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A B S T R A C T

This study presents a scenario-based model predictive control (MPC) approach to minimize the cotton farm
microgrid operational cost under uncertainties. Uncertainties in cotton farms may come from renewable energy
generation, water demand, precipitation, and evaporation, so the cotton field pumping system operation can be
formulated as a stochastic MPC problem to accommodate uncertain climate conditions and real-time changes
in irrigation demand. Scenario generation and reduction techniques can obtain typical scenarios and their
probabilities. The typical scenarios can be used in the MPC iterative step to facilitate modelling the proposed
stochastic optimization problem. This study discusses static and dynamic uncertainty modelling techniques
used for MPC, and each technique is analysed separately in grid-connected and islanded microgrids through
case studies. In the grid-connected dynamic scenario-based MPC, the operational cost is AU$ 18,797 over the
entire irrigation period, which is AU$ 8759 lower than that of the standard MPC. Furthermore, for the islanded
dynamic scenario-based MPC, the operational cost is AU$ 24,443 over the entire irrigation period, which is
AU$ 6721 lower than the standard MPC.
1. Introduction

Energy purchase costs grow very fast for cotton farms, where elec-
tricity and diesel consumption are a notable portion of the average
cotton production costs [1]. This trend imposes a considerable financial
burden on the cotton growers. Since 2000, Australian growers have
experienced significant price increases in electricity costs, about 350%
increase after removing the effect of the 45 ∼ 50% accumulated infla-
tion [2]. In [3], the authors explore the application of MGs in cotton
farms and provide sustainable and cost-effective energy solutions for
cotton farms. Thus, one of the ways by which cotton growers can
reduce their direct energy operational costs is to introduce renewable
energy and implement operational strategies to reduce direct energy
consumption. Unlike conventional power generation, renewable energy
(such as solar) is always intermittent, bringing significant uncertainties
to power generation and scheduling [4]. This study aims to develop
effective methods to reduce operating costs and maintain reliabil-
ity under uncertainties from renewable energy sources and changing
demand.

1.1. Literature review

In recent years, more and more literature has combined small-scale
RES with traditional generator sets to establish the MG system, an
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emerging way to absorb RES on demand, e.g., Ref. [5] uses the energy
management system to minimize the daily operating cost of the MG and
maximize self-consumption of renewable energy sources. Therefore, the
operational cost can be reduced by improving the utilization rate of
renewable. MPC has advantageous features to operate MG owing to its
capability to handle uncertainties [6]. Accordingly, MPC methods have
been widely applied to MG operations. In [7], the MPC approach aims
to optimize the power distribution among generators, load, and battery
storage, ensuring stability and efficient management of the microgrid
under varying conditions. In addition, Ref. [8] proposes an online
optimal operation method for combined cooling, heating, and power
MG systems based on MPC, compensating for prediction errors through
two hierarchies of feedback correction. Furthermore, the MPC strategy
in [9] minimizes the operational cost of the cotton farm MG system in
Australia. The above studies emphasize the robustness of MPC and note
that uncertainty will affect the results; however, the uncertainties are
not modelled.

Many studies have discussed methods of generating appropriate
scenarios to model uncertainty [10]. A nonlinear programming method
based on scenario trees is proposed in [11], in order to generate a
large number of scenarios and then reduce them to a limited number
of discrete matrices as the typical scenario results. The authors in [12]
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Nomenclature

Abbreviations

𝐹𝐼𝑇 Feed-In Tariff
𝐺𝑀𝐺 Grid-connected Microgrid
𝐼𝑀𝐺 Islanded Microgrid
𝑀𝐺 Microgrid
𝑀𝑃𝐶 Model Predictive Control
𝑃𝑉 Photovoltaic
𝑅𝐸𝑆 Renewable Energy Source
𝑆𝑂𝐶 State of Charge
𝑇𝐷𝐻 Total Dynamic Head

Indices

𝑖 Index of pumps
𝑠 Index of typical scenarios
𝑡 Time index (h)

Parameters

𝛿𝑖𝑛𝑑𝑖𝑒𝑠𝑒𝑙,𝑖 Diesel consumption of the 𝑖th independent
pump in IMG for lifting 1 ML water to 1
mTHD (L/ML/mTHD)

𝜅𝑑 Lead–acid battery degradation coefficient
𝐶𝐵𝑎𝑡 Battery storage cost (AU$)
𝐾 or 𝐾 𝑖𝑛 Number of MG pumps or independent

pumps
𝑃 𝑖𝑛𝑝𝑢𝑚𝑝,𝑖 Rated power of 𝑖th independent pump in

GMG (kW)
𝑃𝑚𝑎𝑥𝑓𝑖 Maximum power allowed to be fed into to

the grid (kW)
𝑃𝑀𝐺
𝑝𝑢𝑚𝑝,𝑖 Rated power of 𝑖th pump connected to

microgrid (kW)
𝑃 𝑡𝑜𝑡𝑎𝑙𝑝𝑢𝑚𝑝 Sum of all the pump’s maximum rated

power (kW)
𝑊𝑒𝑣𝑎 Hourly evaporation volume from reservoir

(ML)
𝑊𝑖𝑟𝑟 Hourly cotton farm irrigation water volume

(ML)
𝑊𝑅_𝑟𝑒𝑠 Hourly precipitation amount into the reser-

voir (ML)

Variables

𝜉 Binary variable of the grid energy import or
export

𝜉𝐵 Binary variable of battery charge or dis-
charge

𝑃𝑑𝑖𝑒𝑠𝑒𝑙 Power generated by diesel generator (kW)
𝑃𝑓𝑖 Feed-in power to the grid (kW)
𝑃𝑔𝑟𝑖𝑑 Power purchased from grid (kW)
𝑃𝑠𝑜𝑙𝑎𝑟 PV power generation (kW)
𝑃 𝑝𝑎𝑛𝑒𝑙𝑠𝑜𝑙𝑎𝑟 Power output of a single PV panel (kW)
𝑆𝑆𝑂𝐶 State of charge of battery storage (%)
𝑥𝑖 or 𝑥𝑖𝑛𝑖 Control variable for the pump’s on/off state

(kW)

present a stochastic programming method using scenario generation to
deal with stochastic load and wind power uncertainty. Additionally,
Ref. [13] considers price uncertainty and uses a piecewise linear ap-
proximation of degradation cost. Moreover, in [14], the energy storage
2

system operation scheduling problem is formulated as a two-stage
stochastic programming model based on the scenario-based method.
In addition, several studies use scenario-based approaches to build
stochastic models in MG operation studies. In [15], the uncertainty of
RES output power and load demand forecast errors are modelled by
scenario-based techniques for optimal energy management of MGs. An
RES stochastic model is adopted in [16], which uses the scenario reduc-
tion process to convert the stochastic problem into many deterministic
problems with different probabilities and then optimizes each deter-
ministic problem. The above-mentioned literature focuses on mathe-
matical algorithms, but the description of the uncertain phenomena and
effects in the actual applications is limited.

On the other hand, scenario-based stochastic MPC has been applied
to smart grid operation area [17]. Furthermore, Ref. [18] introduces
different classifications of the available methods based on the dynamic
characteristics of the system, management of the probabilistic con-
straints, feasibility, and the properties of convergence. Additionally,
Ref. [19] provides an overview of the core concepts related to MPC
and stochastic optimal control under uncertainties and discusses the
disturbance estimation and the impact of the estimation quality on
MPC performance. In [20], a scenario-based MPC approach is proposed
through a data-driven machine learning method. Likewise, a scenario-
based MPC controller is implemented in [21] for the management of
building heating, ventilation, and air conditioning systems. Further-
more, a scenario-based model predictive operation control of rural
area IMG is proposed in [22]. Also, in our previous work, a GMG
under uncertainty is adopted for water pumps on an Australian cotton
farm [23].

1.2. Research gaps and contributions

Nevertheless, the methods mentioned above do not accurately model
the uncertainties from different sources and do not compare the impact
of different uncertainty models on the optimization results for GMG
and IMG. This study extends our previous study [9] and proposes two
uncertainty models (i.e., static scenario-based and dynamic scenario-
based uncertainty models) to assist the optimal operation of cotton
farm MG under uncertainty during an irrigation period. Here, the
static scenario-based uncertainty model refers to the case that the
uncertainty dataset for scenario generation and reduction is fixed for
the entire irrigation period, and the resultant typical scenarios are used
for all the MPC iterations. Alternatively, in the dynamic scenario-based
uncertainty model, the uncertainty dataset will be dynamically updated
for scenario generation and reduction along with the moving time
horizon within MPC; consequently, the corresponding typical scenarios
are dynamically updated within each MPC iteration. After deciding
the uncertainty scenarios using either the static or dynamic scenario-
based methods, a stochastic MPC strategy is proposed for the above
two uncertainty models. The demand and weather uncertainties on
both GMG and IMG are also considered. This paper uses the SCENARD
toolbox [24] based on the Kantorovich distance [24] method to deal
with uncertainties. CPLEX 12.10 with MATLAB is used to solve the un-
derlying optimization problems. Therefore, the novelties are to consider
both static and dynamic scenario-based uncertainty models and their
impact on cotton farm GMG and IMG.

The remaining part of this paper is organized as follows. Section 2
describes the cotton farm MG and scenario-based uncertainty models.
Section 3 presents a case study to simulate the proposed methodology
based on the actual data from a New South Wales cotton farm. Section 4
discusses the simulation results for each case, and Section 5 concludes
the paper by highlighting the significant meaning of the main results.
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Fig. 1. Grid-connected cotton farm microgrid and pumping water system.
2. MPC of cotton farm microgrids and scenario-based uncertainty
modelling

Based on the current situation of using hybrid RESs and the geo-
graphical location of general Australian cotton farms, the MG system in
Australian cotton farms can be divided into GMG and IMG. Therefore,
the following assumptions are used to model the studied cotton farm
MG. Cotton farms have their own water storage system for irrigation
and tailwater recovery. The pumps will pump water from the bore or
river into the reservoir, and the siphon pipes are used for the water to
flow from the reservoir to irrigate cotton farms by gravity. Note that
this paper does not discuss tailwater recovery. Therefore, the volume
of irrigation water is the cotton planting water demand, and the water
balance model in Section 2.2 is built based on these assumptions. One
of the most popular RES in Australian cotton farms is solar PV [25].
Consequently, this study uses PV to build the GMG which allows excess
energy to be fed back to the utility network. Fig. 1 shows the working
architecture of the GMG in a cotton farm, where the MG river pump
or MG bore pump means these pumps are all connected to MG, and
the independent pump is the pump that cannot be connected to the
MG, but connected to the grid directly. The IMG can be built by PV,
battery storage, diesel generator, and a dummy load, where the dummy
loads refer to loads that can consume excess energy to balance the
generation-load relation. The excess energy can be stored by battery
storage or absorbed by the dummy load. Fig. 2 illustrates the working
structure of the IMG in a cotton farm, where the load is made of the
dummy load, MG pumps powered by the MG, and the independent
pumps driven by a diesel motor directly. The MPC methodology has an
excellent performance in predictive control and handling uncertainties,
which is suitable for cotton farms challenged with climate change
and operational cost reduction and therefore adopted in this study.
As for uncertainty modelling, the scenario-based approach is utilized
to generate and reduce scenarios based on historical data, thereby
building the stochastic model.

2.1. Power balance model of grid-connected microgrid

This section considers the GMG, which consists of only PV. The
power balance can be represented as (1), and Eq. (2) represents the
total PV power based on installed PV panel numbers [9].

𝑃𝑠𝑜𝑙𝑎𝑟(𝑡, 𝑠) + 𝑃𝑔𝑟𝑖𝑑 (𝑡, 𝑠) =
𝐾
∑

𝑥𝑖(𝑡, 𝑠) × 𝑃𝑀𝐺
𝑝𝑢𝑚𝑝,𝑖 + 𝑃𝑓𝑖(𝑡, 𝑠) (1)
3

𝑖=1
𝑃𝑠𝑜𝑙𝑎𝑟(𝑡, 𝑠) = 𝜎 × 𝑃 𝑝𝑎𝑛𝑒𝑙𝑠𝑜𝑙𝑎𝑟 (𝑡, 𝑠) (2)

s.t.

0 ≤ 𝑃𝑔𝑟𝑖𝑑 (𝑡, 𝑠) ≤ 𝜉(𝑡, 𝑠) × 𝑃 𝑡𝑜𝑡𝑎𝑙𝑝𝑢𝑚𝑝 (3)

0 ≤ 𝑃𝑓𝑖(𝑡, 𝑠) ≤ [1 − 𝜉(𝑡, 𝑠)] × 𝑃𝑚𝑎𝑥𝑓𝑖 (4)

where 𝜎 denotes the installed PV panel units; 𝜉(𝑡, 𝑠) = 1 means that
MG purchases energy from the grid (import) at time t in scenario 𝑠,
and 𝜉(𝑡, 𝑠) = 0 means the MG sells energy to the grid (export) at time
t and scenario 𝑠. Eqs. (3) and (4) represent the constraints that power
purchase from the grid and feed-in to the grid cannot happen at the
same time.

2.2. Power balance model of islanded microgrid

An IMG consists of PV, diesel generators, and battery storage. Due
to the remote location of cotton farms, the cost of connecting to the grid
is too high. Therefore, a common solution is using diesel generators as
a backup energy source to build an IMG with renewable energy. The
battery storage can help save diesel fuel during the irrigation period
by storing excess energy, while the dummy load is used to consume
the excess energy if the battery is full. Therefore, the power balance
can be established as in (5).

𝐾
∑

𝑖=1
𝑥𝑖(𝑡, 𝑠) × 𝑃𝑀𝐺

𝑝𝑢𝑚𝑝,𝑖 + 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡, 𝑠) + 𝑃𝑑𝑢𝑚(𝑡, 𝑠) =

𝑃𝑠𝑜𝑙𝑎𝑟(𝑡, 𝑠) + 𝑃𝑑𝑖𝑒𝑠𝑒𝑙(𝑡, 𝑠) + 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡, 𝑠) (5)

where, 𝑃𝑐ℎ𝑎𝑟𝑔𝑒 and 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 represent the charge and discharge power
of the battery storage, respectively; 𝑃𝑑𝑢𝑚(𝑡, 𝑠) is a dummy load at time 𝑡
and scenario 𝑠 used to consume the excess energy when the battery is
fully charged.

2.3. Battery model for islanded microgrid

In the IMG system, storing and utilizing excess renewable energy
can save operational costs. In this study, the low-cost lead–acid battery
is considered for energy storage systems, and the degradation cost is
compared with its energy cost saving. Battery charging and discharging
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Fig. 2. Islanded cotton farm microgrid and pumping water system.
can be decided by several parameters, e.g., battery capacity 𝐵𝑐𝑎𝑝 (kWh),
charging and discharging efficiency 𝜂𝑐 and 𝜂𝑑 . Eq. (6) illustrates the
SOC model, and Eqs. (7)–(9) list the SOC limits and the constraint that
charging cannot happen at the same time as discharging. On the other
hand, a battery can store energy, but charging and discharging also
cause battery degradation. See Appendix A for the battery degradation
equations. Eqs. (A.1) – (A.2) show the Lead–acid battery storage degra-
dation cost function 𝑓𝑑𝑒𝑔 , which is based on degradation coefficient 𝜅𝑑
[26].

𝑆𝑆𝑂𝐶 (𝑡 + 1, 𝑠) = 𝑆𝑆𝑂𝐶 (𝑡, 𝑠)

+
𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡, 𝑠) × 𝜂𝑐 × 𝛥𝑡

𝐵𝑐𝑎𝑝
−
𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡, 𝑠) × 𝛥𝑡

𝐵𝑐𝑎𝑝 × 𝜂𝑑
(6)

s.t.

𝑆𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑆𝑂𝐶 (𝑡, 𝑠) ≤ 𝑆𝑆𝑂𝐶𝑚𝑎𝑥 (7)

0 ≤ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡, 𝑠) ≤ 𝜉𝐵(𝑡, 𝑠) × 𝑃𝑚𝑎𝑥𝑐ℎ𝑎𝑟𝑔𝑒 (8)

0 ≤ 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡, 𝑠) ≤ [1 − 𝜉𝐵(𝑡, 𝑠)] × 𝑃𝑚𝑎𝑥𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (9)

where 𝛥𝑡 is the time interval, 𝛥𝑡 = 1 h in this study; 𝑆𝑆𝑂𝐶𝑚𝑎𝑥 and 𝑆𝑆𝑂𝐶𝑚𝑖𝑛
denote the maximum and minimum SOC, respectively; Here, 𝑆𝑆𝑂𝐶𝑚𝑖𝑛 =
10% and 𝑆𝑆𝑂𝐶𝑚𝑎𝑥 = 100%. 𝑃𝑚𝑎𝑥𝑐ℎ𝑎𝑟𝑔𝑒𝑎𝑛𝑑𝑃

𝑚𝑎𝑥
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 are the charge or discharge

limit of the battery storage; 𝐾𝑐 is the number of the life cycle at the
rated depth of discharge (DoD), and 𝛼 (%) is DoD of the battery system.

2.4. Water balance model during the irrigation period

The pumps pump water from the bore/river into the reservoir
during the cotton irrigation period, and the form of energy changes
from electrical to potential energy. Farmers irrigate cotton fields with
water from the reservoir by gravity. Therefore, the water balance is
established by the reservoir’s volume of water inflow and outflow. See
Appendix B for the water balance equations. Eq. (B.1) defines the water
balance in the reservoir; the water inflow and outflow are considered.
Eq. (B.2) calculates the total water volume out from the reservoir.
4

where 𝑊 (ML) is the total water volume of the reservoir; 𝑊𝑖𝑛𝑓 𝑙𝑜𝑤 (ML)
and 𝑊𝑜𝑢𝑡𝑓 𝑙𝑜𝑤 (ML) represent the water inflow from and outflow volume
to the reservoir; 𝑊𝑠𝑒𝑒 (ML) is the value of average annual seepage from
the reservoir, which is 10% of the reservoir capacity [27]. In the GMG,
all the pumps (including MG and independent pumps) are electric. In
the IMG, the MG pumps are electric, while the independent pumps are
all diesel pumps. Equations (B.3) with the constraint (B.4) deal with
the water inflow 𝑊𝑖𝑛𝑓 𝑙𝑜𝑤 for GMG and IMG, respectively. Also, the daily
water usage limit 𝑊 𝑑𝑎𝑖𝑙𝑦

𝑚𝑎𝑥 (ML) [28] for GMG and IMG are expressed by
(B.5) with the constraint (B.6). Eq. (B.7) establishes a constraint on the
maximum amount of water that can be pumped by each independent
pump in a day, where 𝑇 is the prediction horizon (e.g., 24 h); 𝜀𝑐𝑜𝑛,𝑖 =
𝜀𝑖𝑛𝑐𝑜𝑛,𝑖 = 4.55 kWh/ML/mTDH is the electricity consumed for lifting 1
ML water to 1-metre TDH [29,30]; ℎ𝑖 and ℎ𝑖𝑛𝑖 (mTDH) are the THD of
the 𝑖th MG pump and independent pump, respectively. When𝑇=24 h,
𝑊 𝑑𝑎𝑖𝑙𝑦
𝑚𝑎𝑥 is the maximum amount of water that can be pumped in a day

by all the pumps; 𝑉 𝑖𝑛
𝑑𝑖𝑒𝑠𝑒𝑙,𝑖 denotes the hourly fuel consumption of 𝑖th

independent diesel-driven pump in IMG (L/h). 𝐵𝑀𝐺,𝑑𝑎𝑖𝑙𝑦
𝑖,𝑚𝑎𝑥 and 𝐵𝑖𝑛,𝑑𝑎𝑖𝑙𝑦𝑖,𝑚𝑎𝑥

(ML) denote the maximum amount of water that can be pumped by
the 𝑖th MG pump and independent pump in a day, respectively.

2.5. Objective functions

The objective is to reduce the operational cost of the MG. The oper-
ational cost of GMG and IMG are defined in (10) and (11), respectively.

𝑌 (𝑡, 𝑠) =

[

𝑃𝑔𝑟𝑖𝑑 (𝑡, 𝑠) +
𝐾
∑

𝑖=1
𝑥𝑖𝑛𝑖 (𝑡, 𝑠) × 𝑃

𝑖𝑛
𝑝𝑢𝑚𝑝,𝑖

]

×𝛥𝑡 × 𝛽𝑏𝑢𝑦(𝑡) − 𝑃𝑓𝑖(𝑡, 𝑠) × 𝛥𝑡 × 𝛽𝑠𝑒𝑙𝑙(𝑡), for GMG

(10)

𝑌 (𝑡, 𝑠) =

[

𝑃𝑑𝑖𝑒𝑠𝑒𝑙(𝑡, 𝑠) × 𝜓 +
𝐾 𝑖𝑛
∑

𝑖=1
𝑥𝑖𝑛𝑖 (𝑡, 𝑠) × 𝑉

𝑖𝑛
𝑑𝑖𝑒𝑠𝑒𝑙,𝑖

]

×𝛥𝑡 × 𝛽𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) + 𝑓𝑑𝑒𝑔(𝑡, 𝑠), for IMG

(11)

where 𝛽𝑏𝑢𝑦(𝑡) and 𝛽𝑠𝑒𝑙𝑙(𝑡) (AU$/kWh) represent the tariff of purchasing
energy from the grid and the feed-in tariff of selling energy to the grid
at the 𝑡th time, respectively; 𝛽𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) indicates the diesel price at the
𝑡th time, and 𝜓 is the electricity to diesel conversion coefficient.
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Fig. 3. Closed-loop MPC model.
2.6. MPC methodology

In order to obtain the result of minimizing the operational cost, the
first step is to optimize the operational cost in a prediction horizon (𝑇 )
(e.g., 24 h) with the open-loop optimization model (12) by considering
all the typical scenarios.

min
𝑥𝑖 ,𝑥𝑖𝑛𝑑𝑖

𝑍
∑

𝑠=1

𝑇
∑

𝑡=1
𝜆𝑠 × 𝑌 (𝑡, 𝑠)

𝑡 = 1,… , 𝑇

𝑠 = 1,… , 𝑍

(12)

where, 𝜆𝑠 represents the probability of the scenario set 𝑠 after scenario
reduction; and 𝑍 is the number of the typical scenarios. In addition,
the closed-loop MPC model (13) is based on (12) and moving the
prediction horizon to the next interval with periodically updated system
information to provide feedback to the controller. Fig. 3 shows the
closed-loop MPC concept in this study.

min
𝑥𝑖 ,𝑥𝑖𝑛𝑑𝑖

𝑍
∑

𝑠=1

𝑇+𝑚
∑

𝑡=1+𝑚
𝜆𝑠 × 𝑌 (𝑡, 𝑠) (13)

where the period [1 + 𝑚,… , 𝑇 + 𝑚] is the window of moving
prediction horizon.

2.7. Scenario-based model

This paper proposes scenario-based techniques to deal with uncer-
tainty datasets for the MG system. Firstly, the uncertainties affecting
the operational costs of pumping water on the cotton farm need to
be determined, e.g., RES in the power balance model, precipitation,
evaporation, and irrigation demand in the water balance model. Two
scenario-based uncertainty models are proposed to process the above-
mentioned uncertainties: the static and dynamic scenario-based uncer-
tainty models. In the static uncertainty model, all uncertainty datasets
during the entire irrigation period are used only once for scenario
generation and reduction, and the resultant typical scenarios are fixed
for all the MPC iterations. The computation time of this uncertainty
model is less as the scenario generation and reduction only needs
to be conducted once in the whole MPC time horizon, while the
uncertainty representation accuracy is sacrificed. Fig. 4 shows the static
scenario-based MPC optimization flowchart. As shown, the flowchart
begins with forming uncertainty datasets represented in matrix form.
All the uncertain datasets formed by matrices are input to the SCENRED
5

Fig. 4. Static scenario-based MPC model.

toolbox, where the scenario generation and reduction process are com-
pleted. This step is crucial for managing the inherent uncertainties
in RESs, ensuring the MPC can effectively optimize the operation
under varying scenarios. Then, the static typical scenarios with their
corresponding probability are sent to the MPC solver and used in all
the MPC iterations to obtain the optimal operational cost results.

In the dynamic scenario-based uncertainty model, within each mov-
ing time horizon, the future period in close proximity 𝑇 𝑠𝑐𝑒𝑛 (e.g., ten
days or fortnight into the future) can be chosen with the available
historical data. Therefore, the corresponding typical scenarios after
scenario generation and reduction are dynamically updated within each
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Fig. 5. Dynamic scenario-based MPC model.

MPC iteration. The dynamic scenario-based model is more accurate as
it uses the data in close proximity to generate the typical scenarios;
however, the computation time may be an issue due to the necessity
of scenario generation and reduction within each moving time horizon.
Fig. 5 illustrates the dynamic scenario-based MPC optimization process.
The scenario generation and reduction are updated within each MPC
iteration, and the typical scenarios are continuously updated.

In summary, the difference between the static and the dynamic
scenario-based uncertainty models is that the static one obtains the
scenarios once for all; while the dynamic case needs to update the
typical scenarios for the entire process continuously.

3. Case study

To simulate the proposed scenario-based stochastic MPC approach
for the cotton farm MG, the cotton farm information based on [23] from
a real cotton farm located in Gunnedah, New South Wales, Australia, is
used. In this study, the corresponding historical data are utilized for the
irrigation period of 87 days spanning from early November 2016 to the
end of February 2017. This is because cotton needs massive amounts
of water only in the growing season, which is the summer season
(November to February) in Australia in the southern sphere [31]. Five
different cases are adopted to compare the results and demonstrate
the applicability of the approach, which include Baseline case and
standard MPC, static scenario-based MPC for GMG, dynamic scenario-
based MPC for GMG, static scenario-based MPC for IMG, and dynamic
scenario-based MPC for IMG.

• Case 1: Baseline case and standard MPC.
The Baseline case is that farmers manually control all pumping
systems based on their irrigation experience, and they can also ob-
tain future weather information from the Bureau of Meteorology
(BOM) or local weather stations. Fig. 1 demonstrates the GMG’s
equipment layout and irrigation mode in the study cotton farm.
6

Table 1
System parameters of the GMG in the cotton farm.

Items Values

MG bore Pump #1 (𝑃𝑀𝐺
𝑝𝑢𝑚𝑝,1) 75 kW

MG river Pump #2 (𝑃𝑀𝐺
𝑝𝑢𝑚𝑝,2) 37 kW

Independent bore Pump #1 (𝑃 𝑖𝑛
𝑝𝑢𝑚𝑝,1) 75 kW

Farm area 3 ×106 m2

Bore pump head (ℎ1 or ℎ𝑖𝑛1 ) 31 mTDH
River pump head (ℎ2) 12 mTDH
Average energy for lifting 1 ML/mTDH (𝜀𝑐𝑜𝑛) 4.55 kWh/ML/mTDH
Average water demand (𝑊𝑖𝑟𝑟) 6.5 ×10−4 ML/m2

Maximum allowed water usage 1800 ML/year
Reservoir capacity 800 ML
Average hourly seepage (𝑊𝑠𝑒𝑒∕(24 × 365)) 4.56 m3/h
Installed solar PV capacity (𝜎 × 𝑃 𝑝𝑎𝑛𝑒𝑙

𝑠𝑜𝑙𝑎𝑟 ) 50.6 kW
Fixed-rate tariff in 2016 (𝛽𝑏𝑢𝑦) 0.26 AU$/kWh
FIT in 2016 (𝛽𝑠𝑒𝑙𝑙) 0.06 AU$/kWh

Table 2
The details of the pump operation in the Baseline case in 2016.

Values

MG bore Pump #1 work hours 1034 h
MG river Pump #2 work hours 882 h
Independent bore Pump #1 work hours 360 h

MG bore Pump #1 usage 75,812.33 kWh
MG river Pump #2 usage 63,551.06 kWh
Independent bore Pump #1 usage 12,865.24 kWh

Total operational cost AU$ 39,580

Total pumped water 1223.6 ML

Table 3
Operational results of Baseline case and standard MPC [9].

Microgrid items Operational cost (AU$) Total pumped water (ML)

GMG Baseline 39,580 1224
GMG MPC 27,556 1181
IMG Baseline 40,902 1181
IMG MPC 31,164 1178

Table 1 lists the corresponding system parameters in Fig. 1 [32].
Based on [9], the breakdown energy cost of the Baseline case is
listed in Table 2. The standard MPC approach in [9] discusses
the operational cost of the studied cotton farm, but the method
only caters to the microgrid energy dispatch scenarios and does
not focus on uncertainty modelling. For a comparison of the
current study, the Baseline and standard MPC results are shown
in Table 3.

• Case 2: Static scenario-based MPC for GMG
In this case, the static scenario generation and reduction from
Section 2.7 are used to obtain ten sets of typical scenarios and
their corresponding probability, derived from the 87-day his-
torical data. For the operational cost optimization, ten typical
scenarios are substituted into (12). At last, the closed-loop MPC
of (13) with a prediction horizon of 24 h is used to obtain each
pump’s operation status and the operational cost of the entire
irrigation period.

• Case 3: Dynamic scenario-based MPC for GMG
The simulation is based on the dynamic scenario-based uncer-
tainty model in Section 2.7, which uses the historical data of
14 days ahead of the current time instant. For this study, both
the static and dynamic scenario-based MPC approaches are com-
pared, using the same historical data. The differences between
the static and dynamic scenario-based approaches are that in the
dynamic one, ten typical scenarios are obtained based on the
moving 14-day datasets, and the obtained ten typical scenarios
will be updated at each MPC iteration whenever the optimization
horizon changes.
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Table 4
System parameters of the IMG in the studied cotton farm [34].

Items Values

Diesel conversion
coefficient (𝜓)

0.2695 L/kWh

Diesel consumption
for lifting 1ML/m water (𝛿𝑑𝑖𝑒𝑠𝑒𝑙)

1.1 L/ML/mTDH

Unit price of diesel in 2016
(after subsidy) (𝛽𝑑𝑖𝑒𝑠𝑒𝑙) AU$ 1.15 /L
Lead–acid battery
capacity (𝐵𝑐𝑎𝑝)

25 kWh

Lead–acid battery
cost (𝐶𝐵𝑎𝑡)

AU$ 2750

Charge/discharge
efficiencies (𝜂𝑐 or 𝜂𝑑 )

90%

Charge/discharge limit
(𝑃 𝑚𝑎𝑥

𝑐ℎ𝑎𝑟𝑔𝑒/𝑃
𝑚𝑎𝑥
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒)

15 kWh

Lead–acid battery life cycle
(𝐾𝑐 × 𝛼)

2000 @ 60% DoD

Fig. 6. Probability of static typical scenarios.

• Case 4: Static scenario-based MPC for IMG
Many cotton farm pumping sites in Australia are far from the
grid [33]. IMGs using diesel generators, solar energy, and lead–
acid battery storage are widely built on cotton farms. Based on the
previous MPC study for IMG [9], the IMG of the studied cotton
farm is shown in Fig. 2, with the system parameters in Table 4.
Then, the historical data of the studied cotton farm in 2016 are
substituted, and the algorithm proposed in Section 2.7 is adopted.
The pump operation during the entire irrigation period can be
optimized for the IMG system. Also, the operation cost under
uncertainties can be obtained.

• Case 5: Dynamic scenario-based MPC for IMG
Dynamic scenario generation and reduction are applied for IMG
using the model in Section 2.7, and then the operational cost and
each pump’s action can be obtained by the underlying stochas-
tic MPC methodology. In order to compare both the static and
dynamic scenario-based MPC, the same cotton farm’s historical
data are used.

4. Results and discussions

This section discusses the key results of MPC for cotton farm MG
under uncertainties. Scenario generation and reduction methodology
are employed to simulate four different cases (cases 2–5), and the
results from each case are analysed and compared to the Baseline case.

4.1. Static scenario generation and reduction

In this study, the cotton farm data during the irrigation period of
2016–2017 include historical solar generation data, rainfall data [35],
hourly evaporation data of the cotton farm area [36] and the cotton
7

Table 5
Operational result comparison of grid-connected microgrid.

Operational cost Total pumped
(AU$) water (ML)

Baseline case 39,580 1224
Standard MPC 27,556 1181
Static scenario-based MPC 22,595 1233
Dynamic scenario-based MPC 18,797 1238

life-cycle water demand data. Each typical scenario has its correspond-
ing probability, as shown in Fig. 6. For the entire irrigation period,
scenario generation and reduction can be illustrated in Figs. 7(a) and
7(b), respectively.

4.2. Dynamic scenario generation and reduction

In the dynamic scenario generation and reduction method, the two-
week data ahead of the current time instant are taken to produce ten
typical scenarios. For instance, Figs. 8(a) and 8(b) show the evaporation
curves before and after scenario generation and reduction methodology
in 4 consecutive MPC iterations.

4.3. Scenario-based MPC operation results for grid-connection microgrid

With the help of the scenario generation and reduction method for
the historical dataset, the closed-loop MPC is implemented to optimize
the operation of each pump during the whole irrigation period. The
hourly control variables (𝑥𝑖 and 𝑥𝑖𝑛𝑖 ) can be obtained by solving (10)
and (13). Fig. 9(a) shows the on/off status of MG bore pump #1 (turned
on for 1125 h), MG river pump #2 (turned on for 810 h) and the
independent pump #1 (turned on for 176 h), which are controlled
under the static scenario-based MPC. Fig. 9(b) shows the pump’s on/off
status under the dynamic scenario-based MPC, where MG bore pump
#1 worked for 1031 h, MG river pump #2 worked for 1137 h, and the
independent pump #1 worked for 76 h. It can be observed from Fig. 9
that the usage rate of the water pumps connected to the MG is higher
than the independent pump. The utilization rate of the independent
pump in the static scenario-based MPC is slightly higher than that in
the dynamic scenario-based MPC. Table 5 shows the comparison of the
proposed scenario-based MPC with the Baseline case and the standard
MPC. The expected value of the operational cost for static scenario-
based MPC is AU$ 22,595, which saves AU$ 16,985 compared with the
Baseline case and saves AU$ 4961 compared with the standard MPC.
Moreover, the expected operational cost value of the dynamic scenario-
based MPC is AU$ 18,797, which is AU$ 20,783 less than the Baseline
case and AU$ 8759 less than the standard MPC.

4.4. Scenario-based MPC operation results for islanded microgrid

To verify that the proposed approach is also suitable for IMG, the
same cotton farm parameters are assumed for the IMG with diesel
generators as a backup power source, and a 25 kWh lead–acid battery
storage is equipped to store the excess energy. The scenario generation
and reduction processes use the same dataset to facilitate the compar-
ison with the Baseline case and the standard MPC for IMG. Based on
(11) and (13), the pump control variables can be obtained and listed
in Table 6. In addition, Table 7 shows the results of total pumped
water volume and the operational cost for each IMG case. The expected
value of operational cost from the static scenario-based MPC is AU$
13,486 lower than the Baseline case and AU$ 3748 lower than the
standard MPC. For the dynamic scenario-based MPC, it has the lowest
operational cost value AU$ 24,443, which is AU$ 16,459 lower than
the Baseline case and AU$ 6721 lower than the standard MPC. In the
IMG system, the excess electrical energy is stored in the batteries and
released to the pumps when needed. According to the battery pack
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Fig. 7. Static scenario generation and reduction for the studied cotton farm.
parameters in Table 4, and the methodology in Section 2.3, the battery
pack usage during the entire irrigation period can be obtained. Fig. 10
shows the battery charging and discharging pattern for the static and
dynamic scenario-based MPC. Meanwhile, Table 8 lists the operational
results of the battery storage. It can be observed from Fig. 8 that the
dynamic scenario-based MPC generates ten typical scenarios for each
MPC iteration, and thus, the role of batteries is clearly reflected in the
MG. The battery pack for the dynamic scenario-based MPC can reuse
821 kWh of excess energy to power the MG pumps. During the entire
irrigation period, the energy cost savings from utilizing the battery stor-
age is AU$ 87.24 more than the cost of battery pack degradation under
the dynamic scenario-based MPC, which means using the battery to
8

store and reuse the excess energy from the RES can save the operational
cost of AU$ 87.24.

4.5. Robustness analysis and performance comparison

In this part, the proposed Scenario-based MPC approach integrates
a mechanism for detecting the robustness range, aiming to identify the
proportion of ‘‘bad’’ data that the system can tolerate. This feature
is pivotal in ensuring the resilience of the control system against
unexpected disturbances or sensor inaccuracies. Assuming a number of
bad data (zeros) are injected into the dataset (e.g., sensor intermittence
or missing data), a maximum tolerance is needed to know when the
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Fig. 8. Dynamic scenario generation and reduction by using the future 14-day data.
Table 6
Pump’s operational results of the scenario-based MPC for islanded microgrid.

Operation hours Pumped water
(h) (ML)

Static 𝑥1 515 274
Static 𝑥2 995 647
Static 𝑥𝑖𝑛1 493 262
Dynamic 𝑥1 381 203
Dynamic 𝑥2 1094 741
Dynamic 𝑥𝑖𝑛1 507 270
9

Table 7
Operational result comparison of islanded microgrid.

Operational cost Total pumped
(AU$) water (ML)

Baseline case 40,902 1181
Standard MPC 31,164 1178
Static scenario-based MPC 27,416 1214
Dynamic scenario-based MPC 24,443 1210

typical scenarios start to change. Table 9 shows the maximum per-
centage of bad data for each variable in the dataset. From Table 9,
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Fig. 9. Pump’s on/off status for grid-connected microgrid.

Fig. 10. Battery charging and discharging pattern in islanded microgrid.

Table 8
Operational results of the battery storage.

Static scenario Dynamic scenario

Energy charge (kWh) 31.53 821.77
Energy discharge (kWh) 33.42 821.56
Saved cost (AU$) 10.35 254.62
Degradation cost (AU$) 6.61 167.38

the Water Demand variable exhibits the highest sensitivity, with a
tolerance of 4.50%, indicating that up to 94 zeros (i.e., bad data) can
be accommodated without adversely affecting the outcome. On the
other hand, the Rainfall variable demonstrates a sensitivity of 17.19%,
implying that the method’s outcomes remain unaffected with 359 bad
data.
10
Table 9
Bad data tolerance of each variable in the dataset.

Variable Bad data tolerance (%)

Solar 9.53
Rainfall 17.19
Evaporation 9.48
Water Demand 4.50

Table 10
Comparison results of static scenario-based MPC and the optimization method in [3].

Operational ∗Running
cost (AU$) time (h)

Static scenario-based MPC 27,416 9.1
Gradient-based optimization in [3] 36,425 56.15

∗ MATLAB 2022a, i7-8650U CPU @ 2.11 GHz and 16G RAM

Next, the method from [3] and the proposed MPC method in this
paper are compared in this section. In (12), the prediction horizon
𝑇 spans the entire irrigation period (e.g., 2088 h). The solver in [3]
utilizes gradient-based optimization tools in Matlab to solve the oper-
ational cost minimization problem of the cotton farm microgrid. For
simplicity, MATLAB’s fmincon function is used to solve constrained
multi-objective nonlinear optimization problems. Table 10 provides
an assessment of the operational cost and computing time for both
optimization methods. It can be seen that the proposed MPC method
has significant operational cost savings because the decisions are made
based on predicted future condition changes. In terms of computational
time, the MPC method requires only one-sixth of the time needed by
the gradient-based optimization method in [3].

5. Conclusion

This study proposes two scenario-based approaches to model the
uncertainties of environmental and demand factors on cotton farms by
scenario generation and reduction under the MPC framework. Then, the
MPC method is used to optimize the operation of the MG and cotton
farm water pump under the typical scenarios for the underlying uncer-
tainties. The proposed method is validated by case studies on a cotton
farm. It is found that the operational cost of the static and dynamic
scenario-based MPC for the GMG are AU$ 22,595 and AU$ 18,797,
which are AU$ 4961 and AU$ 8759, respectively, lower than that of
the standard MPC. For the IMG, the operational cost of static and dy-
namic scenario-based MPC are AU$ 3748 and AU$ 6721, sequentially,
lower than the standard MPC. By utilizing the robustness detection
method, the proposed scenario generation and reduction can tolerate
17.19% and 4.5% bad data of rainfall and water demand, respectively.
Additionally, based on the comprehensive evaluation of static scenario-
based MPC and gradient-based optimization tools, considering both
performance and practical constraints, it is shown that the proposed
methodology is more suitable for the cotton farm microgrid application.

In future work, the static scenario-based MPC approach for cotton
farm MG control systems will use more years of historical data to
improve its reliability. For the dynamic scenario-based MPC approach,
an investigation will be conducted on how to reduce the computation
burden for real-time implementations. Also, the integration of AI and
machine learning techniques is planned to refine scenario-based MPC
approaches. These technologies offer more accurate predictions of en-
vironmental and operational variables. Specifically, machine learning
algorithms will be employed to analyse historical data more effectively,
allowing better handling of uncertainties and bad data. AI and machine
learning techniques can significantly improve both the static and dy-
namic scenario-based MPC approaches, ultimately contributing to more
cost-effective and reliable MG operations on cotton farms.
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Appendix A. Battery degradation equations

𝜅𝑑 =
𝐶𝐵𝑎𝑡

𝐵𝑐𝑎𝑝 × 𝜂𝑑 ×𝐾𝑐 × 𝛼
(A.1)

𝑓𝑑𝑒𝑔(𝑡, 𝑠) = 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡, 𝑠) × 𝛥𝑡 × 𝜅𝑑
+𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡, 𝑠) × 𝛥𝑡 × 𝜅𝑑

(A.2)

ppendix B. Water balance equations

(𝑡 + 1, 𝑠) = 𝑊 (𝑡, 𝑠) +𝑊𝑖𝑛𝑓 𝑙𝑜𝑤(𝑡, 𝑠) −𝑊𝑜𝑢𝑡𝑓 𝑙𝑜𝑤(𝑡, 𝑠) (B.1)

𝑜𝑢𝑡𝑓 𝑙𝑜𝑤(𝑡, 𝑠) = 𝑊𝑖𝑟𝑟(𝑡, 𝑠) +𝑊𝑒𝑣𝑎(𝑡, 𝑠) +
𝑊𝑠𝑒𝑒

24 × 365
(B.2)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑊𝑖𝑛𝑓 𝑙𝑜𝑤(𝑡, 𝑠) =
∑𝐾
𝑖=1

𝑥𝑖(𝑡,𝑠)×𝑃𝑀𝐺
𝑝𝑢𝑚𝑝,𝑖×𝛥𝑡

𝜀𝑐𝑜𝑛,𝑖×ℎ𝑖
+

∑𝐾 𝑖𝑛
𝑖=1

𝑥𝑖𝑛𝑖 (𝑡,𝑠)×𝑃
𝑖𝑛
𝑝𝑢𝑚𝑝,𝑖×𝛥𝑡

𝜀𝑖𝑛𝑐𝑜𝑛,𝑖×ℎ
𝑖𝑛
𝑖

+𝑊𝑅_𝑟𝑒𝑠(𝑡, 𝑠),

(GMG water inflow)

𝑊𝑖𝑛𝑓 𝑙𝑜𝑤(𝑡, 𝑠) =
∑𝐾
𝑖=1

𝑥𝑖(𝑡,𝑠)×𝑃𝑀𝐺
𝑝𝑢𝑚𝑝,𝑖×𝛥𝑡

𝜀𝑐𝑜𝑛,𝑖×ℎ𝑖

+
∑𝐾 𝑖𝑛
𝑖=1

𝑥𝑖𝑛𝑖 (𝑡,𝑠)×𝑉
𝑖𝑛
𝑑𝑖𝑒𝑠𝑒𝑙,𝑖×𝛥𝑡

𝛿𝑖𝑛𝑑𝑖𝑒𝑠𝑒𝑙,𝑖×ℎ
𝑖𝑛
𝑖

+𝑊𝑅_𝑟𝑒𝑠(𝑡, 𝑠),

(IMG water inflow)

(B.3)

s.t.

𝑥𝑖(𝑡, 𝑠) (𝑜𝑟 𝑥𝑖𝑛𝑖 (𝑡, 𝑠)) =

{

1, when the 𝑖th pump is on
0, when the 𝑖th pump is off

(B.4)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑𝑇
𝑡=1

(

∑𝐾
𝑖=1

𝑥𝑖(𝑡,𝑠)×𝑃𝑀𝐺
𝑝𝑢𝑚𝑝,𝑖×𝛥𝑡

𝜀𝑐𝑜𝑛,𝑖×ℎ𝑖
+
∑𝐾 𝑖𝑛
𝑖=1

𝑥𝑖𝑛𝑖 (𝑡,𝑠)×𝑃
𝑖𝑛
𝑝𝑢𝑚𝑝,𝑖×𝛥𝑡

𝜀𝑖𝑛𝑐𝑜𝑛,𝑖×ℎ
𝑖𝑛
𝑖

)

≤ 𝑊 𝑑𝑎𝑖𝑙𝑦
𝑚𝑎𝑥 , GMG water daily limit for all pumps

∑𝑇
𝑡=1

(

∑𝐾
𝑖=1

𝑥𝑖(𝑡,𝑠)×𝑃𝑀𝐺
𝑝𝑢𝑚𝑝,𝑖×𝛥𝑡

𝜀𝑐𝑜𝑛,𝑖×ℎ𝑖
+
∑𝐾 𝑖𝑛
𝑖=1

𝑥𝑖𝑛𝑖 (𝑡,𝑠)×𝑉
𝑖𝑛
𝑑𝑖𝑒𝑠𝑒𝑙,𝑖×𝛥𝑡

𝛿𝑖𝑛𝑑𝑖𝑒𝑠𝑒𝑙,𝑖×ℎ
𝑖𝑛
𝑖

)

≤ 𝑊 𝑑𝑎𝑖𝑙𝑦
𝑚𝑎𝑥 , IMG water daily limit for all pumps

(B.5)

s.t.
𝑇
∑

(

𝑥𝑖(𝑡, 𝑠) × 𝑃𝑀𝐺
𝑝𝑢𝑚𝑝,𝑖 × 𝛥𝑡

)

≤ 𝐵𝑀𝐺,𝑑𝑎𝑖𝑙𝑦
𝑖,𝑚𝑎𝑥 (B.6)
11

𝑡=1 𝜀𝑐𝑜𝑛,𝑖 × ℎ𝑖
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑𝑇
𝑡=1

(

𝑥𝑖𝑛𝑖 (𝑡,𝑠)×𝑃
𝑖𝑛
𝑝𝑢𝑚𝑝,𝑖×𝛥𝑡

𝜀𝑖𝑛𝑐𝑜𝑛,𝑖×ℎ
𝑖𝑛
𝑖

)

≤ 𝐵𝑖𝑛,𝑑𝑎𝑖𝑙𝑦𝑖,𝑚𝑎𝑥 ,

(GMG water daily limit for each independent pump)
∑𝑇
𝑡=1

(

𝑥𝑖𝑛𝑖 (𝑡,𝑠)×𝑉
𝑖𝑛
𝑑𝑖𝑒𝑠𝑒𝑙,𝑖×𝛥𝑡

𝛿𝑖𝑛𝑑𝑖𝑒𝑠𝑒𝑙,𝑖×ℎ
𝑖𝑛
𝑖

)

≤ 𝐵𝑖𝑛,𝑑𝑎𝑖𝑙𝑦𝑖,𝑚𝑎𝑥 ,

(IMG water daily limit for each independent pump)

(B.7)
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