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Abstract
Federated learning is a new learning paradigm that decouples data collection and model training via multi-party computation 
and model aggregation. As a flexible learning setting, federated learning has the potential to integrate with other learning 
frameworks. We conduct a focused survey of federated learning in conjunction with other learning algorithms. Specifically, 
we explore various learning algorithms to improve the vanilla federated averaging algorithm and review model fusion 
methods such as adaptive aggregation, regularization, clustered methods, and Bayesian methods. Following the emerging 
trends, we also discuss federated learning in the intersection with other learning paradigms, termed federated X learning, 
where X includes multitask learning, meta-learning, transfer learning, unsupervised learning, and reinforcement learning. 
In addition to reviewing state-of-the-art studies, this paper also identifies key challenges and applications in this field, while 
also highlighting promising future directions.
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1 Introduction

Vast quantities of data are required for state-of-the-art 
machine learning algorithms. However, the data cannot be 
uploaded to a central server or cloud due to sheer volume, 
privacy, or legislative reasons. Federated learning (FL) [1], 
also known as collaborative learning, has been the subject 
of many studies. FL adopts a distributed machine learning 
architecture with a central server for model aggregation, 

where clients themselves update the machine learning 
model. Clients can maintain ownership of their data, i.e., 
upload only the updated model to the central server and not 
expose any of their private data.

The federated learning paradigm addresses several chal-
lenges. The first challenge is privacy. Local data owner-
ship inherits a basic level of privacy. However, federated 
learning systems can be vulnerable to adversarial attacks, 
such as backdoor attack [2], model poisoning [3], and data 
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poisoning [4]. The second challenge is the communication 
cost for model uploading and downloading. Improving com-
munication efficiency is a critical issue [5–7]. Centralized 
network architecture also makes the central server suffer 
from a heavy communication workload, calling for a decen-
tralized server architecture [8]. The third challenge is sta-
tistical heterogeneity. Aggregating clients’ models together 
can result in a non-optimal combined model as client data 
is often non-IID (independent and identically distributed). 
Statistical heterogeneity introduces a degree of uncertainty 
into the learning model. Therefore, adopting the right aggre-
gation and learning techniques is vital for robust implemen-
tation. This survey gives a particular focus on how different 
federated learning solutions address statistical heterogeneity.

The robust model aggregation has recently garnered con-
siderable attention. Traditionally, client contributions are 
weighted according to their sample quantity, while recent 
research has introduced adaptive weighting [9, 10], attentive 
aggregation [11], regularization [12], clustering [13], and 
Bayesian methods [14]. Many methods generally attempt 
to derive client characteristics by adjusting the relative 
weights better. Aggregation in the federated setting has also 
addressed fairness [15] in taking underrepresented clients 
and classes better into account.

Statistical heterogeneity, or non-IID data, leads to the dif-
ficulties of choosing models and performing hyperparameter 
tuning, as the data resides at clients, out of the reach of a pre-
liminary analysis. The edge clients provide the supervision 
signal for supervised machine learning models. However, 
the lack of human annotation or interaction between humans 
and learning systems induces the label scarcity and leads to 
a more restricted application domain.

Label scarcity is one of the problems emblematic of the 
federated setting. The inability to access client data and the 
resulting black-box updates are tackled by carefully select-
ing the aggregation method and supplementary learning 
paradigms to fit specific real-world scenarios. As a result of 
label scarcity, the semi-supervised and unsupervised learn-
ing paradigms introduce essential techniques to deal with 
the uncertainty arising from unlabeled data. Faced with the 
problem that clients’ local models can diverge during mul-
tiple epochs of local training, the server can be tasked with 
selecting the most reliable client models of the preceding 
round, regularizing the aggregation for achieving consist-
ency. Fully unsupervised data can be enhanced via domain 
adaption, where the aim is to transfer knowledge from a 
labeled domain to an unlabeled one.

1.1  Taxonomy

To establish critical solutions for problems arising from 
private and non-IID data, we assess the current lead-
ing solutions in model fusion and how other learning 

paradigms are incorporated into the federated learning sce-
nario. We propose a novel taxonomy of federated learning 
according to the model fusion principle and the connection 
to other learning paradigms. The taxonomy scheme, as 
illustrated in Table 1 with some representative instantia-
tions, is organized as below.

• Federated Model Fusion. We categorize the major 
improvements to the pioneering FedAvg model aggre-
gation algorithm into four subclasses (i.e., adaptive/
attentive methods, regularization methods, clustered 
methods, and Bayesian methods), together with a spe-
cial focus on fairness (Sect. 3).

• Federated Learning Paradigms. We investigate how the 
various learning paradigms fit into the federated learn-
ing setting (Sect. 4). The learning paradigms include 
some key supervised learning scenarios such as transfer 
learning, multi-task and meta-learning, and learning 
algorithms beyond supervised learning such as semi-
supervised learning, unsupervised learning, and rein-
forcement learning.

1.2  Contributions

This survey starts from a novel viewpoint of federated 
learning by coupling federated learning with different 
learning algorithms. We propose a new taxonomy and 
conduct a timely and focused survey of recent advances 
in solving the heterogeneity challenge. Our survey’s dis-
tinction compared with other comprehensive surveys is 
that we focused on the emerging trends of federated model 
fusion and learning paradigms, which are not intensively 
discussed in previous surveys. Besides, we connect these 
recent advances with real-world applications and discuss 
limitations and future directions in this focused context.

This survey is organized as follows. In Sect. 3, we assess 
in detail the significant improvements recent research has 
proposed on top of the pioneering FedAvg model aggre-
gation algorithm [1]. In Sect. 4, we analyze how the vari-
ous learning paradigms are fitted into the federated learn-
ing setting. In Sect. 5, we highlight recent successes in 
applied federated learning. Finally, in Sect. 6, we outline 
future research directions specifically from the viewpoint 
of model fusion and complementary learning paradigms. 
This paper is a focused survey, assessing only the afore-
mentioned coupled subfields, of which learning paradigms 
make the learned models more robust, and model fusion 
brings those models together. For a more wide-ranging 
survey into federated learning, we recommend readers to 
refer [107–109].
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2  Related survey

Several related surveys have been published in recent 
years, as summarized in Table 2. This section introduces 
the existing surveys and highlights our survey’s contribu-
tions to the literature.

2.1  General survey of federated learning

Yang et al.  [107] first defined the concepts of federated 
learning, introduced federated applications, and discussed 
data privacy and security aspects. Li et al. [108] system-
atically reviewed the federated learning building blocks, 

Table 1  Federated learning 
with other learning algorithms: 
categorization, conjunctions, 
and representative methods

Main area Subarea Study

Federated model fusion Adaptive aggregation IDA [9], ASTW [10], SmartFL [16]
ABAVG [17], FedPA [18]

Attentive Aggregation FedAtt [11], FedAttOpt [19], FedMed [20]
FedAMP [21], AWFDRL [22]
FedMCSA [23], ChannelFed [24]

Regularization Methods FedAwS [25], FedProx [26]
Mime [27], FedDyn [28], FedMLB [29]
BLUR & LUS [30], FedCR [31]
FedU & dFedU [32], FedProto [33]

Clustered Methods FL+HC [13], IFCA [34], FeSEM [35]
FedFast [36], k-FED [37]
IFCA & UIFCA [38], FedCE [39]

Bayesian Methods FedMA [40], PFNM [14], FedBE [41]
pFedBayes [42], NAFI [43]

Fairness q-FFL [15], AFL [44], FairFed [45]
CFFL [46], F2MF [47]

Learning paradigms Transfer Learning FTL [48], FADA [49], FedSteg [50]
FLTrELM [51], FedHealth [52], SFHTL [53]
FedCrack [54]

Multi-Task Learning Mocha [55], Kernelized FMTL [56]
CFL [57], CoFED [58], FedEM [59]
FedMSplit [60], Spreadgnn [61]

Meta Learning FedMeta [62], Per-FedAvg [63]
MOML & LocalMOML [64], MetaMF [65]

Knowledge Distillation FedMD [66], FedGKT [67], FedFed [68]
FedDF [69], FedACK [70], CFeD [71]
FedICT [72], FDL-HAD [73], FedFTG [74]

Semi-Supervised Learning FedMatch [75], PATE-G [76], SemiFL [77]
imFed-Sem [78], FAPL [79],RSCFed [80]
CBAFed [81], SUMA [82], FedCVT [83]

Adversarial Learning Sync. Strategies [84], FedGAN [85], PATE-G [76]
DP-FedAvg-GAN [86], FADA [49], FairVFL [87]
FAL [88], DBFAT [89], CalFAT [90], FedRBN [91]

Unsupervised Learning FURL [92], FPCA [93], FedCA [94]
FADA [49], FedEMA [95], Orchestra [96]
L-DAWA [97], FedX [98]

Reinforcement Learning FedRL [99], Favor [100], FRD and MixFRD [101]
DRL-based Aggregator [102], FedSAM [103]
QAvg/PAvg [104], SCCD [105], FedHQL [106]
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including data partitioning, machine learning model, privacy 
mechanism, communication architecture, the scale of the 
federation, and motivation of federation. Kairouz et al. [109] 
detailed definitions of federated learning system components 
and different types of federated learning systems variations. 
Li et al.  [12] discussed the core challenges of federated 
learning in communication efficiency, privacy, and some 
future research directions

2.2  Domain‑specific survey

Other surveys review a specific domain. Xu et al. [110] sur-
veyed the healthcare and medical informatics domain. Lyu 
et al. [111] discussed the security threats and vulnerability 
challenges dealing with adversaries in federated learning 
systems Lim et al. [112] focused on mobile edge networks. 
Niknam et al. [113] reviewed federated learning in the con-
text of wireless communications, covering the data security 
and privacy challenges, algorithm challenges, and wireless 
setting challenges Jin et al. [114] conducted a review on 
federated semi-supervised learning. Jin et al.’s survey is the 
most related work to our paper. However, it only concen-
trates on semi-supervised learning. Our paper fills in its gap 
by including a wider range of model fusion and learning 
algorithms.

2.3  Distinction of our survey

Our paper reviews the emerging trends of federated learning 
from a unique and novel angle, i.e., the learning algorithms 
used in the federated learning paradigms, including the model 
fusion algorithms (Sec. 3) and the conjunction of federated 
learning and other learning paradigms (named as Federated 
X Learning in Sec. 4). This unique perspective has not been 
well-discussed in any of the aforementioned surveys. Our sur-
vey fills in this gap by reviewing recent publications. Besides, 

we point out challenges and outlook future directions in this 
specific category of research on federated learning.

3  Federated model fusion

3.1  Overview

The goal of federated learning is to minimize the empirical 
risks over local data as

where � is the learnable parameter of the global model, m is 
the total number of clients in the FL system, Lk is the local 
objective of the k-th client, pk is the importance weight of 
the k-th client, and 

∑
k pk = 1 . The widely applied federated 

learning algorithm, i.e., Federated Averaging (FedAvg) [1], 
starts with a random initialization or warmed-up model of 
clients followed by local training, uploading, server aggrega-
tion, and redistribution. The learning objective is configured 
by setting pk to be nk∑

k nk
 . Federated averaging assumes a regu-

larization effect, similar to dropout in neural networks, by 
randomly selecting a fraction of clients on each communica-
tion round. Sampling on each round leads to faster training 
without a significant drop in accuracy. Li et al. [116] con-
ducted a theoretical analysis on the convergence of FedAvg 
without strong assumptions and found that the sampling and 
averaging scheme affects the convergence. Recent studies 
investigate some significant while less considered problems 
and explore different possibilities for improving vanilla aver-
aging. To mitigate the client drift caused by heterogeneity 
in FedAvg, the SCAFFOLD algorithm [117] estimates the 
client drift as the difference between the update directions 
of the server model and each client model and adopts sto-
chastically controlled averaging of the correct client drift. 
Reddi et al. [118] proposed adaptive optimization algorithms 
such as Adagrad and Adam to improve the standard feder-
ated averaging-based optimization with convergence guar-
antees. Singh et al. [119] adopted optimal transport, which 
minimizes the transportation cost of neurons, to conduct 
layer-wise model fusion.

3.2  Adaptive weighting

The adaptive weighting approach calculates adaptive weighted 
averaging of model parameters as:

(1)min
�

f (�) =

m∑

k=1

pkLk(�)

(2)�t+1 =

K∑

k=1

�k ⋅ �
(k)
t ,

Table 2  Comparison of related survey articles about federated learn-
ing

Publication Scope

This survey Learning algorithms
Jin et al. [114] Semi-supervised learning
Xu et al. [110] Healthcare informatics
Lo et al. [115] Software engineering
Lim et al. [112] Mobile edge networks
Lyu et al. [111] Threats
Niknam et al. [113] Wireless communication
Yang et al. [107] General
Li et al. [108] General
Kairouz et al. [109] General
Li et al. [12] General
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where �(k)t  is current model parameter of k-th client, �t+1 is 
the updated global model parameter after aggregation, and �k 
is the adaptive weighting coefficient. Aiming to train a low 
variance global model with non-IID robustness, Yeganeh 
et al. [9] proposed an adaptive weighting approach called 
Inverse Distance Aggregation (IDA) by extracting meta 
information from the statistical properties of model param-
eters. Specifically, the weighting coefficient with inverse 
distance is calculated as:

Considering the time effect during federated communica-
tion, Chen et al. [10] proposed temporally weighted aggrega-
tion of the local models on the server as:

where e is the natural logarithm, t is the current update round 
and t(k) is the update round of the newest �(k) . Apart from the 
time effect, the accuracy of local models can also serve as an 
important reference for adaptive weighting. In [17], a novel 
FL algorithm termed Accuracy Based Averaging (ABAVG) 
is proposed. It can improve existing aggregation strategies in 
FL via increasing the convergence speed and better handling 
non-IID problems. In [16], a small amount of proxy data is 
used to optimize the aggregation weight of each client. The 
optimized aggregation leads to an FL system that is robust 
to both data heterogeneity and malicious clients.

Most works still conduct adaptive weighting among all 
clients, while [18] proposes an adaptively partial model 
aggregation strategy where only part of the clients contrib-
ute to the aggregated global model, addressing the straggler 
problem in FL and increasing communication efficiency.

3.3  Attentive aggregation

The federated averaging algorithm takes the instance ratio 
of the client as the weight to calculate the averaged neural 
parameters during model fusion [1]. In attentive aggregation, 
the instance ratio is replaced by adaptive weights as Eq. 5:

where �k is the attention scores for client model parameters. 
FedAtt [11] proposes a simple layer-wise attentive aggrega-
tion scheme that takes the server model parameter as the 
query. FedAttOpt [19] enhances the attentive aggregation of 
FedAtt by the scaled dot product. Like attentive aggregation, 
FedMed [20] proposes an adaptive aggregation algorithm 

(3)�k =
‖‖‖�t − �

(k)
t

‖‖‖
−1
/(

K∑

k=1

‖‖‖�t − �
(k)
t

‖‖‖
−1

)
.

(4)�t+1 =

K∑

k=1

nk

n

(
e

2

)−(t−t(k))
�
(k)
t ,

(5)�t+1 ← �t − �

m∑

k=1

�k∇L(�
(k)
t ),

using Jensen-Shannon divergence as the non-parametric 
weight estimator. These three attentive approaches use cen-
tralized aggregation architecture with only one shared global 
model for client model fusion. Huang et al. [21] studied pair-
wise collaboration between clients and proposed FedAMP 
with attentive message passing among similar personalized 
cloud models of each client. Wang et al. [22] incorporate the 
attention-weighted mechanism to federated learning systems 
to avoid the imbalance of local model quality. Concretely, 
the attention value is computed according to the average 
reward, average loss, training data size, etc, increasing the 
possibility of obtaining a more powerful agent model after 
aggregation.

The attention-based module is also widely used for per-
sonalized federated learning [23, 24]. In [24], the authors 
design a PFL framework termed ChannelFed that uses an 
attention module to assign different weights to channels 
on the client side. After incorporating personalized chan-
nel attention, the performance of the local model can be 
improved and client-specific knowledge can be better cap-
tured. In [23], a novel FL framework named federated model 
components self-attention (FedMCSA) is proposed to facili-
tate collaboration between clients with similar models. In 
this way, the personalized FL framework can adaptively 
update models and handle non-IIDness.

3.4  Regularization methods

We summarize federated learning algorithms with addi-
tional regularization terms to client learning objectives or 
server aggregation formulas. One category is to add local 
constraints for clients. FedProx [26] adds proximal terms 
to clients’ objectives to regularize local training and ensure 
convergence in the non-IID setting. After removing the 
proximal term, FedProx degrades to FedAvg. Another direc-
tion is to conduct federated optimization on the server side. 
Mime [27] adapts conventional centralized optimization 
algorithms into federated learning and uses momentum to 
reduce client drift with only global statistics as

where mt−1 is a moving average of unbiased gradients com-
puted over multiple clients and � is a trade-off parameter. 
Federated averaging may lead to class embedding collapse 
to a single point for embedding-based classifiers.

To tackle the embedding collapse, Yu et al. [25] studied 
the federated setting where users only have access to a single 
class, for example, face recognition in the mobile phone. 
They proposed the FedAwS framework with a geometric 
regularization and stochastic negative mining over the server 
optimization to spread class embedding space. To make the 
local-level objective and global-level objective consistent, 

(6)mt = (1 − �)∇fi
(
xt−1

)
+ �mt−1
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[28] proposes a novel dynamic regularization method, 
termed FedDyn, for FL. By dynamically adjusting the local 
optimization objective, FedDyn significantly saves commu-
nication costs when training across heterogeneous clients.

Kim et al. [29] aimed to address the inconsistency prob-
lem between different local models. It proposes FedMLB, 
a multi-level branched regularization-based FL framework, 
that prevents the local representations from being deviated 
too much by local updates. To alleviate the performance 
degradation problem after introducing user-level differential 
privacy guarantees, Cheng et al. [30] incorporated regulari-
zation techniques along with sparsification technical design 
into the local update procedure. To handle the training 
latency across devices and straggler issues, the authors in 
Chen et al. [31] presented a novel contrastive regularization-
based scheme to accelerate the training process of FL. The 
proposed FedCR algorithm efficiently reduces the training 
latency and achieves better performance during the test 
phase. In [32], the authors proposed a new viewpoint to for-
mulate the federated multi-task learning problem by Lapla-
cian regularization, which can help to capture the relation-
ships across clients. In [33], a prototype-based regularization 
term is added to the original local loss function to force the 
local representation center to be close to the global represen-
tation center. In this way, a balance between generalization 
and personalization can be achieved.

3.5  Clustered methods

We formulate clustered methods as algorithms that take 
additional steps with client clustering before federated 
aggregation or optimization to improve model fusion. One 
straightforward strategy is the two-stage approach. To be 
specific, during the global update procedure, the first step 
is a clustering process which is then followed by the aggre-
gation process within each cluster. Briggs et al. [13] pro-
pose to take an additional hierarchical clustering for cli-
ent model updates and apply federated averaging for each 
cluster. Diverting client updates to multiple global models 
from user groups can help better capture the heterogeneity of 
non-IID data. Xie et al. [35] proposed multi-center federated 
learning, where clients belong to a specific cluster, clusters 
update along with the local model updates, and clients also 
update their belongings to different clusters. The authors 
formulated a joint optimization problem with distance-
based multi-center loss and proposed the FeSEM algorithm 
with stochastic expectation maximization (SEM) to solve 
the optimization. Muhammad et al. [36] proposed an active 
aggregation method with several update steps in their Fed-
Fast framework going beyond average. The authors worked 
on recommendation systems and improved the conventional 
federated averaging by maintaining user-embedding clus-
ters. They designed a pipelined updating scheme for item 

embeddings, client delegate embeddings, and subordinate 
user embeddings to propagate client updates in the cluster 
with similar clients.

Ghosh et al. [34] formulated clustered federated learning 
by partitioning different user groups with the same learning 
tasks and conducting aggregation within the cluster parti-
tion. The authors proposed an Iterative Federated Clustering 
Algorithm (IFCA) with alternate cluster identity estimation 
and model optimization to capture the non-IID nature. The 
authors in [38] further extended IFCA to a more general 
scenario where the data in the same client may belong to 
different clusters. Based on IFCA, a new generative model-
based clustering algorithm termed UIFCA is developed for 
unsupervised datasets. Dennis et al. [37] presented a one-
shot communication scheme for clustering-based FL. The 
proposed method k-FED can significantly alleviate the prob-
lems caused by high communication costs and stragglers. 
This work also presents an interesting viewpoint that, com-
pared with supervised learning, the statistical heterogeneity 
in unsupervised settings can bring about benefits to better 
convergence performance, fair models, etc. Considering 
the cases where each client can be associated with multiple 
clusters, Cai et al. [39] proposed to quantify the relation-
ship between clients and clusters to better align clients with 
corresponding clusters. By introducing clustering ensem-
bles, this work establishes a more comprehensive clustering 
method for FL and improves the performance of existing 
clustering FL methods.

3.6  Bayesian methods

Bayesian non-parametric machinery is applied to federated 
deep learning by matching and combining neurons for model 
fusion. Yurochkin et al. [14] proposed probabilistic federated 
neural matching (PFNM) using a Beta Bernoulli Process to 
model the multi-layer perceptron (MLP) weight parameters. 
Observing the permutation invariance of fully connected 
layers, the proposed PFNM algorithm first matches the neu-
rons of neural models of clients to the global neurons. It then 
aggregates via maximum a posteriori estimation of global 
neurons. However, the authors only considered simple MLP 
architectures. FedMA [40] extends PFNM to convolutional 
and recurrent neural networks by matching and averaging 
hidden elements, specifically channels for CNNs and hid-
den units for RNNs. It solves the matched averaging objec-
tive by iterative optimization. Through theoretical analysis, 
Xiao and Cheng [43] found that global information can be 
omitted by PFNM. To fix this missing global information 
issue, an algorithm that conducts neural aggregation with 
full information (NAFI) is developed. NAFI introduces KL 
divergence-based penalty term to help complete the full 
information so that the missing information problem can 
be alleviated.
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To obtain a more robust prediction via model aggrega-
tion, Chen and Chao [41] leveraged Bayesian techniques to 
sample high-quality models and aggregate the outputs of 
these models via Bayesian model ensemble. The proposed 
algorithm is termed FedBE, which has demonstrated appli-
cability to deep networks and different heterogeneous sce-
narios. To tackle the model overfitting problem, Zhang et al. 
[42] proposed pFedBayes, a novel personalized FL method 
based on Bayesian variational inference, where all network 
parameters can be represented by probability distributions. 
Both the local and global models are formulated as Bayes-
ian neural networks. The server aims to minimize the KL 
divergence between global distribution and local distribu-
tions, while the clients aim to minimize the construction 
error on local private data and the KL divergence with global 
distribution.

3.7  Fairness

When aggregating the global shared model, FedAvg applies 
a weighted average concerning the number of samples that 
participating clients used in their training. However, the 
model updates can easily skew towards an over-represented 
subgroup of clients where super-users provide the majority 
of samples. Mohri et al. [44] suggested that valuing each 
sample without clear discrimination is inherently risky as 
it might result in sub-optimal performance for underrepre-
sented clients and sought good-intent fairness to ensure fed-
erated training not overfitting to some of the specific clients. 
Instead of the uniform distribution in classic federated learn-
ing, the authors proposed agnostic federated learning (AFL) 
with minimax fairness, which takes a mixture of distribu-
tions into account. However, the overall tradeoff between 
fairness and performance is still not well explored. Inspired 
by fair resource allocation in wireless networks, the q-fair 
federated learning (q-FFL) [15] proposes an optimization 
algorithm to ensure fair performance, i.e., a more uniform 
distribution of performance gained in federated clients. The 
optimization objective (Eq. 7) adjusts the traditional empiri-
cal risk objective by tunable performance-fairness tradeoff 
controlled by q.

The flexible q-FFL also generalizes well to previous meth-
ods; specifically, it reduces to FedAvg and AFL when the 
value of q is set to 0 and ∞ , respectively.

To investigate the fairness issue in FL systems, Lyu et al. 
[46] emphasized collaborative fairness. To be specific, all cli-
ents receive the same or similar models, though their contri-
butions differ a lot. The authors proposed a novel framework 
named Collaborative Fair Federated Learning (CFFL), which 

(7)min
�

fq(�) =

m∑

k=1

pk

q + 1
L
q+1

k
(�)

can take the contribution of each client into consideration and 
let each client receive models with performance commensurate 
with their contributions.

Usually, fairness in FL refers to the individual-wise meas-
urement. In [45], the authors investigated fairness problems in 
FL from a group-wise perspective. Inspired by group fairness 
in centralized learning, a novel algorithm termed FairFed is 
developed for participants to conduct aggregation in a fairness-
aware way. FairFed can efficiently mitigate the bias against 
specific populations while maintaining the privacy of local 
data.

To achieve fairness for recommender systems, Liu et al. 
[47] proposed to capture the affiliation feature across different 
groups by using federated learning as a privacy-preserving 
tool. Based on the existing federated recommendation back-
bone [120], it designs fairness-aware federated matrix factori-
zation (F2MF), a solution that deals with the conflict between 
the global fairness objective and the local federated optimi-
zation process. By introducing a loss-based fairness metric 
into the optimization process, the FL systems potentially 
improve the fairness of recommendations between different 
user groups.

4  Federated X learning

The customizability of federated learning objectives leads to 
possibilities in quickly adapting FL to adversarial, semi-super-
vised, or reinforcement learning settings, offering flexibility to 
other learning algorithms in conjunction with federated learn-
ing. We term FL’s intersection with other learning algorithms 
as Federated X Learning.

4.1  Federated transfer learning

Transfer learning focuses on transferring knowledge from one 
particular problem to another, and it has also been integrated 
into federated learning to construct a model from two data-
sets with different samples and feature spaces [107, 121]. Liu 
et al. [48] formulated the Federated Transfer Learning (FTL) 
to solve the problem that traditional federated learning falters 
when datasets do not share sufficient common features or sam-
ples. In this paper, it assumes existing two domains A and B 
across different parties and formulate the objective function as:

where �A and �B are the model parameters in these two 
domains while �(⋅) represents the transformation function 
that projects data into a unified feature space. �1 and �2 are 
logistic loss and alignment loss, respectively. � and � are 

(8)
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tuneable hyper-parameters. The authors also enhanced the 
security with homomorphic encryption and secret sharing. 
In real-world applications, FedSteg [50] applies federated 
transfer learning for secure image steganalysis to detect 
hidden information. Alawad et al. [122] utilized federated 
transfer learning without sharing vocabulary for privacy-
preserving NLP applications for cancer registries.

To deal with the widely existing overlapping data insuf-
ficiency problem across clients, Feng et al. [53] proposed a 
Semi-Supervised Federated Heterogeneous Transfer Learn-
ing (SFHTL) framework that leverages unlabeled non-over-
lapping samples to reduce model overfitting. Compared with 
existing FTL methods, SFHTL can better expand the train-
ing set to improve the performance of the local model.

Federated transfer learning can be widely used in various 
real-world applications, including intrusion detection [51], 
smart healthcare [52], crack detection [54], etc. It allows the 
knowledge learned within one specific domain to be trans-
ferred to another different domain, especially when there are 
no sufficient common features across these domains.

4.2  Federated learning with knowledge distillation

Given the assumption that clients have sufficient computa-
tional capacity, federated averaging adopts the same model 
architecture for clients and the server. FedMD [66] couples 
transfer learning and knowledge distillation (KD), where the 
centralized server does not control the architecture of mod-
els. It introduces an additional public dataset for knowledge 
distillation, and each client optimizes their local models on 
both public and private data, like VHL [123]. They employ a 
combination of a public noise dataset and local private data 
to train the local model. Furthermore, it leverages domain 
adaptation techniques to improve the overall performance 
of the model. In general, the local objective of federated 
learning with knowledge distillation is often combined with 
two items:

where �k is the local model of the k-th client and �task is 
task-specific loss, �KD is often computed by different logits 
or features from various clients.

Strictly speaking, transfer learning differs from knowl-
edge distillation; however, the FedMD framework puts them 
under one umbrella. Many technical details are only briefly 
introduced in the original paper of FedMD. Recently, He 
et al.  [67] utilized knowledge distillation with technical 
solidity to train computationally affordable CNNs for edge 
devices via knowledge distillation. The authors proposed 
the Group Knowledge Transfer (FedGKT) framework that 
optimizes the client and the server model alternatively with 
knowledge distillation loss. Specifically, the larger server 

(9)min
�k

L(�k) = �task + �KD.

model takes features from the edge to minimize the gap 
between periodically transferred ground truth and soft label 
predicted by the edge model, and the small model distils 
knowledge from the larger server model by optimizing the 
KD-loss, �KD in Eq.(9), using private data and soft labels 
transferred back from the server. However, this framework 
has a potential risk of privacy breach as the server holds the 
ground truth, especially when ground truth labels are the 
user’s typing records in the mobile keyboard application. Lin 
et al. [69] applied knowledge distillation to mitigate privacy 
risk and cost and proposed a novel ensemble distillation for 
model fusion that utilizes unlabeled data.

Knowledge distillation continues to demonstrate signifi-
cant potential in addressing various challenges within FL. 
FedFed [68] introduces a novel variant of knowledge dis-
tillation named feature distillation. The authors propose a 
method where the data is partitioned into two distinct parts, 
allowing for the sharing of protected performance-sensitive 
features to alleviate the data heterogeneity. Zhang et al. [74] 
addressed this challenge by employing Data-Free Knowl-
edge Distillation and proposed FedFTG. Their approach 
involves the use of a generator to distil and transfer local 
knowledge to the global model. To improve communica-
tion efficiency, Zhang et al. [73] proposed a method called 
FDL-HAD. It introduces an adaptive regulation mechanism 
that determines whether clients need to undergo distillation 
in each round.

Furthermore, knowledge distillation is also valuable in 
many other federated X learning paradigms. CFeD [71] 
addresses the challenge of catastrophic forgetting in con-
tinual federated learning through KD. Moreover, multi-task 
learning is an important scenario in federated learning. 
Wu et al. [72] specifically designed an algorithm tailored 
for multi-access edge computing in a real-world scenario, 
leveraging knowledge distillation as a key component. 
FedNed [124] solve the noisy clients by a kind of KD, called 
negative distillation. FedACK [70] applies knowledge dis-
tillation in the cross-lingual social bot detection domain, 
showcasing a novel application that combines knowledge 
distillation and federated learning. This application dem-
onstrates the potential for knowledge distillation to inspire 
more useful applications within this emerging field.

4.3  Federated multi‑task learning

Federated Multi-Task Learning trains separate models for 
each client with some shared structure between models, 
where learning from local datasets at different clients is 
regarded as a separate task. In contrast to federated transfer 
learning between two parties, federated multi-task learn-
ing involves multiple parties and formulates similar tasks 
clustered with specific constraints over model weights. It 
exploits related tasks for more efficient learning to tackle the 
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statistical heterogeneity challenge. In federated multi-task 
learning, the target is to train multiple related tasks across 
clients with different objective functions:

where Θ = [�1, �2,… , �K] ∈ ℝ
d×K is a matrix collecting 

weight vectors of all clients and Ω denotes the relationships 
of different clients with their corresponding tasks. The 
Mocha framework [55] trains separate yet related models 
for each client by solving a primal-dual optimization. It 
leverages a shared representation across multiple tasks and 
addresses the challenges of data and system heterogeneity. 
However, the Mocha framework is limited to regularized lin-
ear models. Caldas et al. [56] further studied the theoretical 
potential of kernelized federated multi-task learning to solve 
the non-linearity. To solve the suboptimal results, Sattler 
et al. [57] studied the geometric properties of the federated 
loss surface. They proposed a federated multi-task frame-
work with non-convex generalization to cluster the client 
population. [59] studies federated multi-task learning under 
a general assumption that each local data distribution can be 
seen as a mixture of distributions. Hence, each client learns 
personalized mixture weights to obtain its personalized 
local model. There are two algorithms, termed FedEM and 
D-FedEM, proposed for the client–server and fully decen-
tralized setting, respectively. The approaches yield models 
with more accurate results, better generalization ability, and 
fairer performance across clients.

There is also a branch of works that utilizes a federated 
multi-task learning framework to deal with data in different 
formats, including graph data [61] and multimodal data [60]. 
To benefit cross-silo FL where independent data silos have 
different tasks, Cao et al. [58] proposed a novel FL method 
CoFED that utilizes a co-training scheme to leverage unla-
beled data in a semi-supervised learning manner. CoFED is 
compatible with heterogeneous models, tasks, and training 
processes, making it an effective method for federated multi-
task learning.

4.4  Federated meta learning

Federated meta learning aims to train a model that is quickly 
adapted to new tasks with few training data, where clients 
serve as a variety of learning tasks. The seminal model-
agnostic meta-learning (MAML) framework [125] has been 
intensively applied to this learning scenario. Several studies 
connect FL and meta-learning, for example, model updating 
algorithm with average difference descent [126] inspired by 
the first-order meta-learning algorithm. However, this study 
focuses on applications in the social care domain with less 
consideration in practical settings. Jiang et al. [127] further 
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provided a unified view of federated meta-learning to com-
pare MAML and the first-order approximation method. 
Inspired by the connection between federated learning and 
meta-learning, Fallah et al. [63] adapted MAML into the 
federated framework Per-FedAvg, to learn an initial shared 
model, leading to fast adaption and personalization for each 
client. FedMeta [62] proposes a two-stage optimization with 
a controllable meta updating scheme after model aggrega-
tion as:

where Dmeta is a small set of meta data on the server and �meta 
is the meta learning rate.

To better exploit the collaborative filtering information 
across clients for recommender systems, [65] introduces 
a federated matrix factorization framework named meta 
matrix factorization (MetaMF). In MetaMF, a meta net-
work is used to generate private item embeddings and rating 
prediction models based on the collaborative vector in the 
server. MetaMF achieves competitive performance despite 
using a small model scale and embedding size. To address 
the underdeveloped stochastic optimization in MAML, 
Wang et al. [64] proposed a memory-based stochastic algo-
rithm that ensures convergence with vanishing error, ena-
bling constant mini-batch sizes and making them suitable 
for continual learning. Meanwhile, this paper introduces a 
communication-efficient memory-based MAML algorithm 
for personalized federated learning in cross-device and 
cross-silo settings. Lin et al. [128] proposed MetaGater, a 
federated meta-learning algorithm that holistically trains 
both the backbone network and channel gating. MetaGater 
enables efficient subnet selection for resource-constrained 
applications by leveraging model similarity across learn-
ing tasks on different nodes, ensuring the effective capture 
of important filters for quick adaptation to new tasks with 
experimental results validating its effectiveness.

4.5  Federated adversarial learning

In this section, we summarize federated adversarial learn-
ing in two categories. The first class of methods specifically 
focuses on Generative Adversarial Networks (GANs), a 
mainstream adversarial learning paradigm for data genera-
tion. The second class of methods, differently, uses the idea 
of adversarial learning to address the challenges of general 
federated learning.

GANs consist of two competing models, i.e., a generator 
and a discriminator. The generator learns to produce samples 
approximating the underlying ground-truth distribution. The 
discriminator, usually a binary classifier, tries to distinguish 
the samples produced by the generator from the real sam-
ples. A straightforward combination with FL is to have the 
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GAN models trained locally on clients and the global model 
fused with different strategies. Fan and Liu [84] studied the 
synchronization strategies for aggregating discriminator and 
generator networks on the server and conducted a series of 
empirical analyses. Updating clients on each round with both 
the generator and the discriminator models achieves the best 
results; however, it is twice as computationally expensive 
as just syncing the generator. Updating just the generator 
leads to almost equivalent performance than updating both, 
whereas updating just the discriminator leads to consider-
ably worse performance, closer to updating neither. Rasouli 
et al. [85] extended the federated GAN with different appli-
cations and proposed the FedGAN framework to use an 
intermediary for averaging and broadcasting the parameters 
of generator and discriminator. Furthermore, the authors 
studied the convergence of distributed GANs by connect-
ing the stochastic approximation and communication-effi-
cient SGD optimization for GAN and federated learning. 
Augenstein et al. [86] proposed differentially private feder-
ated generative models to address the challenges of non-
inspectable data scenarios. GANs are adopted to synthesize 
realistic examples of private data for data labeling inspection 
at inference time.

Apart from generation models, another type of method 
aims to leverage adversarial learning to enhance several 
capabilities of federated learning systems, such as fairness 
and robustness. To enhance fairness under vertical feder-
ated learning scenarios, FairVFL [87] employs adversarial 
learning to mitigate bias, while incorporating a contrastive 
adversarial learning method to protect user privacy while 
effectively improving model fairness. To handle the unfair 
scenarios with label skewness, Chen et al. [90] proposed 
CalFAT, a federated adversarial training method that adap-
tively calibrates logits to balance classes, which addresses 
the root cause of issues related to skewed labels and non-
identical class probabilities. Specifically, it can be formu-
lated as:

where �k denotes local model while �g is global model. 
Cross-entropy loss is represented as �1 . KL-loss �2 is used 
to constrain the logits of the local and global model. � and 
� are hyper-parameters. In order to improve the robustness 
of federated learning models against adversarial attacks, Li 
et al. [88] introduce FAL, a novel bi-level approach with 
min-max optimization for adversarial learning of federated 
learning. Specifically, FAL incorporates an inner loop for 
generating adversarial samples during adversarial train-
ing and an outer loop for updating local model parameters. 
Zhang et al. [89] conducted comprehensive evaluations on 
various attacks and adversarial training methods, revealing 
negative impacts on test accuracy when directly applying 

(12)min𝓁1

(
� ⋅ �k

(
xadv

)
, y
)
+ � ⋅ 𝓁2

(
�k
(
xadv

)
, �g(x)

)
,

adversarial training in FL. Based on the findings, they 
further propose DBFAT, a novel algorithm with local re-
weighting and global regularization components, demon-
strating superior performance in terms of both accuracy and 
robustness across multiple datasets in both IID and non-IID 
settings. To address the challenge of adversarial robust-
ness in federated learning with heterogeneous users, Hong 
et al. [91] introduced a novel strategy: propagating adver-
sarial robustness from rich-resource users to those with lim-
ited resources during FL by utilizing batch normalization.

4.6  Federated semi‑supervised learning

Annotation capability plays a crucial role in traditional 
machine learning and deep learning [129, 130]. The quality 
and quantity of annotations often determine the performance 
of models. However, the problem of data heterogeneity natu-
rally arises in decentralized federated learning, posing addi-
tional challenges.

Label scarcity is a prevalent and widespread issue in 
federated learning scenarios, which has prompted the 
development of a novel learning setup known as federated 
semi-supervised learning (FSSL). This scenario reflects the 
realistic situation where users may not label all the data on 
their devices. Papernot et al. [76] explored semi-supervised 
learning in distributed scenarios. They put forward a semi-
supervised approach with a private aggregation of teacher 
ensembles (PATE), an architecture where each client votes 
on the correct label. PATE was shown empirically to be par-
ticularly beneficial when used in conjunction with GANs. 
Similar to centralized semi-supervised learning, the majority 
of FSSL approaches often utilize a two-part loss function 
on the client devices. This loss function typically consists 
of a supervised learning component, denoted as Ls(�) , and 
an unsupervised learning component, denoted as Lu(�) . 
Existing FSSL methods have focused on two different sce-
narios [75]: labels-at-server and labels-at-clients.

In the labels-at-server scenario, the server has the ability to 
annotate data, while the client is limited to only collecting data 
without the capacity to annotate it due to a shortage of expert 
resources. Numerous works have been dedicated to addressing 
this specific setting. SemiFL [77] tackles this problem through 
alternate training. This process consists of two key steps: 
fine-tuning the global model with labeled data and generating 
pseudo-labels using the global model on the client side. Impor-
tantly, the server and client models are trained in parallel to 
enable efficient collaboration. Jeong et al. [75] proposed a fed-
erated matching (FedMatch) framework with inter-client con-
sistency loss to exploit the heterogeneous knowledge learned 
by multiple client models. The authors showed that learning 
on both labeled and unlabeled data simultaneously may result 
in the model forgetting what it had learned from labeled data. 
To counter this, the authors decomposed the model parameters 
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� to two variables � = � + � and utilize a separate updating 
strategy, where only � is updated during unsupervised learn-
ing, and similarly, � is updated for supervised learning. In a 
real-world scenario, Jiang et al. [78] addressed the challenge 
of imbalanced class distributions among unlabeled clients 
in the context of medical image diagnosis. They proposed a 
novel scheme called dynamic bank learning, which aims to 
collect confident samples and subsequently divide them into 
sub-banks with varying class proportions.

In contrast, the labels-at-clients approach focuses on sce-
narios where clients lack sufficient capability to label data. 
In this setting, the server’s primary role is to regulate the 
federated learning process, without involvement in data col-
lection or ownership. Two types of assumptions exist within 
this approach: partially labeled data at each client, referred to 
as Partially Data Federated Semi-supervised Learning (PD-
FSSL), and partially labeled clients themselves, denoted as 
Partially Clients Federated Semi-supervised Learning (PC-
FSSL). We can formulate the local function in PD-FSSL as:

where xe is labeled data while xr represents unlabeled data 
on the k-th client. In PD-FSSL, the limited labeling capa-
bility of each client results in only a portion of the data 
being labeled. Consequently, the private data of each client 
is divided into a labeled part and an unlabeled part. Fed-
Match [75] has demonstrated its effectiveness not only in 
the client-at-server scenario but also in PD-FSSL. Addition-
ally, FAPL [79] focuses on addressing fairness in PD-FSSL. 
The authors aim to achieve a balance in the total number of 
active unlabeled samples (AUSs) for different classes across 
all selected clients in a global round. They accomplish this 
by globally aligning the numbers of AUSs for different 
classes, which helps enhance fairness in the learning pro-
cess. Another variation, PC-FSSL, assumes that some clients 
possess the resources and ability to label data, while oth-
ers can only collect data without annotation. RSCFed [80] 
proposes a sub-consensus framework. In this framework, 
traditional cross-entropy training is performed on clients 
with labeled data. For clients without labels, a consistency 
regularization framework, such as mean-teacher, is utilized. 
Generally, the global objective function in PC-FSSL can be 
written as:

where the global model � aims to minimize a function that 
is affected by two types of clients: fully-labeled clients, 
denoted as a, and fully-unlabeled clients, denoted as b. Spe-
cifically, La represents the supervised task-relevant loss, 
which differs from Lb . Among the fully-unlabeled clients, 

(13)min
��

L(�
�
) = �sup(x

k
e
, ye) + �unsup(x

k
r
)

(14)min
�

L(�) =

A∑

a=1

�aLa(�a) +

B∑

b=1

�bLb(�b),

Lb can be a mean-teacher or contrastive loss. Additionally, 
RSCFed employs data augmentation techniques, similar to 
conventional semi-supervised learning, to augment the unla-
beled data twice, further improving the learning process. 
Similarly, CBAFed [81] also utilizes augmentation tech-
niques for pseudo-labeling in the PC-FSSL setting. They 
introduce an adaptive threshold to determine the reliabil-
ity of the pseudo-labels generated from the unlabeled data. 
There are still other scenarios in FSSL. SUMA [82] consid-
ers a more general setting where each client has a different 
ratio of labeled data. FedCVT [83] studies FSSL in vertical 
federated scenarios.

Despite extensive research, FSSL still faces many chal-
lenges. The problem of insufficient data labels in practical 
applications still necessitates further investigation in order 
to find effective solutions. Furthermore, existing FSSL algo-
rithms often demonstrate limitations in their performance 
across various settings, which also leaves a lot of room for 
exploration.

4.7  Federated unsupervised learning

It is more common that local clients host no labeled data, 
which naturally leads to the learning paradigm of federated 
unsupervised learning without supervision in the decen-
tralized learning scenario. A straightforward solution is to 
pretrain unlabeled data to learn useful features and utilize 
pretrained features in downstream tasks of federated learning 
systems [92]. There exist two challenges in federated unsu-
pervised learning, i.e., the inconsistency of representation 
spaces due to data distribution shift and the misalignment of 
representations due to the lack of unified information among 
clients.

FedCA [94], based on SimCLR, proposes a federated 
contrastive averaging algorithm with the dictionary and 
alignment modules for client representation aggregation 
and alignment, respectively. Zhuang et al. [95] conducted 
comprehensive experiments to evaluate the performance of 
four popular unsupervised methods in FL: MoCo (V1[131] 
and V2  [132]), BYOL  [133], SimCLR  [134], and Sim-
Siam [135]. In their study, the authors discovered that Fed-
BYOL demonstrates superior performance compared to the 
other evaluated methods. They also highlighted the impor-
tance of the predictor, exponential moving average (EMA), 
and stop-gradient operations in improving the performance 
of non-contrastive federated self-supervised learning. Draw-
ing from their extensive experiments, the authors propose a 
new method called FedEMA. It incorporates a divergence-
aware dynamic moving average update to address the chal-
lenges associated with non-IID data in the federated set-
ting. FedX [98] also employs the contrastive paradigm by 
a two-sided knowledge distillation. Additionally, Lubana 
et al. [96] conducted an evaluation of federated versions 
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of the prevailing unsupervised methods. Furthermore, they 
introduced a novel clustering-based method called Orches-
tra, which differs significantly from mainstream unsuper-
vised algorithms.

The local model training utilizes the contrastive loss and 
the server aggregates models and dictionaries from clients. 
Recently, many unsupervised learning methods such as Prin-
cipal Component Analysis (PCA) and unsupervised domain 
adaptation have been adopted to combine with federated 
learning. Peng et al. [49] studied the federated unsupervised 
domain adaptation that aligns the shifted domains under a 
federated setting with a couple of learning paradigms. Spe-
cifically, unsupervised domain adaptation is explored by 
transferring the labeled source domain to the unlabelled 
target domain, and adversarial adaptation techniques are 
also applied. Grammenos et al. [93] proposed the federated 
PCA algorithm with a differential privacy guarantee. The 
proposed FPCA method is permutation invariant and robust 
to straggler or fault clients. In contrast, L-DAWA [97] takes 
a different approach by proposing a novel aggregation strat-
egy through layer-wise divergence. L-DAWA introduces 
angular divergence �k to represent the aggregation weight 
of the k-th client:

where �r
g
 is the r-th round global parameters and �r

k
 is the r-th 

round local model of client k. They aggregate weights at the 
layer-level by utilizing the measure of angular divergence 
between the models of individual clients and the global 
model.

4.8  Federated reinforcement learning

In deep reinforcement learning (DRL), the deep learning 
model gets rewards for its actions and learns which actions 
yield higher rewards. Zhuo et al. [99] introduced reinforce-
ment learning to federated learning framework (FedRL), 
assuming that distributed agents do not share their obser-
vations. The proposed FedRL architecture has two local 
models: a simple neural network, such as a multi-layer per-
ceptron (MLP), and a Q-network that utilizes Q-learning  
[136] to compute the reward for a given state and action. The 
authors provided algorithms on how their model works with 
two clients and suggested that the approach can be extended 
to many clients using the same approach. In the proposed 
architecture, the clients update the local parameters of their 
respective MLPs first and then share the parameters to train 
these q-networks. Clients work out this parameter exchange 
in a peer-to-peer fashion. Federated reinforcement learning 
can improve federated aggregation to address the non-IID 
challenge, and it also has real-world applications, such as 
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in the Internet of Things (IoT). A control framework called 
Favor [100] improves client selection with reinforcement 
learning to choose the best candidate for federated aggre-
gation. The federated reinforcement distillation (FRD) 
framework [101], together with its improved variant Mix-
FRD with mixup augmentation, utilizes policy distillation 
for distributed reinforcement learning. In the fusion stage 
of FRD, only proxy experience replay memory (ProxRM) 
with locally averaged policies are shared across agents, 
aiming to preserve privacy. Facing the tradeoff between the 
aggregator’s pricing and the efficiency of edge computing, 
Zhan et al. [102] investigated the design of an incentive 
mechanism with DRL to promote edge learning. In Fed-
SAM [103], the authors extended widely used RL methods, 
such as on-policy TD (Temporal-Difference)  [137], off-
policy TD  [137], and Q-learning  [136], to the federated 
learning. Subsequently, they put forth an algorithm that inte-
grates federated TD-learning and Q-learning and conducted 
an extensive analysis of the convergence to these federated 
RL methods. In real-world applications, RL agents often 
encounter diverse state transitions across different environ-
ments, so-called environmental heterogeneity. Jin et al. [104] 
investigated this novel setting within FedRL and presented 
a series of diverse variation approaches to address the vary-
ing degrees of complexity in heterogeneous environments. 
SCCD [105] is also an off-policy-based FedRL framework 
that introduces a student-teacher-student model learning and 
fusion method. Fan et al. [106] analyzed the existing FedRL 
setting, introduced a new problem called federated reinforce-
ment learning with heterogeneous and black-box agents 
(FedRL-HALE), and posed a challenge called the explora-
tion-exploitation dilemma. This dilemma entails the trade-
off that an agent encounters when making decisions between 
exploring new actions to gather more information or exploit-
ing its current knowledge to maximize performance. Then, 
they proposed FedHQL, where the local agents update their 
action-value independently based on Q-learning. The cen-
tral server plays a crucial role in coordinating the exchange 
of knowledge between agents by broadcasting, receiving 
action-value estimates, and selecting actions with the high-
est UCB (Upper Confidence Bound)  [138] value. There are 
still many ongoing explorations in other areas where FedRL 
is being applied, including energy management [139, 140], 
electric vehicle charging and uncharging [141].

5  Challenges and applications

This section highlights the multifaceted nature of federated 
learning research, addressing challenges related to client het-
erogeneity, data privacy, model security, and efficient com-
munication, while also exploring its applicability to a wide 
range of real-world use cases.
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5.1  Statistical and model heterogeneity

Variability among clients, referred to as the heterogeneity 
problem, stands as the principal hurdle in FL. The most 
common heterogeneity issues are statistical and model het-
erogeneity. Addressing both these two challenges is impor-
tant to achieve effective FL with better personalization and 
generalization ability.

The statistical heterogeneity challenge arises due to the 
non-IID (non-identically distributed) nature of data, where 
each client holds a unique subset of data, often reflecting 
distinct features, patterns, or statistical characteristics. This 
variability complicates the process of aggregating informa-
tion from diverse sources to create a global model. Address-
ing statistical heterogeneity is crucial as it impacts the per-
formance and generalizability of the global model, requiring 
specialized techniques that account for and mitigate these 
disparities without compromising data privacy or commu-
nication efficiency.

[26] proposes a local regularization approach to refine the 
local model of each client. Recent research efforts [142–144] 
focus on training personalized models, amalgamating glob-
ally shared insights with personalized elements [19, 145]. 
Another approach involves providing multiple global models 
through clustering local models into distinct groups or clus-
ters [34, 57, 146]. Additionally, recent advancements incor-
porate self-supervised learning techniques during local train-
ing to address these heterogeneity challenges [147–149]. For 
personalized FL, [63] applies meta-training strategies.

Model heterogeneity exists in FL when there are diverse 
architectures, configurations, or complexities of models 
utilized by different clients or devices within the same sys-
tem. This challenge arises because various participants may 
employ distinct types of machine learning models, differing 
in depth, structure, optimization techniques, or even hard-
ware capabilities. Addressing model heterogeneity involves 
strategies to harmonize various model architectures, ena-
bling collaborative learning while accommodating the vary-
ing computational capacities and model complexities across 
different devices or clients.

Knowledge Distillation (KD)-based FL methods  [66, 
69, 150, 151] usually assume the inclusion of a shared toy 
dataset in the federated setting, allowing knowledge trans-
fer from a teacher model to student models with differing 
architectures. Recent studies also explore merging neural 
architecture search with FL [152–154], aiming to craft cus-
tomized model architectures tailored to groups of clients 
with varying hardware capabilities and configurations. [155] 
introduces a collective learning platform to handle heteroge-
neous architectures without accessing local training data or 
architectures. Moreover, functionality-based neural match-
ing across local models aggregates neurons based on similar 
functionalities, irrespective of architectural differences [40].

5.2  Security and privacy

In the realm of federated learning, the dual concerns of secu-
rity and data privacy have driven extensive research into the 
development of privacy-preserving solutions and the iden-
tification of novel attack strategies [156–161]. To safeguard 
data privacy, recent studies have primarily focused on meth-
ods for safeguarding model parameters, thereby preventing 
unauthorized access to client data and its distribution by the 
global model.

Notable examples include the FLAME framework [156], 
which employs randomized and encrypted gradient vectors 
sent to a shuffler to protect client identities, and SplitFed 
[157], which combines split learning and federated learning 
to enhance privacy while maintaining performance. From a 
security perspective, addressing malicious client behavior 
has been crucial. Robust learning rate techniques have been 
proposed to minimize the impact of backdoor attacks [158, 
159], alongside strategies like introducing data heterogene-
ity or using a coordinator to train updated weights before 
aggregation [158, 160]. Additionally, FedInv presents a 
novel approach by synthesizing a dummy dataset to mitigate 
Byzantine attacks effectively [160]. However, the Neuro-
toxin attack serves as a reminder of persistent threats, as it 
inserts enduring backdoors into federated learning systems 
by exploiting sparse gradient descent [161], thereby neces-
sitating continuous efforts to enhance security and privacy 
in federated learning.

Ensemble Federated Learning (EFL) employs multiple 
global models and label probabilities relative to the ensem-
ble model client number to counteract the influence of 
malicious clients, as discussed in [162]. Wen et al.  [163] 
investigated attacks on federated learning that allow the 
central server to produce malicious parameter vectors, com-
promising privacy in horizontal and vertical FL settings. 
Proposed defense strategies include gradient clipping and 
noise addition. Gupta et al. [164] focused on the recovery of 
text information during the exchange of parameters in FL. 
To mitigate this risk, they propose a method to freeze the 
word embeddings of the model. Bietti et al. [165] addressed 
the tradeoff between privacy and model accuracy by intro-
ducing Personalized-Private-SGD (PPSGD) to personalize 
local models while preserving privacy. Zhang et al. in [166] 
studied client-level differential privacy (DP) for federated 
learning, highlighting the superiority of difference clip-
ping. Hu et al. proposed FedSPA in [167], a sparsification-
based privacy mechanism. Sun et al. presented Locally Dif-
ferential Private Federated Learning in [168], focusing on 
adaptive range perturbation. Yang et al. [68] explored the 
Gaussian or Laplacian noise to protect shared features with 
a differential privacy guarantee. Furthermore, a DP pro-
tection method called FKGE [169] is utilized to study the 
embedding of knowledge graphs in a distributed manner. 
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FLSG [170] generates random Gaussian noise with the same 
size of gradient and sends the most similar to the server. 
Rong et al. in [171] explored poisoning attacks on feder-
ated recommender systems. Huang et al. in [172] examined 
gradient inversion attacks and defense mechanisms. Jin et al. 
introduced CAFE in [173], a method to recover large batch 
data from gradients. Sun et al. proposed FL-WBC in [174], 
a defense mechanism against global model poisoning. Fed-
Defender [175] also focuses on the client side to achieve 
attack tolerance, which consists of local meta update and 
global distillation. Park et al. presented Sageflow in [176] 
to handle slow devices and malicious attacks. Finally, Agar-
wal et al. extended differential privacy using the Skellam 
mechanism in [177].

Additionally, many other cryptographic methods are 
widely used to preserve privacy in FL. Chang et al. [178] 
revisited many technologies in FL and propose 2DMCFE, 
a functional encryption method to protect privacy under 
semi-honest security setting. Furthermore, Hijazi et al. [179] 
also investigated the use of Fully Homomorphic Encryption 
(FHE) in FL. To mitigate inference attacks, Zhao et al. [180] 
proposed an effective strategy that leverages computational 
Diffie-Hellman (CDH) for generating lightweight keys. 
These research contributions collectively advance the field 
of federated learning by addressing various privacy and 
security challenges with diverse strategies and insights.

5.3  Communication efficiency

Communication efficiency is a challenging research direc-
tion in federated learning, which typically focuses on 
reducing the communication overhead between clients and 
servers, aiming to minimize data transmission and commu-
nication rounds. Several approaches have been proposed to 
enhance this aspect. Gao et al. introduced two communi-
cation-efficient distributed SGD methods in [181], which 
reduce the communication cost by compressing exchanged 
gradients and combining local SGD with compressed gradi-
ents to the momentum technique. Wang et al. proposed Fed-
CAMS in [182], which combines the Federated AMSGrad 
adaptive gradient method with Max Stabilization and uses 
error feedback compression to reduce communication costs. 
GossipFL [183] uses the sparsified model to reduce com-
munication and gossip matrix for efficient utilization of the 
bandwidth resources. Yi et al. presented the QSFL algorithm 
in [184], which samples high-qualification clients for model 
updates and compresses each update to a single segment. 
Zhu et al.  [185] addressed system heterogeneity and com-
munication efficiency in unstable connections with the Fed-
ResCuE algorithm, focusing on the self-distillation of prun-
able neural networks on clients. Yapp et al. introduced the 
BFEL framework in [186], which employs blockchain tech-
nology to reduce communication overhead by decentralizing 

the aggregation process. Meanwhile, Zhu et al. proposed 
Delayed Gradient Averaging (DGA) in [187] to mitigate 
high communication latency by pipelining communication 
with computation. Another method called FedPM [188] 
addresses the challenge of high communication costs in fed-
erated learning by freezing weights at initial random values 
and learning to sparsify the random network. Finally, Fed-
Prog [189] extends the progressive learning technique from 
image generation to federated learning, inherently reducing 
computational and two-way communication costs while pre-
serving model performance.

In addition to the aforementioned solutions for the gen-
eral federated framework, there are specialized approaches 
tailored to address communication challenges in specific 
scenarios. To address the communication limitation of exist-
ing federated learning-based contextual bandit algorithms, 
Li and Wang [190] introduced a communication-efficient 
framework utilizing generalized linear bandit models with 
online regression for local updates and offline regression 
for global updates. Especially aiming to address the com-
munication challenge in minimax federated framework (e.g., 
GAN), FedGDA-GT [191] combines gradient tacking with 
federated gradient descent ascent framework, showcasing 
linear convergence with constant stepsizes to a global-
approximation solution. Cui et al. [192] especially focus on 
the compute efficiency at the mobile-edge cloud computing 
system. Furthermore, decentralized training and deploying 
LLM in a federated manner also need more attention [193]. 
For federated node embedding problems in graph machine 
learning [194], Pan and Zhu [195] proposed a random-walk-
based algorithm featuring a sequence encoder for privacy 
preservation and a two-hop neighbor predictor, effectively 
reducing communication costs.

5.4  Real‑world applications

Model fusion and federated X learning have yielded remark-
able achievements in some real-world applications. In this 
subsection, we mainly summarize the applications of feder-
ated learning in two research fields, i.e., recommendation 
and healthcare.

Recommendation is a practical real-world scenario. As a 
pioneering work, FedFast [36] is a novel approach for accel-
erating federated learning of deep recommendation models. 
FedFast efficiently samples from a diverse set of participat-
ing clients and employs an active aggregation method, ena-
bling users to benefit from lower communication costs and 
access more accurate models at the early stages of training. 
Liang et al. [196] proposed FedRec++, a novel lossless fed-
erated recommendation method that enhances privacy-aware 
preference modeling and personalization in federated recom-
mender systems by allocating denoising clients to eliminate 
noise introduced by virtual ratings, ensuring accurate and 
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privacy-preserving recommendations with minimal addi-
tional communication cost. Motivated by a similar target, 
Cali3F [197] is a personalized federated recommendation 
system training algorithm, coupled with a clustering-based 
aggregation method, to address privacy concerns and enhance 
fairness in recommendation performance across devices. To 
handle social recommendation scenarios, Liu et al. [198] pro-
posed FeSoG, a graph neural network-based federated learning 
recommender system. To address the challenges of heteroge-
neity, personalization, and privacy protection, FeSoG employs 
relational attention and aggregation for handling diverse data 
and infers user embeddings using local data to retain person-
alization. Different from the above works, Yuan et al. [199] 
mainly focused on user privacy and system robustness in 
federated recommendation systems and introduced federated 
recommendation unlearning (FRU) as a solution. FRU allows 
users to withdraw their data contributions and enhances the 
recommender’s resistance to attacks by removing specific 
users’ influence through historical parameter updates.

Apart from recommender systems, healthcare is another 
important application of federated learning [110]. For instance, 
Xu et al. [200] introduced a federated learning approach to 
address the challenges of privacy in diagnosing depression, 
proposing a multi-view federated learning framework with 
multi-source data and later fusion methods to handle inconsist-
ent time series data. Similarly, Che et al. [201] addressed the 
challenges of data privacy and heterogeneity in medical data 
by preventing leakage in multi-view scenarios. Aiming at the 
heterogeneous challenge in smart healthcare, Liu et al. [202] 
presented CAFL, an effective method for impartially assessing 
participants’ contributions to federated learning model perfor-
mance without compromising their private data. To address 
label noise challenges in medical imaging federated learning, 
FedGP [203] provides reliable pseudo labels through noisy 
graph purification on the client side and utilizing a graph-
guided negative ensemble loss for robust supervision against 
label noise. To address the weakly supervised problem in 
medical image segmentation, FedDM [204] tackles local drift 
with collaborative annotation calibration for label correction 
and global drift with hierarchical gradient de-conflicting for 
robust gradient aggregation respectively.

Federated learning also finds applications in various and 
diverse scenarios, such as image steganalysis [50], open bank-
ing [205], and mobile keyboard suggestion [1, 11]. Anticipated 
are broader applications to be practically implemented within 
the federated setting.

6  Future directions

In recent years, federated learning has seen drastic growth 
in terms of the amount of research and the breadth of topics. 
There is still a need for studies on the following promising 
directions.

6.1  Label scarcity

Current federated learning heavily relies on the supervision 
signals from sufficient training labels. However, in most real-
world applications, clients may not have sufficient labels or 
lack interaction between users to provide interactive labels. 
The label scarcity problem makes federated learning imprac-
tical in many scenarios. In this case, a potential research 
direction is to consider the label deficiency while keeping 
private data on-device. To achieve this research objective, 
comprehensive investigations into federated learning incor-
porating semi-supervised learning, transfer learning, few-
shot learning, and meta learning are warranted. This holistic 
approach not only mitigates the impact of label scarcity but 
also opens avenues for more versatile and adaptive federated 
learning models that can better accommodate the intricacies 
of real-world scenarios.

6.2  On‑device personalization

Conventionally, personalization is achieved by additional 
fine-tuning before inference. Recently, more research has 
focused on personalization. On-device personalization [206] 
brings forward multiple possible scenarios where clients 
would additionally benefit from personalization. Mansour 
et al. [146] formulated their approaches for personalization, 
including user clustering, data interpolation, and model 
interpolation. Model-agnostic meta-learning aims to learn 
quick adaptations and also brings the potential to personal-
ize to individual devices. The studies of effective formula-
tion and metrics to evaluate personalized performance are 
missed. The underlying essence of personalization and the 
connections between global model learning and personalized 
on-device training should be addressed.

6.3  Unsupervised learning

The majority of current research on federated learning 
mainly follows the supervised or semi-supervised para-
digms. Due to the label deficiency problem in the real-world 
scenario, unsupervised representation learning can be the 
future direction in the federated setting and other learn-
ing problems. By forgoing the need for explicit labels, the 
unsupervised federated learning methods can autonomously 
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decipher intricate data patterns across distributed datasets. 
Potential unsupervised techniques include autoencoders, 
GANs, and clustering algorithms. These approaches enable 
federated learning systems to extract meaningful features 
and/or model data manifold without relying on labeled data, 
addressing the label scarcity issue in real-world scenarios. 
Furthermore, federated self-supervised learning can also 
be a promising avenue for overcoming data scarcity issues 
in federated settings. By leveraging the inherent structures 
within the data itself, federated self-supervised learning 
techniques empower devices to learn from their local data 
without requiring explicit labels from a central server.

6.4  Collaboration of multiple federated paradigms

Federated Learning, as a novel training paradigm, presents 
numerous new challenges that require attention. In most sce-
narios, the collaboration of various techniques within the 
FL framework is necessary. For instance, knowledge distil-
lation shows promising potential in overcoming many chal-
lenges through the transfer of abstract knowledge, such as 
addressing heterogeneity and facilitating multi-task learning. 
Additionally, exploring the application of transfer learning 
for knowledge reuse under federated learning is meaningful. 
This approach can improve data utilization and effectively 
reduce repeated training in federated scenarios with label 
scarcity or reinforcement learning. Therefore, we suggest 
studying how multiple federated learning paradigms can 
work together to address both existing and new challenges.

6.5  Comprehensive benchmark

Among the numerous federated learning algorithms in the 
literature, it is evident that federated learning encompasses 
various parameters, reflecting diverse scenarios, different 
data distributions of edge side, and various communication 
frequencies. However, existing research often evaluates these 
algorithms in different settings, hindering researchers from 
seeking suitable methods for their specific tasks. There-
fore, the establishment of a unified benchmark becomes 
imperative. There are also some infrastructures to speed up 
algorithm implementations like FedML [207, 208]. This 
endeavor aims to inspire greater research in federated learn-
ing while providing comprehensive benchmarks adhering 
to standardized criteria. These benchmarks may encompass 
real-world deployment scenarios, algorithm comparisons 
across diverse data environments, and intriguing evaluations 
of foundation models combined with federated learning.

6.6  Production‑level federated learning

In the world of federated learning, it is crucial to shift 
focus towards making it work effectively in real-world 

production-level settings. Researchers should aim to improve 
how federated learning can be used practically. This means 
finding ways to make it easily fit into existing systems, han-
dle differences between devices, and cope with limitations 
in communication. It is also important to handle unique 
real-world challenges such as data distribution drift, diur-
nal variations, and cold start problems [12]. To address 
these challenges, the implementation of federated X learn-
ing holds significant promise for providing viable solutions. 
For instance, federated transfer learning proves effective in 
managing distribution drift, while federated meta learning 
serves as a valuable tool for addressing cold start problems. 
In the future, more advanced federated X learning methods 
specifically designed for production-level applications are 
expected.

7  Conclusion

This paper conducts a timely and focused survey about fed-
erated learning coupled with different learning algorithms. 
The flexibility of FL was showcased by presenting a wide 
range of relevant learning paradigms that can be employed 
within the FL framework. In particular, the compatibility 
was addressed from the standpoint of how learning algo-
rithms fit the FL architecture and how they take into account 
two of the critical problems in federated learning: efficient 
learning and statistical heterogeneity.
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