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Abstract
The precise calculation of iron losses in permanent magnet synchronous motors
(PMSMs) remains challenging due to the interplay between various disciplines such as
electromagnetism, magnetism, and thermal/mechanical dynamics. Purely mechanistic
models require detailed theoretical knowledge and exact parameters, often struggling to
accurately describe complex systems, while purely data‐driven methods lack interpret-
ability, which are susceptible to data noise and outliers in feature extraction and
complicated pattern recognition. Consequently, this paper aims to present a hybrid
mechanism‐data‐driven model for accurately estimating the iron loss for PMSMs,
considering the multiphysics coupling effects. Specifically, based on the well‐defined
physical principles, an advanced iron loss analytical model that simultaneously con-
siders mechanical stress, temperature rise, harmonics, load currents, and changing fre-
quency is developed and then utilised to calculate numerous loss data under different
operating conditions, providing a certain level of stability and reliability for prediction
accuracy. Subsequently, a convolutional neural network (CNN) algorithm is employed to
perform deep learning to extract features and patterns from the data. By defining a
suitable loss function, the pre‐trained model was fine‐tuned and optimised using a small
amount of actual data. To validate its superiority, extensive numerical and experimental
analyses are conducted on the prototype. The results demonstrate that the iron losses
computed using this hybrid model overcome the limitations of singular methods by
effectively leveraging both theoretical knowledge and real‐world data, thus accurately
accommodating various application scenarios. This integrated approach enhances the
accuracy, stability, and interpretability of the model, laying a solid foundation for more
specialised applications in the future.
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1 | INTRODUCTION

Permanentmagnet synchronousmotors (PMSMs) are renowned
for their high efficiency and power density, which are widely
utilised in various fields such as electric vehicles, aerospace, and
industrial automation. In these applications, energy conservation
and emission reduction are of paramount importance. Accurate

calculation of iron losses can optimise motor design and oper-
ation, enhance overall system efficiency, reduce energy waste,
and thus meet the requirements for high efficiency energy
conservation [1, 2]. However, calculating the iron losses of
PMSMs involves knowledge from multidisciplinary fields.
It requires comprehensive considerations of factors such as
material characteristics, electromagnetic field distribution,
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temperature effects, and mechanical stress [3, 4]. Establishing an
accurate multi‐physics coupling model is a key challenge in
calculating the iron losses for PMSMs.

Before big data rising, scientists and engineers have con-
ducted extensive and in‐depth research on the precise modelling
of iron losses. A variety of methods, such as the classical loss
models [5], hysteresis models [6, 7], finite element models
(FEMs) [8–10], frequency domain models [11, 12], temperature
dependency models [13], and empirical models [14] were
developed for accurate iron loss calculations. These studies
provided significant theoretical foundations and practical tools
for understanding and predicting iron losses, playing a crucial
role in the design and optimisation of motors, power trans-
formers, and other electromagnetic devices. However, as the
complex nature of iron loss mechanisms involves multiple dis-
ciplines, each technique has its advantages and limitations in iron
loss modelling.

For instance, classical loss models are suitable for sinu-
soidal excitation but lack accuracy for complex waveforms and
non‐sinusoidal conditions. Moreover, they cannot accurately
account for the non‐linear properties of magnetic materials.
While hysteresis models and temperature dependency model-
ling methods can simulate material characteristics, they increase
the complexity of determining model parameters. FEMs and
frequency domain models can effectively mitigate these issues
but they require significant computational resources and time.
Starting from the perspective of electric machines, empirical
models are typically developed based on a specific dataset and
may not be able to extrapolate well to new unseen data. This
can lead to inaccurate predictions when the model is applied to
materials or conditions that are outside the range of the
training data. In summary, although the aforementioned
traditional or improved modelling methods can accurately
describe iron losses to a certain extent, errors still exist in
practical applications. By leveraging the strengths of different
methods, it is possible to establish a comprehensive model that
enhances the accuracy, efficiency and applicability.

Recently, machine learning techniques have made signifi-
cant strides, with deep neural networks achieving cutting‐edge
breakthroughs in fields such as computer vision, natural lan-
guage processing, speech processing, and reinforcement
learning [15, 16]. Neural networks' flexibility, scalability, and
deep abstraction/representation capabilities enable their
seamless application across domains with sufficient data,
inspiring researchers to tackle scientific problems like physical
system modelling [17, 18]. For electrical machines, in Ref. [19],
the authors proposed a novel physics‐informed neural
network‐based high‐frequency modelling method for induc-
tion motors offering high accuracy, versatility, and simple
parameterisation. The proposed model's symmetric circuit
structure enables its applicability to both star‐ and delta‐
connected motors without recalculating circuit element
values. In Ref. [20], the authors of the work proposed using
deep neural networks to predict temperatures inside PMSMs,
eliminating the need for thermal modelling expertise. The
approach achieves strong performance with minimal model
sizes comparable to classic methods. Ortombina et al.

proposed using radial basis function neural networks to model
complex motor relationships capturing non‐linearity and cross‐
coupling effects. The network takes voltages and currents as
inputs and returns flux linkages as output, enabling accurate
model‐based control in Ref. [21]. Similarly, in Ref. [22], the
authors of the paper presented a novel artificial neural network
surrogate model for the transient simulation of induction
machines. The model is trained using finite element data and
can accurately estimate current and torque in real time based
on voltage and measured shaft speed inputs. Despite the
remarkable progress made by statistical machine learning
models in reducing modelling complexity and improving pre-
diction accuracy with the aid of big data, many limitations still
exist when deploying these purely data‐driven models in real‐
world applications. For example, predictions may lack robust-
ness, suffer from a lack of interpretability, and potentially
violate physical constraints or common sense.

In this case, the hybrid mechanism‐data‐driven model,
integrating the feature extraction prowess of deep learning
frameworks with the modelling rigour of conventional physics‐
based methodologies, exhibits immense potential in tackling
intricate physical modelling challenges, particularly in the realm
of structural health monitoring and disease diagnosis and
prognosis [23–25]. Despite its widespread success across
diverse disciplines, its application to iron loss modelling re-
mains relatively nascent. On the other hand, the complexity of
iron loss modelling in PMSMs stems from multifaceted sour-
ces: Firstly, it encapsulates intricate physical phenomena,
including the intricate distribution of magnetic fields and
magnetisation states within the motor's architecture. Secondly,
the non‐linear magnetisation characteristics of the iron core
material introduce a non‐linear relationship between iron loss
and magnetic field intensity, complicating predictive modelling.
Furthermore, iron loss varies significantly under different
operational conditions, such as varying rotational speeds, loads,
and temperatures, necessitating models that can accommodate
such dynamicity. Lastly, experimental constraints and costs
often hinder the acquisition of extensive, high‐quality datasets,
posing an additional challenge in robust modelling. Collec-
tively, these factors underscore the suitability of hybrid
methods for iron loss modelling in PMSMs. Hybrid methods
combining machine learning and physics‐informed modelling
offer a promising approach to enhance efficiency and accuracy,
advancing the state‐of‐the‐art in this critical area of research.

Therefore, considering the complexity of calculating iron
losses in PMSMs, influenced by multiple disciplines, this paper
first presents an enhanced iron loss analysis model for predicting
the iron loss data of PMSMs under various operating conditions.
This dataset is utilised to train a convolutional neural network
(CNN), which is designed to capture the intricate characteristics
of iron loss processes.Moreover, given the practical challenges in
acquiring vast amounts of real‐world iron loss data due to costs
and difficulties, a hybrid approach is employed. Initially, the
CNN is pre‐trained on simulated data, allowing it to grasp the
fundamental dynamics of iron loss. Subsequently, the pre‐trained
CNN undergoes fine‐tuning with a carefully selected, albeit
limited, set of experimental data. This refinement is guided by a
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carefully defined loss function, ensuring that the model can
better adapt and generalise to real‐world scenarios despite the
constraints posed by the availability of experimental data. Ulti-
mately, experimental validation underscores the substantial
benefits offered by this hybrid mechanism‐data‐driven model in
iron loss modelling. By seamlessly blending the predictive ca-
pabilities of deep learning with the physical insights garnered
from traditionalmethods, it enhances the accuracy and efficiency
of iron loss predictions while also pioneering new paths for
tackling complex physical challenges.

The remainder of this paper is organised as follows. Sec-
tion 2 introduces the overall framework of the hybrid
mechanism‐data‐driven modelling approach, which consists of
three phases. The enhanced iron loss analysis model that
considers multidisciplinary influencing factors is analysed and
presented as well. Section 3 illustrates the methodology for
deep learning and fine‐tuning optimisation using the CNN
model. In Section 4, a hybrid mechanism‐data‐driven iron loss
model for an interior permanent magnet synchronous motor
(IPMSM) used in electric vehicles (EVs) is developed. Then,
the test system is utilised for the case studies to validate the
effectiveness of the proposed model. The conclusions of the
research are given in Section 5.

2 | PROBLEM FORMULA AND MODELS

2.1 | Framework of the proposed modelling
method

The comprehensive illustration of the proposed hybrid
mechanism‐data‐driven modelling method for iron loss pre-
diction, as depicted in Figure 1, encapsulates a three‐stage
methodology. The initial stage integrates a mechanistic
analytical approach to iron loss modelling with CNNs for deep
learning. This phase is designed to establish a foundational
physics‐informed data‐driven deep learning model. The critical
elements encompassed are given as follows.

(1) Leveraging the Simplorer and Ansys software, the PWM‐
induced magnetic flux density, temperature and

mechanical stress profiles can be generated across diverse
loading conditions and frequencies. It should be noted that
using the discrete Fourier transform, the magnitudes of
fundamental components and individual harmonics of the
airgap flux density can be calculated, and then the airgap flux
density waveforms under both sinusoidal and PWM sup-
plies were obtained through combined simulations of
Simplorer and ANSYS. These profiles, along with an
enhanced iron loss analysis model that integrates hysteresis
and eddy current loss constants tailored to the specific iron
core materials, and further adjusts for temperature increases
and mechanical stresses, produce datasets of iron losses
under various operational conditions. The method meticu-
lously captures the intricate, multidisciplinary‐driven dy-
namics of iron losses.

(2) Based on the iron loss data, the CNN model is trained to
learn and represent the diverse range of characteristics
associatedwith the iron loss process. A tailored loss function
is employed during the training to quantify the discrepancy
between predicted and observed iron loss values, thereby
guiding the backpropagation algorithm and gradient ad-
justments. The iterative refinement process would greatly
improve the CNN's predictive capability and accuracy.

(3) The culmination of this hybrid mechanism‐data‐driven
modelling approach lies in its application domain. The
devised model can be deployed for extensive simulation
scenarios pertaining to PMSMs. Moreover, the generality
of the proposed modelling strategy transcends PMSMs,
rendering it applicable to a diverse array of motor types
and beyond, for various types of loss modelling endeav-
ours. This underscores the model's potential to serve as a
versatile tool for comprehensive loss analysis across
diverse electromechanical systems.

2.2 | Mechanism‐based iron loss analytical
model

The proposed mechanism‐based iron loss analytical models
address both the spatial harmonics caused by stator slotting

F I GURE 1 Framework of the proposed hybrid mechanism‐data‐driven modelling methods.
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and carrier harmonics resulting from pulse width modulation
(PWM) inverter. The models also predict iron loss in tooth and
yoke regions separately, taking into account the impacts of
magnetic saturation, temperature rising and mechanical stress.
It should be noted that the excess loss in PMSMs, influenced
by factors difficult to model such as motor geometry and
operational conditions, is neglected in the iron loss calculations
due to its small impacts, ensuring simplicity and practicality.

As described in our previous publication [3], to deal with
the influence of slot harmonics, flux density is transformed
into a trapezoidal waveform by FEM, then the iron loss den-
sities in tooth and yoke regions can be calculated using the
following equation:

PtotalT ¼ Kh
ωs

2π
Bα
Tm þ 8Ke · NRNS

BTm

T

� �2

PtotalY ¼ Kh
ωs

2π
Bα
Lm þ 8Ke ·

ωsB2
Lm

πβT
þ CN · 4Ke

NSωs

πT
B2
Lm

8
>>><

>>>:

ð1Þ

And the total iron loss in the stator core considering spatial
harmonics is determined with the following equation:

Piron 1 ¼ PtotalTVT þ PtotalYVY ð2Þ

The meanings of symbols are referred to the nomenclature
at the beginning of the paper.

While the iron loss model presented in Equations (1) and
(2) considers the impact of magnetic field distribution and
spatial harmonics, it was developed with the presumption that
the motor is driven by sinusoidal current inputs. In practice,
PMSMs are typically driven by inverters with control circuits
that operate over a wide range of speeds and torques, gener-
ating additional iron loss from carrier harmonics.

Thus, a refined model is employed to consider the impact
of PWM carrier harmonics on the iron loss computation. This
model defines a modified coefficient kh_PWM, which adjusts the
calculation equations for hysteresis loss. Moreover, the eddy
current loss model is replaced to incorporate the cumulative
effect of all the components caused by the harmonics [26].

Ph PWM ¼ kh PWMPh

Pe PWM ¼
X

Pe PWMðnÞ

(

ð3Þ

where

kh PWM ¼ 1þ Ch
1
Bm

XN

a¼1
ΔBa ð4Þ

Assuming that the PWM inverter's output voltage is a
periodic function, which can be expressed via Equation (5)
using the Fourier series [27],

vðtÞ ¼ V1 cos 2 πf t þ
X∞

n¼3;5;7;⋯
Vn cos 2 nπf t ð5Þ

Then, based on the Faraday's law, the magnetic flux density
considering carrier harmonics can be expressed as follows:

BðtÞ ¼
1

NWS

X∞

n¼1，3;5;⋯

Vn

2nπf
sin 2 nπf t

 !

ð6Þ

The magnitude of the nth harmonic of flux density is given
as follows [28]:

Bmn ¼
1

NWS
·
Vn

2nπf
ð7Þ

Using the Bertotti method, Pe_PWM (n) can thus be ob-
tained via the following equation:

Pe PWMðnÞ ¼ KeB2
mnf

2
n

¼ Ke
1

NWS
·
Vn

2nπf

� �2

f 2n ¼ Ke
1

2πNWS

� �2

V 2
n

ð8Þ

Combining Equations (1), (2), (3), (4) and (8), the iron loss
model considering both spatial and PWM harmonics is
updated via the following equation:

Piron 2 ¼ kTh PWMPhT þ PeT

� �
VT

þ kYh PWMPhY þ PeYL þ PeYN

� �
VY

þ Ke
1

NWS

� �2

·
Xn

i¼3;5;7:::

Vn

2π

� �2
" #

· VT þ VYð Þ

ð9Þ

Given the temperature sensitivity of core materials, it is
imperative to incorporate the effects of temperature fluctua-
tions into iron loss calculations. Furthermore, the residual
stress within silicon steel sheets, stemming from processes
such as punching, cutting, and pressing, constitutes a signifi-
cant contributor to performance deterioration. This residual
stress triggers a reorganisation of internal magnetic domains,
subsequently augmenting iron loss, a phenomenon that un-
derscores the necessity of addressing these stress factors in iron
loss modelling.

To account for the thermal and mechanical stress effects,
the iron loss coefficients Kh and Ke are both defined as
functions of working temperature T°C and mechanical stress σ.
As a result, the final iron loss model considering coupling ef-
fects can be updated using the following equation:

4 - LIU ET AL.
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2.3 | Correlation analysis

To streamline the calibration of iron loss coefficients, the
Pearson correlation analysis approach is utilised to delve into

the interplay between loss coefficients and various multiphysics
factors. Specifically, the Pearson correlation coefficient, deno-
ted as RXY, is defined in a manner that quantifies the strength
and direction of the linear relationships between the co-
efficients and the influencing factors, thereby facilitating a
more efficient and insightful fitting process [29].

RXY ¼

Pn
i¼1 Xi − X
� �

Yi − Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Xi − X
� �2

q

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Yi − Y
� �2

q ð11Þ

Furthermore, the magnitude of RXY approaching unity
signifies a robust correlation between the input and output
variables. Employing comprehensive FEM data, the Pearson
correlation indices that link the iron loss coefficients are
derived based on the multifaceted physical data across a broad
range of operational speeds, spanning from 500 to 5500 rpm,
as presented in Figure 2.

As seen, it is evident that the hysteresis loss coefficient
exhibits a pronounced correlation with stress levels, whereas

the eddy current loss coefficient is notably influenced by
temperature variations. As a result, the derived iron loss model
in Equation (10) can finally be refined via the following
equation:

where Kh(σ) and Ke(T°C) can be acquired by fitting the iron
loss curves obtained from experimental measurements of sili-
con steel sheets under various frequencies, temperatures and
stresses, using a 2D magnetic properties tester [30].

3 | HYBRID MECHANISM‐DATA‐
DRIVEN IRON LOSS MODEL BASED
ON CNN

Neural networks, through learning and training on data, can
effectively approximate complex non‐linear mapping relation-
ships. They store all quantitative or qualitative information
distributed across the neurons within the network. This enables
them to perform rapid and large‐scale computations and to
provide online inference speeds,meeting real‐time requirements.
The CNNs can effectively reduce network complexity and
decrease the number of training parameters. They possess strong
robustness and fault tolerance, making them easy to implement
training and optimisations. Therefore, this paper selects CNN,
which includes input layer, convolutional layer, activation

Piron 3 ¼
kTh PWMKh T°C ; σð Þ · ωs

2π
· Bα

Tm þ 8Ke T°C ; σð ÞNRNS ·
BLm

T

� �2
 !

· VT

þ
kYh PWMKh T°C ; σð Þ · ωs

2π
· Bα

Lm þ
4Ke T°C ; σð Þ · ωs 2þ βCNNS

� �

πTβ
· B2

Lm

( )

· VY

þ
Ke T°C ; σð Þ

NWSð Þ
2

Xn

i¼3;5;7:::

Vn

2π

� �2
( )

· VT þ VYð Þ

ð10Þ

Piron 2 ¼
kTh PWMKhðσÞωs

2π
· Bα

Tm þ 8Ke T°Cð ÞNRNS ·
BTm

T

� �2
 !

· VT

þ
kYh PWMKhðσÞωs

2π
· Bα

Lm

( )

· VY

þ
4Ke T°Cð Þωs 2þ βCNNS

� �

πTβ
· B2

Lm

� �

· VY

þ
Ke T°Cð Þ

NWSð Þ
2

Xn

i¼3;5;7:::

Vn

2π

� �2
( )

· VT þ VYð Þ

ð12Þ
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functions, pooling layer, fully connected layer, and output layer,
as the data‐drivenmodelling approach. The topology of the used
CNN is presented as Figure 3.

Based on the predictionmodel for iron losses in IPMSMs, six
key features are selected as inputs to the CNN, namely the load
currents, working temperature, mechanical stress, mechanical
speed, tooth magnetic flux density, and the yoke magnetic flux
density. These parameters were chosen due to their direct re-
lationships with electromagnetic forces, material properties,
microstructural changes in the iron core, and harmonic content
of the magnetic field, all of which significantly contribute to iron
losses and require accurate prediction for optimal motor per-
formances. The input layer of CNN comprises a one‐
dimensional vector of size 1 � 6, such that a one‐dimensional
convolutional kernel is employed in this paper considering that
they can not only well process one‐dimensional data vectors, but
also achieve the fusion of multiple feature maps. The convolu-
tional layer performs local connections and weighted bias op-
erations between the convolutional kernel and the feature map
from the previous layer, and then passes the results to the acti-
vation function to obtain feature maps. The weights of the same
convolutional kernel are shared, and multiple convolutional
kernels are used to obtain multi‐layer feature maps.

yhj ¼ g
XNk

i¼1

mh−1
i ∗ khij þ bhj

 !

ð13Þ

The activation function is used to enhance the non‐linear
mapping of the convolutional kernel output. In CNNs, the
ReLU function is typically used as the activation function,
which operates as follows.

gðhÞ ¼ h; h > 0
0; h ≤ 0

�

ð14Þ

To fully extract the feature information, this paper employs
two convolutional layers. The parameters of these layers are
given in Table 1.

The pooling layer, typically aimed at reducing the resolu-
tion of feature maps to attain spatial invariance crucial for
image recognition tasks, is intentionally omitted in this paper.
Instead, the fully connected layer is employed to integrate the
diverse feature maps extracted by the convolutional layers. The
configuration of this fully connected layer is detailed as follows:

yh ¼ g mh−1 �ωh þ bh
� �

ð15Þ

The output of the fully connected layer is converted into a
probability distribution through Softmax logistic regression for
classification and final output. In this paper, the fully con-
nected layer configuration of (64, 80, 1) is employed. The
output of the network's output layer signifies the predicted iron
loss as determined by the neural network. Eq. (9) depicts the
loss function of the devised CNN, which characterises the
optimisation efficacy and objectives of the network model.

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

ŷi − yiÞ2
�

v
u
u
t ð16Þ

CNN training encompasses two iterative processes: for-
ward inference and error backpropagation. During forward
propagation, the network computes predictions which are then
compared with the ground truth values to calculate the loss
error. This error, in turn, is utilised to compute the gradients
for each parameter. Subsequently, the Adam optimiser, with a

F I GURE 2 Correlations between Kh and Ke with working temperature
and mechanical stress.

F I GURE 3 Topology structure of the
used CNN.
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learning rate of 0.001, is employed to update the network
parameters including connection weights and biases in both
convolutional and fully connected layers. By iteratively
repeating these steps, the network parameters are continuously
adjusted, gradually refining the mapping relationship between
inputs and outputs.

4 | CASE STUDIES

In this paper, MATLAB is used as a simulation tool to conduct
the experiments while Ubuntu 16.04 with Python 3.6 and
TensorFlow 1.5 is employed as the deep learning framework.
The computer configuration used for the experiments includes
an Intel Core i7 1185G7 processor at 3 GHz with 16 GB of
memory. The co‐simulation of Simplorer and Ansys runs on a
Linux‐based high‐performance computing cluster, which fea-
tures 56 CPU cores and up to 1.5 TB of memory per node. This
setup is well‐suited for handling large bioinformatics datasets,
complex physical simulations, and multidimensional datasets.

The training data is obtained offline. Given the importance
of multidisciplinary coupled modelling, six input variables were
carefully selected from the thresholds of their respective do-
mains. These variables are essential for simulating and calcu-
lating iron loss for subsequent training data. Through the
aforementioned simulations and experiments, a total of 5000
sets of training data, each comprising 6 inputs and 1 output,
were obtained. Because the training set drives the CNN
model's learning process, and the testing data is crucial for
assessing the model's prediction accuracy in actual operations,
measuring a 14% ratio to the testing set necessitates the pro-
curement of an additional 700 data points specifically tailored
to evaluate the predictive performances of the iron loss model.
Incorporating actual measurement data into the testing set
significantly enhances the model's authenticity, generalisation
capabilities, and robustness. Given the minor influences of
stator temperature and motor stress on the speed's rate of
change, the primary variations in measured data are primarily
dictated by speed and load currents, with each of these vari-
ables contributing around 24 instances to the testing data set.

The experimental data is measured employing a self‐
developed IPMSM prototype, equipped with the conventional
sinusoidal PWM. A field‐oriented control (FOC) strategy
(Id = 0) [31] is utilised to conduct the experiments, aiming to
achieve the maximum torque per ampere, in which the current
and speed loops are set as feedback loops to keep the reference
speed as well as to make a minimal d‐axis reference current. The
key specifications are presented in Table 2. The FEM model of
the prototype as well as the diagram of the integrated

experimental platform are both given in Figure 4. As shown, the
control and measuring equipment are mounted on the experi-
mental platform, including the control and drive circuits, the
dynamometer, and the dynamic torque/speed sensors. The DC
power supply is used for providing the desired DC power to the
testing motor, the upper computer is used for writing the
control programme, and the electrical control cabinet can be
employed to simulate different load conditions, while the
oscilloscope is applied for the data recording.

The offline training results of theCNNnetwork, respectively
using the training and texting date, are presented as Figure 5. It is
indicated that the loss function, namely the RMESs of the output
variable stops decreasing after around 1700 iterations. During
this period, each parameter of the CNN network reaches its
optimal values through the utilisation of backpropagation and
gradient descent on the training parameters.

Through the built experimental platform, the actual iron
losses are obtained under various speed and load conditions, and
then compared with the values predicted using the presented
CNN model. To accurately determine the iron loss values, a so‐
called dummy rotor method [32] was employed to obtain the
mechanical losses, which can be calculated as the input power of
the drivemotor since there is no rotor magnet, hence no iron loss

TABLE 1 Convolutional layer parameters.

Parameters Conv1 Conv2

Number of convolutional kernels 16 32

Kernel size 2 2

Convolutional stride 2 1

TABLE 2 Specifications of the IPMSM prototype used in EVs.

Items Values Items Values

No. of poles 8 Core material 35WW360

No. of slots 48 Core length 108 mm

No. of phases 3 Stator outer diameter 196 mm

Magnets per pole 2 Stator inner diameter 135 mm

Rated power 20 kW Rotor outer diameter 134 mm

Rated speed 3600 rpm Air‐gap length 0.5 mm

Maximum power 40 kW Tooth width 6.35 mm

Maximum speed 5500 rpm Magnet width 19.5 mm

Rated torque 53 Nm V‐shaped angle 145°

Maximum torque 180 Nm Phase resistance 0.0052 Ω

F I GURE 4 Setup of the FEM model and integrated experimental
platform.
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or induced current & copper loss. The results are illustrated as
Figure 6, in which the blue ‘*’ symbols indicate the actual iron
loss of the motor, while the magenta ‘.’ symbols represent the
iron loss values predicted by the proposed network model. The
different colours, that is, orange, blue, and purple, represent
different load conditions. By comparing the predicted values
with the actual iron loss values, the scatter plot shows a good
overlap between the two types of symbols.

The error analysis results are summarised in Figure 7. As
shown in Figure 7a, the normalised residuals between the

predicted and actual iron loss are quite small under various
operating conditions. Given Figure 7b, the kurtosis of both the
histogram and kernel density are pretty high, accounting for
about 0.22 where the residual is approximately zero, indicating
that the residuals are concentrated. Although the kernel density
shows a slight fluctuation, the residual distribution closely aligns
with a normal distribution, validating the robust predictive
ability of the proposed iron loss model. According to the box
plot of Figure 7c, the maximum and minimum residuals are
calculated as 5.59% and −5.29%, respectively, while the median
is around 0.13% with the 25th percentile as −1.22% and the 75th

percentile as 1.55%. Results indicate that the proposed hybrid
mechanism‐data‐driven model can effectively predict the iron
loss of PMSMs with satisfactory accuracy and stability.

To further verify the superiority of the proposed ap-
proaches, the measured iron losses of the IPMSM prototype
are also compared with those predicted using the presented
hybrid data‐driven model, a traditional CNN model and the
advanced analytical iron loss model in [3], under six different
current inputs. The comparative results are all presented in
Figure 8, while the comparative errors are recorded as Figure 9.
The data analysis of Figures 8 and 9 are all collected in Table 3,
where EMj and EAj (j = 32, 90, 180, 285, 400 and 490)
represent the maximum and absolute average errors of iron
losses which are relative to the measured data under 32, 90,
180, 285, 400 and 588 A phase currents, respectively.

As shown in Figure 8, the proposed hybrid mechanism‐
data‐driven model shows outstanding performance for pre-
dicting the iron loss of the IPMSM prototype. Under different
working speeds and various current inputs, the predicted iron
loss curve is closest to the measured values, compared to those
obtained through the traditional CNN model and the advanced
analytical iron loss model. The accuracy and stability are also
satisfactory.

As shown in Figure 9, the iron loss models developed using
traditional CNN and the improved analytical method respec-
tively have the maximum errors as −7.12% and −5.46% under
all six different input phase currents, while the maximum error
using the proposed hybrid data‐driven approach obtains only
−4.98% for 400 A input current. The values of maximum
errors for the other five input currents are all less than 4%.
Moreover, the predicting accuracy stability of the proposed
method also outperforms the other models. Under different
working conditions, the absolute average error of the iron loss
predicting using the proposed model is all within 2.11%, which
is only around half of the values by traditional CNN and 70%
of those obtained with the improved analytical in [3]. All the
results well‐verify the satisfactory performances of the pro-
posed hybrid mechanism‐data‐driven iron loss model under
various working conditions.

5 | CONCLUSION

Considering the difficulty in all the data acquisition, the
complexity of physical models, and the highly coupled multi-
disciplinary influencing factors for iron loss prediction of

F I GURE 5 Offline training results of the CNN‐based loss model.

F I GURE 6 Validating results of the iron loss model predicted using
the proposed hybrid CNN approaches.

F I GURE 7 Error analysis of the predicted results.
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electrical machines, this paper proposes a hybrid mechanism‐
data‐driven model that combines both physical and AI ap-
proaches for accurate estimation of iron loss. The physical

model provides the foundational theories and constraints,
while the data‐driven model is used to capture complex non‐
linear and unmodeled dynamic characteristics. The accuracy

F I GURE 8 Comparative results of iron loss models.

F I GURE 9 Error analysis of the comparative results.

TABLE 3 Data analysis of Figures 8 and 9.

Items Proposed Traditional CNN Analytical model Items Proposed Traditional CNN Analytical model

EM32 −3.92% −7.12% −3.35% EM285 3.78% 6.45% −4.36%

EA32 1.17% 3.84% 2.67% EA285 2.11% 3.39% 2.85%

EM90 3.21% 4.95% −4.38% EM400 −4.98% 6.18% −4.86%

EA90 1.54% 2.50% 2.08% EA400 1.55% 3.86% 2.75%

EM180 3.76% 2.76% −5.46% EM490 3.95% 6.95% −5.43%

EA180 1.52% 2.91% 2.90% EA490 1.83% 3.21% 3.84%
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of this integrated method is rigorously validated through
randomised operating condition tests on an IPMSM prototype.
The key conclusions can be summarised as follows.

(1) Statistical analysis revealed a median residual of 0.13%
with a tight range, where the 75th percentile fell within only
�1.55% of actual values. The maximum and minimum
residuals are also acceptable, highlighting the hybrid
model's capacity for high‐precision predictions.

(2) With different input currents and working speeds, the
absolute average error across all conditions remained
below 2.11%, around half that of traditional CNN and
70% of improved analytical methods, demonstrating the
model's robust stability and reliability.

These numerical achievements validate the proposed
hybrid model's ability to accurately and consistently predict
iron losses in electrical machines, setting a new benchmark for
high‐precision dynamic predictions amidst complex opera-
tional scenarios. The success of this study underscores the
potential of combining physical insights with advanced data‐
driven techniques to tackle complex engineering challenges,
paving the way for future advancements in motor design and
performance optimisation.
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NOMENCLATURE
Kh, Ke Empirical hysteresis and eddy current loss

coefficients
BTM, BLM Amplitude of magnetic flux density in tooth and

yoke regions
NR, NS Numbers of phases and slots per pole per phase
VT, VY Volumes of tooth and yoke
ωS, T Motor angular frequency and excitation period
α, CN Empirical coefficients and derived fitting

coefficients
Ph, Bm Hysteresis loss density and Amplitude of mag-

netic flux density
ΔBa Fluctuation in motor flux density
f, fn Fundamental and nth harmonic frequencies of

PWM waveform

Pe_PWM (n) Eddy current loss caused by the nth PWM
harmonic

Vn Magnitude of the nth harmonic voltage
NW, S Number of winding turns, and cross‐sectional

area of iron core
PhT, PhY Hysteresis loss density in the tooth and yoke

regions
PeT, PeY Eddy current loss density in the tooth and yoke

regions
PeYL, PeYN PeY with longitudinal flux and normal component
T°C, σ Working temperature and mechanical stress
RXY Pearson correlation coefficient
X X = {Xi; i = 1,···N}, the set of input variables
Y Y = {Yi; i = 1,···N}, the set of corresponding

output variables
X , Y Means of X and Y
yhj Output of the jth feature map at the hth layer
g(x) Activation function
Nk Number of feature maps output by the (h‐1)th

layer
mh−1

i The ith feature map output by the (h‐1)th layer
* Convolution operation
khij The jth convolution kernel for the current hth

layer
bhj Bias for khij
ωh Weight matrix of the hth layer
N Number of the samples
ŷi Predicted values of the output
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