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Abstract—Driving trajectory data remains vulnerable to pri-
vacy breaches despite existing mitigation measures. Traditional
methods for detecting driving trajectories typically rely on
map-matching the path using Global Positioning System (GPS)
data, which is susceptible to GPS data outage. This paper
introduces CAN-Trace, a novel privacy attack mechanism that
leverages Controller Area Network (CAN) messages to uncover
driving trajectories, posing a significant risk to drivers’ long-term
privacy. A new trajectory reconstruction algorithm is proposed
to transform the CAN messages, specifically vehicle speed and
accelerator pedal position, into weighted graphs accommodating
various driving statuses. CAN-Trace identifies driving trajectories
using graph-matching algorithms applied to the created graphs
in comparison to road networks. We also design a new metric
to evaluate matched candidates, which allows for potential data
gaps and matching inaccuracies. Empirical validation under
various real-world conditions, encompassing different vehicles
and driving regions, demonstrates the efficacy of CAN-Trace:
it achieves an attack success rate of up to 90.59% in the urban
region, and 99.41% in the suburban region.

Index Terms—Driving trajectory, Controller Area Network,
road network, map-matching, subgraph matching.

I. INTRODUCTION

Location privacy is a serious topic in the rapidly developing
field of Intelligent Transportation Systems (ITS), attracting
significant attention from both industry and academia [1], [2].
Sensitive location information, such as a driver’s home or
work address, is increasingly at risk due to privacy breaches in
the ITS ecosystem. In the ITS ecosystem, vehicles can share
location and motion data among themselves and with broader
in-vehicle networks [3]–[5]. The misuse of driver location data
can reveal driving trajectories and the geographical locations
of drivers, thereby compromising the personal privacy of
drivers [6], [7].

Map-matching process, which identifies a vehicle’s loca-
tion on a road network, is pivotal in these potential privacy
breaches [8]–[10]. These attacks allow adversaries to accu-
rately track and pinpoint vehicle locations using transmitted
data [11]. Traditional methods to detect the driving trajectory
have largely been built around Global Positioning System
(GPS) [12] or a combination of GPS and additional sensors
like the on-board camera [13], [14], Inertial Measurement
Units (IMU) [15], [16] or On-Board Diagnostics (OBD)
devices [17]. However, the traditional methods suffer from

X. Lin, B. Ma, X. Wang, Y. He, and R. P. Liu are with the Global Big
Data Technologies Centre, University of Technology Sydney, Australia. E-
mail: {xiaojie.lin, baihe.ma, xu.wang, ying.he, renping.liu}@uts.edu.au

G. Yu and W. Ni are with Data61 CSIRO, Sydney, Australia. E-mail:
{saber.yu, wei.ni}@data61.csiro.au

weaknesses such as data loss, GPS outages, and restricted
access, thus offering loopholes for privacy attacks [18]–[20].

Advanced techniques have evolved to refine the map-
matching process by incorporating mobile magnetome-
ters [21]. The mobile magnetometers can provide granular
vehicle tracking by identifying unique vehicle movements like
stops, turns, and lane changes. However, the method using
mobile phones faces the challenge of performance degrada-
tion when the position is shifted by the vehicle’s occupants,
whether intentionally or unintentionally. The variability in
phone positioning further complicates the map-matching pro-
cess and decreases the robustness of these methods against
privacy attacks [21].

Controller Area Network (CAN) is a vehicle communication
protocol, which defines the transmission of vehicle motion
and control messages, such as vehicle speed, acceleration, and
steering angle, allowing vehicular Electronic Control Units
(ECUs) to communicate with each other within the in-vehicle
network [22]–[24]. CAN messages offer a wealth of real-time
and precise vehicle motion data, effectively mitigating the risks
associated with data outage and integrity issues [25], [26].
CAN messages can be easily accessed through interfaces such
as the OBD-II port [27]–[29], commonly exploited by third-
party car diagnostic software, OBD-II applications, and OEM
assistance applications.

In this paper, we pioneer a CAN-centric driving trajectory
tracking strategy that serves as an alternative to the map-
matching methods reliant on GPS or magnetometers. We
use basic CAN messages as an innovative data source to
decipher driving trajectories in the form of weighted line
graphs. Subsequently, we reframe the problem of trajectory
identification as the task of pinpointing the corresponding
subgraph, derived from CAN messages, in a targeted road
network. The key contributions are as follows:

• We propose a novel trajectory reconstruction algorithm
that composes weighted graphs to depict driving trajecto-
ries. The algorithm discerns key vehicle movements, i.e.,
stops, turns, and driving lengths, using only speed and
pedal CAN messages.

• We are the first to introduce the graph-based matching
technique for driving trajectory identification from road
networks. We also design a new metric to evaluate
matching results, accounting discrepancies between the
CAN perspective and the actual road network.

• We validate the proposed CAN-Trace attack via extensive
real-world experiments across diverse road networks and
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Fig. 1. Road network to graph: a road network is converted from the 2D street
map into a graph 𝐺 = (𝑉, 𝐸 ) , where edges represent road segments and the
weight of an edge indicates the length of the corresponding road segment. The
actual driving trajectory can be represented as a subgraph 𝐺∗ = (𝑉∗, 𝐸∗ ) .
Blue nodes indicate road intersections not covered by the driving trajectory,
while red nodes denote intersections in the driving trajectory.

Fig. 2. CAN to driving trajectory: vehicle stops or turns can be identified as
nodes by analyzing the vehicle speed and pedal position data in OBD response,
and the length of the road segments can be calculated by the distance between
two adjacent nodes.

vehicles, demonstrating success rates up to 90.59% in the
urban region and 99.41% in the suburban region.

The rest of the paper is organized as follows: Section II
gives the overview of the system and attack models and
Section III describes each process of the CAN-Trace attack in
detail. Section IV presents the evaluation of the CAN-Trace
attack in the real-world environment. Section V summarizes
the related work. Section VI concludes this paper.

II. SYSTEM AND ATTACK MODELS

The proposed CAN-Trace attack considers road networks
and deduces the driving trajectory of the on-road vehicle by
collecting and analyzing CAN messages through a driving
period. Table I summarizes the notation used throughout this
paper. The system model is described as follows:
• Attack Target: The attack target is to expose the real-

time geolocation of the driver and identify the driving
trajectory.

• Adversary Capability: Adversaries have full prior
knowledge of the road networks, i.e., where the target
vehicle is located within a city or a suburb size. Adver-
saries can collect vehicular motion data by analyzing the

TABLE I
NOTATION AND DEFINITIONS

Notation Description

𝐺 Data graph of the road network
𝐺∗ Graph of the actual driving trajectory
𝑅̄ Graph of the constructed driving trajectory
𝑅̂ = {𝑟𝑘 } Set of matched subgraphs 𝑟𝑘
𝐸 / 𝐸∗/ 𝐸𝑅 / 𝐸𝑟𝑘 Set of edges in 𝐺 / 𝐺∗ / 𝑅̄ /𝑟𝑘
𝑉 / 𝑉∗/ 𝑉𝑅 / 𝑉𝑟𝑘 Set of nodes in 𝐺 / 𝐺∗ / 𝑅̄ /𝑟𝑘
𝑤𝑖, 𝑗 / 𝑤∗

𝑖, 𝑗
/ 𝑤𝑅

𝑖, 𝑗
/ 𝑤𝑘

𝑖, 𝑗
Weight of 𝑒𝑖, 𝑗 / 𝑒∗

𝑖, 𝑗
/ 𝑒𝑅

𝑖, 𝑗
/ 𝑒𝑟𝑘

𝑖, 𝑗

M = {𝑀𝑠 , 𝑀 𝑝 } Set of CAN messages of OBD response data
𝑀𝑠 = {𝑚𝑠

𝑖
, 𝑡𝑠

𝑖
} Set of OBD response of vehicle speed value

𝑚𝑠
𝑖

and the timestamp 𝑡𝑠
𝑖

𝑀 𝑝 = {𝑚𝑝

𝑖
, 𝑡

𝑝

𝑗
} Set of OBD response of accelerator pedal

position value 𝑚𝑝

𝑖
and the timestamp 𝑡 𝑝

𝑗

𝑁 𝑠
𝑇

/ 𝑁 𝑝

𝑇
Number of collected OBD messages of ve-
hicle speed/pedal position

𝑁 ′
𝑘

Number of correctly inferred nodes in 𝑟𝑘
𝑄∗ Number of nodes in the graph of actual

driving trajectory
Δ𝑠 / Δ𝑝 Time difference threshold to determine the

nodes of vehicle stops/turns
𝜎 Relative tolerance of edge weight used in the

matching process
𝜃 Distance difference of the 𝑒𝑅

𝑖, 𝑗
and 𝑒𝑘

𝑖, 𝑗
pair

of 𝑅̄ and 𝑟𝑘
𝑃 Attack precision
Ψ Attack success rate
𝐷 Spatial distance offset between the deduced

and the actual driving trajectory
F False negative rate

CAN message to infer vehicle activities on road networks,
e.g., stops or turns.

A. Prior Knowledge

1) Road Network: A road network can be extracted from
a Two-Dimensional (2D) street map and converted into an
undirected weighted graph 𝐺 = (𝑉, 𝐸), which contains the
geospatial information of streets. The set of nodes, 𝑉 , repre-
sents the road intersections in the road network, while the set
of edges, 𝐸 , are the segments that connect adjacent nodes of 𝑉
within the road network. The weights of edges are the length
of the segments in the road network.

As shown in Fig. 1, the actual driving trajectory is regarded
as a graph 𝐺∗ = (𝑉∗, 𝐸∗) that is a subgraph of 𝐺. The road
intersections passed by the car are denoted as 𝑉∗, and the
road segments passed are denoted as 𝐸∗. The problem of
detecting the actual driving trajectory is then converted into
that of finding the corresponding subgraph 𝐺∗ within 𝐺 by
matching the graph constructed from CAN messages.

2) CAN Messages: The adversaries obtain OBD response
M = {𝑀𝑠 , 𝑀 𝑝} to construct the line graph of the driving
path 𝑅̄ as M → 𝑅̄ = (𝑉𝑅, 𝐸𝑅). Analyzing the motion data
embedded in M, the adversaries identify the vehicle stops or
turns as the nodes 𝑉𝑅, and the path between adjacent nodes
as edge 𝐸𝑅. CAN-Trace attack leverages the CAN messages
of vehicle speed 𝑀𝑠 = {(𝑚𝑠

𝑖
, 𝑡𝑠
𝑖
)} (where 𝑖 ≤ 𝑁𝑠

𝑇
) and those
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Fig. 3. Attack model: the CAN-Trace attack identifies the driving trajectory
by matching the driving path graph 𝑅̄ with the road network graph 𝐺. The
road network graph generation converts geographic data of road networks into
𝐺 using OpenStreetMap. The driving trajectory graph generation leverages
the CAN messages to transform vehicle motion data into 𝑅̄. The generated
𝑅̄ is further matched with 𝐺 using a subgraph matching algorithm to find
subgraphs 𝑟𝑘 , i.e., driving trajectory candidates. Top-𝐾 ranking rule is utilized
to select a specified number of deduced subgraph candidates as the attack
result 𝑅̂.

of the accelerator pedal position 𝑀 𝑝 = {(𝑚𝑝
𝑗
, 𝑡
𝑝

𝑗
)} (where

𝑗 ≤ 𝑁 𝑝
𝑇

) to construct the line graph of the driving path. Here,
(𝑚𝑠

𝑖
, 𝑡𝑠
𝑖
) is the 𝑖-th vehicle speed message of the vehicle speed

value 𝑚𝑠
𝑖

at the time 𝑡𝑠
𝑖
, and (𝑚𝑝

𝑗
, 𝑡
𝑝

𝑗
) is the 𝑗-th vehicle pedal

position message of the pedal position value 𝑚𝑝
𝑖

at the time
𝑡
𝑝

𝑗
. 𝑁𝑠

𝑇
and 𝑁

𝑝

𝑇
are the number of messages in 𝑀𝑠 and 𝑀 𝑝 ,

respectively. As demonstrated in Fig. 2, vehicle activities such
as stops and turns can be identified from the OBD response
statistics.

III. CAN-TRACE ATTACK

To the best of our knowledge, the CAN-Trace attack is the
first to propose the OBD-II port as a new attack interface and
the CAN messages as the data source. As demonstrated in
Fig. 3, the CAN-Trace attack consists of the driving trajectory
graph generation, the road network graph generation, the
subgraph matching, and the Top-𝐾 ranking. The CAN-Trace
attack constructs the driving trajectory graph 𝑅̄ based on
vehicle stops and turns from CAN messages. Then, it applies
subgraph matching algorithms to match 𝑅̄ with the road
network graph 𝐺. Since more than one subgraph candidate 𝑟𝑘
can be matched by the CAN-Trace attack, ranking rules are
applied to identify the Top-𝐾 subgraphs. Algorithms 1 and 2
illustrate the attack method.

A. Graph Generation

To the best of our knowledge, we are the first to generate a
road network graph by using the CAN messages to infer the

driving trajectory. The detailed steps are discussed as follows.
1) Road Network Data Graph: Vehicles are subject to

traffic rules and are constrained to drivable road segments
in the road network 𝐺 = (𝑉, 𝐸). Nodes 𝑉 and edges 𝐸 are
constructed to generate a purified 𝐺 as given by:
• Nodes: The 𝑖-th node 𝑣𝑖 stands for the 𝑖-th entry or

exit of a road segment in the road network. A node
can have multiple entries or exits, e.g., a roundabout or
intersection.

• Edges: An edge 𝑒𝑖, 𝑗 exists if there is a route between 𝑣𝑖
and 𝑣 𝑗 . The value of 𝑒𝑖, 𝑗 is the route length of the road
segment between 𝑣𝑖 and 𝑣 𝑗 .

The actual driving trajectory is located within the road
network, which means 𝐺∗ is the subgraph of 𝐺 satisfying
𝑉∗ ⊆ 𝑉 and 𝐸∗ ⊆ 𝐸 .

2) Graph of Constructed Driving Trajectory: Adversaries
generate the graph of the constructed driving trajectory 𝑅̄ =

(𝑉𝑅, 𝐸𝑅) using the OBD response set M = {𝑀𝑠 , 𝑀 𝑝} of a
driving period 𝑇 . During the period, 𝑁𝑠

𝑇
speed messages and

𝑁
𝑝

𝑇
pedal position messages are collected, so we have 𝑖 ≤ 𝑁𝑠

𝑇

and 𝑗 ≤ 𝑁 𝑝
𝑇

for any 𝑚𝑠
𝑖

and 𝑚𝑝
𝑗

in M.
Nodes 𝑉𝑅 refer to the vehicle stops and turns embedded in

the OBD response M = {𝑀𝑠 , 𝑀 𝑝}. Vehicle status switches
between driving and stopping or turning are determined as
follows:
• Stops at traffic signals or signs: 𝑚𝑠

𝑖
= 0.

• Turns at the road intersections: 𝑚𝑝
𝑗
= min(𝑚𝑝).

The minimum value of the pedal position indicates the
driver releases the throttle. Note that the default value of the
pedal position is not equal to zero. We assume that the vehicle
turns at the road intersection when the minimum pedal position
lasts for a period.

As illustrated in Fig. 4(a), nodes 𝑉𝑅 can be identified
from CAN messages by analyzing the data points and factors
like the time difference. Details of the node selection in
constructing the graph are found in Lines 1–5 of Algorithm 1.
The CAN-Trace attack feeds the set of all 𝑚𝑠=0 as 𝑃𝑠 and
𝑚𝑝=min(𝑝) as 𝑃𝑝 . Leveraging the clustering algorithm like K-
Means, CAN-Trace attack clusters the time difference between
two consecutive candidates in 𝑃𝑠 and 𝑃𝑝 to find the stopping
and turning clusters. The time differences are calculated by
𝑑 (𝑃𝑠

𝑖
, 𝑃𝑠
𝑖+1) = 𝑡𝑠

𝑖+1 − 𝑡
𝑠
𝑖

for 𝑃𝑠 and 𝑑 (𝑃𝑝
𝑗
, 𝑃

𝑝

𝑗+1) = 𝑡
𝑝

𝑗+1 − 𝑡
𝑝

𝑗

for 𝑃𝑝 , respectively. The clusters distinguishing nodes and
non-nodes usually have a long distance between two clusters,
where the CAN-Trace attack selects the upper bound of the
small cluster as the delimit. The delimits of the identified
cluster of stops and turns are used as the threshold Δ𝑠 and
Δ𝑝 to exclude the redundant nodes for stops and turns,
respectively. Δ𝑠 is introduced to eliminate the messages of the
short-term start and stop, and Δ𝑝 is used to avoid the messages
of the lane changes.

The method to construct the nodes of the line graph of the
driving trajectory 𝑅̄ is described in Algorithm 1 from Lines 6–
26. The node of a vehicle stop can be identified when the time
difference between two data points in 𝑀𝑠 is greater than or
equal to Δ𝑠 and the two points satisfy 𝑚𝑠

𝑖
= 0 and 𝑚𝑠

𝑗
= 0. The

node of a vehicle turning can be determined when the time
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Algorithm 1: CAN to Graph Conversion

Input : CAN messages M = {𝑀𝑠 , 𝑀 𝑝 }
Output: Graph of constructed driving trajectory 𝑅̄ = (𝑉𝑅 , 𝐸𝑅 )
⊲ Initialization
/* Put data points whose 𝑚𝑠 = 0 or 𝑚𝑝 = min(𝑚𝑝 ) into the

candidate sets 𝑃𝑠 and 𝑃𝑝. */

1 𝑃𝑠 ← {𝑚𝑠=0}, 𝑃𝑝 ← {𝑚𝑝=min(𝑚𝑝 ) };
/* Use the time gap between two consecutive candidates for

clustering. */
2 𝑇𝑠 = {𝑑 (𝑃𝑠

𝑖
, 𝑃𝑠

𝑖+1 ) }, 𝑇
𝑝 = {𝑑 (𝑃𝑝

𝑗
, 𝑃

𝑝

𝑗+1 ) };
/* Cluster 𝑇𝑠 and 𝑇 𝑝 for thresholds Δ𝑠 and Δ𝑝. */

3 Cluster(𝑇𝑠), Cluster(𝑇 𝑝);
4 Δ𝑠 ← UpperBoundOfStoppingClusters(𝑇𝑠);
5 Δ𝑝 ← UpperBoundOfTurningClusters(𝑇 𝑝);
⊲ Graph Construction

/* Initial index 𝑖 and 𝑗 for the loop on 𝑀𝑠. */
6 𝑖, 𝑗 = 1;
7 for 𝑗 < 𝑁 𝑠

𝑇
do

8 if 𝑚𝑠
𝑗
= 0 then

9 if 𝑡𝑠
𝑗
− 𝑡𝑠

𝑖
≥ Δ𝑠 then

10 𝑉𝑅 .append
(
(𝑚𝑠

𝑗
, 𝑡𝑠

𝑗
)
)
;

11 end
12 𝑖 = 𝑗

13 end
14 𝑗 = 𝑗 + 1
15 end

/* Initial index 𝑖 for the loop to parse 𝑀 𝑝. */
16 𝑖, 𝑗 = 1;
17 for 𝑗 < 𝑁 𝑝

𝑇
do

18 if 𝑚𝑝

𝑗
= min(𝑚𝑝 ) then

19 if 𝑡 𝑝
𝑗
− 𝑡 𝑝

𝑖
≥ Δ𝑝 then

20 𝑉𝑅 .append
(
(𝑚𝑝

𝑗
, 𝑡

𝑝

𝑗
)
)
;

21 end
22 𝑖 = 𝑗;
23 end
24 𝑗 = 𝑗 + 1;
25 end

/* Sort 𝑉𝑅 based on the message timestamp. */

26 𝑉𝑅 .sort();
/* Merge the duplicated nodes. */

27 for 𝑣𝑅
𝑘

and 𝑣𝑅
𝑘+1 in 𝑉𝑅 do

28 Calculate the weight of edge 𝑤𝑅
𝑘,𝑘+1; ⊲ with (1)

/* Select the shortest road network
segment in 𝐺 denoted as min(𝑤𝑖, 𝑗 ) */

29 if 𝑤𝑅
𝑘,𝑘+1 < min(𝑤𝑖, 𝑗 ) then
/* Remove nodes whose edges less than

min(𝑤𝑖, 𝑗 ). */

30 𝑉𝑅 .delete(𝑣𝑅
𝑘

);
31 end
32 end

/* Construct 𝑅̄ with the merged 𝑉𝑅
*/

33 𝐸𝑅 ← {𝑒𝑅
𝑘,𝑘+1} where 𝑣𝑘 , 𝑣𝑘+1 ∈ 𝑉𝑅 ;

34 return 𝑅̄ = (𝑉𝑅 , 𝐸𝑅 )

Algorithm 2: Driving Trajectory Detection: Matching
and Filtering

Input : Road network graph 𝐺, graph of constructed driving
trajectory 𝑅̄, relative tolerance 𝜎, Top-𝐾 value 𝐾

Output: A set of detected driving trajectory 𝑅̂ = {𝑟𝑘 }
/* Set different tolerance 𝜎 in matching process to

find 𝑙 subgraphs until 𝑙 ≥ 𝐾 with max(𝜎) */
1 Set 𝜎 and 𝐾 in matching 𝑅̄ with 𝐺 to identify subgraph candidate

𝑟𝑙 ;
2 Calculate the difference of edge pair 𝜛𝑙

𝑖, 𝑗
= |𝑤𝑙

𝑖, 𝑗
− 𝑤𝑖, 𝑗 |;

3 if ∀ 𝜛𝑙
𝑖, 𝑗
≤ 𝜎 × 𝑤𝑖, 𝑗 then

/* Append matched nodes and edges to 𝑟𝑙 */
4 𝑉𝑟𝑙 ← 𝑣𝑖 , 𝑣 𝑗 ;
5 𝐸𝑟𝑙 ← 𝑒

𝑟𝑙
𝑖, 𝑗

;
6 Calculate the weight of 𝑒𝑟𝑙

𝑖, 𝑗
as 𝑤𝑙

𝑖, 𝑗
; ⊲ with (1)

7 end
/* Calculate the average distance difference between

the edge pair of line graph 𝑅̄ and 𝑟𝑙 as 𝜃𝑙 */

8 𝜃𝑙 ←
∑𝑄∗−1

𝑖=1
|𝑤𝑅

𝑖,𝑖+1−𝑤
𝑙
𝑖,𝑖+1 |

𝑄∗−1 ; ⊲ with (3)
/* Sort 𝑟𝑙 by 𝜃𝑙 as {𝑟𝑘 } */

9 {𝑟𝑘 } ← Sort(𝑟𝑙 , 𝜃𝑙 );
/* Select 𝐾 subgraphs as 𝑅̂ */

10 return 𝑅̂ = {𝑟𝑘 }, 𝑘 ≤ 𝐾

difference between two data points in 𝑀 𝑝 is greater than or
equal to Δ𝑝 , and the two points satisfy 𝑚

𝑝

𝑖
= min(𝑚𝑝) and

𝑚
𝑝

𝑗
= min(𝑚𝑝). The nodes in 𝑉𝑅 are filtered out and built.

Then, all the nodes will be sorted by the message timestamp
𝑡𝑅.

The redundant nodes in 𝑉𝑅 need to be merged before con-
structing the edges 𝐸𝑅 since the same node can be generated
twice from the vehicle speed and pedal position separately.
The duplicated nodes in 𝑉𝑅 have the following situations:

• Short-term start and stop before red lights: fully stop

and short-term start when the driver quickly pushes and
releases the throttle can lead to the repeated nodes.

• Pedal releasing before stop signs: the driver may release
the throttle before the vehicle fully stops, i.e., 𝑡min(𝑝)

𝑗
<

𝑡𝑠=0
𝑖

of the duplicated nodes 𝑣𝑅
𝑖

and 𝑣𝑅
𝑗
.

As given by Lines 27–32 in Algorithm 1, all duplicated
nodes are merged by checking the edge weight between two
adjacent nodes 𝑣𝑅

𝑘
and 𝑣𝑅

𝑘+1 in 𝑉𝑅. The edge weight 𝑤𝑅
𝑘,𝑘+1

stands for the identified driving path connected by the two
consecutive nodes, i.e., the road segment between 𝑣𝑅

𝑘
and 𝑣𝑅

𝑘+1.
As the driving trajectory is located in a certain road network
area, any edge weight should be no less than the length of
the shortest road segments in the road network area, i.e.,
∀𝑤𝑅

𝑘,𝑘+1 ≥ min(𝑤𝑖, 𝑗 ). Once the edge weight of 𝑤𝑅
𝑘,𝑘+1 does

not satisfy the condition, the CAN-Trace attack will merge the
node by deleting the node 𝑣𝑅

𝑘
.

Edges 𝐸𝑅, representing the driving path between two nodes,
are constructed by connecting the consecutive nodes in 𝑉𝑅

after merging nodes. Since the constructed graph of the driving
trajectory from CAN messages is a line graph, each node
is connected with only one or two nodes in the graph. The
weight 𝑤𝑅

𝑖,𝑖+1 of the edge 𝑒𝑅
𝑖,𝑖+1 is the road length between

nodes 𝑣𝑖 and 𝑣𝑖+1, where 𝑣𝑖 and 𝑣𝑖+1 are the 𝑖-th and (𝑖 + 1)-
th intersections, respectively. CAN-Trace attack calculates the
distance traveled by the vehicle using discrete data points
of vehicle speed and corresponding timestamps. The weight
𝑤𝑅
𝑖,𝑖+1 can be calculated by using the rectangle method to

estimate the driving distance, which is as given by

𝑤𝑅𝑖,𝑖+1 =
∑︁

𝑡𝑎≤𝑡𝑙<𝑡𝑏
𝑚𝑠𝑙 × (𝑡𝑙+1 − 𝑡𝑙), (1)

where 𝑡𝑎 and 𝑡𝑏 are the timestamps when the vehicle leaves the
node 𝑣𝑖 and arrives the node 𝑣𝑖+1, respectively. The timestamp
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of the CAN messages between 𝑣𝑖 and 𝑣𝑖+1 when the vehicle
is driving during the period from 𝑡𝑎 to 𝑡𝑏 is denoted as 𝑡𝑙 . The
vehicle speed at a given timestamp 𝑡𝑙 is denoted as 𝑚𝑠

𝑙
. The

time difference between two consecutive timestamps 𝑡𝑙 and
𝑡𝑙+1 is represented as (𝑡𝑙+1 − 𝑡𝑙). The driving length between
two consecutive nodes 𝑣𝑖 and 𝑣𝑖+1, i.e., 𝑤𝑅

𝑖,𝑖+1, is calculated
by multiplying the vehicle speed 𝑚𝑠

𝑙
with the time difference

(𝑡𝑙+1 − 𝑡𝑙).
The driving trajectory construction from CAN messages is

detailed in Algorithm 1 and illustrated in Fig. 4(b). The CAN-
Trace attack reconstructs the driving trajectory by leveraging
vehicle motion data from CAN messages, specifically vehicle
speed and pedal position. CAN-Trace begins by determining
speed and pedal thresholds, i.e., Δ𝑠 and Δ𝑝 , using the K-means
clustering algorithm on the respective CAN messages. Next,
CAN-Trace identifies node candidates by selecting zero-speed
CAN messages and minimal-pedal CAN messages when the
time differences exceed the identified thresholds, as shown in
Fig. 4(b). The zero-speed and minimal-pedal CAN messages
are verified, as they imply that the vehicle is either stopping
at or crossing intersections. The distance between node candi-
dates is calculated using the speed data and serves as the edge
weight between them. CAN-Trace then removes edges whose
weights are shorter than the shortest road segment in the road
network, merging the end nodes of these edges accordingly.

B. Proposed Trajectory Matching and Detection

By using the generated graph, the CAN-Trace attack em-
ploys a subgraph matching algorithm to find the isomorphic
subgraph of 𝐺. The matching process can be formulated as
given by

R̂ = 𝐹 (𝐺, 𝑅̄) = {𝑟𝑘}, (2)

where R̂ is the set of the matched subgraphs. 𝑟𝑘 is the
𝑘-th subgraph in R̂ and 𝐹 is the matching function, e.g.,
Vento-Foggia 2 (VF2) [30]. VF2 is an improved matching
method that employs a depth-first search strategy and uti-
lizes feasibility rules to prune the search space when finding
subgraph isomorphism. With less memory requirements, VF2
is capable of effectively matching graphs of thousands of
nodes and edges. In the proposed attack, the VF2 is employed
due to its efficiency. By matching the road network graph
𝐺 with the constructed graph from CAN messages 𝑅̄, the
matched subgraphs 𝑟𝑘 can infer the driving trajectory with
the geolocation data.

As given by Lines 1–7 in Algorithm 2, the subgraph 𝑅̂ is
identified by matching and sorting the subgraph candidates 𝑟𝑙 .
Note that the lengths of road segments in the network graph 𝐺
and the constructed graph 𝑅̄ can differ due to various factors,
such as inaccurate map data and different driving behaviors.

Relative Tolerance. The relative tolerance 𝜎 bounds the
tolerated value of the edge weight when matching the 𝑅̄ with
𝐺 to identify the subgraph candidates 𝑟𝑙 . The tolerated length
is calculated as 𝜎 × 𝑤𝑖,𝑖+1. The weight difference between
the edge pair of 𝑒

𝑟𝑙
𝑖, 𝑗

and 𝑒𝑖, 𝑗 is examined as 𝜛𝑙
𝑖, 𝑗

. The
CAN-Trace attack finds the subgraph candidates 𝑟𝑙 when ∀
𝜛𝑙
𝑖,𝑖+1 ≤ 𝜎 × 𝑤𝑖,𝑖+1.

(a) Trajectory graph construction from vehicle speed to stops

(b) Algorithm flowchart of graph construction from CAN messages

Fig. 4. Graph construction: nodes are parsed and extracted from CAN
messages. CAN-Trace attack calculates the time differences between two data
points that are possible node candidates. Nodes are identified when the time
differences are greater than the examined thresholds. The distance between
two nodes is calculated as the edge weight. The 𝑥-axis in (a) represents the
elapsed driving time in seconds, while the 𝑦-axis indicates the vehicle speed
in kilometers per hour. The algorithm flowchart in (b) represents the workflow
of constructing graphs by parsing CAN messages and identifying nodes of
stops and turns.

Top-𝐾 ranking. The Top-𝐾 ranking method is used to sort
and filter the identified subgraphs 𝑟𝑙 into the set 𝑅̂ = {𝑟𝑘}, as
referencing to Lines 8–10 in Algorithm 2. The CAN-Trace
attack calculates the distance difference between the edge
pair of the driving path of 𝑅̄ and the matched subgraph of
𝑟𝑙 , i.e., 𝑤𝑅

𝑖,𝑖+1 − 𝑤
𝑙
𝑖,𝑖+1. The mean of the differences for the

entire driving trajectory, denoted as 𝜃𝑙 , is assessed to rank the
matched subgraphs, as given by

𝜃𝑙 =

𝑄∗−1∑︁
𝑖=1

|𝑤𝑅
𝑖,𝑖+1 − 𝑤

𝑙
𝑖,𝑖+1 |

𝑄∗ − 1
, (3)

where 𝑤𝑅
𝑖,𝑖+1 is the weight of the driving path 𝑒𝑅

𝑖,𝑖+1, and 𝑤𝑙
𝑖,𝑖+1

is the weight of the matched path 𝑒𝑟𝑙
𝑖,𝑖+1. The number of nodes

in the actual driving trajectory graph is denoted as 𝑄∗. With
the setting of 𝐾 , CAN-Trace attack ranks 𝑟𝑙 by 𝜃𝑙 to filter out
𝐾 subgraphs 𝑟𝑘 as the attack results 𝑅̂ = {𝑟𝑘}, where 𝑘 ≤ 𝐾 .
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C. Complexity Analysis

The proposed attack includes the sequential execution of
CAN to graph conversion (i.e., Algorithm 1) and trajectory
detection (i.e., Algorithm 2). In Algorithm 1 Line 3, the K-
Means clustering step for finding the thresholds Δ𝑠 and Δ𝑝

operates at 𝑂 (𝑁𝑠
𝑇

log 𝑁𝑠
𝑇
+ 𝑁 𝑝

𝑇
log 𝑁 𝑝

𝑇
) [31]. The complexity

of the graph construction steps in Algorithm 1 Lines 6–
15, Lines 16–25, and Lines 27–32, are 𝑂 (𝑁𝑠

𝑇
), 𝑂 (𝑁 𝑝

𝑇
), and

𝑂 (𝑉𝑅), respectively, where 𝑁𝑠
𝑇

and 𝑁
𝑝

𝑇
are the numbers

of collected CAN messages of vehicle speed and pedal,
respectively. The sorting step of Algorithm 1 Line 26 has
the complexity of 𝑂 (𝑉𝑅 log𝑉𝑅), where 𝑉𝑅 is the number
of nodes in the constructed driving trajectory graph 𝑅̄. Thus,
the computational and time complexity of Algorithm 1 is
𝑂 ((log 𝑁𝑠

𝑇
+ 1)𝑁𝑠

𝑇
+ (log 𝑁 𝑝

𝑇
+ 1)𝑁 𝑝

𝑇
+ 𝑉𝑅 + 𝑉𝑅 log𝑉𝑅). In

practice, the vehicle speed and pedal position messages can
be collected at the same rate, and the number of the vehicle
messages is much greater than the number of stops in the
driving trajectory, i.e., 𝑁𝑠

𝑇
= 𝑁

𝑝

𝑇
≫ 𝑉𝑅. Thus, the complexity

of Algorithm 1 can be written as 𝑂 (𝑁𝑠
𝑇

log 𝑁𝑠
𝑇
).

The most time-consuming step of Algorithm 2 is the
subgraph matching. The VF2-based implementation exhibits
a complexity of 𝑂 (𝑁2

𝑉
) in the best case and 𝑂 (𝑁𝑉 !𝑁𝑉 )

in the worst case [30], where 𝑁𝑉 is the number of nodes
in the graph of the road network. As a result, the overall
computational and time complexity of the proposed attack is
between 𝑂 (𝑁𝑠

𝑇
log 𝑁𝑠

𝑇
+𝑁2

𝑉
) and 𝑂 (𝑁𝑠

𝑇
log 𝑁𝑠

𝑇
+𝑁𝑉 !𝑁𝑉 ). We

note that the proposed CAN-Trace attack can be conducted
offline, with CAN messages collected during driving and
processed afterward. Therefore, the attack is not time-critical.
The above-mentioned complexity is tolerable.

D. Assessment Criteria

The node in 𝑟𝑘 is determined as true positive when the
geolocation is the same as the corresponding node in 𝐺∗. The
attack performance is assessed by the attack success rate Ψ,
attack precision 𝑃, and the spatial distance offset 𝐷.

The attack success rate Ψ refers to the attack coverage of
the CAN-Trace attack, evaluated by

Ψ =

��⋃𝑘
𝑖=1 (𝑉𝑟𝑘 ∩𝑉∗)

��
𝑄∗

, (4)

where 𝑉𝑟𝑘 is the inferred nodes of a subgraph 𝑟𝑘 , and 𝑉∗ is
the number of attempted attacks. The size of the distinct set
containing all correctly inferred nodes in 𝑟𝑘 is calculated as��⋃𝑘
𝑖=1 (𝑉𝑟𝑘 ∩𝑉∗)

��. The number of nodes in the graph of the
actual driving trajectory 𝐺∗ is denoted as 𝑄∗.

The attack precision 𝑃 refers to the positive predictive
value, i.e., the True Positive (TP) divided by the sum of
the true positive and False Positive (FP), which indicates the
effectiveness of the attack. In our experiments, 𝑃 represents
the average percentage of the correctly matched nodes of the
attack result and is as given by

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 =
1
𝐾

𝐾∑︁
𝑖=1

𝑁 ′
𝑘

𝑄∗
, (5)

where 𝐾 is the number of matched subgraphs and 𝑁 ′
𝑖

is the
number of correctly inferred nodes in 𝑟𝑖 .

The spatial distance offset 𝐷 quantifies the geospatial dis-
crepancy between the inferred driving trajectory 𝑟𝑘 and the
actual driving trajectory 𝐺∗, which is given in (6).

𝐷 =
1
𝐾

𝐾∑︁
𝑘=1

𝑑 (𝑉∗, 𝑉𝑟𝑘 )
𝑄∗

, (6)

where 𝑉∗ is the set of nodes in the actual driving trajectory,
and the 𝑉𝑟𝑘 is the set of nodes in the selected subgraph 𝑟𝑘 .
𝑑 (𝑉∗, 𝑉𝑟𝑘 ) is the average of the Euclidean distance between
each node pair of the selected subgraph and that of the actual
driving trajectory.

The false negative rate F is the average ratio of nodes in the
actual driving trajectory 𝐺∗ that are not correctly identified in
the matched subgraph 𝑟𝑘 , as given by

F =
1
𝐾

𝐾∑︁
𝑖=1

𝑁F
𝑘

𝑄∗
, (7)

where 𝑁F
𝑘

represents the number of nodes that are in the actual
driving trajectory graph 𝐺∗ but not identified in the matched
subgraph 𝑟𝑘 , and 𝑄∗ is the number of nodes in the graph of
the actual driving trajectory.

IV. PERFORMANCE EVALUATION

This section evaluates the proposed CAN-Trace attack in
a real road network under different experimental settings and
subjects, including the type and area size of the road network,
the models and years of experimental cars, and the length of
the actual driving trajectory 𝑄∗.

A. Experiment Setup

We collect driving data from three different cars (i.e., a
2013 petrol car, a 2015 petrol car, and a 2022 hybrid car).
All three cars can provide the required vehicle motion data,
i.e., speed and pedal data, via the standard OBD-II protocol.
A laptop is connected to each vehicle’s OBD-II port using
the same CAN analyzer (specifically, the PEAK PCAN-USB
Pro FD adapter1). The CAN analyzer reads vehicle speed
and pedal data at 0.1-second intervals and logs the motion
data on the laptop with the complementary software (i.e.,
PCAN-Explorer2). The collected CAN messages are converted
from the raw trace format (.trc) into CSV format, with de-
coded numerical vehicle speed and pedal data, along with the
timestamp of each data entry. The consistent data collection
process and settings help minimize discrepancies attributable
to different vehicles. While the current data collection process
requires physical devices to be connected to the CAN bus,
typically through the OBD-II port, car manufacturers and
vehicle applications may have direct access to CAN messages.

1The PEAK PCAN-USB Pro FD adapter allows a computer to connect
the vehicle CAN bus via the OBD-II port. https://www.peak-system.com/
PCAN-USB-Pro-FD.366.0.html?&L=1

2PCAN-Explorer is a professional Windows software that equips with
PEAK devices to view, transmit, and record real-time CAN messages.
https://www.peak-system.com/PCAN-Explorer-6.415.0.html?&L=1

https://www.peak-system.com/PCAN-USB-Pro-FD.366.0.html?&L=1
https://www.peak-system.com/PCAN-USB-Pro-FD.366.0.html?&L=1
https://www.peak-system.com/PCAN-Explorer-6.415.0.html?&L=1
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Fig. 5. Topology graphs of used road networks in remote, suburban, and urban regions, showing road network density from low to high. The road networks
are from Sydney city, extracted using OpenStreetMap. Blue dots represent road network intersections, and edges represent the road segments connecting the
intersections.

The proposed CAN-Trace method are tested across 279
driving trajectories in three types of regions within Sydney:
remote, suburban, and urban, as illustrated in Fig. 5. The
remote regions feature low density, long road segments, and
distinct street blocks. The suburban regions have medium
density, a mix of short and long road segments, and partially
similar street blocks. The urban regions are characterized by
high density, short road segments, and similar street blocks.

The matching process of the CAN-Trace attack is performed
on a Windows 10 laptop with Intel(R) Core(TM) i7-1185G7
CPU@3GHz and 16G RAM. The server runs in an Anaconda
environment with Python 3.6.8, NetworkX 2.5.1, OSMnx 1.2.1
and Numpy 1.19.5.

B. Experimental Setting

The experimental vehicle is driven in different types of road
networks, i.e., urban and suburban, to evaluate the attack gen-
eralizability. The evaluation is also performed across diverse
configurations, i.e., the road network area, the value of 𝐾 , and
the number of nodes in the driving trajectory graph 𝑄∗.

Road Network Area. The road network area represents the
size of the road network where the constructed trajectories
from CAN messages are matched. A large road network
area stands for a bigger graph and more nodes and edges.
In this experiment, the road network area is set to various
values, i.e., 5 km × 5 km, 10 km × 10 km, 15 km × 15 km,
20 km×20 km, 25 km×25 km, and 30 km×30 km. A 5 km×5 km
road network area crosses two or more suburbs of the urban
region and is only located in one suburb of the suburban
region. The majority of the metro city of Sydney can be
covered in a 30 km × 30 km road network area, which means

our experimental settings can prove the attack performance
regarding the victim’s daily range of driving.

Driving Trajectory Length. The length of an actual driving
trajectory can be captured by the number of nodes in the
related graph, denoted by 𝑄∗. The experiments have different
settings of 𝑄∗ value: 5, 7, 10, 12 and 15. In our experiments,
the driving trajectory length is approximately 100 m long for
the edge between two nodes. Similar road network patterns
are intensive in the urban region but sparse in the suburban
region.

Value of 𝐾 . Top-𝐾 ranking, which determines the size of 𝑅̂, is
designed to select 𝐾 detected subgraph candidates 𝑅̂ = {𝑟𝑘} as
the attack results. The attack results in 𝑅̂ occasionally contain
outliers (i.e., a subgraph candidate with zero nodes matched
correctly) at smaller 𝐾 values within a large road network
area, which leads to a lower attack success rate Ψ. A higher
𝐾 value considers a broader range of matched candidates to
enhance attack robustness, but the trade-off is a lower attack
precision 𝑃.

C. Experimental Results

The overall trend of all the attack success rate Ψ, attack
precision 𝑃, and the spatial distance offset 𝐷 are consistent in
the urban and suburban region, as shown in Figs. 6–9.

1) Attack Success Rate: The impact of different 𝐾 values
is indicated in Fig. 6 where we compare Ψ of different 𝐾 and
discuss the related outcome under different road network areas
or the driving trajectory length 𝑄∗. The 𝑦-axes in Figs. 6(a)
and 6(b) are the average values of Ψ among different driving
trajectory lengths 𝑄∗, while the 𝑦-axes in Figs. 6(c) and 6(d)
are the average values of Ψ among different road network
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areas. In urban and suburban road networks, Ψ progressively
converges as the value of 𝐾 increases and stabilizes for 𝐾 ≥ 5.
A greater value of 𝐾 comes with a bigger tolerance 𝜎 to accept
the relative error of the edge weight. Therefore, the correct
nodes and edges can be found by enlarging the relative error
in the matching process. As shown in Figs. 6(a) and 6(b),
Ψ can reach 90.59 % in urban and 99.41 % in suburban at
𝐾 = 10 within the road network area of 5 km × 5 km. The
result indicates that the CAN-Trace attack can deduce the
majority location of a target driving trajectory within the top
10 subgraph candidates, showing a good attack efficiency.
The CAN-Trace attack has a better attack success rate in
the urban region. As shown in Figs. 6(a) and 6(b), the
average values of Ψ are significantly higher in urban road
networks, particularly in those with the road network area of
20 km×20 km, 25 km×25 km and 30 km×30 km. The upward
trend is obvious when 𝐾 = 1 with a 30 km × 30 km road
network area, where Ψ increases from 36.88 % in suburban
to 50.35 % in urban road networks.

The attack success rate Ψ shows the positive correlation
with the 𝑄∗, as indicated in Figs. 6(c) and 6(d). As shown
in Figs. 6(c) and 6(d), the proposed attack can apply a small
𝐾 to achieve good performance on Ψ with a longer driving
trajectory length. Notably, the CAN-Trace attack can gain a
higher attack success rate Ψ when 𝑄∗ ≥ 10 in our experiments.
The success rate Ψ in the urban region appears to be generally
superior to that in the suburban region. This could potentially
be attributed to the more distinct features of road network
patterns in the urban region. In either urban or suburban
regions, Ψ rises to reach around 90 % with a greater 𝑄∗.

We proceed to compare the attack success rate of the
proposed CAN-Trace method with the state-of-the-art trajec-
tory detection methods3, i.e., [21] and [32]. In comparison
with [21], the proposed CAN-Trace achieves the attack suc-
cess rates of 79.76% and 50.35% for 10 km × 10 km and
30 km×30 km areas, respectively, when 𝐾 = 1. By contrast, the
corresponding success rates in [21] for 100 km2 and 900 km2

areas are 61.1% and 33.5%, respectively. Compared to [32],
CAN-Trace achieves similar success rates on 400 km2 areas.
Specifically, CAN-Trace reaches a 78.18% attack success rate
for 20 km × 20 km areas when 𝐾 = 10, as shown in Fig. 6(a).
This success rate corresponds to a 97.73% partial match rate
(which is obtained from 78.18%

80% based on the 80% matching
requirement for partial match success rate in [32]), which is
similar to the partial match success rate for the 400 km² area
(i.e., Q1 results given in Fig. 8(b) of [32]).

2) Attack Precision: The experiments of attack precision
𝑃 are shown in Figs. 7 and 8, where 𝑃 is discussed under dif-
ferent road network areas, 𝑄∗ and 𝐾 . The 𝑦-axes in Figs. 7(a)
and 7(b) are the average values of 𝑃 among different driving
trajectory lengths 𝑄∗, while the 𝑦-axes in Figs. 7(c) and 7(d)
are the average values of 𝑃 among different road network
areas. Unlike the attack success rate Ψ that increases with
𝐾 , the CAN-Trace attack has a higher values of 𝑃 with a

3Strict comparisons are challenging due to differences in experimental
setups, such as data sources, cities, and trajectories. We have attempted to
compare results under similar parameters.

smaller 𝐾 as shown in Figs. 7 and 8. As evidenced in Fig. 7,
𝑃 exhibits superior values for 𝐾 = 1 than for 𝐾 ∈ {3, 5, 7, 10}.
This is because the first ranking inferred subgraph candidate
is extreme and has either a large or zero number of correctly
deduced nodes. As demonstrated in Figs. 7(a) and 7(b), 𝑃
attains a peak value of 79.75 % in urban when 𝐾 = 1 within a
10 km × 10 km area and a peak value of 67.45 % in suburban
𝐾 = 1 within a 5 km × 5 km road network area. This also
proves that the design of the Top-𝐾 ranking rule leads to a
better attack result and enhances the attack efficiency.

The attack performance is enhanced when the attack
performs on a smaller road network size as indicated in
Figs. 7(a), 7(b), 8(a) and 8(b). The observed increase of 𝑃
can be found at 5 km × 5 km road network area compared
to the 10 km × 10 km in urban road network, as indicated in
Fig. 7(a). As shown in Figs. 7(a) and 7(b), the attack precision
𝑃 stabilizes after surpassing a road network area value of
20 km × 20 km in the urban region and that of 25 km × 25 km
in the suburban region, respectively. Consistent with the trend
of Ψ in Figs. 6(c) and 6(d), the attack precision 𝑃 increases
with a longer driving trajectory 𝑄∗ as shown in Figs. 7(c)
and 7(d). 𝑃 increases from 36.67 % to 87.04 % in urban region
and raises from 11.11 % to 88.89 % in suburban region when
𝑄∗ grows from 5 to 15 with 𝐾 = 1. The attack precision 𝑃 has
a significant increase when 𝑄∗ ≥ 10, especially in suburban
road networks, as demonstrated in Fig. 7(d).

As shown in Fig. 8, the overall attack performance of 𝑃
when 𝐾 = 1 is better than that of 𝐾 = 3. Compared the
Figs. 8(a) and 8(c), the average value of 𝑃 is smaller when
𝐾 = 3 than 𝐾 = 1 in urban road networks. The same trend
can be found in Figs. 8(b) and 8(d). The reason is that the
size of 𝑅̂ is bigger with a larger 𝐾 value which decreases the
average value of 𝑃. However, a larger 𝐾 can be used to avoid
extreme cases as shown in Figs. 8(b) and 8(d) where the CAN-
Trace attack has 𝑃 = 0 when 𝐾 = 1 but 𝑃 > 0 when 𝐾 = 3
for the driving trajectory length 𝑄∗ = 7 in the road network
areas of 10 km × 10 km and 15 km × 15 km. In terms of the
𝑄∗, the attack precision tends to increase while the 𝑄∗ grows.
As indicated in Fig. 8(b), CAN-Track may have no output in
some extreme cases, i.e., when 𝐾 = 1 and 𝑄∗ = 7 for the road
network area larger than 5 km× 5 km in suburban region. The
same case happens when 𝐾 = 3 and 𝑄∗ = 7 for the area larger
than 15 km× 15 km, as shown in Fig. 8(d). This indicates that
the extreme cases can be avoided by enlarging the length of
the driving trajectory, i.e., a greater 𝑄∗.

3) Spatial Distance Offset: The spatial distance offset is
compared under different road network areas and 𝑄∗ in Fig 9.
The attack results filtered by different 𝐾 are compared among
different settings. The 𝑦-axes in Figs. 9(a) and 9(b) are the
average values of 𝐷 among different 𝑄∗, and the 𝑦-axes in
Figs. 9(c) and 9(d) are the average values of 𝐷 among different
road network areas. As shown in Fig. 9, the CAN-Trace attack
wins fewer distances offset 𝐷 in suburban rather than urban
road network areas. This is because the suburban region can
have a similar road network pattern across the area and far
away from each other. The average spatial distance offset 𝐷
ranges from 0.48 km to 1.30 km in 5 km × 5 km and from
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(a) Attack within urban region
grouped by road network area

(b) Attack within suburban region
grouped by road network area

(c) Attack within urban region
grouped by 𝑄∗

(d) Attack within suburban region
grouped by 𝑄∗

Fig. 6. Comparison of attack success rate Ψ within urban and suburban road networks: 𝑦-axes are the average values of Ψ among different 𝑄∗ in subplots
(a) and (b), and different road network areas in subplots (c) and (d). The bar colors in subplots (a) and (b) represent the size of road network areas as follows:
• 5 km × 5 km, • 10 km × 10 km, • 15 km × 15 km, • 20 km × 20 km, • 25 km × 25 km, and • 30 km × 30 km. The bar colors in subplots (c) and (d) represent
the numbers of nodes in the graph of actual driving trajectory as follows: • 𝑄∗ = 5, • 𝑄∗ = 7, • 𝑄∗ = 10, • 𝑄∗ = 12, and • 𝑄∗ = 15.

(a) Attack within urban region
grouped by 𝐾

(b) Attack within suburban region
grouped by 𝐾

(c) Attack within urban region
grouped by 𝐾

(d) Attack within suburban region
grouped by 𝐾

Fig. 7. Comparison of attack precision 𝑃 within urban and suburban road networks: 𝑦-axes are the average values of 𝑃 among different 𝑄∗ in (a) (b) and
different road network areas in (c) (d). The bar colors in all subplots represent the values of Top-𝐾 as follows: • 𝐾 = 1, • 𝐾 = 3, • 𝐾 = 5, • 𝐾 = 7, and
• 𝐾 = 10.

(a) Attack within urban region when
𝐾 = 1 grouped by 𝑄∗

(b) Attack within suburban region
when 𝐾 = 1 grouped by 𝑄∗

(c) Attack within urban region when
𝐾 = 3 grouped by 𝑄∗

(d) Attack within suburban region
when 𝐾 = 3 grouped by 𝑄∗

Fig. 8. Comparison of attack precision 𝑃 of 𝐾 ∈ {1, 3} within urban and suburban road networks: 𝑦-axes are the average values of 𝑃. The bar colors in all
subplots represent the numbers of nodes in the graph of actual driving trajectory as follows: 𝑄∗ = 5, 𝑄∗ = 7, 𝑄∗ = 10, 𝑄∗ = 12, and 𝑄∗ = 15.

(a) Attack within urban region
grouped by 𝐾

(b) Attack within suburban region
grouped by 𝐾

(c) Attack within urban region
grouped by 𝐾

(d) Attack within suburban region
grouped by 𝐾

Fig. 9. Comparison of spatial distance offset 𝐷 within urban and suburban road networks: 𝑦-axes are the average values of 𝐷 among different 𝑄∗ in (a)(b)
and different road network area in (c)(d). The bar colors in all subplots represent the values of Top-𝐾 as follows: • 𝐾 = 1, • 𝐾 = 3, • 𝐾 = 5, • 𝐾 = 7, and
• 𝐾 = 10.
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(a) Attack within urban region
grouped by 𝐾

(b) Attack within suburban region
grouped by 𝐾

(c) Attack within urban region
grouped by 𝐾

(d) Attack within suburban region
grouped by 𝐾

Fig. 10. Comparison of false negative rate F within urban and suburban road networks: 𝑦-axes are the average values of F among different road network
areas in (a) (b) and different 𝑄∗ in (c) (d). The bar colors in all subplots represent the values of Top-𝐾 as follows: 𝐾 = 1, 𝐾 = 3, 𝐾 = 5, 𝐾 = 7,
and 𝐾 = 10.

(a) Ψ within remote region grouped
by 𝐾

(b) 𝑃 within remote region grouped
by 𝐾

(c) 𝐷 within remote region grouped
by 𝐾

(d) F within remote region grouped
by 𝐾

Fig. 11. Evaluation in remote regions: 𝑦-axes are the average values of attack success rate Ψ in (a), the average values of the attack precision 𝑃 in (b), the
average values of spatial distance offset 𝐷 in (c), and the average values of false negative F in (d). The 𝑥-axes are the numbers of nodes in the graph of actual
driving trajectories, i.e., 𝑄∗. The road network area is 30 km× 30 km. The bar colors in all subplots represent the values of Top-𝐾 as follows: 𝐾 = 1,
𝐾 = 3, and 𝐾 = 5.

7.10 km to 15.68 km in 30 km × 30 km within the urban road
network. In the suburban region, 𝐷 varies from 0.45 km to
1.05 km and from 9.24 km to 12.63 km in the area size of
5 km × 5 km and 30 km × 30 km, respectively. As indicated in
Figs. 9(a) and 9(b), the spatial distance offset 𝐷 has a robust
positive correlation with the size of the road network. There
is a notable decrease when the road network area becomes
smaller, which means that CAN-Trace attack tend to locate
the deduced driving trajectory close to the actual driving
trajectory. The observed trend can also be attributed to the fact
that a smaller road network area yields a smaller number of
subgraph candidates. As demonstrated in Figs. 9(c) and 9(d),
𝐷 decreases with a bigger 𝑄∗. Similar to the attack precision
𝑃, the spatial distance offset 𝐷 gains better attack results when
𝑄∗ ≥ 10, especially in the suburban road networks indicated
in Fig. 9(d).

Like the attack precision 𝑃, the overall attack performance
of 𝐷 is enhanced with a smaller 𝐾 . Notably, 𝐷 for 𝐾 = 1 is
about half that for 𝐾 = 3 as demonstrated in Fig. 9. The best
performance of 𝐷 comes with the lowest value 0.8394 km with
𝐾 = 1 and is 4.15 km when 𝐾 = 3 in urban road networks,
as shown in Fig. 9(c). In suburban road network, 𝐷 drops
to 0.26 km when 𝐾 = 1 but is greater than 2.42 km when
𝐾 ∈ {3, 5, 7, 10} as demonstrated in Fig. 9(d). The difference
of 𝐷 between 𝐾 = 1 and 𝐾 ∈ {3, 5, 7, 10} is extremely large,
as shown in Figs. 9(c) and 9(d). The reason is that a larger
𝐾 value brings in candidates with different node matches, and
some are less aligned.

4) False Negative Rate: The attack false negative rate F
is examined in Fig. 10 across different road network areas,
the number of actual driving trajectories, and 𝐾 for Top-𝐾 ,
in urban and suburban regions. The false negative rate can be
high, especially when 𝐾 is large, e.g., 𝐾 = 7. This is because
the Top-𝐾 selection mechanism includes multiple trajectories
even though only one is correct, increasing the numbers of
incorrect trajectories and nodes selected. For example, in the
case of 𝑄∗ = 15, the false negative rate F is 11.11% when
𝐾 = 1 in suburban region, as shown in Fig. 10(d), indicating
that CAN-Trace has identified majority nodes in the actual
trajectory. However, as 𝐾 increases, incorrect trajectories are
included in the Top-𝐾 selection, leading to a higher F, e.g.,
F = 79.96% for 𝐾 = 10, as the second through tenth results
barely cover any right nodes.

The false negative rate F gradually increases as the road
network size expands. For example, when 𝐾 = 1, F is
32.55% for the 5 km × 5 km road networks in suburban
regions and 53.14% for the 30 km × 30 km road networks in
suburban regions, as shown in Fig. 10(b). The false negative
rate F decrease as the number of nodes in the actual driving
trajectories increases. According to Fig. 10(c), when 𝐾 = 1,
F is 63.33% on average for all trajectory graphs with five
nodes and drops to only 12.96% for all trajectory graphs
with 15 nodes. The experiment results reveal that CAN-Trace
requires a certain number of nodes to accurately identify the
actual trajectories, and 𝐾 should be tuned to balance the attack
success rate and the false negative rate.
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5) Performance in Remote Regions: The proposed CAN-
Trace attack is also validated in remote regions. The attack
performance metrics, including success rate (Ψ), precision (𝑃),
spatial distance offset (𝐷), and false negative rate (F), are illus-
trated in Fig. 11 Testing results confirm the effectiveness of the
CAN-Trace attack in remote regions. Similar to the results in
urban and suburban regions, the attack performance improves
with increasing 𝑄∗, leading to higher Ψ and 𝑃 and lower 𝐷
and F. Notably, the results in the remote regions demonstrate
better performance of the proposed attack compared to urban
and suburban regions, with the attack success rate (Ψ) reaching
the upper bound with a small 𝐾 and few nodes in the driving
trajectory graph. This is due to the strong heterogeneity of
road segments in remote regions, which allows for exclusive
matching.

D. Discussion

1) Lesson Learned: In summary, the proposed CAN-Trace
attack has a good performance on the attack success rate Ψ,
attack precision 𝑃, and spatial distance offset 𝐷 in the real-
world environment. In our experiments, the CAN-Trace attack
infers the vehicle driving trajectory with a higher value of Ψ

and 𝑃 within a smaller road network area, which means the
attack is quite efficient in a small size of the road network
area. CAN-Trace attack performance in the suburban region
is slightly superior to those in the urban region, especially
when the driving trajectory length 𝑄∗ is greater than 10. The
experiments highlight the impact of the Top-𝐾 value, which
wins the highest attack precision 𝑃 when 𝐾 = 1 and gains
a good attack success rate Ψ representing the coverage when
𝐾 is greater than 5. Thus, a 𝐾 value between 1 and 5 is
recommended to balance the attack efficiency and coverage.

2) Privacy Concern: The proposed CAN-Trace attack can
persist because it utilizes basic vehicle motion data, i.e., speed
and pedal data, from the standard OBD-II protocol that is
widely used in the automotive industry. The attack could
compromise drivers’ privacy on personal addresses, locations,
and driving trajectories by analyzing CAN messages alone. In
our experiments, all driving data are collected with consent.
In practice, the application of the proposed CAN-Trace should
follow privacy regulations such as the General Data Protection
Regulation (GDPR) in Europe and the California Consumer
Privacy Act (CCPA). Organizations like car rental or logis-
tics companies could leverage CAN-Trace to track vehicles,
provided there is full disclosure and compliance with these
regulations.

3) Mitigation: To safeguard against the proposed CAN-
Trace attack, we recommend actions from car manufacturers,
drivers, and CAN-based service providers. Car manufacturers
should design secure, privacy-preserving CAN networks with
secure access controls. Drivers should regularly inspect the
OBD-II port and other potential CAN sniffers to prevent
unauthorized physical access. CAN-based service providers
should recognize the privacy risks of disclosing CAN mes-
sages and implement encryption, data anonymization (e.g., k-
anonymity), and privacy-preserving technologies (e.g., differ-
ential privacy) during the storage, processing, and sharing of

CAN data. In summary, all stakeholders must recognize the
privacy risks of trajectory leakage from CAN messages, ensure
that only trusted parties have access, and apply anonymity, data
privacy, and other privacy-preserving technologies to protect
CAN data.

V. RELATED WORK

A. Map-Matching: Methods and Sensor Utilization

The existing map-matching methods [36] that detect vehicle
location and trajectory are discussed in this section, focusing
on the comparison of data sources. Map-matching is to find the
road segments on which the vehicle drives and the location of
the vehicles to finally map out the driving trajectory. Since the
driving trajectory contains the personal information [37], the
sensitive information such as the driver’s habits and identity
can be inferred from the trajectory dataset [38], [39], which
leads to the driver’s privacy leakage. To infer the locations
and trajectories of the vehicle, adversaries can launch side-
channel attacks with the Global Positioning System (GPS)
data [18], [40], passive sensor data [17], [21], [41]–[43], and
the vehicular network data [44]–[46].

In [43], the vehicle motion data from mobile magnetometer
sensors is introduced as additional data in map-matching.
In [21], Li et al. revealed the driving trajectory by matching
intersection angles with the magnetometer sensor data. Li
et al. developed the first attack model [21] to match car
turn angles with the road network intersection angles to
construct the driving trajectory. The GPS data is not required
in the developed attack model, but the compass data from the
mobile phone. Unfortunately, the attack model degrades the
performance in the case of disorientation due to the perturbed
phone position by drivers or passengers.

B. GPS Data Utilization

The most used data to deduce the vehicle trajectories is the
GPS data. In [18], the authors utilized a passive GPS device
to collect GPS data and vehicle state by inferring the victims’
home and working addresses from a large number of guesses.
The map-matching process using GPS data is to convert a
sequence of GPS data into a sequence of road segments [47].
However, the GPS data is not reliable due to the difficult
access and data noise and loss. The missing data caused by
the GPS outage problem require additional data such as the
odometer, lidar or camera data [13]–[17], [48]–[51] to enhance
the inference accuracy.

C. Innovative Approaches to Trajectory Reconstruction

Unlike identifying only a few road points, Guhu et al.
analyzed the sequence of vehicle motions (i.e., movement,
stop, turn) collected by a small wireless tag to reconstruct
the complete driving path with knowing the initial and final
GPS position [40]. Xiao et al. classified the road section
types with the motion information from the OBD data and
integrated the road section types with GPS data to reconstruct
the driving trajectory [17]. The Gated Recurrent Unit (GRU)
model is used to identify the candidate path during GPS
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TABLE II
COMPARISON WITH TRAJECTORY DETECTION STUDIES

Reference Data Sources Approaches Advantages Limitations

L2MM [33] GPS data Deep Learning Handel poor-quality GPS data
GPS coverage and access permission
Data quality still matters

GOI [20]
GPS data
Vehicle motion data

SVR Data fusion for robustness
GPS coverage and access permission
Specific vehicle motion data

DMM [34]
Cell tower location data
Cell access data

RNN
GPS-agnostic
Passive interference by operators

Cellular network coverage
Cell towers locations

MBT [21] Magnetometer data Turn angle matching GPS-agnostic
Need external fixed IMU
High cost to calculate turn angles

DaRoute [32] IMU data Route ranking
GPS-agnostic
No wiring to vehicles

Need external fixed IMU
Limited IMU data accuracy

Invasion [35] Mobile motion data
Noise removing
DTW matching

GPS-agnostic
Tolerate human-generate noise

Need external mobile/IMU
Restrict to subway trajectories

CAN-Trace
CAN data
(speed and pedal)

Subgraph matching
GPS-agnostic
No attached motion sensors
Generic vehicle motion data

Need access to CAN messages

GPS, SVR, RNN, IMU, DTW and CAN stand for Global Positioning System, Support Vector Regression, Recurrent Neural Network, Inertial Measurement Unit,
Dynamic Time Warping, and Controller Area Network, respectively.

outages. However, both approaches solve the GPS outage
problem that only constructs partial driving trajectory and
requires GPS data.

D. Challenges and Novel Attack Surfaces

The GPS data or sensor data from external devices (e.g.,
smartphones) are unreliable data sources due to issues like
restricted access and data noise. The GPS outage problem can
be partially addressed by incorporating additional data, such
as vehicle motion data from compass sensors. The vehicle
motion data collected from the smartphone is easily perturbed
by unexpected user movement and error positioning [17]. In
order to enhance attack efficiency, various attack surfaces are
being investigated, including tire pressure sensors [42] and
the hardware-embedded scrambling algorithm [46]. However,
these attack surfaces either demand sophisticated techniques
or involve complex access requirements.

E. Comparison Highlights

Various data sources have been studied for driving trajectory
detection. GPS data enables accurate position and trajectory
detection [20], [33], although it suffers from limited coverage
and requires sensitive permissions to access. In the absence
of GPS, DMM [34] leverages cell connectivity data and cell
tower locations to infer the trajectory of mobile users; however,
this approach is suitable only for attackers with extensive
knowledge of mobile networks. Motion data has also gained
interest for trajectory detection [21], [32], but it requires an
external Inertial Measurement Unit (IMU) to be mounted in
vehicles, with the IMU remaining fixed during driving to
minimize human-generated noise. In [35], the authors designed
a new algorithm to remove human-generated noise but only
manage to match subway trajectories of passengers.

This paper proposes a new vector for driving trajectory
detection by leveraging the vehicle motion data from in-
vehicle Controller Area Network (CAN), specifically speed

and pedal data. These vehicle-generated CAN data can be
more accurate than the data from external IMU and do not
require the external IMU. The CAN data can be collected via
the OBD-II ports of vehicles or obtained from CAN data-based
service providers.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the CAN-Trace attack to deduce
the vehicle driving trajectory using geolocation data in real-
world road networks. This work is the first to infer driv-
ing trajectories using CAN messages and to apply subgraph
matching to align the trajectories with road networks. The
proposed CAN-Trace attack obtains the vehicle kinematic data
by accessing the CAN bus via the OBD-II port, ensuring
the integrity of the data and the stealthiness of the proposed
attack. The proposed attack uses the Top-𝐾 ranking rule to
improve the attack efficiency. The proposed CAN-Trace attack
is evaluated with real-world driving data and traffic scenarios.
As demonstrated by the experimental results, the CAN-Trace
attack performs effectively in both urban and suburban regions.

In future work, we plan to consider weather conditions,
traffic patterns, city layouts, vehicle-specific factors, and driv-
ing behaviors to further refine and enhance the method.
Additionally, we aim to develop new algorithms capable of
handling pure CAN messages or integrating CAN data with
other sources to effectively and accurately reconstruct driving
trajectories.
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