation of training datasets. 

To demonstrate the applicability of the proposed approach, especially the developed CX-SVR technique in the regression based on 
the training datasets involving some imperfections, a small group of observations is replaced with corrupt data. Assuming the error 
rates of 15 and 30%, which correspond to 30 and 60 out of 200 training datasets respectively, are randomly sampled and replaced by 
zeros. Then, the surrogate models are re-constructed on these ‘imperfect’ training datasets. Within the developed CX-SVR technique, a 
default setting of z-score criterion is adopted with τ set to 0.25 and ‘smallval’ set to 1e− 5, respectively. In comparison, three currently 
popular machine learning techniques, including traditional support vector regression (SVR), neural network (NN), and Gaussian 
process regression (GPR), are implemented on the same training datasets. The computational results are summarized in Table 3. 

From Table 3, it can be found that the proposed CX-SVR embedded uncertainty quantification scheme possesses high robustness 
and accuracy in handling outliers within the training output datasets attributed to data missing. At the error rate reaches 15%, the R2- 
values are well maintained by the proposed CX-SVR technique as 0.9880 and 0.9947 for Pcr, 1 and Pcr,2, respectively. Then, at the error 
rate of 30%, the proposed CX-SVR technique still provides outstanding estimations, with the corresponding R2-values of 0.9896 and 
0.9854, respectively. The robust performance of the proposed CX-SVR technique in handling outliers in training output datasets 
overpasses other machine learning techniques. All other machine learning techniques share sharp decrease trends in the performance 

(a) (b)

Fig. 9. Estimated PDFs and CDFs of (a) Pcr, 1 and (b) Pcr, 2 by CX-SVR.  

Table 2 
Estimated statistical information of Pcr, 1 and Pcr, 2.  

Property MCS CX-SVR RE (%) 

μPcr, 1 
(kN) 0.624954 0.624877 -0.012310 

σPcr, 1 (kN) 0.013641 0.013662 0.149378 
Pr(μPcr, 1

− σPcr, 1 ≤ Pcr, 1 < μPcr, 1
+ σPcr, 1 ) 0.642684 0.641221 -0.227652 

Pr(μPcr, 1
− 2σPcr, 1 ≤ Pcr, 1 < μPcr, 1

+ 2σPcr, 1 ) 0.952177 0.951720 -0.047934 
Pr(μPcr, 1

− 3σPcr, 1 ≤ Pcr, 1 < μPcr, 1
+ 3σPcr, 1 ) 0.999753 0.999817 0.006417 

Property MCS CX-SVR RE (%)

μPcr, 2 
(kN) 0.135581 0.135579 -0.001414 

σPcr, 2 (kN) 0.003233 0.003228 -0.139544 
Pr(μPcr, 2

− σPcr, 2 ≤ Pcr, 2 < μPcr, 2
+ σPcr, 2 ) 0.643009 0.642526 -0.075082 

Pr(μPcr, 2
− 2σPcr, 2 ≤ Pcr, 2 < μPcr, 2

+ 2σPcr, 2 ) 0.951854 0.951659 -0.020511 
Pr(μPcr, 2

− 3σPcr, 2 ≤ Pcr, 2 < μPcr, 2
+ 3σPcr, 2 ) 0.999184 0.999278 0.009445  

Q. Wang et al.                                                                                                                                                                                                          



Computer Methods in Applied Mechanics and Engineering 423 (2024) 116868

14

of surrogate model construction for both Pcr, 1 and Pcr, 2, when the error rate increases from 15% to 30%. 
Generally, the computational effectiveness and efficiency of the proposed CX-SVR aided scheme, as well as the high robustness and 

computational stableness, in tackling probabilistic brittle fracture problems involving material, geometric randomness, and data 
imperfections, have been thoroughly demonstrated. 

5.2. Bandgap analysis for a 3D lattice-based elastic metamaterial (EMM) 

The bandgap characteristics of a 3D unit cell of EMM [66,67], shown in Fig. 10(a–c), are fully investigated by considering the 
systematic geometric and material uncertainty simultaneously. 

The unit cell is characterized by four geometric parameters, including the unit cell size of 30 mm, centred sphere radius ra, cornered 
sphere radius rb, and connected cylinder radius rc. As for the material, the unit cell is made of Nylon with the density ρ, Young’s 
modulus E, and Poisson’s ratio ν. Within the framework of FEM, the deterministic EMM model is discretised into 5666 tetrahedra 
elements, with a degree of freedom of 29,280. More specifically, the adopted FEM mesh is presented in Fig. 10(d). Bloch-Floquet 

Table 3 
The performance of the surrogate models when the training datasets of Pcr, 1 and Pcr, 2 involving outliers.  

Property Error Rate (%) Method R2 RoI (%) RMSE RoI (%) 

Pcr, 1 15 CX-SVR 0.988049 – 1.496457 – 
X-SVR 0.961234 -2.7139 2.403453 60.6096 
SVR 0.957710 -3.0706 2.600261 73.7612 
NN 0.729719 -26.1455 7.606788 408.3199 
GPR 0.956936 -3.1489 2.509407 67.6899 

30 CX-SVR 0.989554 – 1.387826 – 
X-SVR 0.869798 -12.1020 3.939729 183.8777 
SVR 0.903976 -8.6481 3.602139 159.5526 
NN 0.728991 -26.3314 7.361715 430.4494 
GPR 0.843900 -14.7192 4.335969 212.4289 

Pcr, 2 15 CX-SVR 0.994697 – 0.234141 – 
X-SVR 0.976883 -1.7909 0.442432 88.9596 
SVR 0.969103 -2.5730 0.509113 117.4386 
NN 0.812464 -18.3205 1.573142 571.8781 
GPR 0.968854 -2.5981 0.509113 117.4386 

30 CX-SVR 0.985362 – 0.394155 – 
X-SVR 0.895324 -9.1376 0.883066 124.0403 
SVR 0.925949 -6.0296 0.753647 91.2057 
NN 0.739145 -24.9875 1.959176 397.0572 
GPR 0.871664 -11.5387 0.941319 138.8195 

*The ratio of improvement index (RoI) is defined as RoI=QA− QB∕QB×100%, where Q denotes the estimation metrics (e.g., R2 and RMSE), and the 
subscripts A and B denote the methods of interest and the reference, respectively. Here, the CX-SVR technique is considered as the reference. 

Fig. 10. Numerical model of the 3D EMM: (a) 3D view; (b) 3D view, (c) 2D view, and (d) adopted mesh of EMM unit cell; (e) a realization of band 
structure along the k-path in the First Brillouin Zone of the EMM. 
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boundary conditions [60] are applied on the boundary surfaces of the unit cells. One realization of the bandgap solution of the unit cell 
along the k-path of the First Brillouin zone (Γ-Х-М-Γ-R-Х|М-R) is depicted in Fig. 10(e). 

The starting frequency fs and cut-off frequency fc for the first bandgap are measured. Without loss of generality, the geometric and 
material uncertainty are simulated in uniform distributions, with bounds of [11.4, 12.6] mm for ra, [2.85, 3.15] mm for rb, [0.76, 0.84] 
mm for rc, [1092.5, 1207.5] kg/m3 for ρ, [1.9, 2.1] GPa for E, and [0.38, 0.42] for ν, respectively. All inputs are generated through the 
LHS method. 

According to the convergence study, the training size for CX-SVR model construction is set as 100. Based on the established sur-
rogate models, PDFs, and CDFs of the concerned bandgap characteristics (i.e., fs and fc) are estimated and depicted in Fig. 11. 

It can be demonstrated that the proposed CX-SVR technique can provide estimations on PDFs and CDFs of both fs and fc. The 
estimated PDFs and CDFs on the established CX-SVR models are overlapped with the brute MCS results. The estimated R2-values close 
to 1 and relatively low RMSE-values can quantitively confirm the high accuracy of the established surrogate models. In addition, by 
further referring to the subplots in Fig. 11, the scatter plots and the estimated REs of the CDFs of fs and fc can intuitively reflect the high 
accuracy of the established surrogate model, and the RE-values fluctuate approximately ±0.2%. 

In comparison, the traditional Support Vector Regression (SVR), Neural Network (NN), and Gaussian Process Regression (GPR), are 
also implemented on the same ‘error-free’ training samples to construct the surrogate models. Their performance is summarized in 
Table 4. 

From Table 4, it is noticed that when there is no outlier or noise embedded in the training output datasets, the proposed CX-SVR 
method performs at the same level as the GPR method, and slightly better than traditional SVR and NN in accuracy. Then, these 
machine learning methods as well as the original Extended Support Vector (X-SVR) technique are implemented for the initial bandgap 
frequency fs involving some outliers. For the concerned structural response fs, the investigation is divided into several cases by 
considering 5 or 10 sets of missing output datasets and different assumed outlier values (mean, maximum, or minimum value of other 
comprehensive training output datasets). In addition, the training inputs and testing datasets are free of outliers. The computational 
results are presented in Table 5. 

From Table 5, it can be concluded that the proposed CX-SVR technique possesses outstanding performance in removing the effects 
of the outliers in training output datasets, despite the number of outliers set as 5 or 10, and the outlier values set as a mean, maximum, 
or minimum value of other comprehensive training output datasets. Such a robust performance of the proposed technique overpasses 
all other adopted machine learning techniques. More specifically, the improvement rates by using the proposed CX-SVR technique, 
when 5 and 10 outliers are embedded within the training output datasets, can be approximately 4% and 6% for the traditional SVR 
technique, 6 and 7% for NN, and 3 and 6% for GPR, respectively (without accounting the cases when the adopted method presents an 
extraordinarily poor performance, e.g., the estimations through the GPR when 10 outliers are considered as the minimum values). 
Moreover, the high robustness of the proposed CX-SVR technique is also presented on the stable performance with high accuracy in 
handling different valued outliers. In addition, this investigation also inspires that for surrogate model construction in engineering 
applications when some training datasets are missing, assigning the blanks by mean values of other comprehensive training output 
datasets may not yield the best training database for machine learning methods. 

After clarifying the outstanding performance of the proposed CX-SVR technique in surrogate model construction under training 
output datasets with outliers, the proposed approach is further implemented to investigate the cut-off bandgap frequency fc involving 
the Gaussian noise, and to explore the constancy of the method when noise exists. In the developed CX-SVR technique, the z-score is 
adopted with τ set to 0.25 and ‘smallval’ set to 1e− 4, respectively. We replaced original output datasets Y with Y+θỸỸ, where θ=nf||Y||/ 
||ỸỸ|| and nf denotes a given noise factor. The value of nf is set in {0.2, 0.3, 0.4, 0.5}. ỸỸ denotes the noise vector whose elements are 
standard Gaussian variables. The performance of the surrogate models through various machine-learning techniques is summarized in 
Table 6. 

From Table 6, the adopted machine learning techniques can generate surrogate models by learning from the training samples with 
noisy output datasets. In comparison to other popular machine learning techniques, the proposed CX-SVR presents a superior per-
formance in suppressing the effect of the noise within the output training datasets, by possessing the highest R2-values and lowest 
RMSE-values, no matter how the severity of noise (nf-value changing from 0.2 to 0.5) is. Moreover, based on the performance of the 
proposed CX-SVR technique, the improvement for each machine learning technique on both estimation metrics can be indicated by the 
RoI-values. Furthermore, the increasing RoI indexes based on the performance of each adopted machine learning technique and the 
proposed CX-SVR technique can be observed generally during the increase of the proportion of the noise. Thus, it can be concluded that 
when the noise factor nf increases from 0.2 to 0.5, this superior performance of the proposed CX-SVR technique appears more obvious. 

In addition to the effectiveness of the proposed approach in handling generalized uncertainty quantification for 3D EMM, the 
computational costs are summarized. All computation is implemented in the workstation equipped with Intel(R) Xeon(R) CPU E5-2667 
v4 @ 3.20GHz. The brute MCS method costs 4.52 days in total to complete 1e3 iterations calculation on the FEA model. In comparison, 
our proposed approach only utilizes approximately 9–200 s (varying according to various kernel functions adopted) to construct the 
surrogate model from 100 training datasets, which costs about 10.8 h. Then, the subsequent predictions on the established surrogate 
model only cost several milliseconds, which can be negligible. Convincingly, such high computational efficiency, and effectiveness, as 
well as the robust capability in tackling data imperfection, of the proposed approach would significantly benefit the uncertainty 
quantification for real-world industrial applications. 

6. Conclusion 

Stimulated by practices, system uncertainty involving both material and geometric randomness, and data imperfections have 
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(a) (b)

Fig. 11. Estimated PDFs and CDFs of (a) fs and (b) fc by CX-SVR.  

Table 4 
The performance of the established surrogate models under training datasets without outliers or noise.  

Analysis Method fs fc 

R2 RMSE R2 RMSE 

No Outlier or Noise CX-SVR 0.999924 0.649127 0.999227 10.031342 
SVR 0.998166 3.224060 0.995326 24.205802 
NN 0.999783 1.089254 0.998103 15.614517 
GPR 0.999928 0.629862 0.999188 10.276857  

Table 5 
The performance of surrogate models when the training outputs fs involve outliers.  

Analysis Method R2 RoI (%) RMSE RoI (%) 

5 Outliers 
- Mean 

CX-SVR 0.987249 – 8.511121 – 
X-SVR 0.983740 -0.3554 9.277382 9.0031 
SVR 0.929477 -5.8518 17.051192 100.3401 
NN 0.830814 -15.8455 33.419556 292.6575 
GPR 0.965557 -2.1972 12.454967 46.3376 

5 Outliers 
- Max 

CX-SVR 0.995967 – 4.734602 – 
X-SVR 0.955275 -4.0857 14.881427 214.3121 
SVR 0.961213 -3.4895 13.326893 181.4786 
NN 0.918794 -7.7485 19.737156 316.8704 
GPR 0.948249 -4.7911 15.797537 233.6614 

5 Outliers 
- Min 

CX-SVR 0.993316 – 6.192030 – 
X-SVR 0.912276 -8.1585 19.873506 220.9530 
SVR 0.964357 -2.9154 12.865055 107.7680 
NN 0.938697 -5.4987 18.195887 193.8598 
GPR 0.958408 -3.5143 14.374385 132.1433 

10 Outliers 
- Mean 

CX-SVR 0.988769 – 8.183177 – 
X-SVR 0.965762 -2.3268 12.425263 51.8391 
SVR 0.907603 -8.2088 18.884587 130.7733 
NN 0.914376 -7.5238 20.081848 145.4041 
GPR 0.931606 -5.7812 16.192177 97.8715 

10 Outliers 
- Max 

CX-SVR 0.997691 – 3.617247 – 
X-SVR 0.953829 -4.3964 16.346333 351.8998 
SVR 0.959928 -3.7850 13.653588 277.4580 
NN 0.923987 -7.3875 19.954115 451.6382 
GPR 0.937657 -6.0173 17.982538 397.1333 

10 Outliers 
- Min 

CX-SVR 0.985808 – 9.175325 – 
X-SVR 0.796336 -19.2200 27.511351 199.8406 
SVR 0.922533 -6.4186 17.934636 95.4659 
NN 0.708579 -28.1220 34.657543 277.7255 
GPR 0.548222 -44.3886 40.644364 342.9747  
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substantial impacts on the estimation of structural performance. Introducing the material, geometric randomness, and data imper-
fections (e.g., missing data, outliers, noise) simultaneously to the engineering structure would lead to an extremely complicated and 
error-prone system. To provide a feasible solution, this research proposes a machine learning-aided uncertainty quantification 
strategy. A novel kernelized regression technique, namely the Capped Extended Support Vector Regression (CX-SVR) technique, is 
developed for surrogate model construction, especially when the training datasets involve data imperfections. The proposed CX-SVR 
technique can be solved as a quadratic programming (QP) problem with a globally optimal solution available. The embedded capped 
strategy enables the proposed technique to remove outliers and suppress noise effectively. Cross-validation and Bayesian hyper-
parameter tunning strategies are adopted to avoid over-fitting and fulfil the auto-tunning, respectively. Based on the established 
surrogate model, subsequent analyses, such as sampling-based methods, sensitivity analysis, and optimization programming, can be 
implemented with ease. Instead of running on the implicit physical model, e.g., finite element analysis (FEA), for engineering 
structures, through the proposed approach, the computational costs, therefore, can be greatly reduced, and the potential errors hidden 
in the calculation process of the FEA model can also be circumvented. Furthermore, the high robustness of the proposed approach can 
be summarized in four main aspects: unrestrictive selection of the system inputs and their statistical information (e.g., statistical 
moments, distribution types), ‘perfect’ or ‘imperfect’ system outputs, enough statistical information (including statistical moments, 
probability density function, i.e., PDF, and cumulative distribution function, i.e., CDF) of the system outputs, and physical problems 
from various engineering fields. Convincingly, the proposed framework in conjunction with the newly developed regression technique 
would greatly benefit the engineering applications in heterogeneous disciplines. 
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Appendix A 

Imperfections in the datasets corresponding to differences between the perfect datasets DI and real datasets DR can be generally 
divided into five kinds. To describe these different data imperfections, suppose x is an ideal data record in DI and define Rx to be its 
counterpart, if any, in DR. Also, suppose ι(⋅, ⋅) is a given scalar-valued distance function defined on DI × DR. Several different types of 
data imperfections considered in this research can be distinguished as follows, 

Table 6 
The performance of surrogate models when the training outputs fc involve noise.  

nf Method R2 RoI (%) RMSE RoI (%) 

0.2 CX-SVR 0.989837 – 34.252958 – 
X-SVR 0.989446 -0.0395 34.804748 1.6109 
SVR 0.945287 -4.5007 77.405613 125.9823 
NN 0.940285 -5.0061 86.794070 153.3915 
GPR 0.985721 -0.4158 41.975429 22.5454 

0.3 CX-SVR 0.983322 – 43.491790 – 
X-SVR 0.977695 -0.5722 48.862857 12.3496 
SVR 0.932574 -5.1609 84.867701 95.1350 
NN 0.952627 -3.1216 78.052602 79.4651 
GPR 0.979694 -0.3690 49.347381 13.4637 

0.4 CX-SVR 0.975487 – 51.848233 – 
X-SVR 0.960136 -1.5737 63.383766 22.2487 
SVR 0.904324 -7.2951 99.903500 92.6845 
NN 0.871312 -10.6793 135.772704 161.8656 
GPR 0.965352 -1.0390 63.780265 23.0134 

0.5 CX-SVR 0.964426 – 62.679968 – 
X-SVR 0.937132 -2.8301 77.603043 23.8084 
SVR 0.869843 -9.8072 116.206860 85.3971 
NN 0.942320 -2.2921 86.027290 37.2485 
GPR 0.946634 -1.8448 78.460187 25.1759  
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(1) Noise or observation error: x ∈ DI, Rx ∈ DR, ι(x, Rx)⪅θ;  
(2) Gross errors: x ∈ DI,Rx ∈ DR, i(x,Rx) ≫ θ;
(3) Simple missing data: x ∈ DI, Rx ∕∈ DR;  
(4) Coded missing data: x ∈ DI, Rx = m∗ ∈ DR, m∗ = special;  
(5) Disguised missing data: x ∈ DI, Rx = y ∈ DR, y = arbitrary. 

where θ represents a ‘small’ value used to distinguish between noise (Case 1) and gross errors (Case 2). This distinction is very essential 
in practice, since noise is almost always present, and all standard data analysis procedures, therefore, are designed to possess a certain 
tolerance to noise. 

For missing data, mainly there are at least three different ways: the desired record x can simply be missing from the dataset (Case 3); 
it can be coded as a special ‘missing’ data value, e.g., ‘NA’, ‘NaN’, or ‘?’ (Case 4); or it can be disguised as a valid data value with no 
indication that the correct value of x is either known or undefinable (Case 5). The data anomalies in Cases 3 and 4 can be easily 
detected at the stage of data pre-processing, and subsequently, they can be transformed into Case 5 by substituting a specific value into 
these blanks. Though the missing datasets have been filled, these data points appear to be inconsistent with the nominal behaviour 
exhibited by most of the other data points in a specified collection. Therefore, these missing datasets after filling up can approximately 
be considered as kind of outliers in the application. 

Overall, the analysis of data imperfection is systematic, and considering other nominal behaviour models would lead to other 
generally more sophisticated and subtle data imperfection classes, which are not in the scope of this work. 

Appendix B 

The proposed CX-SVR technique supports various Mercer’s kernel functions, and some commonly used kernel functions are 
summarized in Table 7, including the linear kernel function, polynomial kernel function, Gaussian radial basis kernel function (RBF), 
Laplace RBF, Sigmoid kernel function, Eponential kernel function, Matérn 3/2 kernel function [61], Matérn 5/2 kernel function [62], 
Generalized Chebyshev polynomial kernel function in first and second kinds (GCKT and GCKU, respectively) [63], Generalized 
Gegenbauer polynomial kernel function (GGK) [7,43], and Generalized Jacobi polynomial kernel function (GJK) [64,65].  

Table 7 
Commonly used kernel functions in the proposed CX-SVR technique.  

Kernel Expression Hyperparameter 

Linear κ(xi, xj) = xT
i xj  

Polynomial κ(xi, xj) = (xT
i xj + 1)d d ∈ N 

RBF κ(xi, xj) = exp( − γ‖ xi − xj‖
2
) γ > 0 

Laplace RBF 
κ(xi, xj) = exp

(
−

‖ xi − xj‖

ℓ

) ℓ 

Sigmoid κ(xi, xj) = tanh(αxi
Txj + β) α, β 

Exponential 
κ(xi, xj) = σ2exp

(
−

‖ xi − xj‖

ℓ

) σ, ℓ 

Matérn 3/2 
κ(xi, xj) = σ2

(
1 +

̅̅̅
3

√
‖ xi − xj ‖

ℓ

)

exp

(

−

̅̅̅
3

√
‖ xi − xj ‖

ℓ

)
σ, ℓ 

Matérn 5/2 
κ(xi, xj) = σ2

(
1 +

̅̅̅
5

√
r

ℓ +
5r2

3ℓ2

)

exp
(

−

̅̅̅
5

√
r

ℓ

)

where r = ‖ xi − xj‖

σ, ℓ 

GCKT 
κ(xi, xj) =

∑d
n=0Tn(xi)

TTn(xj)

exp(γ‖ xi − xj‖
2
)

d ∈ N 

γ > 0 

GCKU 
κ(xi, xj) =

∑d
n=0Un(xi)

TUn(xj)

exp(γ‖ xi − xj‖
2
)

d ∈ N 

γ > 0 

GGK 
κ(xi, xj) =

∑d
n=0Gα

n(xi)
TGα

n(xj)

exp(γ‖ xi − xj‖
2
)

where 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Gα
0(x) = 1

Gα
1(x) = 2αx

Gα
n(x) =

1
n
[2(n + α − 1)xTGα

n− 1(x) − (n + 2α − 2)G(α, β)
n− 2 (x)]

d ∈ N 

γ > 0 
α 

GJK 
κ(xi, xj) =

∑d
n=0J(α, β)

n (xi)
TJ(α, β)

n (xj)

exp(γ‖ xi − xj‖
2
)

where 

d ∈ N 

γ > 0 
α, β 

(continued on next page) 
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Table 7 (continued ) 

Kernel Expression Hyperparameter 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P(α, β)
0 (x) = 1

P(α, β)
1 (x) = 1

2
(α + β + 2)x +

1
2
(α − β)

P(α, β)
n (x) = P(α, β)

n− 1 (x)TA(α, β)
n (x) − B(α, β)

n P(α, β)
n− 2 (x)

and 
A(α, β)

n (x) =

(2n + α + β + 1)[(2n + α + β)(2n + α + β − 2)x + (α2 − β2)]

2n(n + α + β)(2n + α + β − 2)

B(α, β)
n =

(n + α − 1)(n + β − 1)(2n + α + β)
n(n + α + β)(2n + α + β − 2)
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