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Abstract

Accurate localization is a critical technology for the application of intelligent robots and auto-

mation systems in complex indoor environments. Traditional visual SLAM (Simultaneous

Localization and Mapping) techniques often face challenges with localization accuracy in

high similarity scenes. To address this issue, this paper proposes an improved visual SLAM

loop closure detection algorithm that integrates deep learning techniques. Using the TUM f3

loh, Lip6 Indoor, and Bicocca Indoor datasets as experimental bases, a detailed comparison

of the proposed algorithm against other methods was conducted across various evaluation

metrics. The experimental results show that the proposed loop closure detection algorithm

significantly outperforms traditional methods in terms of localization accuracy in high similar-

ity scenes. Specifically, the detection accuracy rates for the TUM f3 loh, Lip6 Indoor, and

Bicocca Indoor datasets were 66.67%, 72.72%, and 80.00%, respectively, representing an

approximate 18% improvement over the average accuracy of ORB-SLAM2. Additionally,

the proposed method demonstrated excellent performance in trajectory error, with a root

mean square error (RMSE) of just 0.0816m on the Bicocca Indoor dataset, significantly

lower than the 0.1341m RMSE of ORB-SLAM2. Furthermore, improvements in feature

extraction and matching mechanisms greatly reduced the occurrence of mismatches,

enhancing the system’s adaptability for more accurate localization and navigation in com-

plex indoor environments. The proposed method effectively enhances localization accuracy

and system practicality in visually similar indoor environments, offering a new direction for

the development of visual SLAM technology and holding significant application potential in

intelligent robots and indoor navigation systems.

1. Introduction

Simultaneous Localization and Mapping (SLAM) refers to the ability of an intelligent agent to

build an environmental model and assess its motion state while navigating an unknown
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environment using specific sensors [1, 2]. The core of visual SLAM technology lies in accurate

self-localization and the construction of environmental maps, forming the foundation and

central component of numerous robotic functionalities [3–5] However, in high similarity

scenes, such as long corridors or halls with repetitive structures, traditional visual SLAM sys-

tems face challenges in recognition and localization accuracy [6, 7]. The high degree of similar-

ity in these environments increases the difficulty of loop closure detection, a critical

component of visual SLAM that determines whether the robot has returned to a previously vis-

ited location. In visual SLAM systems, loop closure detection compares current visual data

with historical information to identify revisited positions, helping to correct localization drift

caused by accumulated sensor errors. This technique is essential for improving localization

accuracy and system stability. In this study, we focus specifically on highly similar indoor envi-

ronments, where we improve traditional loop closure detection methods by integrating deep

learning techniques to enhance the system’s adaptability to environmental changes and reduce

false positives.

Although visual SLAM technology has made significant progress in areas such as dynamic

environment detection and spherical image recognition [8–10], its application in high similar-

ity scenes remains a notable challenge. Traditional loop closure detection algorithms face two

major issues in these environments. First, the issue of mismatches caused by highly repetitive

environmental features. In environments such as long corridors, where visual feature points

lack sufficient distinctiveness, traditional loop closure detection algorithms struggle to accu-

rately distinguish spatial positions [11]. Second, the sensitivity of these algorithms to minor

visual changes, as even slight variations in lighting or camera angles can impact the stability of

feature extraction, thereby reducing the accuracy of loop closure detection [12]. While some

researchers have attempted to incorporate deep learning techniques into visual SLAM systems

to enhance feature extraction capabilities, solutions targeting high similarity scenes have yet to

fully address the issues of mismatches and localization drift.

The primary issue addressed in this study is: how can the traditional loop closure detection

algorithm be improved by integrating deep learning techniques to enhance the localization

accuracy and robustness of visual SLAM systems in high similarity scenes? To tackle this prob-

lem, the study proposes a novel visual SLAM algorithm combined with loop closure detection,

specifically designed to address the precise localization challenges in high similarity scenes.

Considering that ORB-SLAM2 often suffers from trajectory drift and inaccurate localization

due to insufficient feature point matching mechanisms, making it difficult to achieve precise

localization in highly similar environments, this research introduces deep learning techniques

to enhance the feature recognition and matching capabilities of traditional loop closure detec-

tion algorithms. By leveraging convolutional neural networks (CNNs), the system can effi-

ciently learn and extract high-level features from images, significantly improving scene

differentiation. The deep learning model also performs complex semantic analysis, reducing

the probability of mismatches in visually similar scenes. Additionally, we implemented

improved feature extraction and matching mechanisms, combined with real-time perfor-

mance optimization techniques, to ensure the system’s practicality and efficiency. The contri-

bution of this study lies in the development of a loop closure detection algorithm enhanced

with deep learning, which significantly improves the feature extraction and matching capabili-

ties of visual SLAM systems in high similarity scenes. Moreover, this research enhances the

localization accuracy of visual SLAM systems in highly similar indoor environments, greatly

expanding the potential applications of robots in commercial and industrial settings, especially

in spaces with complex structures or repetitive layouts.
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2. Literature review

2.1 Visual SLAM

Since its introduction in 1986, SLAM technology has accumulated nearly four decades of

research history [13]. Early developments in SLAM primarily focused on Structure from

Motion (SfM) techniques, leading to the emergence of visual SLAM systems such as Mono-

SLAM, which marked a shift from traditional offline map-building methods to real-time mon-

ocular camera localization [14]. Subsequently, the Parallel Tracking and Mapping (PTAM)

technology further advanced SLAM by enabling the parallel processing of localization and

mapping for the first time [15], a concept that has become central to modern visual SLAM sys-

tems. PTAM was also the first system to implement a nonlinear optimization approach, which

has had a profound impact on the subsequent development of SLAM technology [16]

With the rise of deep learning technologies, visual SLAM systems began to adopt hand-

crafted algorithms such as SIFT, SURF, and ORB for feature tracking [17–19]. Among them,

the ORB algorithm has been widely used in multiple systems, including ORB-SLAM, due to its

fast speed and low memory requirements [20]. However, compared to some deep learning-

based local feature algorithms, ORB still lags behind in terms of descriptor discriminability

and robustness. Currently, many deep learning-based local feature algorithms have been

applied to the front-end of visual SLAM systems. In the visual front-end, feature tracking relies

on the camera to capture the surrounding environment. Traditional descriptor-based feature

matching methods perform well under significant variations in lighting and texture, but add-

ing descriptors increases computational cost and introduces instability. By combining sparse

optical flow tracking with Shi-Tomasi corner detection to replace the use of descriptors, better

stability can be achieved in challenging lighting and texture conditions while maintaining low

computational cost [21]. Moreover, traditional SLAM modules are increasingly being inte-

grated with deep learning techniques, which is a current trend in research and signals the con-

tinued advancement and evolution of visual SLAM technology [22]. The incorporation of

deep learning models has significantly enhanced the robustness and real-time performance of

SLAM systems in dynamic scenes, demonstrating the great potential of deep learning to

improve environmental understanding and scene adaptability in SLAM algorithms [23].

After years of research and advancements, visual SLAM technology has developed a well-

established structural framework. A typical visual SLAM system consists of five core compo-

nents: visual sensors, visual odometry, a back-end optimization module, loop closure detec-

tion, and map construction [24]. The primary function of visual sensors is to capture image

data for the visual SLAM system, with the main types including monocular cameras, stereo

cameras, and RGB-D cameras. Visual odometry, also known as the front-end odometry, calcu-

lates the camera’s position by analyzing the transformations between consecutive image

frames, thereby tracking the camera’s movement trajectory. The integration of multiple sensor

data (such as cameras and LiDAR) can effectively improve SLAM system performance in com-

plex environments. In the future, visual SLAM technology is expected to evolve towards

resource-constrained platforms and long-term map building [25].

Visual SLAM methods, due to their low cost, lightweight nature, and rich environmental

representation capabilities, are superior to traditional LiDAR-based approaches. However,

visual SLAM still faces limitations when dealing with dynamic scenes and challenging lighting

conditions [26]. Therefore, it is necessary to further explore the latest fusion strategies in

visual-based SLAM algorithms, with a particular emphasis on the potential of combining deep

learning with SLAM systems. This study will delve into the application of integrating visual

SLAM technology with loop closure detection. The purpose of loop closure detection is to

determine whether the camera has revisited the same location within the map and to use this
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information to optimize pose estimation. As mobile robots move, they must not only perform

localization but also use the captured image data and their motion trajectories to construct an

environmental map. Currently, visual SLAM is primarily used to build sparse landmark maps.

2.2 loop closure detection algorithm

loop closure detection is crucial for visual SLAM systems, especially in the face of complex

environments with drastic changes in viewpoints, lighting, and seasons, where it plays a central

role in maintaining algorithm robustness. Effective loop closure detection recognizes and con-

firms whether the camera has passed through a previously visited location, which is crucial to

reduce the cumulative error in position estimation [27]. Loop closure detection techniques fall

into two main categories: visual bag-of-words-based models and deep learning-based models.

The visual bag-of-words model is implemented by creating a dictionary containing multiple

visual words that are extracted from a large number of images and formed by K-means++ clus-

tering. In performing loop closure detection, the system determines whether a loopback has

occurred by comparing the similarity between the description vector of the current image and

the historical image vector [28]. Although this approach may fail in environments dealing with

sparse features or weak textures, it is nevertheless still a traditional technique used in many

visual SLAM systems [29].

In recent years, the introduction of deep learning techniques has provided a new perspec-

tive on loop closure detection. The concept of deep learning, first proposed by Hinton in 2006,

with its unsupervised learning algorithms based on deep confidence networks and layer-by-

layer optimization, has been widely used for high-level feature extraction of images [30]. These

deep learning-based loop closure detection methods, such as the use of convolutional neural

networks and self-encoders, show greater robustness than traditional methods due to their

ability to efficiently handle image changes under illumination and viewpoint transformations

[31, 32]. However, these techniques require high computational resources, and their applica-

tion is still challenging in scenes with high real-time requirements or limited resources.

In addition, in order to further improve the efficiency and accuracy of loop closure detec-

tion, some researchers have begun to explore methods that fuse traditional image acquisition

methods with novel sensing technologies. For example, methods employing RFID, ultra-wide-

band, and ultrasonic technologies for localization have been proposed one after another. By

integrating multiple sensors, these techniques enable robots to accurately detect loopbacks in a

given scene, effectively eliminating position drift errors and thus improving localization and

navigation accuracy [33, 34]. However, the introduction of more sensors not only increases

the complexity of device collaboration and data transmission, but also requires pre-positioning

of auxiliary localization devices in the environment, which limits the robot’s ability to operate

in unspecifically arranged environments, and in environments with multiple dynamics, the

sensor’s localization accuracy is susceptible to factors such as occlusion.

2.3 Visual localization methods in complex indoor scenes

Indoor environments are more narrow and variable compared to outdoor ones, and these vari-

ations have a large impact at the global level. The lack of texture in most indoor scenes leads to

a large concentration of feature retrieval in small regions of the image during visual localiza-

tion, which in turn affects the robustness of the localization system during the pose optimiza-

tion phase, requiring multiple iterations. In addition, the fast changing dynamics of indoor

environments, as well as the complexity, symmetry, and similarity of indoor buildings, all have

an impact on the accuracy and efficiency of matching the 2D features of the image with the 3D

point cloud of the scene.
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In structure-from-motion (SfM)-based algorithms for generating 3D point clouds for

indoor visual localization, high localization accuracy has been achieved by matching local fea-

tures of 2D images for pre-scene reconstruction and matching local features of the query

image with the scene structure during the localization phase [35]. However, the traditional

local feature matching method is not capable of coping with large-scale complex indoor scenes,

because with the expansion and complexity of the indoor environment, the 3D model becomes

larger, which takes more time in matching the query image and tends to increase the propor-

tion of outliers and the iteration time of the RANSAC algorithm, especially in the complex

scenes with large viewing angles, wide baselines, and changes in viewpoints, which makes it

difficult to realize the efficient and accurate visual localization [36].

By using Gist global features for global search, limiting the search area, and then perform-

ing exact matching by detail-rich local features, both accurate and efficient visual localization

is achieved, avoiding the high computational cost of global search [37]. On this basis, Redžić
et al. (2020) proposed a visual localization strategy based on the plain Bayesian algorithm,

which effectively improves the average localization accuracy in indoor scenes when high-preci-

sion localization is required through a lightweight threshold fusion method and a position esti-

mation method based on particle filtering [38]. In addition, Lu et al. (2018) improved the way

of storing and retrieving image features, and realized fast and accurate localization of query

images by storing global features through the constructed KD-Tree [39]. Although partitioning

and limiting the image search region can significantly reduce the time cost of localization, it

may also reduce the chance of finding the best matching descriptor for the query image, as the

excluded feature library region may contain matching feature descriptors, which reduces the

localization accuracy. Gopalan et al. (2015) proposed a hierarchical sparse coding method

based on geometric priors, which is aimed at avoiding the problem of database partition

retrieval that affects the localization effect in complex scenes, learns features useful in location

recognition through Grassmann manifolds, achieves sparse coding of image representations,

and improves the localization efficiency through hierarchical clustering retrieval [40]. The out-

lier screening and iterative process in image feature matching also drastically reduces the time-

liness of visual localization in scenes with large illumination changes or low light.

3. Loop closure detection algorithm design forhigh similarity

scenes

3.1 loop closure detection process

In the loop closure detection component of visual SLAM systems, the core challenge is accu-

rately estimating the similarity between images. This study utilizes an encoder network to

extract feature information from images. By inputting the currently captured image into this

encoder, a feature vector is generated. The similarity between this feature vector and those

stored in the database is then compared to determine whether the robot has encountered a

loop closure.

However, comparing each image with all feature vectors in the database would impose a

significant computational burden, which is not only time-consuming but also affects system

performance and could potentially disrupt the normal operation of other components within

the visual SLAM system. To address this issue, this study proposes a dual-layer similarity

assessment structure along with an efficient feature vector storage scheme. This approach

ensures accuracy while meeting the system’s real-time requirements. The design of this struc-

ture aims to optimize the use of computational resources, thereby enhancing the overall per-

formance and reliability of the system.
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3.1.1 loop closure detection framework. The loop closure detection algorithm is a key

component in the visual SLAM system, which consists of the following four main steps:

1. Performs pre-processing operations on the captured image data, which includes resizing

the image and enhancing the contrast so that the image can be better utilized for subsequent

processing.

2. Extract feature vectors from the processed images using the already trained self-coder net-

work and store these vectors with the feature vectors of the historical frames to provide a

data base for subsequent comparisons.

3. A preliminary feature matching technique based on the RANSAC algorithm is used to com-

pare the feature vectors of the current frame with those of the historical frames. Based on

the quality of matching, the three historical frame feature vectors with the highest similarity

are selected for further analysis.

4. An accurate similarity calculation is performed between the current frame and the three

selected history frames, and if the calculation result exceeds a preset threshold, it is deter-

mined that a loopback has occurred, i.e., the robot re-enters the previous position.

In order to improve the efficiency of the system and prevent processing delays, the third

step in the algorithm (preliminary matching of feature vectors) is designed to be executed in a

separate thread in parallel with the other steps (image preprocessing, feature extraction, and

exact similarity computation). This parallel computing structure effectively avoids data pro-

cessing bottlenecks and ensures the algorithm’s efficiency and real-time performance. With

this strategy, the performance of the visual SLAM system can be substantially improved to

ensure its stable operation in dynamic environments. The overall flow of the algorithm is

shown in Fig 1.

3.1.2 Image pre-processing. An autoencoder (AE) is an unsupervised neural network

commonly used for data compression and feature extraction. Its operation involves two main

steps: first, the encoder transforms the input data into a low-dimensional latent space repre-

sentation, known as a feature vector; then, the decoder attempts to reconstruct the original

input data from this feature vector. Through this process, the autoencoder learns efficient data

compression representations. In the context of visual SLAM (Simultaneous Localization and

Mapping), feature vectors play a crucial role in loop closure detection, primarily used for com-

paring the similarity between different images. The feature vectors generated by the autoenco-

der are particularly well-suited for scene recognition and repeated location detection due to

their advantages in data compression and key feature extraction. In these applications, cosine

similarity is widely used to measure the similarity between feature vectors. Cosine similarity

assesses similarity by calculating the angle between vectors, effectively identifying visually sim-

ilar scenes. An important advantage of using cosine similarity is that its result is unaffected by

vector length, focusing solely on the directional relationship between vectors. This is particu-

larly important when evaluating image content similarity, where this method excels in accu-

rately recognizing visually similar images and locations, especially in indoor SLAM scenarios

with high visual redundancy. Given that the input to an autoencoder network requires a fixed

size, all images in this experiment were uniformly resized to a resolution of 360×480 pixels.

This step is essential because images from different datasets vary in size, and standardizing

image dimensions helps maintain the consistency and efficiency of the autoencoder network’s

processing.

In order to reduce the effect of ambient lighting on the performance of the algorithm and

to enhance the recognizability of details and features in the image, this study further applies
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Fig 1. Flowchart of loop closure judgment.

https://doi.org/10.1371/journal.pone.0312358.g001
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contrast enhancement to the resized image. In this paper, Histogram Equalization (HE) tech-

nique is used. The core of this technique is to redistribute the pixel intensity distribution of the

image to achieve a more uniform intensity distribution, thus enhancing the contrast of the

entire image. In this way, the lines and element boundaries of the image will become more

prominent, thus facilitating more efficient extraction of feature vectors by the self-encoder net-

work. Histogram equalization not only improves the usability of the image, but also provides a

more accurate data base for subsequent feature matching and loop closure detection. The

main steps are as follows:

Calculate the histogram of the input image and count the frequency of occurrence of each

gray level:

hðkÞ ¼ nk ð1Þ

PðkÞ ¼
nk

N
ð2Þ

Where k represents the gray level and there are k 2 [0,255], nk is the number of pixels in the

image whose gray level is k N is the number of pixels in the image.

Calculate the histogram cumulative distribution frequency:

Sk ¼
Xk

i¼0

PðkÞ ¼
Xk

i¼0

nk

N
ð3Þ

Calculate the equalization factor:

Ek ¼ Sk � 255 ð4Þ

An equalization transformation is performed for each pixel, i.e., all pixels with a gray level

of k are transformed to pixels with a gray value of Ek.

3.1.3 Feature vector extraction with segmented storage structure. In this study, an

innovative segmented storage structure is proposed for the feature vector storage problem of

loop closure detection algorithms, aiming to improve the storage efficiency and optimize the

use of computational resources. Compared with the traditional bag-of-words model-based K-

fork tree storage method, the storage structure designed in this paper is more suitable to cope

with the practical requirements in robot visual SLAM systems (Fig 2).

In the storage structure proposed in this paper, the feature vectors are stored in groups,

with each hundred feature vectors constituting a group (Group), and each group is further

subdivided into ten queues (Queue), with each queue containing the feature vectors of ten

images. The advantage of this design is that it takes into account the high similarity of the

scene covered by the ten images taken consecutively by the robot during its actual movement,

and therefore, the feature vectors of these images are assigned to the same queue.

The core advantage of this storage method is its efficient data organization structure, which

makes it possible to quickly filter out historical data segments that have changed significantly

from the current frame scene when performing loop closure detection, and perform a detailed

search only within data cohorts or groups that have a high probability of being similar. This

not only reduces unnecessary calculations, but also significantly improves the speed and accu-

racy of loop closure detection. Another benefit that segmented storage brings at the same time

is that it avoids the waste of computational resources caused by successive scene detection to a

certain extent, as images within the same queue can be assumed to have high similarity without

the need to perform a comprehensive loop closure detection for every frame.
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3.1.4 RANSAC feature initial matching algorithm. The RANSAC algorithm employs an

iterative strategy aimed at estimating the parameters of a mathematical model from a set of

observations containing outliers, and is widely used in fields such as data fitting and image

processing. The accuracy of the algorithm is improved by increasing the number of iterations,

which is essentially a probabilistic algorithm. Its core method is to randomly select a subset of

the data from the entire data, use these sample points to estimate the model parameters, and

then use the resulting model to validate the other data points. For any data point, if its devia-

tion from the model is within a preset threshold, the point is considered as an in-group; other-

wise, it is considered as an out-group.RANSAC repeats the above process for a predetermined

number of iterations, and ultimately selects the model with the most in-groups as the optimal

estimation. In the application scenario of feature vector matching, the strategy of RANSAC is

shown in the pseudo-code, which is detailed in Table 1.

The specific steps of the RANSAC feature preliminary matching algorithm are as follows:

From a store with historical frame feature vectors, a specific vector within a group is ran-

domly selected. This selection method is typically used to deal with scenarios that require time

series analysis:

y1; y2; y3; :::; y9; y10 2 Y ð5Þ

Calculate the difference between the feature vector of the current frame and each of the fea-

ture vectors in a certain group, with the purpose of finding the vector with the smallest

Fig 2. Storage structure of feature vectors.

https://doi.org/10.1371/journal.pone.0312358.g002
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difference from the features of the current frame. The specific operation is as follows:

m ¼ argminjjx � yjj; j 2 ½1; 10� ð6Þ

where x is the feature vector of the current frame and yj is the history frame feature vector.

Calculate the confidence of matching the minimum difference feature vector with the cur-

rent frame:

S x; ymð Þ ¼
x � ym

k x kk ym k
¼

XK

k¼1
xk � ymk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1
xkð Þ

2

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1
ymkð Þ

2

q ð7Þ

Where K is the length of the feature vector, the feature vector is x = [x1,x2,. . .,xK], yj = [yj1,

yj2,. . .,yjK]. The matching confidence is S(x,ym) 2 [0,1], and its value is close to 1, which repre-

sents the higher matching of the image building features.

3.1.5 Precise calculation of similarity. After performing feature matching based on the

RANSAC algorithm, this study successfully identified three images of historical frames that

matched well with the current frame. The next step is to perform a more accurate similarity

analysis of these initial matching results. Given the high demand for accuracy in the processing

stage of the algorithm, we adopted the Normalized Cross-Correlation (NCC) method for the

Table 1. Preliminary matching algorithm for RANSAC features.

# Initialization of variables

L =. . . # The value for L needs to be specified or obtained from input

List = []

# Assuming that the function Y returns a list of 10 vectors and other necessary functions are defined

def Y(G, Q).

# The specific implementation of this function should return 10 vectors

return [. . .]

def cosine_similarity(v1, v2).

# Calculate the cosine similarity between two vectors

dot_product = np.dot(v1, v2)

norm_v1 = np.linalg.norm(v1)

norm_v2 = np.linalg.norm(v2)

return dot_product / (norm_v1 * norm_v2)

def find_top_3_vectors(x, vectors).

# Calculate the cosine similarity for each vector with x and keep the top three

top_vectors = []

for v in vectors:

similarity = cosine_similarity(x, v)

if similarity > 0.6.

top_vectors.append((similarity, v))

top_vectors.sort(key = lambda pair: pair[0], reverse = True)

return top_vectors[:3]

# Main body of the algorithm

for i in range(L):

G = random.randint(1, math.ceil(M/100)) # The value of M needs to be defined

Q = random.randint(1,10)

Y_vectors = Y(G, Q) # Assuming Y returns a list of vectors

# Find the top three vectors with the highest similarity to x

top_3 = find_top_3_vectors(x, Y_vectors)

# Add the results to List (if necessary, this step depends on the purpose of List)

List.extend(top_3)

# If needed, sort the entire List and extract the final results (this depends on the intended use of List)

List.sort(key = lambda pair: pair[0], reverse = True)

z1, z2, z3 = [vector for _, vector in List[:3]]

# Output

print(z1, z2, z3)

https://doi.org/10.1371/journal.pone.0312358.t001
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accurate calculation of similarity. Normalized cross-correlation is a technique for evaluating

the correlation between two vectors or samples of the same dimension, which is particularly

applicable to the fields of image processing and pattern recognition.

The normalized inter-correlation method provides a more accurate and reliable similarity

assessment by eliminating the effect of signal strength through the normalization process. This

method, although computationally expensive, significantly outperforms computational speed

considerations in terms of its high accuracy since only a limited number of three historical

frame images need to be processed in this study. The steps are as follows.

In order to accurately calculate the similarity between the current frame feature vector x
and a certain history frame feature vector y, the following steps can be followed:

mx ¼
1

K
�
XK

k¼1

xk ð8Þ

my ¼
1

K
�
XK

k¼1

yk ð9Þ

where K is the length of the feature vector x = [x1,x2,. . .,xK], y = [y1,y2,. . .,yK].

The standard deviation of the eigenvectors is:

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K
�
XK

k¼1

xk � mxð Þ
2

s

ð10Þ

sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K
∗
XK

k¼1

yk � my

� �2

s

ð11Þ

The covariance of the eigenvectors is:

Covðx; yÞ ¼
1

K
�
XK

i¼1

ðxi � mxÞ�ðyi � myÞ ð12Þ

The correlation coefficients of the eigenvectors are:

NCCðx; yÞ ¼
Covðx; yÞ
s�xsy

ð13Þ

The final obtained value of NCC(x,y) represents the similarity between the current frame

feature vector x and the history frame feature vector y, and there is NCC(x,y) 2 [–1,1], the

larger the value means the higher the similarity.

3.2 Experimental tests

3.2.1 Experimental setting and data set sources. The experiment utilized datasets featur-

ing high similarity scenes, focusing on the TUM f3 loh dataset, Lip6 Indoor dataset, and

Bicocca Indoor dataset, which primarily reflect complex office environments. The TUM f3 loh

dataset, developed by the Computer visual Group at the Technical University of Munich, is

well-suited for various image recognition tasks. Data collection was performed using a high-

resolution RGB-D camera equipped with precision motion sensors, capable of simultaneously

capturing color and depth images while recording the camera’s exact motion trajectory. This

dataset captures highly complex office environments, including repetitive objects and
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structures such as desks, chairs, and cabinets. The high degree of similarity in objects and lay-

outs in these scenes can easily lead to feature matching confusion in visual SLAM systems, pre-

senting significant challenges for localization accuracy. The Lip6 Indoor dataset primarily

includes multiple complex indoor environments, such as corridors, offices, and laboratories.

Its high level of spatial similarity and repetitiveness often poses major challenges for visual-

based localization methods. Therefore, selecting this dataset is advantageous for validating the

accuracy and robustness of the algorithm when dealing with indoor scenes characterized by

highly repetitive structures. The Bicocca Indoor dataset, on the other hand, offers a different

type of indoor environment, featuring more open spaces and complex geometric structures.

This dataset includes large public areas and diverse indoor decorations, which help evaluate

the algorithm’s adaptability and performance in dynamic environments. The combination of

these datasets, with their varying degrees of scene similarity, provides a robust foundation for

testing the improved algorithm’s localization accuracy and robustness in visual SLAM systems.

In the experiment, data recorded using an ASUS Xtion sensor was utilized. The sensor

moved along a circular path through multi-textured, multi-structured home and office scenes,

forming a loop between the start and end points. The experimental setup included an Intel

Core i5-9400F @ 2.90GHz six-core CPU, 16 GB of RAM, and an Nvidia GeForce GTX 1050 Ti

4 GB GPU. The software environment consisted of a 64-bit Ubuntu 16.04 LTS operating sys-

tem, with CUDA 11.7.1, CUDNN 8.5.0.96, Pytorch 1.13.0, and Python 3.9.

3.2.2 Evaluation indicators and test settings. The experimental evaluation metrics gen-

erate the corresponding precision-recall curves from the precision and recall of the algorithms

and calculate the area enclosed between the curves and the axes, which are used to comprehen-

sively evaluate the detection effect of the algorithms. Considering that the accuracy of loop clo-

sure detection is crucial for camera position correction in visual SLAM systems, wrong loop

closure detection (false positives) may lead to serious position errors. Therefore, this study par-

ticularly emphasizes the recall rate in the case where the algorithm accuracy is close to 1 as an

important evaluation metric.

In order to comprehensively evaluate the effect of the proposed method, the experimental

design includes four comparison algorithms: firstly, the ORB-SLAM2 algorithm based on the

improved bag-of-words model; secondly, the FLID++ and Dark Net algorithms applying the

deep learning technique; and finally, the HOG algorithm verifying the effect of self-encoder

neural network feature extraction. In the HOG algorithm, only the encoder feature extraction

part of the original algorithm flow is replaced with the HOG descriptor, while the other parts

remain unchanged, thus ensuring an accurate comparison of the feature extraction effect in

the experiment. This comparison design not only helps to evaluate the efficacy of different

algorithms, but also facilitates to reveal the performance of each algorithm in the practical

application of visual SLAM systems.

3.2.3 Analysis of results. In order to investigate the effect of the number of iterations on

the experimental results during the initial matching of features based on the RANSAC algo-

rithm, a series of experiments were designed in this study with multiple rounds of testing by

adjusting the number of iterations. These tests aim to determine the optimal number of itera-

tions to achieve the best balance between matching efficiency and accuracy. The experimental

results are expressed quantitatively through precision-recall (P-R) curves and area under the

curve (AUC), the specific P-R curves are displayed in Figs 3–5 in the text, while the numerical

results of AUC are summarized in Table 2.

In order to fully evaluate the impact of the number of iterations on the performance of the

algorithm, the experiments also recorded in detail the average response time required by the

algorithm to process each image frame under different iteration number conditions. These

data were counted in detail and presented in Table 3. In order to more intuitively analyze the
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Fig 3. P-R curves of TUM_fr3_loh dataset with different number of iterations.

https://doi.org/10.1371/journal.pone.0312358.g003

Fig 5. P-R curves of Bicocca Indoor dataset with different number of iterations.

https://doi.org/10.1371/journal.pone.0312358.g005

Fig 4. P-R curves of Lip6 Indoor dataset with different number of iterations.

https://doi.org/10.1371/journal.pone.0312358.g004
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relationship between the number of iterations and the response time, the experimental results

were also used to generate time variation curves, which are presented in Fig 6.

From the analysis of the experimental results, it can be seen that at a smaller number of iter-

ations, the accuracy of the RANSAC-based feature preliminary matching algorithm improves

significantly as the number of iterations increases. However, the performance of the algorithm

stabilizes when the number of iterations increases to 50, indicating that the algorithm has been

effective in finding matching results that satisfy the conditions within the range of no more

than 50 iterations. In addition, the curve of the number of iterations versus time consumption

illustrated in Fig 6 shows that the increase in time consumption is not linear, but rather exhib-

its a relatively large increase with the increase in the number of iterations.

Table 2. Area of the P-R curve sandwiched by the axes at different iteration times.

AUC 10 20 30 40 50 60 70

TUM_fr3_loh 0.5199 0.6720 0.7613 0.7976 0.8221 0.8356 0.8391

Lip6 Indoor 0.4989 0.6483 0.7637 0.7954 0.8321 0.8449 0.8483

Bicocca Indoor 0.5800 0.6939 0.7700 0.8078 0.8334 0.8423 0.8460

https://doi.org/10.1371/journal.pone.0312358.t002

Table 3. Comparison of algorithm performance for different number of iterations.

timing 10 20 30 40 50 60 70

TUM_fr3_loh 41.34 42.73 44.49 47.50 51.23 57.71 64.93

Lip6 Indoor 39.82 41.74 43.38 46.13 49.74 55.95 63.56

Bicocca Indoor 40.50 42.36 44.36 47.13 50.52 55.30 64.64

https://doi.org/10.1371/journal.pone.0312358.t003

Fig 6. Time variation curves for different number of iterations.

https://doi.org/10.1371/journal.pone.0312358.g006
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Specifically, when the number of iterations exceeds 50, the time cost increases by nearly

11%, despite the fact that the algorithmic accuracy only improves by about 1%. This sharp

drop in efficiency suggests that setting the number of iterations to 50 is a more desirable bal-

ance in visual SLAM systems. This ensures that the algorithm accuracy meets the system

requirements, while also controlling the time cost within a reasonable range and avoiding the

waste of resources caused by too many iterations. Therefore, in order to optimize the balance

between performance and efficiency, it is recommended that the number of iterations of the

RANSAC algorithm be set at 50.

To comprehensively evaluate the performance of our proposed visual SLAM loop closure

detection method, we conducted experiments comparing it with six representative algorithms:

ORB-SLAM2, SqueezeNet, DarkNet, HOG (Histogram of Oriented Gradients), NetVLAD,

and GeM. ORB-SLAM2 is one of the most influential algorithms in the current visual SLAM

field, widely used for localization and mapping tasks in various indoor and outdoor environ-

ments due to its use of ORB features, which offer high computational efficiency and good real-

time performance. Its efficient feature extraction and matching mechanism have made it a

classic benchmark algorithm in numerous studies. By selecting ORB-SLAM2 as the compara-

tive benchmark, the performance improvements of the proposed enhanced algorithm, particu-

larly in handling high similarity scenes, can be effectively validated. However, ORB-SLAM2

often encounters feature matching errors in high similarity scenes, leading to a decrease in

localization accuracy. This limitation provides an opportunity for the proposed deep learning-

enhanced algorithm to demonstrate its superior performance in feature extraction, matching

accuracy, and localization precision. Therefore, using ORB-SLAM2 as the benchmark ensures

scientific rigor and fairness in comparison, while highlighting the innovation and adaptability

of the proposed algorithm in complex environments. SqueezeNet is a lightweight convolu-

tional neural network known for its small model size and high computational efficiency. We

included SqueezeNet in the comparison to assess the performance of our algorithm relative to

an efficient neural network model in resource-constrained environments. DarkNet, proposed

by Guo et al. (2021) is a loop closure detection algorithm based on a deep residual network

[41]. It uses an improved triplet loss function to optimize feature extraction, constructing a

feature matrix for images and detecting loop closures by calculating cosine similarity. DarkNet

was chosen as a comparative algorithm to showcase the application and potential of deep

learning techniques in visual SLAM loop closure detection. HOG is a classic image feature

descriptor commonly used in object detection. Comparing our method with the HOG algo-

rithm allows us to evaluate the performance differences between traditional feature extraction

methods and our deep learning-based approach in complex environments. NetVLAD is a

deep learning model specifically designed for image retrieval and loop closure detection. It

maps input images into a compact vector space with strong feature representation capabilities,

aggregating local features into a global descriptor by simulating the bag-of-words model. By

comparing our method with NetVLAD, we can assess the global feature extraction capabilities

of our approach in image retrieval and loop closure detection tasks. GeM (Generalized Mean

Pooling) is a more advanced pooling method used to extract global features from images. It

introduces adjustable parameters on top of traditional max-pooling and average-pooling tech-

niques, enabling the pooling process to adapt to different feature distributions. By including

GeM as a comparative algorithm, we can evaluate the ability of our method to aggregate image

features in various scenarios and demonstrate its potential for application in complex

environments.

By continuously adjusting the set similarity thresholds, paired data can be obtained for vari-

ous recall and accuracy rates. This experiment involved three datasets and the results of the
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P-R (Precision-Recall) curves are shown in Figs 7–9. The area enclosed under the P-R curve

and the area formed by the axes were also counted and the results are recorded in Table 4.

Through comparative analysis, the proposed method consistently achieved an AUC value

exceeding 0.83 across all three datasets, outperforming the second-best GeM algorithm by

approximately 3% and surpassing the ORB-SLAM2 algorithm by around 28%. Although our

method exhibited a lower recall rate compared to the GeM and NetVLAD algorithms when

precision dropped to about 0.8 in the TUM_fr3_loh and Lip6 Indoor datasets, the primary

focus of this study was to maintain a high recall rate while ensuring high precision. In multi-

class algorithm testing, our method maintained 100% precision at a recall rate of 35%. Even at

a 70% recall rate, the accuracy of our method remained above 0.8 in the Lip6 Indoor and

Bicocca Indoor datasets, and it stayed above 0.75 in the TUM_fr3_loh dataset, demonstrating

greater stability and accuracy compared to other algorithms. Additionally, the autoencoder-

Fig 7. P-R curve of TUM_fr3_loh dataset.

https://doi.org/10.1371/journal.pone.0312358.g007
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based feature extraction network designed in this study exhibited superior performance com-

pared to algorithms utilizing traditional HOG descriptors. This advantage can be attributed to

the fact that, despite using HOG descriptors for comparison training, our method employed a

randomized projection transformation algorithm for image preprocessing. This preprocessing

step enhanced the network’s adaptability to slight changes in perspective, enabling it to effec-

tively extract consistent feature vectors even in the presence of minor image jitter—an aspect

that is particularly crucial for loop closure detection tasks.

By comparing the performance of the algorithms on the three datasets longitudinally, it can

be observed that the method proposed in this study performs better on the BicoccaIndoor and

Lip6 Indoor datasets, with an AUC value of more than 0.81. Comparatively, the algorithm’s

performance on the TUM f3 loh dataset is slightly less impressive. This phenomenon may

Fig 8. P-R curve for Lip6 Indoor dataset.

https://doi.org/10.1371/journal.pone.0312358.g008
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stem from the fact that the environment of the TUM G3 loh dataset is predominantly an office

scene, which includes complex desktop layouts with items such as computers, flower pots, and

bookshelves, which may interfere with the algorithm’s recognition ability. In contrast, the

BicoccaIndoor and Lip6 Indoor datasets mainly contain scenes in the category of corridor pas-

sages, and although the similarity between the scenes is high, their overall geometric elements

are relatively simple, making feature extraction relatively easy, which facilitates the algorithm’s

performance.

In addition to comparing the accuracy profiles of the algorithms on the three datasets, the

experiments also statistically evaluated the temporal performance by counting the average

response time of each algorithm for each image, and the statistical results are shown in

Table 5.

In visual SLAM systems, a processing speed exceeding 10 frames per second is required,

meaning that the processing time per output image should be less than 100 milliseconds per

frame. According to the data presented in Table 5, the proposed algorithm achieves a

Table 5. Algorithm performance comparison (ms/frame).

Our Method ORB-SLAM2 SqueezeNet Dark Net HOG GeM NetVLAD

TUM_fr3_loh 51.23 39.98 56.56 48.28 46.13 50.26 51.33

Lip6 Indoor 49.74 38.56 52.53 46.11 44.49 50.01 55.69

Bicocca Indoor 50.52 40.10 55.05 48.77 45.39 52.17 53.41

https://doi.org/10.1371/journal.pone.0312358.t005

Fig 9. P-R curve for the Bicocca Indoor dataset.

https://doi.org/10.1371/journal.pone.0312358.g009

Table 4. Area of the P-R curve sandwiched between the axes.

AUC Our Method ORB-SLAM2 SqueezeNet Dark Net HOG GeM NetVLAD

TUM_fr3_loh 0.8221 0.6566 0.7911 0.8020 0.7498 0.8103 0.8074

Lip6 Indoor 0.8321 0.6428 0.7988 0.8061 0.7562 0.8142 0.8093

Bicocca Indoor 0.8334 0.6362 0.7993 0.8059 0.7435 0.8195 0.8069

https://doi.org/10.1371/journal.pone.0312358.t004
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processing time of 49 milliseconds per frame, which clearly meets the real-time requirements

of visual SLAM systems. While ORB-SLAM2 demonstrated the best performance in terms of

speed, our method’s processing time increased by 25% compared to ORB-SLAM2. However,

this increase in processing time is accompanied by a 28% improvement in detection accuracy.

Compared to other deep neural network-based algorithms, although the processing time is

similar, our algorithm demonstrates a significant advantage in detection accuracy. This con-

firms the effectiveness of the proposed method, providing a favorable balance between compu-

tational efficiency and detection performance.

4. Implementation of SLAM accurate inspection system for indoor

visual

4.1 System framework and system architecture

Suppose the robot carrying the camera moves from time t = k-1 to t = k and its position

changes from xk-1 to xk. During this process, the robot captures images of the surrounding

environment through the camera yk-1, yk to obtain environmental information. The visual

SLAM problem can be represented as:

xk ¼ f ðxk� 1; yk� 1; ykÞ ð14Þ

This expression performs the solution of the current position xk by means of the position xk
−1 and the observation yk−1, yk. Where f is a function that describes the visual SLAM process.

The visual SLAM system includes image sensors, front-end visual odometry, back-end opti-

mization algorithms, loop closure detection module and map building module. The image sen-

sor is responsible for capturing the visual information in the environment and providing raw

data for the system. Based on these data, the front-end visual odometry processes the image,

extracts key features, and determines the camera position through feature matching and

motion estimation, a process that is key to positioning accuracy. The map building module

transforms the data obtained from the front-end computation into a 3D scene map in real

time, while the loop closure detection module monitors the similarity between the current

frame and the historical frames to determine whether the robot returns to a previously visited

position. Once a loopback occurs, the back-end optimization algorithm steps in to adjust and

optimize the accuracy of the entire map.

In addition, the system is designed with efficient utilization of computational resources in

mind by dividing the key processing tasks into three parallel threads-tracking thread, map-

building thread, and loopback thread, as shown in Fig 10. Each thread focuses on its specific

task, ensuring that the entire system works together and operates efficiently.

The imaging principle of the RGB camera used in the visual SLAM system can be described

by means of the pinhole model, which is described and illustrated in detail in Fig 11. The pin-

hole model essentially utilizes the principle of small-hole imaging, where an inverted image is

formed by passing through a pinhole followed by an inverted image as a way of simulating

how the camera captures and processes light, and thus estimating the robot’s position and atti-

tude in space.

In Fig 11,O − x − y − z is called the camera coordinate system, and the optical center point

of the camera is set as O, any point in the three-dimensional space P through the optical center

of the projection point on the imaging plane of the camera is P0, after the pinhole projection,

the optical center displayed on the imaging plane of the camera O is set as O0, and the distance

between OO0 is the focal length of the camera f.
In the camera coordinate system, the coordinates of the point P are [X,Y,Z]T and the coor-

dinates of the point P0 are [X0,Y0,Z0]T. According to the geometrical relationship of the imaging
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of the small hole, the spatial relationship between the two points can be obtained:

X0 ¼ f
X
Z

Y 0 ¼ f
Y
Z

8
>><

>>:

ð15Þ

In order to convert the projected image into pixel coordinates, we need to use a pixel coor-

dinate system on the imaging plane o − u − v, where the upper left corner of the image serves

as the coordinate origin, the u-axis is parallel to the x-axis and positive to the right, and the v-

axis is parallel to the y-axis and positive downward.

Fig 10. Overall framework of visual SLAM system.

https://doi.org/10.1371/journal.pone.0312358.g010

Fig 11. Pinhole camera model.

https://doi.org/10.1371/journal.pone.0312358.g011
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Let the pixel coordinate of P0 be [u,v]T, the transformation between the pixel coordinate sys-

tem and the camera coordinate system includes a scaling and translation process, so the spatial

coordinate of the point P0 can be expressed as:

u ¼ aX0 þ cx
v ¼ bY 0 þ cy

(

ð16Þ

where α and β are the scaling multiples on the x-axis and v-axis, respectively, and cx,cy is the

translation distance of the origin o on the corresponding axis.

Let fx = αf, fy = βf, and then expressed in the form of a join matrix, we have:

Z

u

n
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fx 0 cx
0 fy cy
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7
5≜KP ð17Þ

Eqs (5) and (6) depicts the transformation relationship between the pixel coordinates of the

image obtained by the camera at a point in three-dimensional space and the camera coordi-

nates. Where K is referred to as the internal reference matrix of the camera, the establishment

of K, the process of camera calibration, mainly involves the accurate determination of the

internal parameters such as focal length, principal point position and pixel distortion. The

Zhang calibration method used in this study is done with the help of Matlab software and

OpenCV library and includes the following key steps:

1. A tessellated calibration board consisting of two-dimensional squares is photographed

from several different angles;

2. Calculate the single-stressor matrix using the corner points on the checkerboard grid;

3. Calculate the inner and outer reference matrices of the camera based on these matrices;

4. Apply the least squares method to estimate the distortion factor;

5. Minimizing reprojection error for global parameter fine-tuning.

Once calibration is complete, the images captured by the camera undergo initial pre-pro-

cessing such as scale unification and contrast enhancement, which are necessary steps before

the images are fed into the visual odometer for feature extraction.

Visual odometry is a key technology that utilizes camera image sequences to estimate the

relative position and attitude of a robot. Its core principle is to calculate the camera’s motion

trajectory by analyzing the changes of feature points in consecutive image frames, and to

obtain the camera’s integrated motion path by integration method. In the practice of visual

odometry, it is mainly divided into two methods: feature point method and direct method.

The feature point method focuses on extracting salient feature points from an image and deter-

mining the displacement and rotation of the camera through feature matching with subse-

quent motion estimation. The visual SLAM system implemented in this paper adopts the

feature-point method, which consists of key aspects such as feature extraction, feature match-

ing and motion estimation, aiming at accurately tracking and estimating the camera’s motion

in complex environments through these successive processing steps.

The feature extraction session is a key step in visual SLAM, involving the identification of

key points with discriminative ability from images that are essential for subsequent feature

matching and motion estimation. In this process, the robustness, speed, and accuracy of the

algorithms for detecting, describing, and screening feature points must be considered
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comprehensively, and the technique that best suits the specific application scenario and the

available computational resources must be selected. In this study, the ORB feature descriptor is

selected because it possesses scale invariance and rotation invariance, is robust to illumination,

noise and viewpoint changes, and has fast computational speed, which is suitable for fast

matching between consecutive frames. The specific realization steps include:

1. Image pre-processing: before feature extraction, the image is processed with denoising,

scale normalization and contrast enhancement to improve the effect and accuracy of subse-

quent feature extraction;

2. Feature point detection: the ORB algorithm is applied to detect feature points from the pro-

cessed image.

3. Feature point description: the detected feature points are described, and each feature point

is represented by a vector to represent its local features, which facilitates the subsequent

matching process.

4. Feature point filtering: Filter the feature points with the best differentiation and stability

from the detected feature points to speed up the matching speed and reduce the unneces-

sary computation.

The feature matching session, on the other hand, searches for the corresponding feature

points in the two images to determine the relative positional transformations between the two

images. The main steps are divided into two parts: feature point matching and matching point

screening. The former matches the feature points in the two images by calculating the Euclid-

ean distance between the ORB feature descriptors. The latter screens the matching points

based on geometric consistency and descriptor distances to exclude the mis-matched points

and reduce the computational burden.

The motion estimation session utilizes the matched pairs of feature points to calculate the

relative motion between adjacent frames to construct the camera trajectory and the 3D struc-

ture of the scene. In this paper, a monocular camera based on the pinhole model is used for

motion estimation using the 2D-2D pair of poles geometry method. The pair-polar geometry

method estimates the camera motion using poles, which are the intersections of two polar

lines in a pair of stereo images corresponding to the same 3D spatial point, as shown in Fig 12.

In Fig 12, P is a point in three-dimensional space, I1,I2 is the two imaging planes,O1,O2 is the

Fig 12. Geometric constraints on the poles.

https://doi.org/10.1371/journal.pone.0312358.g012
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center of the two cameras, and p1,p2 is the projection of the P point on I1,I2 respectively. Con-

necting O1 O2, the intersection of the line with I1,I2 is e1 and e2 respectively.

In visual SLAM, the key to motion estimation is to solve the position transformation

between two cameras by matching the feature points of the camera images. This process

involves computing the rotation matrix of the right camera with respect to the left camera R
and the translation vector as t.

Let P = [X,Y,Z]r, then the expression for the spatial coordinates of the point p1,p2 is:

p1 ¼ KP ð18Þ

p2 ¼ KðRP þ tÞ ð19Þ

Then, eliminating the value of P in Eq:

K � 1p2 ¼ RK � 1p1 þ t ð20Þ

Simultaneous left-multiplication of the equation left and right by p2
TK � Tt^, and approxi-

mate removal of the zero term, gives:

pT
2
K � Tt^RK � 1p1 ¼ 0 ð21Þ

Set F = K−T t^ RK−1) and there:

pT
2
Fp1 ¼ 0 ð22Þ

Eqs (5)–(11) and (5)–(12) both describe the constraints on the polar geometry, which pro-

vide the basis for the camera pose estimation problem. Specifically, the estimation of camera

pose can be divided into the following two steps: firstly, using the position data of the matched

feature point p1,p2, the corresponding matrix F is computed; secondly, based on F, the rotation

matrix R and the translation vector t between the two frames are further solved.

Thus, the problem of motion estimation between two images is essentially transformed into

a problem of solving the matrix.

1. Solve the matrix F based on the position of the matched feature point p1,p2;

2. Solve for the rotation matrix R and the translation vector t between the two frames based

on the matrix F.

Thus, the problem of motion estimation between two images is essentially transformed into

a problem of solving the matrix.

In practical applications of visual SLAM, the visual odometry at the front end of the system

processes only two consecutive frames of images. However, due to the unavoidable noise and

computational errors in the images, the camera position estimation obtained from the visual

odometry is often inaccurate, which leads to significant drift errors during prolonged motion.

In order to minimize this error and ensure high localization and map building accuracy during

continuous operation, the system needs to introduce loop closure detection and back-end

optimization mechanisms. loop closure detection is used to identify whether there is a closed

loop in the trajectory, while back-end optimization performs trajectory correction based on

the loopback information. In addition, the back-end can use the real-time position data pro-

vided by the visual odometer for fine-tuning and re-positioning in combination with the loop

closure detection results, so as to correct the drift error and obtain a more accurate motion

trajectory.
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Common algorithms for back-end optimization include the extended Kalman filtering

method based on filters and the beam leveling method (Bundle Adjustment, BA) based on

nonlinear optimization. In this study, the beam leveling method is used to optimize the esti-

mated camera position and 3D structure by minimizing the reprojection error, where the

reprojection error refers to the difference between the position predicted based on the visual

odometry and the true position determined based on loop closure detection, which is usually

expressed as:

x ¼
XN

i¼1

ðx2

i � z2

i Þ ð23Þ

where N is the number of feature points in the image and xi,zi denotes the true and predicted

positions of the ith feature point, respectively. The optimization objective, which is to mini-

mize this error, defines the problem as a problem of solving nonlinear least squares.

The loop closure detection part uses an algorithm based on a self-encoder network, and to

avoid wasting resources, the system sets the interval of loop closure detection to every 10

frames. That is, once the loopback is detected, the system will pause the loop closure detection

in the next 10 frames and start again in the 11th frame.

The map construction of visual SLAM is divided into two parts: first, the scene map is con-

structed in real time based on the localization data from the front-end visual odometer; sec-

ond, the scene map is updated based on the loop closure detection and back-end optimization

results. There are various types of maps, including sparse maps, semi-dense maps, dense maps,

raster maps, octree maps, 3D reconstruction maps, and topological maps, etc. The selection

depends on the functional requirements of the visual SLAM system, such as dense maps for

navigation and obstacle avoidance, 3D reconstruction maps for scene reproduction, and raster

maps and topological maps for path planning. The visual SLAM system implemented in this

study uses a semi-dense map approach similar to ORB-SLAM2.

4.2 Indoor visual SLAM system test experiments

4.2.1 Experimental design. The hardware configuration for this experiment includes a

high-performance computing platform equipped with a six-core Intel Core i5-9400F @

2.90GHz CPU, 16GB of RAM, and an Nvidia GeForce GTX 1050 Ti 4GB GPU. This setup

ensures the capability to process large-scale datasets and perform real-time computations. The

image sensor used in the experiment is an 8MP RGB camera with the IMX219 model, capable

of capturing 1080p video at 30 frames per second. The camera is connected to the computing

platform via a USB interface, ensuring stable data transmission. The software environment

consists of a system running the 64-bit Ubuntu 16.04 LTS operating system, with development

environments including Matlab 2020 and C++ 14. The SLAM framework employed is ORB--

SLAM2, an open-source visual SLAM solution capable of real-time pose estimation and map

reconstruction in complex environments. Additionally, ROS (Robot Operating System) is uti-

lized for managing data streams and integrating sensor data, while Python is used for data

analysis and visualization of results.

The visual odometry in this experiment employs a feature-point-based approach, automati-

cally extracting 1000 ORB feature points from each frame. These feature points are used for

tracking and map construction. The backend optimization algorithm is the bundle adjustment

method, which optimizes the estimated camera poses and 3D structures by minimizing the

reprojection error. The similarity threshold for loop closure detection is set at 0.7 to reduce

false positives and enhance detection accuracy, with a loop closure detection delay of 10 frames

to improve the system’s real-time performance. This study focuses on the evaluation of loop
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closure detection algorithms using three selected datasets, which are utilized to assess the per-

formance of the proposed method. The integration of ROS facilitates efficient data flow man-

agement and sensor data fusion, while Python supports comprehensive data analysis and

result visualization.

In a complete visual SLAM system, the evaluation is not limited to comparing the precision

and recall of individual algorithms but rather focuses on assessing the overall system perfor-

mance. This is typically done through metrics such as trajectory error and average frame rate.

Trajectory error, defined as the deviation between the estimated camera position calculated by

the system and the true position, serves as a key indicator of the algorithm’s accuracy and tra-

jectory consistency. The true position can be obtained through sensors like GPS or IMU, or

manually calibrated. Trajectory error is commonly measured using Absolute Trajectory Error

(ATE) and Root Mean Squared Error (RMSE). These metrics evaluate the system by compar-

ing the estimated camera positions with the actual positions (which may be acquired through

GPS, IMU, or manual annotation). ATE provides a measure of the positional error for individ-

ual frames, while RMSE offers an assessment of overall trajectory accuracy, reflecting the sys-

tem’s position precision over long-distance movements. The calculation methods are as

follows:

1. Obtain the estimated position of the camera from the visual odometer;

2. Align the estimated position with the true position on the ground;

3. Calculate the absolute error between the estimated position and the true position, which is

used to express the position error for each frame:

ATEðiÞ ¼ jjxðiÞ � zðiÞ jj ð24Þ

where x(i), z(i) denote the real position and estimated position of the camera at frame i,

respectively;

4. The RMSE is calculated by averaging the sum of squares of all errors and then squaring

them to reflect the accuracy of the overall trajectory:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ATEðiÞ2
s

ð25Þ

where N is the total number of frames in the trajectory.

Another evaluation metric is the average frame rate (Frames per Second, FPS), which

expresses the number of frames processed per unit of time with the following formula:

FPS ¼
N
T

ð26Þ

where N denotes the total number of frames and T denotes the total time consumed.

The average frame rate measures the number of frames processed by the system per unit of

time, serving as a critical indicator of the real-time performance of a SLAM system. A higher

average frame rate indicates a stronger capability of the system to process images in real-time

and maintain smooth operation. During the operation of a visual SLAM system, to ensure effi-

cient real-time processing, the real-time frame rate is typically maintained at 70% to 80% of

the average frame rate.

4.2.2 Experimental results. This study compares the loop closure detection performance

of our proposed method with that of ORB-SLAM2 across three datasets. The comparison

PLOS ONE Enhancing visual SLAM with loopback detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0312358 December 30, 2024 25 / 31

https://doi.org/10.1371/journal.pone.0312358


focuses on the number of correct and incorrect correspondences in loop closure detection,

with our method demonstrating superior precision. Detailed results are presented in Table 6.

As shown in Table 6, our proposed method outperforms ORB-SLAM2 in terms of preci-

sion, based on the number of correct and incorrect correspondences in loop closure detection.

In the TUM_fr3_loh dataset, despite ORB-SLAM2’s adaptability to environmental complexity

and dynamic changes, our method achieves nearly 10 percentage points higher precision. For

the Lip6 Indoor and Bicocca Indoor datasets, our method surpasses ORB-SLAM2 by 16.47%

and 19.02% in precision, respectively. Overall, across the three datasets, the average precision

of our method is 73.13%, significantly higher than the 58.12% achieved by ORB-SLAM2.

After conducting three experiments and counting the maximum, minimum, median and

root mean square error of the absolute trajectory error, the final results are shown in Table 7.

As shown in Table 7, the results demonstrate that our proposed method consistently

achieves lower trajectory errors across all datasets, with particularly significant improvements

in the Bicocca Indoor dataset. In the TUM_fr3_loh dataset, the RMSE (Root Mean Squared

Error) of trajectory error for our method is 0.0887 m, outperforming the 0.0952 m achieved by

ORB-SLAM2. For the Lip6 Indoor dataset, our method’s trajectory error RMSE is 0.0732 m,

markedly better than ORB-SLAM2’s 0.1234 m. In the Bicocca Indoor dataset, our method also

shows superior performance with a trajectory error RMSE of 0.0816 m, compared to ORB--

SLAM2’s 0.1341 m. The visual SLAM system implemented in this study consistently outper-

forms the ORB-SLAM2 algorithm in terms of trajectory error, with RMSE values around 0.08

m—approximately 0.05 m lower than those of ORB-SLAM2. This indicates that our system

provides higher localization accuracy and greater stability.

Three experiments were conducted to calculate the average frame rate for each method and

the final results are shown in Table 8.

As shown in Table 8, in the TUM_fr3_loh dataset, the average frame rate of our proposed

method is 15.52 frames per second (fps), compared to 14.81 fps for ORB-SLAM2. Despite the

complexity and variability of the environment in the TUM_fr3_loh dataset, our method’s

slightly higher average frame rate indicates good processing efficiency and real-time perfor-

mance. In the Lip6 Indoor dataset, the average frame rate of our method is 16.41 fps, while

ORB-SLAM2 achieves 20.18 fps. In the Bicocca Indoor dataset, our method’s average frame

rate is 16.96 fps, compared to 19.62 fps for ORB-SLAM2. Although our method’s average

frame rate is slightly lower than ORB-SLAM2’s in the Lip6 Indoor and Bicocca Indoor

Table 6. Statistics of loopback test results.

Methodology of this study ORB-SLAM2

correct amount amount of error accuracy correct amount amount of error accuracy

TUM_fr3_loh 24 12 66.67% 20 15 57.14%

Lip6 Indoor 24 9 72.72% 18 14 56.25%

Bicocca Indoor 36 9 80.00% 25 16 60.98%

https://doi.org/10.1371/journal.pone.0312358.t006

Table 7. Statistics of loopback test results.

trajectory error Methodology of this study ORB-SLAM2

Max. Min Median RMSE Max. Min Median RMSE

TUM_fr3_loh 0.1352 0.0451 0.0853 0.0887 0.1504 0.0506 0.1009 0.0952

Lip6 Indoor 0.1178 0.0347 0.0764 0.0732 0.1681 0.0517 0.1162 0.1234

Bicocca Indoor 0.1342 0.0342 0.0791 0.0816 0.1842 0.0682 0.1234 0.1341

https://doi.org/10.1371/journal.pone.0312358.t007
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datasets, it still exceeds the minimum required standard for real-time performance in all three

datasets. Notably, in the TUM_fr3_loh dataset, our method demonstrates better processing

speed than ORB-SLAM2, even in a complex environment, further proving its reliability in

terms of real-time capability.

5. Discussion

This paper improves the loop closure detection algorithm in visual SLAM by incorporating

deep learning techniques to enhance precise localization in high similarity scenes. The study

primarily addresses two major challenges: the issue of mismatches in highly similar scenes and

the sensitivity to minor visual changes. By introducing an improved feature extraction and

matching mechanism, combined with real-time performance optimization techniques, the

research significantly enhances the system’s localization accuracy and practicality.

In this study, we significantly improved the ORB-SLAM2 algorithm to address its inherent

shortcomings, particularly the localization challenges in high similarity scenes. ORB-SLAM2

tends to experience mismatches in such environments due to its insufficient feature point

matching mechanism, which struggles to differentiate between similar scene elements, leading

to trajectory drift and inaccurate localization. To overcome these issues, we integrated deep

learning techniques to optimize the feature extraction and matching process, greatly enhanc-

ing the system’s localization accuracy and robustness. By utilizing convolutional neural net-

works (CNNs), the system effectively learns and extracts high-level image features, which is

crucial for improving scene differentiation. Additionally, deep learning models enable com-

plex semantic analysis, helping to reduce mismatches in visually similar scenes. These advance-

ments allow the SLAM system to maintain high localization accuracy and operational stability

in various dynamic environments, especially in scenarios involving changes in lighting and

seasonal transitions.

The improved algorithm demonstrated lower trajectory errors and higher localization accu-

racy on the Lip6 Indoor and Bicocca Indoor datasets. The study found that in the Lip6 Indoor

dataset, the proposed method achieved an average accuracy of 73.13%, compared to 58.12%

for the ORB-SLAM2 method. Furthermore, the trajectory error RMSE of the proposed method

was significantly lower than that of ORB-SLAM2, reaching 0.0732m in the Lip6 Indoor dataset

and 0.0816m in the Bicocca Indoor dataset. Although the frame processing rate of our algo-

rithm was slightly lower than ORB-SLAM2, its accuracy was significantly improved, indicating

substantial overall performance gains in highly similar scenes. These results validate the effec-

tiveness and potential of deep learning techniques in enhancing SLAM system performance.

Through these improvements, this study not only strengthened the localization accuracy of

visual SLAM systems in highly similar indoor environments but also provided important tech-

nical references and experimental evidence for similar applications.

Current research in the field is also exploring the use of deep learning to enhance the per-

formance of visual SLAM. Li et al. (2021) developed a real-time visual SLAM system based on

deep learning, highlighting the broad potential of deep learning techniques to improve SLAM

Table 8. Comparison of average frame rates (frames/sec) for complete visual SLAM systems.

average frame rate Methodology of this study ORB-SLAM2

TUM_fr3_loh 15.52 14.81

Lip6 Indoor 16.41 20.18

Bicocca Indoor 16.96 19.62

https://doi.org/10.1371/journal.pone.0312358.t008
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system performance [22]. Through specific algorithm optimizations and experimental valida-

tion, this study demonstrates the dual advantages of deep learning-enhanced visual SLAM sys-

tems in terms of accuracy and real-time performance in highly similar indoor environments.

In summary, the contributions of this study are as follows: 1) A novel visual SLAM algorithm

combined with loop closure detection is proposed to address the challenge of precise localiza-

tion in high similarity scenes; 2) Improvements in the feature extraction and matching mecha-

nism were achieved, effectively reducing mismatches and improving localization accuracy; 3)

Through comparison with existing technologies such as ORB-SLAM2, the superiority of the

proposed method in terms of practicality and efficiency has been demonstrated.

In this study, we successfully applied deep learning techniques to loop closure detection in

visual SLAM, significantly improving the system’s localization accuracy and robustness in

high similarity scenes. However, despite the positive outcomes, there are several limitations,

which point to potential areas for future improvements and research. First, visual SLAM sys-

tems rely heavily on sensor inputs, such as cameras and motion sensors, where sensor noise

and drift can lead to accumulated pose estimation errors, especially during long-term opera-

tions. Future research could explore more robust pose estimation algorithms or incorporate

periodic global optimization methods, such as global map relocalization, to mitigate the impact

of sensor error accumulation. Second, the adaptability of the model to highly dynamic envi-

ronments needs further enhancement. While the current model performs well in static or

slightly dynamic environments, its performance may degrade in scenarios with dense crowds

or frequent object movement. Future studies should consider integrating online learning or

incremental learning techniques to dynamically adjust and optimize the model in real time,

enabling it to adapt to rapid environmental changes.Lastly, multimodal data fusion presents a

promising direction for exploration. Although the proposed algorithm has significantly

improved the accuracy of loop closure detection, in certain scenarios—such as long corridors

or symmetric structures—the high similarity of visual features may still cause mismatches,

leading to trajectory drift. Future research could address this by leveraging multimodal fusion

techniques, combining data from other sensors, such as LiDAR or IMU, with visual informa-

tion to enhance scene differentiation and reduce the risk of mismatches in highly similar

environments.

6. Conclusion

The study improves the loop closure detection algorithm in visual SLAM systems by introduc-

ing deep learning techniques, focusing on addressing the challenge of accurate localization in

highly similar indoor environments. The research findings are as follows:

1. In the multi-model comparison of Precision-Recall (P-R) curves, the area under the P-R

curves of the proposed algorithm exceeded 0.83 across all three datasets, outperforming tra-

ditional algorithms such as ORB-SLAM2, GeM, and NetVLAD. The average precision of

the proposed algorithm reached 73.13%, compared to only 58.12% for ORB-SLAM2. Nota-

bly, in the Bicocca Indoor dataset, the proposed method achieved an impressive precision

of 80.00%, while ORB-SLAM2 only reached 60.98%, indicating a significant improvement

in localization accuracy in complex and high similarity scenes.

2. In experimental tests, the proposed algorithm achieved root mean square errors (RMSE) of

0.0887m, 0.0732m, and 0.0816m in the TUM_fr3_loh, Lip6 Indoor, and Bicocca Indoor

datasets, respectively, significantly lower than the ORB-SLAM2 algorithm’s RMSEs of

0.0952m, 0.1234m, and 0.1341m. This demonstrates the algorithm’s superior localization

accuracy in high similarity scenes.
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3. Compared to the traditional ORB-SLAM2 method, the proposed algorithm significantly

reduced the occurrence of mismatches by optimizing the feature extraction and matching

mechanisms, ensuring reliable system localization, particularly in visually similar and com-

plex environments. Although the frame rate of the proposed algorithm was slightly lower

than that of ORB-SLAM2–16.41 frames per second and 16.96 frames per second on the

Lip6 Indoor and Bicocca Indoor datasets, respectively—it still met the requirements of real-

time SLAM systems. The proposed method not only enhances localization accuracy and

precision but also maintains good real-time performance.

Although this study achieved significant results in highly similar indoor environments, its

adaptability to dynamic environments still requires improvement. Future work will focus on

the impact of factors such as lighting variations and small object movements on feature stabil-

ity and matching accuracy to enhance adaptability to complex environments and reduce reli-

ance on specific types of features. Comparisons with existing techniques have demonstrated

the superiority and practicality of the proposed method. Despite some limitations, this study

identifies clear directions for future improvements, laying the groundwork for the further

development of visual SLAM technology in similarly challenging applications.
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