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ABSTRACT  
Generative Artificial Intelligence (GenAI), such as ChatGPT, is reshaping 
educational paradigms by offering unparalleled benefits and 
introducing challenges, particularly academic integrity. This study 
investigates teaching laboratory practices (traditional, recorded, remote, 
simulation and virtual), considered an academic safe haven due to its 
authenticity, and examines how assessments align with learning 
objectives. This should reinvigorate interest in expanding laboratory 
learning opportunities. However, unsupervised laboratory reports, a 
dominant assessment type, present significant cheating risks – 
intensified by GenAI. Given the scant literature on laboratory 
assessments and their primary focus on cognitive objectives, little 
guidance is available regarding how to assess non-cognitive objectives. 
This studies innovative approach utilises a reflective survey with 134 
international academic staff to explore how each assessment type can 
verify cognitive, psychomotor, and affective learning objectives. We 
introduce a ‘Words of Estimative Probability’ heatmap to visualise the 
likelihood of verifying specific learning objectives, providing a snapshot 
to guide academics in holistic assessment design. This study advocates 
for diverse assessments, which mitigate GenAI risks and foster 
comprehensive skill development. This research equips educators to 
design secure, effective laboratory education in STEM disciplines, 
ensuring alignment with evolving academic and technological 
landscapes by offering a framework for improving assessment validity, 
integrity, and adaptability.
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1. Introduction

Within science, technology and engineering, the teaching laboratory plays a fundamental role in the 
skill-acquisition process (Kist 2022; Potkonjak et al. 2016). Through the laboratory, students can 
acquire and develop various skills, including knowledge & understanding, inquiry, practical, percep
tion, analytical, and social and scientific communication (Brinson 2015). Learning experiences should 
be both valuable and interesting (Beck, Lazari, and DiBenedetti 2024). The work undertaken and skills 
needed by engineers are evolving (Crossin et al. 2023), and we must ensure the laboratory stays up 
to task. One such change is the rise in the use of generative artificial intelligence (GenAI). Research 
suggests that GenAI will bring about learning and productivity benefits but is also tied to academic 
integrity risks. Consequently, these concerns may encourage increased usage of teaching labora
tories due to the irreplaceable nature of practical hands-on experiences (Nikolic et al. 2023a). There
fore, we must continue to improve our understanding of the contribution laboratories make to 
learning.

The structure, format and learning pathways of a laboratory can vary (Nikolic 2014). While the lab
oratory can be implemented using a range of modes, including face-to-face (the traditional 
approach), simulation, virtual, remote and mixed, the chosen implementation should be aligned 
with the intended pedagogical approach due to different strengths and weaknesses (Brinson 
2015; Gavitte, Koretsky, and Nason 2024; May, Alves, et al. 2023). However, current empirical evi
dence in holistically understanding those learning differences is somewhat limited (May, Alves, 
et al. 2023; O’Mahony et al. 2024).

The above observation was best captured by a systematic literature review by Sasha Nikolic et al. 
(2021a), who found that most laboratory-based studies struggled to use learning as a focal point 
towards the contribution of their work. Instead, they found the research focus to be on the inno
vation and implementation, in which student perceptions took centre stage as a measure of 
success. When learning was analysed, the scope was somewhat restricted, and the learning objective 
and assessment explanations lacked the detail that others could easily build upon. This led the 
authors to recommend that ‘research be performed to use the assessment types identified in the sys
tematic review and map them explicitly and implicitly to the cognitive, psychomotor, and affective com
petencies being achieved’ (Sasha Nikolic et al., 2021a, 16). This study is explicitly built upon that 
recommendation.

While much is known about the laboratory report, other laboratory assessment methods have not 
been given much attention (Seery et al. 2017). Additionally, no article could be found that brings 
together the little collective knowledge of laboratory assessments outside of the laboratory 
report. As a result, within Section 4, this study makes a major contribution to the field by synthesising 
current knowledge across all common laboratory assessment types, providing a unique resource to 
help guide laboratory assessment decisions. However, missing from this synthesis and needed to 
improve our understanding is the identification of which learning objectives or competencies an 
assessment task can verify as being demonstrated. Without understanding such connections and 
through a lack of awareness, the academic community risks missing out on applying the most appro
priate assessment method for their targeted objectives.

Beyond the classroom, this lack of understanding has also limited the insights researchers can 
deduce on laboratory learning from their studies (May, Alves, et al. 2023). This disconnection is 
not a unique phenomenon and is not restricted to laboratory learning. A study by Nightingale, 
Carew, and Fung (2007) suggests that there may be a significant mismatch between the stated learn
ing objectives of subjects and how students are assessed. This mismatch is a substantial limitation in 
the literature, and when it comes to laboratory assessments, there is little depth in extracting the 
objectives they measure. Furthermore, with the laboratory report being the most commonly used, 
GenAI has been found to make cheating easier leading to a substantial assessment integrity and val
idity risk (Nikolic et al. 2024a). Cheating impacts validity which is required to identify students who 
have met the standards of a course to an agreed level of performance (Dawson et al. 2024). 
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Therefore, alternative assessment types should be considered to ensure integrity and validity. The 
difficult question to answer is which assessment type provides equivalent coverage of the desired 
learning objectives.

Addressing this information gap provides a significant motivation for this study. This research gap 
is framed around the research question, ‘Which assessment types are best considered appropriate to 
verify laboratory learning objectives?’ This finding scaffolds to the reflective research question, 
‘How can we improve assessment integrity in the teaching laboratory?’ The findings from this research 
will help academics reflect on their laboratory assessment practices, enabling them to align subject 
learning objectives with the most appropriate and secure assessment. Helping staff to critically think 
about assessment implementations can transform ‘assessment for learning’ practices (Reimann 
2018). While the scope of the research is limited to the engineering field, the perspectives can 
provide important insights to those teaching across science and technology. This manuscript com
mences by providing an overview of laboratory learning objectives. This is followed by a review of 
the purpose of assessments and the different laboratory assessment types leading to the scientific 
components of this study.

2. Learning objectives & competencies

Learning objectives are essential in designing an efficient learning system and also in applying an 
effective system of assessment (Feisel and Rosa 2005). Learning objectives are specific, measur
able statements that clearly define what a learner will know or be able to do as a result of enga
ging in a learning activity (Walther and Radcliffe 2006). For example, ‘By the end of the course, 
students will design experiments to verify the course concepts’ with the course concepts explicitly 
defined. Once the objectives have been defined, appropriate learning experiences are designed 
to achieve them via an observable activity. The learning activities are mapped to specific attri
butes (competencies) they achieve (Walther and Radcliffe 2006). Within engineering, a typical 
overarching framework used to determine the attributes/competencies students need to gradu
ate with is determined by accreditation bodies; for example, see Engineers Australia (2008). These 
competencies can be demonstrated across any mode of learning. Therefore, objectives are more 
about specific learning outcomes, while competencies focus on applying skills and knowledge in 
practical situations.

While the laboratory is mentioned within accreditation documentation (Engineers Australia 2008), 
its explicit reference is limited. Regarding the objectives that should be explicitly developed within 
the laboratory, most of the direction has come from researchers looking to advance the field. One of 
the pivotal moments came from a colloquium focused on this topic, leading to the development of 
thirteen laboratory learning objectives (Feisel and Rosa 2005). These objectives have been used to 
create awareness of the broader opportunities and learning benefits made available through labora
tory work. These objectives have become the foundation of newer instruments, such as the Labora
tory Learning Objectives Measurement (LLOM) instrument, which is used to help academics increase 
their awareness of the holistic objectives and competencies associated with laboratory-based learn
ing (Nikolic et al. 2021a; Sasha Nikolic et al. 2024b). LLOM constitutes 25 learning objectives: nine 
objectives in the Cognitive domain, nine objectives in the Psychomotor domain and seven objectives 
in the affective domain. These objectives are listed in Tables 3–5 within Section 6. Such initiatives 
have been welcomed because it has been recognised that greater efforts are needed to understand 
and encourage the targeting of a broader range of laboratory objectives than used to date (May, 
Terkowsky, et al. 2023).

As outlined earlier, learning objectives must be measurable and linked to assessment. To be 
effective, the relationship between assessment types and which objectives and competencies are 
measurable must be known. This ensures validity by correctly identifying the students who have 
met the standards of a course to an agreed level of performance (Dawson et al. 2024). Therefore, 
a greater understanding of assessment is needed.
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3. Purpose of assessment

Assessment in higher education serves multiple pivotal roles, from shaping learners’ educational 
experiences to guiding pedagogical strategies employed by institutions. It operates within a 
complex ecosystem influenced by academic standards, educational policies, accreditation require
ments and society’s evolving needs. The starting point in appreciating the role of assessment is 
understanding the key connection to conceptual frameworks.

Key conceptual frameworks for assessment include Bloom’s Taxonomy, Socio-cultural Theory and 
Constructivism. The most well-known is Bloom’s Taxonomy, a framework that categorises edu
cational objectives into cognitive, affective, and psychomotor domains (Anderson et al. 2001). The 
taxonomy guides the development of assessment tasks that target different levels of cognitive pro
cessing, ensuring that assessments are aligned with learning objectives that span from basic recall of 
facts to complex analytical skills. Bloom’s Taxonomy provides the framework for the Laboratory 
Learning Objectives Measurement instrument (LLOM) used in this study, discussed in Section 4. 
Types of laboratory assessment that can be associated with Blooms Taxonomy include: 

- Laboratory Report (Formal Written or Online): These can be designed to address higher levels of 
Bloom’s Taxonomy, such as analysis, synthesis, and evaluation, especially when students must 
interpret data, draw conclusions, and discuss implications.

- Pre-Lab Quiz or Assessment: These often target the lower levels, like remembering and under
standing, to ensure students are prepared with foundational knowledge before experiments.

- Laboratory Exam (Non-Practical): Exams can be structured to cover a range of levels, from simple 
recall of facts (lower levels) to application and analysis of experimental results (higher levels)

Socio-cultural Theory connects the role of language and culture in cognitive development and is 
connected to concepts such as the Zone of Proximal Development (ZPD) and scaffolding (Vygotsky 
and Cole 1978). Assessments informed by socio-cultural theory often involve collaborative projects, 
peer assessments, and interactive feedback mechanisms that leverage social interactions to enhance 
learning. As the laboratory is a place for such social development, such a theory is relevant. Types of 
laboratory assessment that can be associated with socio-cultural theory include: 

- Group Presentation and Group-based Laboratory Report: These assessments promote collab
oration and communication among students, aligning well with the Socio-cultural emphasis 
on learning through social interaction.

- Demonstration and Interview: Activities involving social interaction, discussion, and shared 
problem-solving reflect the social nature of learning as suggested by Vygotsky.

- Instructor Observation: This allows the instructor to assess learning processes in a social context, 
often providing immediate feedback and scaffolding, which are key in Socio-cultural Theory.

Constructivism is the view that knowledge is developed through experiences and interactions 
with one’s environment (Biggs 1996). In this view, assessment is not merely a measure of learning 
but an integral part of the learning process. Constructivist assessments focus on authentic tasks 
that simulate real-world challenges, applying knowledge and skills in meaningful contexts. This 
approach emphasises the importance of formative assessments and feedback for scaffolding 
student learning. The authentic nature of laboratory work also caters towards constructivist assess
ment. Types of laboratory assessment that can be associated with constructivism include: 

- Project-based Assessment (Individual or Group): This type of assessment allows students to 
engage in learning by doing, reflecting constructivism’s emphasis on building personal 
interpretations through real-world tasks.
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- Lab Notebook Entries: These encourage students to reflect on their laboratory experiences, docu
ment their learning process, and adjust their understanding based on the reflection.

- Weekly Mini-Assignment or Report: These can be structured to encourage ongoing reflection 
and adjustment of understanding, which supports the iterative nature of constructivist learning

- Laboratory Exam (practical): This encourages students to apply their knowledge and skills in a 
real-world or simulated scenario, a core aspect of constructivist learning.

Therefore, a diverse range of assessments grounded in different frameworks can be incorporated 
into the laboratory. Section 4 will provide further details of each assessment type. The question 
becomes, what purpose do these assessments serve? Assessments serve multiple purposes and 
include (Adarkwah 2021; Barthakur et al. 2022; Hargreaves 1997): 

- Evaluating Student Learning: Measuring the extent to which students have achieved the learning 
outcomes of their courses or programmes.

- Feedback for Learning Enhancement: If reflective processes are applied, feedback can be instru
mental in identifying areas of strength and areas needing improvement, guiding and motivating 
students in their learning journey.

- Supporting Instructional Decisions: Assessments can help educators identify effective teaching 
methods and determine where adjustments may be needed if reflective processes are applied.

- Curriculum Development and Improvement: Analysing assessment outcomes can identify 
trends, strengths, and weaknesses in programmes.

- Accreditation and Accountability: assessment data can demonstrate an institution’s commitment 
to quality education and confirm standards set by accrediting bodies.

The multiple purposes assessments play in teaching and learning highlights why this is an impor
tant research area. At the ground level, assessment motivates students to learn and influences their 
approach to learning, highlighting that teaching, learning, and assessment are inextricably linked 
(Hargreaves 1997). As the laboratory plays an important teaching and learning role within engineer
ing and science, bettering our understanding of assessment practice is important. This stems from 
recent research highlighting that current knowledge of laboratory learning linked to assessment 
practices is limited (Nikolic et al. 2021a). As a result, there has been an identified need for the com
munity to do more in this regard (May, Alves, et al. 2023). Therefore, it is important to understand 
what types of assessments are used in the laboratory and how they are used.

However, the value of assessments is limited by their implementation. For example, if the assess
ment was used to evaluate student learning or capability, it is important to ensure that the measure 
is true. Regarding engineering accreditation, students must be recognised for the skills verified, as 
the community does not want unqualified engineers working on tasks that could put the community 
in danger. This is why assessment integrity is important because we need to ensure that students can 
demonstrate trust and act honestly. In other words, the goal is to discourage and prevent cheating. 
Unfortunately, GenAI is a threat to assessment integrity across the most common assessment types 
used in higher education (Nikolic et al., 2023a). Not only that, but its capability is evolving quickly, 
and the laboratory report, due to its unsupervised focus, is considered unsecure and highly suscep
tible (Nikolic et al. 2024a). Therefore, adapting laboratory assessment practices is vital. Understand
ing which assessments support integrity by being secure or not, is imperative to new university 
policies that aim to adapt to GenAI, such as that outlined by Bridgeman and Liu (2024).

Academics can support academic integrity by ensuring assessments are secure (the concept of 
assessment security) by detecting and putting in place measures that help prevent cheating 
(Dawson 2020). While it may not be possible to stop cheating altogether, strategies can be put in 
place to help slow it down or discourage it. For example, using assessments that are fit for 
purpose in ways that cheating would be difficult. This principle is central to the second research 
question of this study. While the focus of this study is at the assessment level, it is important to 
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recognise that academic integrity requires an institutional strategy covering many layers (Ellis and 
Murdoch 2024).

4. Laboratory assessments

The systematic literature review by Sasha Nikolic et al. (2021a) uncovered a range of different assess
ment types used in the literature. A summary of each type is provided, supported by literature from 
the engineering and science fields. The most comprehensive research studies have focused on the 
laboratory report, with other assessment types requiring much greater focus (Nikolic et al., 2021a; 
Seery et al. 2017). Additionally, within the stated use of many assessment types, little is explicitly 
found linking the assessment type to a specific laboratory objective or competency, hence the 
growing evidence for the need for this study.

4.1. Laboratory report (individual or group or online)

The most prevalent written assessment type for science and engineering students is the laboratory 
report, in which students document their experimental work (Parkinson 2017). Laboratory reports 
fulfil a dual role by instructing students in scientific communication skills and offering a means for aca
demic staff to assess the knowledge acquired during laboratory sessions (Ranawake and Wilson 2016).

While the expected learning benefits of the report are documented, there is some debate on its 
ability to foster critical thinking abilities effectively or to spark student interest and excitement in 
their learning (Chen et al. 2018). The work of Lal et al. (2017) discussed the potential of lab report 
bias towards applying or reinforcing concepts already taught in lectures and upon a student’s 
report writing skills against laboratory learning. Additionally, they can be time-consuming to 
mark, impacting the benefits of timely feedback (Hoffa 2006). As students can work on some exper
iments in groups, some coordinators encourage further collaboration and reduce marking time 
through the use of a group report (Abdulwahed and Nagy 2011).

Laboratory reports generally follow an introduction, method, results, and discussion structure 
(Ranawake and Wilson 2016). Beyond the lengthy traditional report, a concise synopsis format is 
also used. Research has suggested that the synopsis format saves time for students and markers 
and is linked to similar learning outcomes (Hoffa 2006).

A systematic literature review found that laboratory reports are extensively used as a medium to 
measure learning (Nikolic et al. 2021a). For example, Uzunidis and Pagiatakis (2023) used laboratory 
reports to measure the success of a new online laboratory implementation using a ten-point rubric 
to assess a student’s ability to describe the experiment, apply the methodology, describe con
clusions and demonstrate correct measurements and calculations. Laboratory reports also 
measure ethical behaviour, allowing students to demonstrate that they can record and publish erro
neous results even if they contradict theoretical expectations (Nikolic et al., 2024b). Research has also 
suggested that adding a peer review component can enhance student awareness of the value of 
technical writing, encouraging them to focus more on their writing skills to effectively communicate 
their thoughts and experiences to peers and instructors (Alba-Flores 2018; Andersson and Weurlan
der 2019).

The online laboratory report provides hybrid capability with media-rich functionality, meshing 
quizzes and report-like capabilities (Spanias et al. 2000). At the completion of experimentation, stu
dents are guided to provide an account of their activities and observations and answer targeted 
questions. They can also upload files, graphs and code. The advantage of such an approach is 
marking automation, providing faster feedback to students.

4.1.1. Assessment integrity
The laboratory report, while popular, has always had some integrity risks as it is an unsupervised 
and unsecure assessment. If the student had access to experimental data (for example, a team 
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activity), it could be easily given to a contract cheater to write, or a student could use paraphras
ing tools on another student’s work (especially if the experimentation had been completed 
before). Therefore, as found in Nikolic et al. (2023a) it is no surprise that GenAI could be used 
to help students write the laboratory report. Its ability to write more of the report is only 
growing (Nikolic et al. 2024a). What could not be found in the literature and is worthy of 
further research is whether a group report would increase assessment integrity. The hypothesis 
being that peer pressure from other group members not wanting the risk of being penalised 
would encourage original work.

4.2. Weekly mini-Assignment or report

While the traditional, formal laboratory report is generally used towards the end of a module, the 
timing and delay in providing feedback can eliminate the opportunity to correct errors and 
inform student development (Felder and Brent 2005). An alternative approach is to use 
smaller, frequent assessments such as mini-assignments or reports that provide students an 
opportunity to reflect on past mistakes and successes, improving motivation and confidence 
(Watson and Knight 2012). Such a feedback loop is at the heart of formative assessment 
(Sadler 1989). While such practices can add workload, the extra effort may not necessarily trans
late to the students in need taking advantage of the available feedback (Hargreaves 1997). An 
example of using weekly assessments that scaffold to a major laboratory report is outlined in 
Rodgers et al. (2020).

4.2.1. Assessment integrity
The integrity risk is determined by the submission. If the students work on the activity at the end of 
the scheduled laboratory, under supervision and submit it before leaving, it can be considered a 
secure assessment. While there may be elements of plagiarising experimental data or information 
from other students, time factors supported by supervision would limit the risk/reward ratio, 
leading to better security. However, if the mini-assignment or report is submitted later, the same 
assessment integrity risks as outlined for the laboratory report hold.

4.3. In-class activity/questions

In-class activities and/or questions are an assessment method used throughout the experiment to 
provide feedback on skills and/or solutions and support scaffolding (Vojinovic et al. 2020). There 
are multiple strategies for such an implementation.

The work of Lal et al. (2017) described the use of guided question sheets used in a group struc
ture. The question sheets comprised a template structure to guide data collection and computation 
and questions to guide data synthesis and inference of concepts. Interestingly, they found a con
siderable inconsistency between the in-class marks and other assessment tasks, noting the 
caveats of group assessment vs individual.

A possible drawback to in-class activities is when the implementation requires substantial effort 
to mark and record progress. To combat such issues, digital solutions have been designed and are 
recommended (Ross 2017). Particularly in software engineering, automation tools that provide 
instant feedback on progress are important to ensure efficiency (Garcia et al. 2005).

4.3.1. Assessment integrity
While undertaken in a supervised environment, the pressure to obtain marks can result in plagiarism 
or fudging of experimental data and written discussions when the laboratory demonstrators are not 
in close proximity, and the activity is carried out throughout the available class time (Nikolic et al., 
2024a). The likelihood of this occurring would be a factor in the risk/reward ratio and the setup. Simi
larly, GenAI could help students with such activities and questions if access to GenAI technology 
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within the laboratory was available, including on personal devices (Nikolic et al. 2024a). If the activi
ties/questions were hand-written, copying text from a screen would be more noticeable to observe. 
However, if students needed to answer questions at the end of the laboratory, under supervised con
ditions, it would be harder to access GenAI technology.

4.4. Lab notebook entries

As students complete laboratory experimentation, it is common practice for students to record all 
their experimental data and observations in a notebook, be it physical or electronic (Ogot, Elliott, 
and Glumac 2003). In a project setting, Laverty et al. (2012) used the evaluation of the notebook 
to focus on students’ ability to replicate lab work, emphasising logical organisation and recording 
key observations. Marks were also given for neatness and quality of writing and diagrams, albeit 
to a lesser extent. Similarly, Samah et al. (2014) described collecting and grading the log book 
entries on a weekly basis, but the pedagogical reasons were not outlined. Research on this assess
ment type is limited.

4.4.1. Assessment integrity
Assuming handwritten lab notebook entries, GenAI cannot help with neatness and the quality of 
writing and drawing diagrams. Beyond that the same security principles outlined for in-class 
activity/questions apply. Regular interaction by the teaching staff throughout the project can help 
develop an understanding of student capability, flagging any anomalies.

4.5. Project-based assessment (individual or group)

The classical pedagogical format of laboratory learning is where students follow a structured format 
of completing a series of experiments that combine to create a final product that achieves specific 
aims (Lal et al. 2017). Laboratory projects have greater scaffolding and encourage students to be 
creative and synthesise knowledge from previous learning experiences (Laverty et al. 2012). 
Project-based assessments tend to be multi-faceted in that the key assessment is an analysis of 
the final outcome but is also supported by many other assessments that encourage and support 
the necessary scaffolding. For example, the project may require a written report, periodic demon
strations and interviews.

The assessment of a computer engineering project by Kellett (2012) was based on a demon
stration that showcased that the project was functioning as per requirements, together with a 
written report that outlined the design and provided the results of output confirming that the 
project functioned as required.

4.5.1. Assessment integrity
As project work scaffolds across multiple assessment types outlined in this study, the overall integ
rity will be a factor of the weight and selection of the individual assessments, and how they 
combine to evaluate the final product. For example, via demonstration or interview, while not fool
proof, can be a more secure option to confirm a student’s understanding of the work (Nikolic et al. 
2024a). Integrity can be enhanced if the final product is meant to be unique, showcasing the knowl
edge and creativity of the student/s. Security would be lower if all students worked on the same 
project, and the final output is expected to be the same. GenAI can possibly assist students in 
some parts of a project, which parts will be determined by the design of the project work. 
Regular interaction by the teaching staff throughout the project can help develop an understand
ing of student capability, flagging any anomalies. This may be more difficult to do for a group 
project, however, pressure to be more ethical in a group laboratory setting may be interesting 
to investigate.
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4.6. Pre-lab quiz or assessment

A pre-lab quiz or assessment is an activity conducted before students start experimentation. Either 
directly before commencement or sometime before. While recent literature is filled with examples of 
quiz-based pre-lab assessments (Cann 2016; Kollöffel and de Jong 2013; Vial et al. 2015), some older 
literature has explained the use of a synopses-based activity (Rollnick et al. 2001). The primary moti
vator of pre-lab assessments is to encourage independent learning and provide direct feedback on 
students’ readiness, which is used to maximise the benefits of experimentation (Jacobson, Said, and 
Rehman 2006; Vial et al. 2015). However, students may not necessarily perceive such benefits (Van 
De Heyde and Siebrits 2019).

The focus of studies in relation to pre-lab assessment has not been on the assessment itself but 
rather on the type of pre-lab activity being undertaken. For example, a study by Abdulwahed and 
Nagy (2014) suggested that the type of pre-lab activity impacted student performance in the pre- 
lab assessment.

4.6.1. Assessment integrity
The implementation and risk/reward of the assessment is key to determining the risk. For example, if 
the quiz is conducted at the start of the laboratory in a supervised and secure environment, security 
will be strong. However, if the assessment can be undertaken anywhere and anytime before the 
scheduled laboratory, a friend or contract cheater may be engaged. GenAI can be highly successful 
for text-based questions, with short-term security raised by incorporating specific contexts, images 
and tables – but these options will be short lived (Nikolic et al. 2024a).

4.7. Laboratory exam (practical and non-practical)

In a practical laboratory exam, students apply the skills they have developed through experimen
tation in a formal exam setting. If designed correctly, practical tests can assess a wide range of cog
nitive, psychomotor and affective skills but have limitations (Nikolic et al. 2015). When designing a 
practical laboratory exam, logistical factors must be considered, such as configuring and resetting 
experimental setups. Additionally, much thought needs to be placed on the design of the questions 
or learning extraction approach to measure holistic (multi-domain) learning. To help overcome such 
issues, Chen et al. (2018) outlined a framework for designing practical exams. Meanwhile, Pereira, 
Leonardi, and Melo (2003) outlined a paired approach to save time.

The non-practical laboratory exam focuses on the learning achieved and the theory associated 
with experimentation (Campbell et al. 2002). The students answer questions on paper or electroni
cally. They also may not necessarily be integrated into the laboratory component itself. For example, 
Gamo (2019) included questions related to the laboratory component within the ordinary final exam. 
One problem with final exams is that they generally might not provide students with proper feed
back (Gratchev, Howell, and Stegen 2024).

Some studies have explored the differences between practical and non-practical tests. For 
example, in a coding environment, Jevinger and Von Hausswolff (2016) did not find that one type 
was more comprehensive than the other. Each had different strengths and weaknesses. Non-practi
cal assessments were better at assessing the understanding of different concepts, while practical 
assessments were better at assessing authentic competencies.

4.7.1. Assessment integrity
Integrity is very high if the practical exam can be completed in one sitting. However, it can drop 
when logistics plays a factor, such as when large student numbers require multiple sittings of the 
practical exam. With limited laboratory equipment, multiple repeat tests are needed to cover the 
entire cohort, resulting in time, expense and, most importantly, content-leaking issues (Nikolic 
et al. 2015). GenAI security risks can become negligible in a supervised and secure laboratory 
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setting. A secure test may be one based on observation, a pen and paper test or in a computer lab in 
a locked-down environment (Nikolic et al. 2024a). For the non-practical laboratory test, the risk is 
determined by the implementation. Integrity risk is high for non-supervised and non-secure tests.

4.8. Demonstration and interview

Demonstration and interview assessments are, in some ways, complementary. The demonstration 
requires students to show a working end product, while an interview is focused on the student 
answering questions. It is not uncommon for a demonstration and interview to be used complimen
tary. For example, Laverty et al. (2012) used a 10 min interview to confirm originality and ensure stu
dents understood the solution to their project work. The demonstrator asked several questions from 
a prepared question bank. Then, they asked to see a demonstration of the mini-project in operation 
and explain a particular piece of their source code. The real risk for such assessments is within the 
grades’ reliability. This is because there is a level of subjectivity to how a specific response or dem
onstration correlates to a specific mark. As the evidence may not be recorded, it may not be possible 
to quality assure or guarantee that the mark given reflects the competency demonstrated.

Strong links to why and how demonstrations and interviews are used are limited in the literature. 
For example, the implementation described by Tejado and Pérez (2020) outlined the demonstration 
of practical skills during all lessons against a rubric, but no detailed information was provided. Like
wise, Rodgers et al. (2020) outlined using an interview, but no substantial details were provided.

However, contrary to the lack of detail in most studies, the work of Seery et al. (2017) positioned the 
use of demonstration within formative assessment, outlining an innovative approach. In the lab, stu
dents demonstrated techniques to peers, who verified each step using an observation sheet. Demon
strations were recorded on mobile phones, allowing for review and potential reshoots based on 
feedback. Once satisfied with the demonstration, both peers and demonstrators signed off on the 
form. Videos showing competency earned the student a digital badge in the respective technique.

4.8.1. Assessment integrity
This assessment type is secure because it allows the teaching staff to interact and modify the ques
tions or required observed actions in real-time, creating uniqueness. However, for very large cohorts, 
there may only be a limited amount of observable events or questions to ask, resulting in content- 
leaking issues, allowing students to practice. Interestingly, the consequence of extra practice may 
result in students learning more, a positive outcome. GenAI could also be used to help students prac
tice by prompting for the most likely questions to be asked (Nikolic et al. 2024a).

4.9. Group presentation

As outlined in 4.1, through laboratory reports, written communication is a dominant competency 
measured. However, oral communication skills are just as important as written ones. A group pres
entation provides a time-efficient approach to overseeing group cohesion and observing oral com
munication skills (Jacobson, Said, and Rehman 2006). The singular equivalent would be the 
demonstration or interview assessment. While group presentations are common in the literature, 
they are rare when placed in a laboratory setting. While pedagogical details of implementation 
are limited, numerous studies outline the oral communication and teamwork implementation of 
such an assessment (Jamshidi and Milanovic 2022; Samah et al. 2014).

4.9.1. Assessment integrity
The risk is determined by the learning objective. If the objective is to determine what students 
learned from an activity, team members or GenAI can help provide scripts or other resources 
that would enable a student to pass the presentation (Nikolic et al. 2024a). Additional questions 
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at the end of the presentation can be beneficial to combat that. However, if the learning objective 
is to improve presentation skills, then the help of team members or GenAI can aid such learning.

4.10. Instructor observation

Instructor observation is closely aligned with demonstration. While demonstration focuses on the 
end product, observation focuses on showing competency across a range of laboratory skills. In lab
oratory settings with a low student-to-teacher ratio, assessment can be conducted through instruc
tor observations complemented with a performance mark (Vial et al. 2015).

In a chemistry setting, Zhang and Wink (2021) outline the use of a checklist to document that stu
dents are doing specific procedural steps. This process is intended to show direct evidence of psycho
motor competency. Within an engineering setting, Aishah (2015) created a rubric to assess a student’s 
manipulation and observation competencies based on instructor observation. The study found that it 
could be difficult to match the observed individual student’s behaviour to the suitable descriptor if 
experimentation was group-based. This is because each student did a different activity in a group 
setting to contribute to successful experimentation. This process enabled assessing competencies 
not available through traditional means but highly constrained by setup and teacher-to-student ratio.

4.10.1. Assessment integrity
Integrity is high because the assessment is fully supervised. Through observation, a holistic set of 
learning objectives can be monitored, such as the ability of students to manipulate equipment or 
work with others, providing reach into psychomotor and affective-based learning objectives. 
However, just like the other non-written assessments, observation can be limited in regard to the 
subjective nature of marking. As the evidence may not be recorded, it may not be possible to 
quality assure or guarantee that the mark given reflects the competency demonstrated.

5. Material and methods

Highlighted throughout the literature review was that, as a community, the evidence that connects 
learning objectives with assessment is rather limited. Hence, the need for this study to answer the 
research question, ‘Which assessment types are best considered appropriate to verify laboratory learn
ing objectives?’ To accomplish this, in 2021, academics from around the world were invited to partici
pate in an online survey. Participants were invited through targeted invitations through the 
extensive academic networks of the research team and formal organisations, such as the Australasian 
Association of Engineering Education.

To be included in the study, participants were required to have experience in coordinating sub
jects that included laboratory components, ensuring that they had subject design experience. They 
then had to list the assessment tasks they used in their subjects. Participants were then given a 
matrix that connected the assessment tasks to laboratory learning objectives via the LLOM instru
ment, introduced in section 2.

The LLOM instrument was selected due to its template-based structure, providing academics 
from any engineering discipline, regardless of the laboratory implementation type, the ability to con
sider the objectives in their specific context. To do this, keywords (shown in italics) in the template 
are interchanged with words directly related to the implementation. Changing the keywords pro
vides flexibility to use it in any discipline or in any lab setup, even new innovative ones. The 
design of the instrument is based on the synthesis of the thirteen laboratory objectives (Feisel 
and Rosa 2005) discussed in Section 2 with Bloom’s Taxonomy (Anderson et al. 2001) discussed in 
Section 3. This is an instrument used as a foundation for multiple papers (Nikolic et al. 
2021b, 2023b, 2024b) and has undergone a range of testing, including Cronbach’s alpha and 
factor analysis (Kaiser rule, parallel analysis, optimal coordinates and acceleration factor) as outlined 
in Nikolic et al. (2021b).
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Within the survey matrix, participants needed to reflect on their own assessment implemen
tations and express if the assessment and a particular learning objective had an explicit, implicit, 
or no connection. To clarify, using definitions from the Oxford’s English dictionary: 

- Explicit Connection: the connection between the assessment and objective are stated clearly and 
in detail, leaving no room for confusion or doubt.

- Implicit Connection: the connection between the assessment and objective are suggested though 
not directly expressed.

For example, an explicit connection could be where a laboratory report is used to measure if a 
student can write a conclusion to summarise their findings from experimental work. There is a 
clear (explicit) connection between writing and the written report. An implicit example could be 
where a laboratory report is used to measure if a student can interpret sounds, temperature, 
smells and visual cues. It may be expected that it is highly unlikely that the student could complete 
the experiment error free, and therefore have implicitly demonstrated this competency by complet
ing the experiment in order to present the results in the report.

There were 219 survey commencements and 134 completed all components of the survey. Of this 96 
were from Australasia, 19 from Europe, 10 from Asia, 8 from North America, and 1 from South America. 
This high dropout rate was expected because this task was time-consuming and placed a high cognitive 
load on participants. Of those who completed, 18% had less than five years of teaching experience, 22% 
had between five and ten years of experience, and 60% had ten or more years of teaching experience. 
The skew towards more experienced staff was expected, as the cognitive load and time hurdle to com
plete the survey would probably have fallen on those with experience and passion towards laboratory 
learning. In terms of discipline, the distribution was 2 Aeronautical, 6 Biomedical, 11 Chemical, 11 Civil, 
15 Computer, 20 Electrical, 16 Electronics, 2 Industrial/Process, 8 Materials, 21 Mechanical, 8 Mechatro
nics, 1 Mining, 2 Other, 5 Software and 6 Telecommunications engineering.

5.1. Statistical analysis

In this study, we seek to understand the likelihood of different assessment tasks being used to verify 
a particular learning objective has been mastered. To achieve this, we analyse how strongly engin
eering academics agree that such verification is implicit, explicit or combined (either implicit or expli
cit). The strength is given by the size of the proportion. Noting that these proportions are based on 
perception. They have just been identified as such by the respondents as being used in their own 
practice in such a way. To consider uncertainty in these proportion estimates, we calculated the 
confidence intervals (CI) at the 95% level. Calculating a confidence interval around the observed pro
portion can provide additional insight into the strength and reliability of the relationship. A narrow 
confidence interval around a high proportion suggests a strong and precise estimate of strength.

The next step in the analysis is to compartmentalise the probability ranges, using both words and 
coloured heatmaps. To do this, a defining set of Words of Estimative Probability (WEP) is established 
because it is a common and preferred method of communicating probabilistic information to the 
general public (Lenhardt et al. 2020). The overarching goal of the study is to provide an easy-to- 
follow snapshot of verification likelihood for any academic in the fields of engineering or science. By 
using WEP and corresponding heatmaps, any academic, with or without statistical knowledge, will be 
able to quickly gauge which assessment tasks are possibly best suited to a particular learning objective.

The downside of compartmentalising using WEP instead of simply relying directly on the numbers 
is that words create greater ambiguity and that words can mean different things to different people 
(Lenhardt et al. 2020; Wintle et al. 2019). Additionally, WEP classifications have spawned from the field 
of intelligence, using words to convey the likelihood of a future event occurring (Kent 1964).

Without any discipline-specific standard to work against that the authors could find, it is impor
tant that the ambiguity in the word definition is explicitly defined (Friedman and Zeckhauser 2015). 
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For this reason, a definition of WEP as used by the authors is presented. The definition is not as strict 
as that defined by Kent (1964), rather it represents a synthesis of the field, sample and literature 
(Fagen-Ulmschneider 2019; Friedman and Zeckhauser 2015; Kent 1964; Lenhardt et al. 2020; 
Wintle et al. 2019). Ultimately, the numbers speak for themselves and are the most accurate form 
of interpretation (Wintle et al. 2019), should the WEP definitions used be found ambiguous.

The WEP classification used to compartmentalise the data is shown in Table 1.
The WEP classifications have been assigned different colours to produce a heatmap representative 

of a traffic light system. Heatmaps provide a compelling and effective way to summarise and commu
nicate data (Bojko 2009), supporting the overarching goal of providing an easy-to-follow snapshot for 
the academic community. To interpret the WEP, consider the colour coding of a traffic light. Green is 
used to represent strong relationships between objectives and assessments and the red colours to rep
resent weak relationships. The yellow colours suggest more research is needed.

The data collected will provide insights into which assessments can be used with a level of confi
dence to verify a particular learning objective. From this, the range of available assessment types can 
be determined with the security profile of each assessment considered. This can then be used to 
answer the second research question, ‘How can we improve assessment integrity in the teaching 
laboratory?’.

5.2. Limitations

The sample size is low, but as mentioned above, expected due to the deep reflective nature of com
pleting the online survey. Therefore, it is assumed that the survey was mostly completed by aca
demics passionate about laboratory learning. Therefore, the perceptions obtained, or the 
assessment diversity recorded may differ for a more general audience. However, it is believed that 
this may be advantageous due to the possible development of more experienced reflections, 
leading to more accurate perceptions of the learning objectives and assessment tasks. However, 
these are just assumptions, and no evidence is provided to support this. Additionally, a further limit
ation is that the survey instrument did not collect the context of the assessment type used. The 
survey responses are based on how the respondent used the assessment type in their own teaching 
environments, so each implementation may be slightly different in structure or focus, leading to 
different use cases. In particular, this may impact if the relationship between the variables is implicit 
or explicit.

Table 1. Words of estimative probability (WEP) classification definitions.

Note. The colours represent the visual coding of the traffic light-style heatmap.
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6. Results

The 134 respondents completing the survey collectively used a total of 584 assessment types, or on 
average, each respondent used four different assessment types. Table 2 shows that the laboratory 
report is the most commonly used assessment type. If we consider the online, individual and 
group laboratory report, 27.2% of laboratory learning is assessed in this way. This confirms the 
work by Parkinson (2017) that the laboratory report remains the most prevalent assessment type 
for engineering students. When considering both individual and group project-based assessments, 
17.1% of learning is assessed through projects. This is followed by in-class quizzes with 11.5%. The 
top five most used assessment types (without grouping similar types) make up 51.3%.

Tables 3–5 provide insights into the confidence relationships between the assessment types and 
the LLOM objectives for when the verification is either implicit or explicit. The tables represent how 
the respondents, if applicable, use the different assessment types to verify the various LLOM objec
tives. Table 3 focuses on cognitive-based objectives, Table 4 focuses on psychomotor-based objec
tives, and Table 5 focuses on affective-based objectives. It is important to note that almost all 
objectives overlap multiple domains, with a detailed explanation of this separation and the limit
ations of this approach available in Sasha Nikolic et al. (2024b). The data provides insights into 
the likelihood of an assessment being used either explicitly or implicitly to verify a LLOM objective. 
The definitions and methodology behind this were outlined in Section 5. Educators can use this 
information to consider the alignment of laboratory assessments with cognitive, psychomotor, 
and affective learning objectives. This helps identify which assessment types most effectively 
verify specific learning objectives and which need further investigation.

Appendices 1–3 provide the same data based on whether the verification is implicit, while Appen
dices 4–6 consider if it is explicit. What is striking is that these relationships are not strong. This either 
suggests the community is unsure or that educators are simply using the verification differently. 
Further research is needed to explain this.

While a detailed analysis of these results is outlined in the discussion, some striking observations 
include: 

1. The concentration of green in Table 3 shows that the community is more confident in the verifi
cation relationships for cognitive learning objectives compared to the psychomotor (Table 4) and 
affective (Table 5) objectives, which are almost completely void of green. While all three tables 
share substantial yellow shading, indicating a somewhat likely relationship exists, this finding 
confirms the conclusions from the literature review that the research gap in laboratory education 
literature is on psychomotor and affective learning and needs to be closed to help combat the 
upcoming GenAI risks.

Table 2. The reported usage of assessment types by the 134 respondents (highest usage at the top).

Assessment type Usage Usage %

Lab Report (Individual) 86 14.7%
In-class Activity or Questions 67 11.5%
Project (Group) 53 9.1%
Project (Individual) 47 8.1%
Lab Report (Group) 46 7.9%
Demonstration 41 7.0%
Instructor Observation 38 6.5%
Group Presentation 37 6.3%
Prelab 34 5.8%
Lab Notebook Entry 28 4.8%
Lab Exam (Practical) 28 4.8%
Online Lab Report 27 4.6%
Weekly Mini-Assignment or Report 24 4.1%
Interview 17 2.9%
Lab Exam (Non-practical) 11 1.9%
Total: 584 100%
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2. The laboratory report is the most commonly used assessment type, one that educators are most 
confident in using for verification purposes. The problem is that it is a high-risk assessment type, 
posing a high risk to validity. The data shows that some of these risks can be mitigated by con
sidering other assessments, such as projects, demonstrations, and presentations.

3. The verification relationships were expected to be stronger for several less-used assessment types 
like laboratory exams, interviews and observation, mainly due to the lower-bound confidence 
interval. Due to their low usage, further research and training may be needed to change percep
tions. These more secure assessment types will need greater attention to tackle GenAI risks.

The following provides an explanation of all the abbreviations used in the tables: 

ForLabRep =  Formal Laboratory Report (see Section 4.1)
OnLabRep =  Online Laboratory Report (see Section 4.1)
LabRepGRP =  Group-based Laboratory Report (see Section 4.1)
LabNotEnt =  Laboratory Note Entries (see Section 4.4)
WkAssRep =  Weekly Mini-Assignment or Report (see Section 4.2)
InclassQs =  In-class Activity/Questions (see Section 4.3)
ProjINDV =  Project-based Assessment – Individual (see Section 4.5)
ProjGRP =  Project-based Assessment – Group-based (see Section 4.5)
Prelab =  Pre-Lab Quiz or Assessment (see Section 4.6)
LabExamP =  Laboratory Exam – Practical (see Section 4.7)
LabExamNP =  Laboratory Exam – Non-Practical (see Section 4.7)
GrpPreso =  Group Presentation (see Section 4.9)
Demo =  Demonstration (see Section 4.8)
Inter =  Interview (see Section 4.8)
Observ =  Observation (see Section 4.10) 

Table 3. The likelihood of laboratory assessments being used to verify cognitive-based learning objectives (either implicitly or 
explicitly), including confidence intervals (CI) at the 95% level and a Words of Estimative Probability heatmap.

Note. The colours represent the visual coding of the traffic light-style heatmap.
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7. Discussion

7.1. Cognitive objectives

Table 3 provides insights into the perceived likelihood of different assessment tasks being used to 
verify a particular learning objective in the cognitive domain. The standout in the dataset is that 
the laboratory report is the only assessment type that has been perceived capable as either 

Table 4. The likelihood of laboratory assessments being used to verify psychomotor-based learning objectives (either implicitly 
or explicitly), including confidence intervals (CI) at the 95% level and a Words of Estimative Probability heatmap.

Note. The colours represent the visual coding of the traffic light-style heatmap.

Table 5. The likelihood of laboratory assessments being used to verify affective-based learning objectives(either implicitly or 
explicitly), including confidence intervals (CI) at the 95% level and a Words of Estimative Probability heatmap.

Note. The colours represent the visual coding of the traffic light-style heatmap.
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‘highly likely’ or ‘almost certain’ to verify either implicitly or explicitly every one of the cognitive- 
based objectives. While there is a lack of agreement on whether that verification is specifically expli
cit or implicit for many of the objectives (see Appendix 1 and 4), the perceptions are strongest com
pared to all other assessment types. Possibly, this could be correlated to the extensive research 
conducted on the laboratory report (e.g. (Chen et al. 2018; Parkinson 2017; Ranawake and Wilson 
2016)), providing confidence in its capability and application. This may explain why the laboratory 
report is the most used assessment type, as evidenced in Table 2. However, as discovered in the 
work of Nikolic et al. (2023a) and Nikolic et al. (2024a) the laboratory report is a GenAI academic 
integrity risk and its use should be substantially reduced. This is because the writing components 
can be easily generated by GenAI or, at the minimum, simplify the paraphrasing of another student’s 
report. Therefore, it is important to consider replacing the laboratory report with other assessment 
types identified through this process. Any replacement needs to consider the cost-effectiveness of 
laboratory reports. Marking budgets at many institutions are limited, so any changes must consider 
possible budgetary implications.

The data suggests that there is an underused alternative, the group presentation, with 6.3% use. 
While a ‘highly likely’ or ‘almost certain’ likelihood was not achieved for all objectives (only C9 was 
lower), four of the nine objectives were given an almost certain verification, more than any other 
assessment type. While GenAI can provide students with a script, or a team member can provide 
another student with a script (Nikolic et al., 2023a), learning that script does at least engage the cog
nitive skill of remembering, and does develop a range of competencies associated with presenting. 
Furthermore, asking the presenter some questions at the end of the presentation can improve 
assessment integrity.

While the group presentation is suitable for team-based experimentation, interestingly, an 
individual alternative, the interview, was not perceived in the same light. From the lack of litera
ture on using an individual presentation, observation or interview is primarily used instead. While 
the average likelihood for the interview to verify many of the objectives was in the 80’s, the lower 
bound confidence interval was generally low. This suggests that the perceptions regarding ver
ification were not uniform. This is not helped by the fact that only 2.9% of the respondents 
used this assessment type. With the interview-based format having strong assessment integrity 
(Nikolic et al., 2023a), it may be time for greater research and awareness of the benefits of 
using interviews more frequently in the assessment mix. Research suggests that oral assessments 
via individual or group means bring different benefits and motivations to student learning (Chou 
2011).

Identified as another holistic assessment for cognitive objectives is the individual project. The 
likelihood that it can be used to verify most of the cognitive objectives was high. Being used by 
8% of the respondents (fourth highest on the list) suggests that it is a popular type. The group 
project was used slightly more (9.1%) but had less verification impact, with confidence that it 
could verify only four of the nine cognitive objectives. This can be acceptable due to the 
scaffolding and assessment mix (Laverty et al. 2012). What is important about project work is 
that it can be associated with high assessment security in terms of GenAI use (Nikolic et al. 
2024a).

Across the nine cognitive-based objectives, there are multiple assessment options for verification. 
Objectives C1–C4 all had over ten possible assessment types, suggesting that the dominance of the 
laboratory report is unnecessary and assessment variety can be encouraged, increasing assessment 
security. This also opens up the opportunity of allowing students to ‘choose their assessment’, poss
ibly allowing students to take some control of their learning, leading to the concept of an ‘inclusive 
approach to learning’ (O’Neill 2011). Only two objectives lacked diversification, with objectives C6 
(two assessments) and C9 (one assessment). Collectively, the data shows much confidence in verify
ing all the cognitive-based objectives. Many assessment types can verify most objectives. However, 
there tends to be a lack of consensus on whether verification is being achieved explicitly or implicitly, 
which warrants further investigation.
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7.2. Psychomotor objectives

While in section 7.1, it was shown that the academic community has much confidence in how assess
ments can be used to verify cognitive-based learning objectives, Table 4 paints a different picture of 
psychomotor-based learning objectives. There were no assessment tasks found to be ‘almost certain’ 
of being able to verify any of the psychomotor objectives. This reiterates the calls for the need to 
develop a more holistic understanding (May, Alves, et al. 2023). Only objectives P1 (two assessment 
types) and P3 (one assessment type) had a likelihood of ‘highly-likely’. The concentration was pre
dominately at the ‘likely’ level, suggesting that many psychomotor learning objectives can be 
verified by the different assessment types, however the confidence across all the respondents for 
each particular assessment type was not uniformly high. This finding is not surprising because the 
preference for cognitive assessment is documented (Sabri et al. 2013), and so much research- 
backed assessment focus has targeted cognitive learning (Nikolic et al. 2021a). Compounding the 
confidence is that for almost every relationship, there is no clear understanding of whether verifica
tion is explicit or implicit (see Appendix 2 and 5), with almost all items labelled as ‘probably not’, or 
‘almost no chance’. This is not saying that verification does not take place, it is simply saying that 
there is little confidence that such a verification relationship exists.

Interestingly, the instructor observation assessment type had some of the lowest verification 
probabilities. Using checklists and rubrics (Aishah 2015; Zhang and Wink 2021), one could easily con
sider observation an easy way to verify if students can apply psychomotor skills. It is possible to 
observe the students using laboratory equipment, fault-finding, and executing work, but instead, 
the results show greater confidence in using observation for cognitive-based objectives. Even the 
practical laboratory exam did not produce the verification confidence levels that the authors 
would have expected. This provides further evidence that perceptions might not translate into 
reality and that further research and training on assessment practices can change mindsets and 
approaches (Reimann 2018).

Meeting expectations of a low probability of verification relationships, the pre-lab assessment 
showed limited effectiveness in verifying psychomotor learning objectives. For all but one objective, 
the likelihood of verification was classified as ‘Chances about even’ or lower. Pre-lab assessments, 
typically designed as written or online quizzes, aim to evaluate students’ foundational knowledge 
prior to engaging in practical activities. While cognitive objectives are the targeted measure, 
using a pre-lab assessment can help students gain more from their practical learning experience 
(Abdulwahed and Nagy 2014; Costello, Logue, and Dunne 2022; George-Williams et al. 2022).

When considering the evolution of assessments in a GenAI world, a key recommendation is that 
we need to improve focus on assessments that can’t be done by machines (Bearman, Nieminen, and 
Ajjawi 2023), and psychomotor activities are a strong starting point. Therefore, this finding provides 
the case that we need research to understand psychomotor assessment better and then disseminate 
that knowledge to the wider community. For example, looking at the average and upper confidence 
interval, it is clear many academics see the psychomotor relationships with assessments such as the 
practical laboratory exam, interview and demonstration; however, the lower confidence interval 
showcases that such confidence is not uniform. To improve assessment integrity, the community 
needs to be prepared to adapt, and confidence in verification is needed to select the best and 
most appropriately secure assessment for the given learning objective. Headway may come from 
new innovative assessment approaches that enable marking efficiency. Some examples include 
the autonomous marking prototype for digital hardware content (Dunne and Nikolic 2021) or the 
growing use of virtual reality technology within the medical sciences (Efendi et al. 2023).

7.3. Affective objectives

Table 5 provides insights into the perceived likelihood of different assessment tasks being used to 
verify a particular learning objective in the affective domain. Per the psychomotor objectives, 
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there is limited confidence in how the different assessment types can verify the various learning 
objectives. This includes the explicit and implicit relationships (see Appendix 3 and 6). Interestingly, 
across both the psychomotor and affective-based objectives, the laboratory report, the most used 
assessment type, is not associated with high confidence as it was for all cognitive-based objectives. 
This provides further evidence for the recommendations of Sasha Nikolic et al. (2021a) that it’s time 
to accept that we are confident in the cognitive-based learning advantages of the laboratory and 
start concentrating our efforts on better understanding the psychomotor and affective advantages.

The two most highly ranked affective learning objectives, A1 (teamwork) and A2 (communication) 
(Nikolic et al., 2024b) did both at least have one assessment type linked with a strong verifying 
relationship, the group presentation and group laboratory report, respectively. Teamwork and com
munication skill development are essential for engineers as this is what they spend much of their 
professional careers undertaking (Trevelyan 2014). Helping students develop such skills can 
improve their transition to industry (Nikolic et al. 2016; Vuoriainen et al. 2024). The other affective 
objectives had no such strong relationship identified.

As per the psychomotor results, instructor observation was not seen as a strength. Together with 
interviews and presentations, one might assume that they can help assessors understand a student’s 
feelings and attitudes towards a subject. One possible reason for the low confidence levels could be 
that the current set of assessment tasks might not be fit for purpose. Reflective journals, portfolios 
and self – and peer-assessment may be suited to providing insights into emotional growth or to 
evaluate their own and others’ development in areas such as teamwork, empathy, and ethical under
standing. For such assessment formats, the greatest hurdle will be the academic integrity factor due 
to GenAI capability (Nikolic et al. 2024a).

In the author’s experiences, they have not seen evidence of any attempts within engineering to 
even consider emotional growth within a rubric in an engineering laboratory. As discovered in Sasha 
Nikolic et al. (2024b), such objectives are considered at the bottom of all other objectives and are not 
seen as being of any major importance. The question becomes, is this an implementation gap, or 
within engineering evidence of such growth not needed? The work by Jobel, Ziminski, and Li 
(2024) suggests that emotional regulation is an important skill to help students overcome failures 
in a laboratory setting, especially underrepresented students.

The lack of confidence in verifying ethical competency is also a concern. We need students to 
show that they have developed the competencies that lead them to question their actions regarding 
right and wrong, regarding what should or should not be done (Clancy and Zhu 2024). Such ques
tioning can help students consider the consequences of applying correct laboratory data recording 
even when results are not as expected (Nikolic et al. 2024b). This is because data manipulation can 
lead to substantial reputational and career damage (Kaiser 2023). Such ethical guidance is linked to a 
range of GenAI challenges that include academic integrity risks, and more effort is needed within 
engineering education (Quince et al. 2024).

Again, considering the assessment guidance of Bearman, Nieminen, and Ajjawi (2023), affective- 
based objectives are something that contract cheaters or GenAI can’t do. Much of the work con
ducted by engineers is founded on strong written and oral communication skills and professional 
competencies (Trevelyan 2021) in which affective objectives are vital.

7.4. Moving forward

The education of engineering professionals commenced with a heavy learning-by-doing approach 
that shifted to a heavy theoretical concentration over time (Feisel and Rosa 2005). If GenAI trans
forms cognitive aspects of engineering education, the community will need to learn to work with 
it, including within the laboratory, and discover how to use it as a tool, helping students move to 
more complex systems. It will become important to move into areas that GenAI can’t do 
(Bearman, Nieminen, and Ajjawi 2023), at least temporarily, where learning by doing via the labora
tory may substantially increase in importance. It is through practice that higher education can 
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continue to provide value for students. For this to occur, the demands on academic staff will 
increase, and the importance of engineering education will be vital to prepare future graduates 
for the new skills they face (Dart et al. 2023). The immediate roadblock is the lack of training and 
policy on GenAI, which is needed to provide educators with the confidence and roadmap to 
move forward (Nikolic, Wentworth, et al. 2024c). These issues are also recognised by students (Mar
getts, Cunningham, and Boles 2024). In terms of assessment, the laboratory report is heavily used 
because of its marking efficiency, but as the community shifts focus, new assessment innovations 
will be needed (Dunne and Nikolic 2021).

8. Conclusion

This study commenced by providing a literature-based overview of assessments used within the 
teaching laboratory. This provided a guide to the assessment options and academic integrity 
risks. Highlighted was the concentration of research related to the laboratory report and the promi
nent knowledge gaps across the diverse range of other assessment tasks. In particular, no empirical 
evidence could be found on which learning objectives the different assessment tasks could verify, 
either explicitly or implicitly. Therefore, this study addresses two critical research questions identified 
as a major research gap: (1) ‘Which assessment types are best considered appropriate to verify labora
tory learning objectives?’ and (2) ‘How can we improve assessment integrity in the teaching laboratory?’ 
Through an innovative mapping of assessment types against cognitive, psychomotor, and affective 
learning objectives, this research offered educators a comprehensive framework to improve both the 
validity and integrity of laboratory assessments, particularly in the context of challenges posed by 
Generative Artificial Intelligence (GenAI).

Key findings highlighted the preference for the laboratory report as an assessment mechanism 
capable of assessing all cognitive learning objectives. However, for psychomotor and affective- 
based objectives, this confidence was lower. Furthermore, the relationships between learning objec
tives and all assessment types were strongest in the cognitive domain. Holistically, this work has 
shown that there are some validity and integrity gaps, especially due to GenAI, that need addressing. 
To overcome these limitations, the study presents a pathway for adapting and transforming labora
tory assessment practices.

Firstly, this study highlights the importance of aligning assessment types with learning objec
tives. By using the ‘Words of Estimative Probability’ heatmap presented, educators can identify 
which assessment types most effectively verify specific learning objectives and which need 
further investigation. This can include the need for extra training, as some expected relationships, 
such as those between a laboratory exam and psychomotor, were not as strong as expected. 
Through alignment, assessments are validated, as they directly measure the intended competencies, 
reducing the risk of a disconnect between objectives and evaluation.

Secondly, this study suggests that assessment validity can be improved through diversity. The 
study advocates for a departure from over-reliance on laboratory reports, highlighting alternatives 
like interviews, instructor observations, and group presentations. Such diversity is generally found 
in project-based assessments. These assessment types can be used to verify a broader spectrum 
of skills and knowledge while addressing the limitations of single-format assessments. This 
enables data triangulation, where multiple methods converge to validate learning outcomes, 
thereby enhancing the overall reliability and validity of the evaluation process.

Thirdly, this study addresses the importance of assessment selection in ensuring assessment 
integrity, especially against GenAI risks. Assessment types such as supervised practical exams, live 
demonstrations, and interviews help combat the risks posed by GenAI. Their dynamic and interactive 
nature ensures that students authentically demonstrate their understanding and capabilities in real 
time. Additionally, by considering the diversity of options, educators can integrate scaffolding tech
niques, such as combining assessments, so that educators can monitor student progress and reduce 
opportunities for academic dishonesty.
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Finally, this study has highlighted the importance of reflective practice, encouraging edu
cators to continually evaluate and improve their assessments in response to evolving chal
lenges. Such practice can help educators refine their methods to enhance validity and 
reliability.

It is important to note that these correlations are based on academic perceptions, and these 
relationships may not hold. A future study will look to confirm if these perceptions hold. Further 
research is also needed to determine if confidence can be increased to verify relationships for assess
ments linked to psychomotor or affective-based objectives. Furthermore, new innovative assess
ment types could be developed.

By addressing the research questions, this study has underscored the critical need for laboratory 
assessments that not only measure intended learning outcomes but also maintain integrity and 
adaptability in a changing academic landscape. The findings equip educators with the knowledge 
and tools to design assessments that are not only valid but also secure, ensuring that laboratory edu
cation remains a cornerstone of authentic and effective learning in science, technology, engineering, 
and mathematics (STEM) disciplines.

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work the authors used ChatGPT-4 with SciSpace GPT and Grammarly 
in order to help identify relevant literature and for proofreading purposes. After using this tool/ 
service, the authors reviewed and edited the content as needed and takes full responsibility for 
the content of the publication.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Notes on contributors
Sasha Nikolic received a B.E. degree in telecommunications and a PhD in engineering education from the University of 
Wollongong, Australia, in 2001 and 2017, respectively. He is a Senior Lecturer of Engineering Education at the University 
of Wollongong. His interest is developing career-ready graduates involving research in teaching laboratories, artificial 
intelligence, industry engagement, work-integrated learning, knowledge management, communication, and reflection. 
Dr Nikolic has been recognised with many awards, including an Australian Award for University Teaching Citation in 
2012 and 2019. He 2025-26 President of the Australasian Association of Engineering Education (AAEE) and founding 
President of the Australasian Artificial Intelligence in Engineering Education Centre.

Dr Suesse completed his MSc (Dipl-Math) degree in mathematics at the Friedrich-Schiller-University (FSU) of Jena, 
Germany, in 2003. Dr Suesse then worked as a research fellow at the Institute of Medical Statistics, Informatics and 
Documentation (IMSID) and FSU.  In 2005 he went to Victoria University of Wellington (VUW), New Zealand, to start 
his PhD in statistics and his degree was conferred with his thesis titled, ’Analysis and Diagnostics of Categorical Variables 
with Multiple Outcomes’ in 2008. In 2009 Dr Suesse started working as a research fellow at the Centre for Statistical and 
Survey Methodology (CSSM) at the University of Wollongong. He was appointed as a lecturer at UOW in 2011 and pro
moted to senior lecturer in 2015.

Sarah Grundy is an education-focused senior lecturer at the School of Chemical Engineering, The University of New 
South Wales. Sarah predominantly teaches design subjects at all levels (undergraduate to postgraduate). Sarah has 
over 15 years of experience in Research & Development, Manufacturing, and project management in industry. 
Sarah’s passion is to develop students to be credible engineers and make their impact in whatever industry through 
authentic learning practices. 

Dr. Rezwanul Haque is a Senior Lecturer specialising in Manufacturing Technology at the University of the Sunshine 
Coast. As an inaugural member of the AAEE Academy, he has contributed significantly to the academic community. 
In 2019, Dr. Haque served as an Academic Lead at the School of Science and Technology, overseeing the launch of 
two new Engineering programs and reviewing existing ones. His dedication to learning and teaching earned him 
the prestigious Senior Fellow status at the Higher Education Academy (UK) in the same year. His research focuses 
on Engineering Education and material characterisation through neutron diffraction.

EUROPEAN JOURNAL OF ENGINEERING EDUCATION 21



Sarah Lyden Sarah completed her BSc-BE (Hons) at the University of Tasmania in 2011. From 2012 to 2015 she was a 
PhD candidate with the School of Engineering and ICT at the University of Tasmania. From March 2015 to February 2018 
Sarah was employed as the API Lecturer in the field of power systems and renewable energy. Since 2018, Sarah has been 
employed as Lecturer in the School of Engineering. Sarah has been a member of the School of Engineering and ICT’s 
STEM education and outreach team.

Sulakshana Lal has a PhD in Engineering Education from Curtin University, Perth,WA, Australia. Her research focused on 
comparing the learning and teaching processes of face-to-face and remotely-operated engineering laboratories. With a 
keen interest in the intersection of technology and education, Sulakshana has published several articles in reputable 
journals and also presented her work at national and international engineering education conferences. Her expertise 
lies in understanding the nuances of different laboratories pedagogical settings and harnessing technology to 
enhance laboratory learning outcomes. Sulakshana is passionate about sharing her knowledge and helping educators 
and students navigate the evolving landscape of engineering education.

Dr. Ghulam Mubashar Hassan is Senior Lecturer in Department of Computer Science and Software Engineering at The 
University of Western Australia (UWA). He received his PhD from UWA. He completed MS and BS from Oklahoma State 
University, USA and University of Engineering and Technology (UET) Peshawar, Pakistan, respectively. His research inter
ests are multidisciplinary problems, including engineering education, artificial intelligence, machine learning and 
optimisation in different fields of engineering and education. He is the recipient of multiple teaching excellence 
awards and is awarded AAEE Engineering Education Research Design Award 2021.

Scott Daniel is a Senior Lecturer in Humanitarian Engineering at the University of Technology Sydney, and serves as Deputy 
Editor at the Australasian Journal of Engineering Education and on the Editorial Boards of the European Journal of Engin
eering Education, the African Journal of Teacher Education and Development, and the Journal of Humanitarian Engineering. 
Scott uses qualitative methodologies to explore different facets of engineering education, particularly humanitarian engin
eering. He won the 2019 Australasian Association for Engineering Education Award for Research Design for his work with 
Andrea Mazzurco on the assessment of socio-technical thinking and co-design expertise in humanitarian engineering. 

Dr. Marina Belkina is Lecturer and First Year Experience Coordinator at Western Sydney University. She has taught 
various subjects and courses (Foundation, Diploma, first and second years of Bachelor’s Degree, online Associate 
Degree). She has implemented numerous projects to support learning, including: Creating the YouTube channel Engin
eering by Steps, Leading the development of HD videos for the first-year engineering courses, Developing iBook for 
physics, creating 3D lectures and aminations for Engineering Materials, and conducting research focused on exploring 
student’s barriers to Higher Education.

ORCID
Ghulam M. Hassan http://orcid.org/0000-0002-6636-8807
Sasha Nikolic http://orcid.org/0000-0002-3305-9493
Thomas F. Suesse http://orcid.org/0000-0003-4495-0166
Sarah Grundy http://orcid.org/0009-0009-9018-7385
Rezwanul Haque http://orcid.org/0000-0002-8641-4479
Sarah Lyden http://orcid.org/0000-0002-5364-6011
Sulakshana Lal http://orcid.org/0000-0001-7892-1190
Scott Daniel http://orcid.org/0000-0002-7528-9713
Marina Belkina http://orcid.org/0009-0006-2660-2845

References
Abdulwahed, M., and Z. K. Nagy. 2011. “The TriLab, a Novel ICT Based Triple Access Mode Laboratory Education Model.” 

Computers & Education 56 (1): 262–274. https://doi.org/10.1016/j.compedu.2010.07.023.
Abdulwahed, M., and Z. K. Nagy. 2014. “The Impact of Different Preparation Modes on Enhancing the Undergraduate 

Process Control Engineering Laboratory: A Comparative Study.” Computer Applications in Engineering Education 22 
(1): 110–119.

Adarkwah, M. A. 2021. “The Power of Assessment Feedback in Teaching and Learning: A Narrative Review and Synthesis 
of the Literature.” SN Social Sciences 1 (3): 75.

Aishah, A. 2015. “Reinstating the Soul in Engineering Laboratory Work: Direct Observation Assessment Method.”
Alba-Flores, R. 2018. “Enhancing Engineering Lab Report Writing Using Peer Review Assessment.” 2018 ASEE Mid-atlan

tic section spring conference.
Anderson, L. W., D. R. Krathwohl, P. W. Airasian, K. A. Cruikshank, R. E. Mayer, P. R. Pintrich, J. Raths, and M. C. Wittrock. 

2001. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. 
abridged ed. White Plains, NY: Longman.

22 S. NIKOLIC ET AL.

http://orcid.org/0000-0002-6636-8807
http://orcid.org/0000-0002-3305-9493
http://orcid.org/0000-0003-4495-0166
http://orcid.org/0009-0009-9018-7385
http://orcid.org/0000-0002-8641-4479
http://orcid.org/0000-0002-5364-6011
http://orcid.org/0000-0001-7892-1190
http://orcid.org/0000-0002-7528-9713
http://orcid.org/0009-0006-2660-2845
https://doi.org/10.1016/j.compedu.2010.07.023


Andersson, M., and M. Weurlander. 2019. “Peer Review of Laboratory Reports for Engineering Students.” European 
Journal of Engineering Education 44 (3): 417–428. https://doi.org/10.1080/03043797.2018.1538322.

Barthakur, A., S. Joksimovic, V. Kovanovic, M. Richey, and A. Pardo. 2022. “Aligning Objectives with Assessment in Online 
Courses: Integrating Learning Analytics and Measurement Theory.” Computers & Education 190:104603. https://doi. 
org/10.1016/j.compedu.2022.104603.

Bearman, M., J. H. Nieminen, and R. Ajjawi. 2023. “Designing Assessment in a Digital World: An Organising Framework.” 
Assessment & Evaluation in Higher Education 48 (3): 291–304. https://doi.org/10.1080/02602938.2022.2069674.

Beck, S., P. Lazari, and M. DiBenedetti. 2024. “Why do Engineering Students Attend Labs? Staff and Student Reasons for 
Lab Attendance, Desired Group Size and Number of Laboratories.” SEFI Journal of Engineering Education 
Advancement 1 (1): 26–37.

Biggs, J. 1996. “Enhancing Teaching Through Constructive Alignment.” Higher Education 32 (3): 347–364.
Bojko, A. 2009. “Informative or Misleading? Heatmaps Deconstructed. Human-computer Interaction.” New trends: 13th 

international conference, HCI international 2009, San Diego, CA, USA, July 19–24, 2009, Proceedings, Part I 13.
Bridgeman, A., and D. Liu. 2024. Frequently Asked Questions about the Two-lane Approach to Assessment in the Age of AI. 

Accessed July 31, 2024. https://educational-innovation.sydney.edu.au/teaching@sydney/frequently-asked- 
questions-about-the-two-lane-approach-to-assessment-in-the-age-of-ai/.

Brinson, J. R. 2015. “Learning Outcome Achievement in Non-traditional (Virtual and Remote) versus Traditional (Hands- 
on) Laboratories: A Review of the Empirical Research.” Computers & Education 87:218–237. https://doi.org/10.1016/j. 
compedu.2015.07.003.

Campbell, J. O., J. R. Bourne, P. J. Mosterman, and A. J. Brodersen. 2002. “The Effectiveness of Learning Simulations for 
Electronic Laboratories.” Journal of Engineering Education 91 (1): 81–87. https://doi.org/10.1002/j.2168-9830.2002. 
tb00675.x.

Cann, A. J. 2016. “Increasing Student Engagement with Practical Classes Through Online Pre-lab Quizzes.” Journal of 
Biological Education 50 (1): 101–112. https://doi.org/10.1080/00219266.2014.986182.

Chen, B., R. F. DeMara, S. Salehi, and R. Hartshorne. 2018. “Elevating Learner Achievement Using Formative Electronic 
Lab Assessments in the Engineering Laboratory: A Viable Alternative to Weekly Lab Reports.” IEEE Transactions on 
Education 61 (1): 1–10. https://doi.org/10.1109/TE.2017.2706667.

Chou, M.-h. 2011. “The Influence of Learner Strategies on Oral Presentations: A Comparison between Group and 
Individual Performance.” English for Specific Purposes 30 (4): 272–285. https://doi.org/10.1016/j.esp.2011.04.003.

Clancy, R. F., and Q. Zhu. 2024. “Exploring the Relations between Ethical Reasoning and Moral Intuitions among Chinese 
Engineering Students in a Course on Global Engineering Ethics.” European Journal of Engineering Education 49 (6): 
1358–1375. https://doi.org/10.1080/03043797.2024.2406446.

Costello, T., P. Logue, and K. Dunne. 2022. “An Evaluation of the Effects of Pre-laboratory Activities on Student Engagement 
in a Higher Education Computer Engineering Module.” All Ireland Journal of Higher Education 14 (2): 1–34.

Crossin, E., J. I. Richards, S. Dart, and K. Naswall. 2023. “A Taxonomy of Common Engineering Activities and 
Competencies.” Australasian Journal of Engineering Education 28 (2): 181–193. https://doi.org/10.1080/22054952. 
2023.2214454.

Dart, S., S. Cunningham, A. Gregg, and A. Young. 2023. “Defining the Capabilities Required to Teach Engineering: 
Insights for Achieving the Australian Sector’s Future Vision.” Australasian Journal of Engineering Education 28 (1): 
47–58. https://doi.org/10.1080/22054952.2023.2214461.

Dawson, P. 2020. Defending Assessment Security in a Digital World: Preventing E-Cheating and Supporting Academic 
Integrity in Higher Education. London: Routledge.

Dawson, P., M. Bearman, M. Dollinger, and D. Boud. 2024. “Validity Matters More Than Cheating.” Assessment & 
Evaluation in Higher Education 49 (7): 1005–1016. https://doi.org/10.1080/02602938.2024.2386662.

Dunne, I., and S. Nikolic. 2021. “Autonomous Assessment of a Laboratory Exam for the Digital Hardware Curriculum.” 2021 
IEEE international conference on engineering, technology & education (TALE), Wuhan, people’s republic of China.

Efendi, D., R. W. Apriliyasari, J. G. E. Prihartami Massie, C. L. Wong, R. Natalia, B. Utomo, C. E. Sunarya, E. Apriyanti, and K.- 
H. Chen. 2023. “The Effect of Virtual Reality on Cognitive, Affective, and Psychomotor Outcomes in Nursing Staffs: 
Systematic Review and Meta-Analysis.” BMC Nursing 22 (1): 170.

Ellis, C., and K. Murdoch. 2024. “The Educational Integrity Enforcement Pyramid: A New Framework for Challenging and 
Responding to Student Cheating.” Assessment & Evaluation in Higher Education 49 (7): 924–934. https://doi.org/10. 
1080/02602938.2024.2329167.

Engineers Australia. 2008. “G02 Accreditation Criteria Guidelines.” In Education Programs at the Level of Professional 
Engineer, edited by A. Bradley, 1–23. Engineers Australia.

Fagen-Ulmschneider, W. 2019. “Perception of Probability Words.” https://waf.cs.illinois.edu/visualizations/Perception- 
of-Probability-Words/.

Feisel, L. D., and A. J. Rosa. 2005. “The Role of the Laboratory in Undergraduate Engineering Education.” Journal of 
Engineering Education 94 (1): 121–130.

Felder, R. M., and R. Brent. 2005. “Understanding Student Differences.” Journal of Engineering Education 94 (1): 57–72.
Friedman, J. A., and R. Zeckhauser. 2015. “Handling and Mishandling Estimative Probability: Likelihood, Confidence, and 

the Search for Bin Laden.” Intelligence and National Security 30 (1): 77–99.

EUROPEAN JOURNAL OF ENGINEERING EDUCATION 23

https://doi.org/10.1080/03043797.2018.1538322
https://doi.org/10.1016/j.compedu.2022.104603
https://doi.org/10.1016/j.compedu.2022.104603
https://doi.org/10.1080/02602938.2022.2069674
https://educational-innovation.sydney.edu.au/teaching@sydney/frequently-asked-questions-about-the-two-lane-approach-to-assessment-in-the-age-of-ai/
https://educational-innovation.sydney.edu.au/teaching@sydney/frequently-asked-questions-about-the-two-lane-approach-to-assessment-in-the-age-of-ai/
https://doi.org/10.1016/j.compedu.2015.07.003
https://doi.org/10.1016/j.compedu.2015.07.003
https://doi.org/10.1002/j.2168-9830.2002.tb00675.x
https://doi.org/10.1002/j.2168-9830.2002.tb00675.x
https://doi.org/10.1080/00219266.2014.986182
https://doi.org/10.1109/TE.2017.2706667
https://doi.org/10.1016/j.esp.2011.04.003
https://doi.org/10.1080/03043797.2024.2406446
https://doi.org/10.1080/22054952.2023.2214454
https://doi.org/10.1080/22054952.2023.2214454
https://doi.org/10.1080/22054952.2023.2214461
https://doi.org/10.1080/02602938.2024.2386662
https://doi.org/10.1080/02602938.2024.2329167
https://doi.org/10.1080/02602938.2024.2329167
https://waf.cs.illinois.edu/visualizations/Perception-of-Probability-Words/
https://waf.cs.illinois.edu/visualizations/Perception-of-Probability-Words/


Gamo, J. 2019. “Assessing a Virtual Laboratory in Optics as a Complement to On-Site Teaching.” IEEE Transactions on 
Education 62 (2): 119–126. https://doi.org/10.1109/TE.2018.2871617.

Garcia, A., S. Rodriguez, F. Rosales, and J. L. Pedraza. 2005. “Automatic Management of Laboratory Work in Mass Computer 
Engineering Courses.” IEEE Transactions on Education 48 (1): 89–98. https://doi.org/10.1109/TE.2004.832874.

Gavitte, S. B., M. D. Koretsky, and J. A. Nason. 2024. “Connecting Affordances of Physical and Virtual Laboratory Modes to 
Engineering Epistemic Practices.” Journal of Computing in Higher Education 1–35. https://doi.org/10.1007/s12528- 
024-09403-7.

George-Williams, S. R., R. A. R. Blackburn, S. M. Wilkinson, and D. P. Williams. 2022. “Prelaboratory Technique-based 
Simulations: Exploring Student Perceptions of their Impact on In-class Ability, Preparedness, and Emotional 
State.” Journal of Chemical Education 99 (3): 1383–1391. https://doi.org/10.1021/acs.jchemed.1c01116.

Gratchev, I., S. Howell, and S. Stegen. 2024. “Academics’ Perception of Final Examinations in Engineering Education.” 
Australasian Journal of Engineering Education 29 (1): 20–29. https://doi.org/10.1080/22054952.2023.2284484.

Hargreaves, D. J. 1997. “Student Learning and Assessment are Inextricably Linked.” European Journal of Engineering 
Education 22 (4): 401–409. https://doi.org/10.1080/03043799708923471.

Hoffa, D. W. 2006. “Synopsis Laboratory Reports: Effects on Student Learning and Curricular Benefits.” Ph.D., Iowa State 
University. Publication Number 3217278. ProQuest One Academic. United States – Iowa.

Jacobson, M. L., R. A. Said, and H. Rehman. 2006. “Introducing Design Skills at the Freshman Level: Structured Design 
Experience.” IEEE Transactions on Education 49 (2): 247–253. https://doi.org/10.1109/TE.2006.872403.

Jamshidi, R., and I. Milanovic. 2022. “Building Virtual Laboratory with Simulations.” Computer Applications in Engineering 
Education 30 (2): 483–489.

Jevinger, Å, and K. Von Hausswolff. 2016, 31 March–3 April. “Large Programming Task vs Questions-and-answers 
Examination in Java Introductory Courses.” 2016 international conference on learning and teaching in computing 
and engineering (LaTICE).

Jobel, J., R. Ziminski, and Y. Li. 2024. “Identifying What Social Emotional Support First-year Engineering Students Need to 
Overcome Setbacks in Lab Settings: A Case Study.” European Journal of Engineering Education, 1–17. https://doi.org/ 
10.1080/03043797.2024.2401607.

Kaiser, J. 2023. “‘I Should Have Done Better.’ Stanford Head Steps Down.” Science 381 (6656): 366–367. https://doi.org/ 
10.1126/science.adj9568.

Kellett, C. M. 2012. “A Project-based Learning Approach to Programmable Logic Design and Computer Architecture.” 
IEEE Transactions on Education 55 (3): 378–383. https://doi.org/10.1109/TE.2011.2179301.

Kent, S. 1964. “Words of Estimative Probability.” Studies in Intelligence 8 (4): 49–65.
Kist, A. A. 2022. “Introduction to ‘Pedagogy of Active and Practical Learning Online’.” In Learning with Technologies and 

Technologies in Learning: Experience, Trends and Challenges in Higher Education, edited by M. E. Auer, A. Pester, and D. 
May, 363–366. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-04286-7_17.

Kollöffel, B., and T. de Jong. 2013. “Conceptual Understanding of Electrical Circuits in Secondary Vocational Engineering 
Education: Combining Traditional Instruction with Inquiry Learning in a Virtual Lab.” Journal of Engineering Education 
102 (3): 375–393. https://doi.org/10.1002/jee.20022.

Lal, S., A. D. Lucey, E. D. Lindsay, P. R. Sarukkalige, M. Mocerino, D. F. Treagust, and M. G. Zadnik. 2017. “An Alternative 
Approach to Student Assessment for Engineering–laboratory Learning.” Australasian Journal of Engineering 
Education 22 (2): 81–94.

Laverty, D. M., J. Milliken, M. Milford, and M. Cregan. 2012. “Embedded C Programming: A Practical Course Introducing 
Programmable Microprocessors.” European Journal of Engineering Education 37 (6): 557–574. https://doi.org/10.1080/ 
03043797.2012.725711.

Lenhardt, E. D., R. N. Cross, M. J. Krocak, J. T. Ripberger, S. R. Ernst, C. L. Silva, and H. C. Jenkins-Smith. 2020. “How Likely is 
that Chance of Thunderstorms? A Study of How National Weather Service Forecast Offices Use Words of Estimative 
Probability and What They Mean to the Public.” Journal of Operational Meteorology 8 (5): 64–78.

Margetts, N., S. Cunningham, and W. Boles. 2024. “Beyond the Algorithm: Student Perspectives on Generative AI in 
Engineering Education.” Proceedings of the 35th Australasian Association for Engineering Education (AAEE) 
Annual Conference.

May, D., G. R. Alves, A. A. Kist, and S. M. Zvacek. 2023. “Online Laboratories in Engineering Education Research and 
Practice.” In International Handbook of Engineering Education Research, edited by A. Johri, 525–552. New York: 
Routledge. https://doi.org/10.4324/9781003287483-29.

May, D., C. Terkowsky, V. Varney, and D. Boehringer. 2023. “Between Hands-on Experiments and Cross Reality Learning 
Environments – Contemporary Educational Approaches in Instructional Laboratories.” European Journal of 
Engineering Education 48 (5): 783–801. https://doi.org/10.1080/03043797.2023.2248819.

Nightingale, S., A. L. Carew, and J. Fung. 2007. “Application of Constructive Alignment Principles to Engineering 
Education: Have we Really Changed?” AAEE Conference, Melbourne.

Nikolic, S. 2014. “Training Laboratory: Using Online Resources to Enhance the Laboratory Learning Experience.” 2014 
International Conference on Teaching, Assessment and Learning (TALE).

Nikolic, S., S. Daniel, R. Haque, M. Belkina, G. M. Hassan, S. Grundy, S. Lyden, P. Neal, and C. Sandison. 2023a. “ChatGPT 
versus Engineering Education Assessment: A Multidisciplinary and Multi-institutional Benchmarking and Analysis of 

24 S. NIKOLIC ET AL.

https://doi.org/10.1109/TE.2018.2871617
https://doi.org/10.1109/TE.2004.832874
https://doi.org/10.1007/s12528-024-09403-7
https://doi.org/10.1007/s12528-024-09403-7
https://doi.org/10.1021/acs.jchemed.1c01116
https://doi.org/10.1080/22054952.2023.2284484
https://doi.org/10.1080/03043799708923471
https://doi.org/10.1109/TE.2006.872403
https://doi.org/10.1080/03043797.2024.2401607
https://doi.org/10.1080/03043797.2024.2401607
https://doi.org/10.1126/science.adj9568
https://doi.org/10.1126/science.adj9568
https://doi.org/10.1109/TE.2011.2179301
https://doi.org/10.1007/978-3-031-04286-7_17
https://doi.org/10.1002/jee.20022
https://doi.org/10.1080/03043797.2012.725711
https://doi.org/10.1080/03043797.2012.725711
https://doi.org/10.4324/9781003287483-29
https://doi.org/10.1080/03043797.2023.2248819


this Generative Artificial Intelligence Tool to Investigate Assessment Integrity.” European Journal of Engineering 
Education 48 (4): 559–614. https://doi.org/10.1080/03043797.2023.2213169.

Nikolic, S., S. Grundy, R. Haque, S. Lal, G. M. Hassan, S. Daniel, M. Belkina, S. Lyden, and T. F. Suesse. 2023b. “A Ranking 
Comparison of the Traditional, Online and Mixed Laboratory Mode Learning Objectives in Engineering: Uncovering 
Different Priorities.” STEM Education 3 (4): 331–349. https://doi.org/10.3934/steme.2023020.

Nikolic, S., M. J. W. Lee, T. Goldfinch, and C. H. Ritz. 2016. “Addressing Misconceptions about Engineering Through Student– 
Industry Interaction in a Video-Augmented 3D Immersive Virtual World.” Frontiers in Education Conference (FIE), 2016.

Nikolic, S., M. Ros, K. Jovanovic, and Z. Stanisavljevic. 2021a. “Remote, Simulation or Traditional Engineering Teaching 
Laboratory: A Systematic Literature Review of Assessment Implementations to Measure Student Achievement or 
Learning.” European Journal of Engineering Education 46 (6): 1141–1162.

Nikolic, S., C. Sandison, R. Haque, S. Daniel, S. Grundy, M. Belkina, S. Lyden, G. M. Hassan, and P. Neal. 2024a. “ChatGPT, 
Copilot, Gemini, SciSpace and Wolfram versus Higher Education Assessments: An Updated Multi-Institutional Study 
of the Academic Integrity Impacts of Generative Artificial Intelligence (GenAI) on Assessment.” Australasian Journal of 
Engineering Education 29 (2): 126–153. https://doi.org/10.1080/22054952.2024.2372154.

Nikolic, S., T. Suesse, T. Goldfinch, and T. McCarthy. 2015. "Relationship between Learning in the Engineering Laboratory 
and Student Evaluations." Australasian Association for Engineering Education Annual Conference, Geelong, Australia.

Nikolic, S., T. F. Suesse, S. Grundy, R. Haque, S. Lyden, G. M. Hassan, S. Daniel, M. Belkina, and S. Lal. 2024b. “Laboratory 
Learning Objectives: Ranking Objectives across the Cognitive, Psychomotor and Affective Domains within 
Engineering.” European Journal of Engineering Education 49 (4): 559–614. https://doi.org/10.1080/03043797.2023.2248042.

Nikolic, S., T. Suesse, K. Jovanovic, and Z. Stanisavljevic. 2021b. “Laboratory Learning Objectives Measurement: 
Relationships between Student Evaluation Scores and Perceived Learning.” IEEE Transactions on Education 64 (2): 
163–171. https://doi.org/10.1109/TE.2020.3022666.

Nikolic, S., I. Wentworth, L. Sheridan, S. Moss, E. Duursma, R. A. Jones, M. Ros, and R. Middleton. 2024c. “A Systematic 
Literature Review of Attitudes, Intentions and Behaviours of Teaching Academics Pertaining to AI and Generative 
AI (GenAI) in Higher Education: An Analysis of GenAI Adoption Using the UTAUT Framework.” Australasian Journal 
of Educational Technology 40 (6): 56–75. https://doi.org/10.14742/ajet.9643.

Ogot, M., G. Elliott, and N. Glumac. 2003. “An Assessment of In-Person and Remotely Operated Laboratories.” Journal of 
Engineering Education 92 (1): 57–64. https://doi.org/10.1002/j.2168-9830.2003.tb00738.x.

O’Mahony, T., M. Hill, R. Onet, M. Neag, L. d. l. Torre Cubillo, and D. Zhou. 2024. “The Impact of Take-Home Laboratories 
on Student Perceptions of Conceptual and Professional Learning in Electronic Engineering across Four European 
Universities.” European Journal of Engineering Education 49 (6): 1376–1396. https://doi.org/10.1080/03043797.2024. 
2407480.

O’Neill, G. 2011. A Practitioner’s Guide to Choice of Assessment Methods Within a Module. Dublin: UCD Teaching and Learning.
Parkinson, J. 2017. “The Student Laboratory Report Genre: A Genre Analysis.” English for Specific Purposes 45:1–13. 

https://doi.org/10.1016/j.esp.2016.08.001.
Pereira, M. C., F. Leonardi, and M. Melo. 2003. “Practical Classes and Examinations on Basic Electronics Labs in Computer 

Engineering.” ICECE-International conference on engineering and comuter education.
Potkonjak, V., M. Gardner, V. Callaghan, P. Mattila, C. Guetl, V. M. Petrović, and K. Jovanović. 2016. “Virtual Laboratories 

for Education in Science, Technology, and Engineering: A Review.” Computers & Education 95:309–327.
Quince, Z., K. Petkoff, R. N. Michael, S. Daniel, and S. Nikolic. 2024. “The Current Ethical Considerations of Using GenAI in 

Engineering Education and Practice: A Systematic Literature Review.” 35th annual Conference of the Australasian 
Association for Engineering Education, Christchurch, New Zealand.

Ranawake, G. S., and K. Wilson. 2016. “Learning to do Science: Lessons from a Discourse Analysis of Students’ Laboratory 
Reports.” International Journal of Innovation in Science and Mathematics Education 24 (2): 71–81.

Reimann, N. 2018. “Learning about Assessment: The Impact of Two Courses for Higher Education Staff.” International 
Journal for Academic Development 23 (2): 86–97.

Rodgers, T. L., N. Cheema, S. Vasanth, A. Jamshed, A. Alfutimie, and P. J. Scully. 2020. “Developing Pre-laboratory Videos 
for Enhancing Student Preparedness.” European Journal of Engineering Education 45 (2): 292–304. https://doi.org/10. 
1080/03043797.2019.1593322.

Rollnick, M., S. Zwane, M. Staskun, S. Lotz, and G. Green. 2001. “Improving Pre-laboratory Preparation of First Year 
University Chemistry Students.” International Journal of Science Education 23 (10): 1053–1071. https://doi.org/10. 
1080/09500690110038576.

Ross, R. 2017. “MoodleNFC – Integrating Smart Student ID Cards with Moodle for Laboratory Assessment.” Australasian 
Journal of Engineering Education 22 (2): 73–80. https://doi.org/10.1080/22054952.2017.1414557.

Sabri, M. A. M., N. K. Khamis, M. F. M. Tahir, Z. Wahid, A. Kamal, A. M. Ihsan, A. B. Sulong, and S. Abdullah. 2013. 
“Curriculum Development Based on the Big Picture Assessment of the Mechanical Engineering Program.” 
International Education Studies 6 (6): 213–219.

Sadler, D. R. 1989. “Formative Assessment and the Design of Instructional Systems.” Instructional Science 18 (2): 119–144.
Samah, N. A., H. Jaffri, L. M. Tahir, A. Z. Sha’ameri, and U. U. Sheikh. 2014. “The Implementation of Problem-Based 

Laboratory Model at Digital Signal Processing Laboratory.” 2014 IEEE region 10 symposium.

EUROPEAN JOURNAL OF ENGINEERING EDUCATION 25

https://doi.org/10.1080/03043797.2023.2213169
https://doi.org/10.3934/steme.2023020
https://doi.org/10.1080/22054952.2024.2372154
https://doi.org/10.1080/03043797.2023.2248042
https://doi.org/10.1109/TE.2020.3022666
https://doi.org/10.14742/ajet.9643
https://doi.org/10.1002/j.2168-9830.2003.tb00738.x
https://doi.org/10.1080/03043797.2024.2407480
https://doi.org/10.1080/03043797.2024.2407480
https://doi.org/10.1016/j.esp.2016.08.001
https://doi.org/10.1080/03043797.2019.1593322
https://doi.org/10.1080/03043797.2019.1593322
https://doi.org/10.1080/09500690110038576
https://doi.org/10.1080/09500690110038576
https://doi.org/10.1080/22054952.2017.1414557


Seery, M. K., H. Y. Agustian, E. D. Doidge, M. M. Kucharski, H. M. O’connor, and A. Price. 2017. “Developing Laboratory 
Skills by Incorporating Peer-review and Digital Badges.” Chemistry Education Research and Practice 18 (3): 403–419. 
https://doi.org/10.1039/C7RP00003K.

Spanias, A., S. Urban, A. Constantinou, M. Tampi, A. Clausen, X. Zhang, J. Foutz, and G. Stylianou. 2000. “Development 
and Evaluation of a Web-based Signal and Speech Processing Laboratory for Distance Learning.” 2000 IEEE inter
national conference on acoustics, speech, and signal processing. proceedings (Cat 00CH37100).

Tejado, I., and E. Pérez. 2020. “A Laboratory for Teaching Process Control: The Wastewater Treatment Plant.” The 
International Journal of Electrical Engineering & Education 61 (2): 233–257.

Trevelyan, J. 2014. The Making of an Expert Engineer. London: CRC Press/Balkema.
Trevelyan, J. P. 2021. Learning Engineering Practice. Leiden: CRC Press/Blakema.
Uzunidis, D., and G. Pagiatakis. 2023. “Design and Implementation of a Virtual On-line Lab on Optical Communications.” 

European Journal of Engineering Education 48 (5): 913–928. https://doi.org/10.1080/03043797.2023.2173558.
Van De Heyde, V., and A. Siebrits. 2019. “Students’ Attitudes towards Online Pre-laboratory Exercises for a Physics 

Extended Curriculum Programme.” Research in Science & Technological Education 37 (2): 168–192. https://doi.org/ 
10.1080/02635143.2018.1493448.

Vial, P. J., S. Nikolic, M. Ros, D. Stirling, and P. Doulai. 2015. “Using Online and Multimedia Resources to Enhance the 
Student Learning Experience in a Telecommunications Laboratory within an Australian University.” Australasian 
Journal of Engineering Education 20 (1): 71–80. https://doi.org/10.7158/D13-006.2015.20.1.

Vojinovic, O., V. Simic, I. Milentijevic, and V. Ciric. 2020. “Tiered Assignments in Lab Programming Sessions: Exploring 
Objective Effects on Students’ Motivation and Performance.” IEEE Transactions on Education 63 (3): 164–172. 
https://doi.org/10.1109/TE.2019.2961647.

Vuoriainen, A., P. Rikala, V. Heilala, S. Lehesvuori, S. Oz, L. Kettunen, and R. Hämäläinen. 2024. “The Six C’s of Successful 
Higher Education-industry Collaboration in Engineering Education: A Systematic Literature Review.” European 
Journal of Engineering Education, 1–25. https://doi.org/10.1080/03043797.2024.2432440.

Vygotsky, L. S., and M. Cole. 1978. Mind in Society: Development of Higher Psychological Processes. Cambridge: Harvard 
university press.

Walther, J., and D. Radcliffe. 2006. “Engineering Education: Targeted Learning Outcomes or Accidental Competencies?” 
2006 Annual conference & exposition.

Watson, D., and G. L. Knight. 2012. “Continuous Formative Assessment and Feedback in an Enquiry-based Laboratory 
Course.” Bioscience Education 20 (1): 101–105.

Wintle, B. C., H. Fraser, B. C. Wills, A. E. Nicholson, and F. Fidler. 2019. “Verbal Probabilities: Very Likely to be Somewhat 
More Confusing Than Numbers.” PLoS One 14 (4): e0213522.

Zhang, H., and D. J. Wink. 2021. “Examining an Acid–base Laboratory Practical Assessment from the Perspective of 
Evidence-Centered Design.” Journal of Chemical Education 98 (6): 1898–1909. https://doi.org/10.1021/acs.jchemed. 
0c01405.

26 S. NIKOLIC ET AL.

https://doi.org/10.1039/C7RP00003K
https://doi.org/10.1080/03043797.2023.2173558
https://doi.org/10.1080/02635143.2018.1493448
https://doi.org/10.1080/02635143.2018.1493448
https://doi.org/10.7158/D13-006.2015.20.1
https://doi.org/10.1109/TE.2019.2961647
https://doi.org/10.1080/03043797.2024.2432440
https://doi.org/10.1021/acs.jchemed.0c01405
https://doi.org/10.1021/acs.jchemed.0c01405


Appendices

Appendix 1. The likelihood of laboratory assessments being used to verify cognitive- 
based learning objectives implicitly, including confidence intervals (CI) at the 95% level 
and a Words of Estimative Probability heatmap

Note. The colours represent the visual coding of the traffic light-style heatmap.

Appendix 2. The likelihood of laboratory assessments being used to verify psychomotor- 
based learning objectives implicitly, including confidence intervals (CI) at the 95% level 
and a Words of Estimative Probability heatmap

Note. The colours represent the visual coding of the traffic light-style heatmap.
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Appendix 3. The likelihood of laboratory assessments being used to verify affective-based 
learning objectives implicitly, including confidence intervals (CI) at the 95% level and a 
Words of Estimative Probability heatmap

Note. The colours represent the visual coding of the traffic light-style heatmap.

Appendix 4. The likelihood of laboratory assessments being used to verify cognitive- 
based learning objectives explicitly, including confidence intervals (CI) at the 95% level 
and a Words of Estimative Probability heatmap

Note. The colours represent the visual coding of the traffic light-style heatmap.
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Appendix 5. The likelihood of laboratory assessments being used to verify psychomotor- 
based learning objectives explicitly, including confidence intervals (CI) at the 95% level 
and a Words of Estimative Probability heatmap

Note. The colours represent the visual coding of the traffic light-style heatmap.

Appendix 6. The likelihood of laboratory assessments being used to verify affective-based 
learning objectives explicitly, including confidence intervals (CI) at the 95% level and a 
Words of Estimative Probability heatmap

Note. The colours represent the visual coding of the traffic light-style heatmap.
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