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ABSTRACT 

This study presents an intelligent simulation model for permutation flow shop sequencing of 
20 jobs with 5 machines. Reinforcement learning (RL) has been used as a metaheuristic to 
evaluate and identify optimal heuristic sequencing rules. The model is flexible and can be 
applied for different sequencing problems with minor programming modification. The RL-
based metaheuristics compares 11 sequencing rules to find the best sequencing heuristics. 
The results demonstrate that heuristics based on shortest processing times outperform other 
heuristics. Among those high-performing heuristics, the sequencing rule based on shortest 
processing times of the first two machines generates minimum average makespan in the 
shortest simulation time. The paper emphasizes the necessity for future investigations to 
repeat this study for other sequencing and scheduling problems like job shop environments. 
Overall, this research contributes valuable insights into the application of reinforcement 
learning algorithms in sequencing, addressing the complexities of modern production systems. 
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1 INTRODUCTION 

In the era of mass customization, agile manufacturing systems should be efficiently responding 
to market conditions and powerful algorithms are needed to handle ever-increasing 
complexity of scheduling and sequencing. While mass customization makes scheduling 
problems more complex, advanced technologies for data collection and storage under what 
are called Industry 4 and cloud computing offer new rooms for improving scheduling 
techniques. However, using high-dimensional data for scheduling production systems with 
multiple objectives like minimizing makespan, reducing production costs is challenging [1]. 
This situation has been exacerbated with new requirements for sustainability and energy 
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efficiency. Shorter life cycle for fully customizable products present major challenges to 
production managers [2].  

Sequencing is an integral part of the scheduling process, where tasks should be organized in a 
specific order to enhance efficiency. It is about allocating some tasks to resources to optimize 
a criterion like makespan. Broadly speaking, scheduling and sequencing can be applied to a 
wide variety of situations in theory and practice. Resources can be personnel and tools in a 
project context or machinery of a manufacturing company. The application can be expanded 
to operation rooms in hospitals or processing facilities of data centers. Efficient sequencing 
and scheduling help meet demand on time, minimize waste (e.g. work in progress and waiting 
time), increase utilization and in general minimize production costs [3]. 

Because of its wide application, sequencing and scheduling is well researched by mathematical 
modelling. The issue is that even though ignoring np-hardness of scheduling/sequencing 
problems, mathematical models are difficult to apply for real cases as they are built on 
simplifying assumptions which are not valid in real scenarios. Practitioners prefer empirical 
models and heuristics over complex mathematical models to enhance efficiency and 
effectiveness by reducing costs, minimizing makespan, and decreasing delays. However, there 
remains a gap in the availability of practical, off-the-shelf heuristics. 

Flow shop environment is an important area of manufacturing scheduling [3]. The sequencing 
problem in a flow shop environment is how to allocate some resources (hereinafter machines) 
to some tasks. Sometimes called permutation flow shop scheduling (PFSS) problem, it is 
categorized as NP-complete problem when there is more than three machines and heuristic 
and meta-heuristic algorithms have been developed to find near-optimum solutions [4]. The 
processing route is fixed, and each job should be processed by each machine in order. The 
processing time is different among jobs but fixed. Job processing cannot be interrupted or 
split. This is the very basic sequencing problem in a flow shop system. 

Despite the advancements in heuristic and meta-heuristic approaches for tackling PFSS 
problems, there remains a significant gap in the literature in addressing the complexities and 
dynamic nature of real-world environments. Our research aims to fill this gap by developing a 
generic model for solving the PFSS problem that can handle a range of scenarios, including 
typical flow shop production, job-shop environments, and ultimately batch production. The 
core of our approach is based on a generic RL algorithm to model PFSS problem. This 
foundation enables our model to be applicable to larger and more complex scheduling 
contexts. Our approach is highly adaptable, allowing for easy modifications with minimal 
changes to suit specific problem cases, while also providing a robust platform for comparing 
different heuristics. This is especially crucial in today’s mass customization landscape, where 
flexibility and responsiveness of companies are key. 

This research is to offer one solution for flow shop sequencing problem, in which computer 
simulations are used to simplify an otherwise np-hard problem. The simulation model we have 
developed offers two benefits. Firstly, it can be used for specific cases with minor changes in 
the program. Secondly, it can be applied as a testing lab to compare different heuristics and 
find the most efficient heuristics in general. In the mass customization environment we are 
in, these capabilities are of paramount importance. In the following sections of this paper, 
first a brief review of literature of reinforcement learning (RL) application in sequencing and 
scheduling is presented, followed by the structure of the model and some results. The 
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conclusion is the last part in which the main findings and future research directions are 
highlighted. 

2 LITERATURE REVIEW 

The literature of heuristics of scheduling and sequencing is rich such as [5-9]. Some simple 
dispatching rules used in scheduling are first come first served, shortest processing time, 
earliest due date but application of machine learning in production systems is getting 
momentum behind modelling and visualization techniques [2]. Smart planning and scheduling 
are among highly researched areas of Industry 4.0 [10]. Production planning and control is the 
overarching domain that include facility resource planning, capacity planning, purchase and 
supply management, production scheduling, and inventory management [11]. Among those, 
RL has been applied mostly for production planning and control [3, 11]. Reinforcement 
learning is a class of machine learning models by which an agent learns to take actions in an 
environment using feedback from its actions to improve its performance. Q-learning, temporal 
difference and deep Q network are the three most used algorithms in RL [3]. In this study RL 
is used as a metaheuristic to compare other heuristics and find the best one. Metaheuristics 
are classes of heuristics based on a fundamental algorithm. Some of other metaheuristics 
applied in scheduling are simulated annealing, tabu search, genetic algorithms, ant colony 
optimization, and scatter search. Metaheuristics should represent a final solution, an initial 
solution or population generation, diversification mechanisms, acceptance criterion, and 
termination criterion [12].  

Characteristics of application of RL in sequencing and scheduling that should be understood 
for implementation are method, states, actions, reward [11]. Value-based methods like Q-
learning, TD(λ) algorithm, and SARSA are more employed than policy-based methods in 
production scheduling [11]. 

To name an application of RL in sequencing, Yan et al. [4] developed a deep RL model for job 
shop sequencing considering machine availability. They applied the developed algorithm to 
joint production-maintenance scheduling problem and compared the performance to 
alternative genetic algorithm and iterated greedy algorithms. Deep RL uses collected sensor 
data from the environment to make possible a flexible, real-time control of the production 
system. 

Han, Guo, and Su [13] presented a reinforcement learning algorithm for a hybrid flow shop 
scheduling problem. A significant strength of this work is its validation of the reinforcement 
learning (RL) method through practical applications in industrial settings. Specifically, the RL 
approach was employed for scheduling in a metal processing workshop at an automobile 
engine factory, as well as for sortie scheduling of carrier aircraft in continuous dispatch. 
However, the study falls short of demonstrating the adaptability of their proposed RL 
algorithm, as it specifically addresses the challenges of hybrid flow-shop scheduling and is not 
generalizable to other scenarios, such as changes in production volume, machine breakdowns, 
or variations in job priorities. 

Fonseca-Reyna et al. [14] analysed the effects of parameters on learning processes. However 
in their work, there is limited investigation into the adaptability of RL models when faced 
with changing production conditions or objectives. It is essential to develop reinforcement 
learning strategies that can quickly adapt to new information and unforeseen changes in a 
production environment. 
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Arviv, Stern, and Edan [15] applied collaborative reinforcement learning to a two-robot flow-
shop scheduling problem, introducing a dual Q-learning algorithm. While this method may 
effectively address the specific problem at hand, the paper lacks a framework for adapting 
the algorithm to other production scenarios, such as multi-robot systems or different job 
types. This specificity raises concerns about the algorithm’s generalizability. 

Brammer, Lutz, and Neumann [16] addressed PFSS in multiple production line environment 
with varying demand plans and propose a reinforcement learning (RL) approach to optimize 
scheduling. While it has notable strengths, the model requires substantial modifications to the 
action space in order to make its approach adaptable to the general flow shop problem. 

Our brief review of literature demonstrates that specific application of RL for PFSS problems 
are few and the existing works have limited application in the broad range of PFSS problems. 
Therefore, there is a gap in the literature in this area and this research is to fill this gap. 

The structure of the model is explained in the following section. The flow shop problem we 
have looked at is sequencing 20 jobs with five machines. 

3 MODEL STRUCTURE 

The simulations model has been developed based on the structure depicted in Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Structure of The Simulation Model 

 

The pseudo code of the simulation model is as follows: 

Initialization 

• Input Jobs= N 

• Input Machines M= the number of operations is the same as number of machines. 

Main  

Do: 

(1) The Sequencer generates N random jobs.  

Intelligent Sequencer Agent 
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Figure 1: Structure of the Simulation Model 
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(2) The Machine 1 picks one of them based on a sequencing rule and send it to the Machine. 
This continues until the Machine M finishes a job and send it back to the Sequencer 

(3) The Sequencer calculates the makespan of the allocation and updates the average 
makespan and its preference levels. 

(4) The Sequencer selects a new sequencing rule based on its reinforcement learning 
algorithms and let Machine 1 start a new set of jobs.  

While: 

The stop conditions are not satisfied (i.e. one specific sequencing rule becomes dominant.) 

The sequencing problem we are solving has the following characteristics:  

(1) Jobs are independent and can be processed at time zero and each machine can only 
process one job at the same time. 

(2) Each job needs to be processed on each machine only once with no interruption. The 
transportation and loading/unloading times are included in the processing time. 

The reward of each rule (the reward) appears in the form of a rise or decline of average of 
makespan, incremented by the following equation: 

rt+1= rt+ α[rt- rt]  (1) 

where α is step-size parameter and rt is the makespan of current run. Each sequencing rule 
has a numeric preference level (pt(a)), incremented in each sequencing round according to 
the following equation: 

pt+1(a)= pt(a)+ β[rt- rt̅]  (2) 

where β is another step-size parameter. The preference of selecting successful sequencing 
rules increases gradually, which in turn increases the probability of their selection according 
to the Gibbs distribution: 

Pr {at=a}= 
ept(a)

∑ ept(b)n
b=1

  (3) 

This equation shows that taking action a at time t depends on the preference of action a over 
the preference of all other actions. 

The default parameters of the simulation are shown in   
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Table 1. 
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Table 1- Default Parameters of Simulation 

Sequencing Scenarios 

20 Jobs with 5 machines 

‘Low’ 
Scenario 

‘Moderate’ 
Scenario 

‘High’ 
Scenario 

Step-size parameter for 

makespan (α) 
0.1 0.4 0.8 

Step-size parameter for 
sequencing rules’ preferences 

(β) 
0.2 0.5 0.9 

The rules play the role of actions in reinforcement learning here. Each rule gives feedback in 
the form of job makespan. The list of sequencing rules studied in this research can be found 
in   
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Table 2. Rules 1 to 8 are variations of well-known dispatching rules based on longest process 
times(LPT) and shortest process times(SPT).  

Rule 9 and Rule 10 are designed with the analogy from assembly line balancing and resource 
levelling. Sequencing of jobs in our setting resembles a production line in which to minimize 
waiting times (which is translated into minimum makespan ultimately), it is crucial to have 
close processing times in each job. Similarly in resource leveling there is a metric called 
Resource Improvement Coefficient (RIC) which quantifies the effectiveness of resource 
allocation strategies by reducing peaks and troughs of resource demands. Here the machines 
play the role of resource in our case. Based on these analogies, rule 9 and 10 have been 
defined. Based on these rules, the jobs are sorted based on uniformity of their process times. 
The more uniform the process times are, the more balanced this production line would be or 
put another way, the less peaks and troughs we have in our resource (i.e. machine) demand. 
The uniformity measure is called Uniformity Measure (UM) and it is calculated as below: 

𝑈𝑀 =
𝑛∗∑ 𝑅𝑖

2𝑛
1

(∑ 𝑅𝑖
𝑛
1 )2   (4) 

Where 𝑅𝑖 is the process time of Machine i and n is the number of machines. Jobs with less UM 
are more uniform. In other words, their process times are more uniform. 

Rule 11 is based on the closeness principle used in Rule 9 and Rule 10. The difference is that 
jobs are compared two by two based on the uniformity measure. An extension of this research 
would be defining new rules based on other distance measures which will be discussed in the 
conclusion section. 
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Table 2- The Sequencing Rules 

Rule Description 

0 The jobs are sequenced randomly. 

1 Pick the job with Longest Processing Time (LPT) on Machine 1 

2 Pick the job with Shortest Processing Time (SPT) on Machine 1 

3 Pick the job with LPT on Machine “1 + 2” together 

4 Pick the job with SPT on Machine “1 + 2” together 

5 Pick the job with LPT on Machine “1 + 2 + 3” together 

6 Pick the job with SPT on Machine “1 + 2 + 3” together 

7 Pick the job with LPT of Machines “1 to 5” together 

8 Pick the job with SPT of Machines “1 to 5” together 

9 Pick the job with maximum UM 

10 Pick the job with minimum UM 

11 Pick the pair of jobs with minimum UM 

 

4 RESULTS AND DISCUSSION 

To program the simulation model, REPAST (REcursive Porous Agent Simulation toolkit) 
platform is used. REPAST is an open-source platform in which snippets from different 
programming languages like JAVA and Python can be included [17]. To implement our model, 
we add some JAVA snippets to simulate sequencing of 20 jobs with 5 machines. The learning 
agent is called Sequencer in Figure 1. This agent allocates jobs to Machine 1 based on the 
performance of different sequencing rules and over time learns the most efficient rules. As 
no job interruption is allowed, Machine 1 allocation is the key decision-making factor for 
sequencing. 

Table 3 and Figure 3 Figure show average makespan of different sequencing rules under ‘Low’ 
scenario. As seen, Rule 4 has the best performance with an average of 1407. Overall, Rule 2 
and Rule 6 show some good performance as well which are all variation of SPT heuristic. 
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Table 3: Results of Different Rules 

Rule 0 1 2 3 4 5 6 7 8 9 10 11 

Average 
Makespan 

1512 1682 1436 1649 1407 1623 1431 1518 1522 1520 1516 1516 

 

To assess the performance of Rule 4 against other available solutions, we refer to some test 
problems listed in Taillard [18]. As shown in Table 4, the best makespan reported in the 20 
job-5 machines test problems is 1073, whereas Rule 4 in our results has the minimum 1058 
makespan. 

 

Table 4: Comparison of RL Results with Other Heuristics 

Test Problem 
 Lower 
Bound 

RL Best Makespan 

20 jobs and 5 
machines 

1073 1058 with Rule 4 

 

 

Figure 3: Average Makespan of Sequencing Rules under 'Low' Scenario 
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Figure 4 depicts simulation time to find best results. From the sample taken, it is seen that 
the average simulation time of Rule 4 is less than Rule 2 which is the only competitor. 

 

 

Figure 4: Best Rules' Simulation Ticks under 'Low' Scenario 

The results of ‘Moderate’ and ‘High’ scenarios, as shown in Figure 5 and Figure 7 are almost 
the same as ‘Low’ scenario and Rule 4 demonstrates better performance over other 
sequencing rules tested. The only observed difference is that the dominance of rule 4 is less 
overwhelming. As regards simulation time, again the simulation model learns Rule 4 faster 
than others as shown in Figure 6 and Figure 8. 

1000000

1500000

2000000

0 2 4

Ti
ck

Sequencing Rule

Best Rule Simulation Ticks- 'Low' Scenario



  

CIE51 Proceedings, 9th -11th December 2024 

UNSW Sydney, Australia 

 

 

12 

 

  

 

Figure 5: Performance of Sequencing Rules under 'Moderate' Scenario 

 

 

Figure 6: Best Rules' Simulation Ticks under 'Moderate' Scenario 
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Figure 7: Performance of Sequencing Rules under 'High' Scenario 

 

 

Figure 8: Best Rules' Simulation Ticks under 'High' Scenario 
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To validate these results, the same algorithm has been tested for the problem of 50 jobs and 
5 machines. As depicted in Figure 10, Figure 9, and Figure 11. The results show that like 20 
jobs- 5 machines problem, Rule 4 and Rule 6 are better rules with different learning 
parameters. However, Rule 4 outperforms narrowly Rule 6, and this outcome is consistent 
across ‘Moderate’ and ‘High’ scenarios. 

5 Conclusion 

This study presents an intelligent simulation model for flow shop sequencing, utilizing a 
reinforcement learning algorithm. The RL is used to compare and identify best sequencing 
heuristics among 11 sequencing rules. The main contribution of this research is that it offers 
a RL-based framework that can be easily adapted to compare other sequencing heuristics. 
Also, it can be applied for specific cases with minor program modifications.  

The study demonstrates that among those 11 sequencing rules, Rule 4 is the best. Based on 
this rule, jobs are sorted based on the shortest processing times of the first two machines. 
Also, other variations of SPT (i.e. Rule 2 and Rule 6), consistently outperforms other tested 
rules across different scenarios. Another advantage of Rule 4 is its computational efficiency, 
measured by simulation time. On average, Rule 4 has a shorter simulation time across different 
‘Low’, ‘Moderate’, and ‘High’ scenarios. 

There could be some future research directions upon the results of this research. The first 
possibility is the application of the framework for other sequencing problems like 50 jobs-10 
machines and 100 jobs-10 machines. Conducting those studies with rigorous statistical 
analysis, help us validate the results of this study. The second area is developing a simulation 
model in which heuristics are generated automatically and tested with this RL-based 
framework. Upon achieving these objectives, the intelligence of the framework facilitates its 
application for more general problems. Another extension of this research is the application 
of the RL-based framework for other environments like job shop scheduling and batch 
production to tackle real-world, multi-objective problems. An opportunity exists to enhance 
the current RL model to balance multiple objectives—such as minimizing tardiness while 
maximizing utilization. 
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