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Copper chelation redirects neutrophil
function to enhance anti-GD2 antibody
therapy in neuroblastoma
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Orazio Vittorio 1,2

Anti-disialoganglioside (GD2) antibody therapy has provided clinical benefit
to patients with neuroblastoma however efficacy is likely impaired by the
immunosuppressive tumor microenvironment. We have previously defined
a link between intratumoral copper levels and immune evasion. Here, we
report that adjuvant copper chelation potentiates anti-GD2 antibody therapy
to confer durable tumor control in immunocompetent models of neuro-
blastoma. Mechanistic studies reveal copper chelation creates an immune-
primed tumormicroenvironment through enhanced infiltration and activity of
Fc-receptor-bearing cells, specifically neutrophils which are emerging as key
effectors of antibody therapy. Moreover, we report copper sequestration by
neuroblastoma attenuates neutrophil function which can be successfully
reversed using copper chelation to increase pro-inflammatory effector func-
tions. Importantly, we repurpose the clinically approved copper chelating
agent Cuprior as a non-toxic, efficacious immunomodulatory strategy. Col-
lectively, our findings provide evidence for the clinical testing of Cuprior as an
adjuvant to enhance the activity of anti-GD2 antibody therapy and improve
outcomes for patients with neuroblastoma.

Neuroblastoma is a malignancy of the sympathetic nervous system
and accounts for 15% of all childhood cancer-related deaths1. Despite
intensive multi-modal therapy, the prognosis for high-risk patients
remains poor. While the integration of anti-disialoganglioside (GD2)
antibody (e.g., dinutuximab) into maintenance therapy has been

demonstrated to substantially improve survival and is now a stan-
dard of care, nearly half of patients remain refractory or develop
treatment resistance2. Moreover, most survivors exhibit an increased
risk of late mortality, secondary malignancies, and other chronic
health conditions3,4. Therefore, improving the long-term efficacy of
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this promising immunotherapy remains an important unsolved
challenge.

GD2 is a tumor antigen ubiquitously expressed by the majority of
neuroblastomas with anti-GD2 therapies known to promote antibody-
dependent cell-mediated cytotoxicity (ADCC) by Fc-expressing
immune effectors5. Natural killer (NK) cells and macrophages are
cited as prominent mediators of ADCC; however, neutrophils are
emerging as key players in achieving effective responses in several
cancer types, including neuroblastoma6. Neuroblastomas harbor an
immunosuppressive tumor microenvironment and therefore combi-
nation strategies are now considered more likely to succeed in the
restoration of antitumor immunity required for response to anti-GD2
therapy7,8.

Elevated intracellular copper levels have been reported in several
malignancies, suggesting copper homeostasis as a tumor dependency
that may be exploited as a therapeutic target9,10. Concerning neuro-
blastoma, we have previously reported elevated levels of the high-
affinity copper transporter 1 (CTR1) in neuroblastoma clinical samples
and preclinical models, and recently demonstrated that intratumoral
copper levels regulate the expression of the immune checkpoint
molecule Programmed Death-Ligand 1 (PD-L1)11,12. Copper depletion
using chelating agents including tetraethylenepentamine (TEPA)
reduced tumoral PD-L1 expression, increased CD8+ cytotoxic T andNK
cell infiltration, and enhanced survival. These observations prompted
us to evaluate copper chelation as a potential treatment strategy
through widespread remodeling of the neuroblastoma tumor
microenvironment.

In the current study, we report that copper chelation is an effec-
tive adjuvant strategy to potentiate anti-GD2 therapy in twopreclinical
immunocompetent models (Th-MYCN; NXS2) of neuroblastoma. We
demonstrate that copper chelation favorably alters the infiltration and
antitumor activity of both lymphoid and myeloid compartments,
specifically neutrophils. We characterize a mechanism of tumor
immune evasion in which copper sequestration drives neutrophil
dysfunction. Importantly, we establish TETA (triethylenetetramine,
marketed as Cuprior), an FDA-approved copper chelating agent for
Wilson’s disease, as an innovative immunomodulatory agent for
repurposing as an adjuvant to anti-GD2 therapy. Together, ourfindings
provide crucial evidence to support the clinical testing of this immune-
based combination therapy for patients with neuroblastoma.

Results
Copper chelation potentiates anti-GD2 antibody therapy
To stimulate immune activation in Th-MYCN model, we primed the
tumormicroenvironment by administering the copper chelating agent
TEPA daily for 1 week, followed by the addition of twice weekly doses
of anti-GD2 antibody (Fig. 1a). After four cycles, TEPA and anti-GD2
therapy were both reduced to twice weekly administrations until the
ethical endpoint (tumor diameter ≥10mm) or a maximum treatment
duration of 180 days was met. Importantly, this immunocombination
strategy was well-tolerated with no adverse effects observed.

As per previous reports, anti-GD2 monotherapy induced modest
antitumor activity, but this was substantially enhanced with the addi-
tion of TEPA, resulting in significantly extended survival (p =0.043)
and durable responses in approximately 30% of animals (Fig. 1b,c)13,14.
To examine changes in the immune environment, we performedOPAL
multiplex immunohistochemistry on tumors obtained after 14 days of
treatment (Fig. 1d).

As a single agent, TEPA was observed to significantly increase
NCR1+ NK (p =0.046), CD8+ cytotoxicT (p =0.014) andCD11b+myeloid
(p = 0.003) cell compartments compared to the control isotype arm
(Fig. 1e). Anti-GD2 therapy alone also significantly increased cytotoxic
T (p =0.023) and myeloid cell (p = 0.0073) infiltration with a trend
towards increasedNK infiltration compared to the control isotype arm.
Nonetheless, the addition of copper chelation to anti-GD2 therapy

substantially enhanced the infiltration of NK (p = 0.006) and myeloid
(p = 0.0012) immune subsets but did not synergize to cause further
infiltration of cytotoxic T cells. NK cells are recognized as the primary
effectors of ADCC in neuroblastoma, eliciting responses through Fc-
receptor binding15. Unexpectedly, we observed that copper chelation
therapy also increased the frequency of infiltrating myeloid cells,
which have been associated with immunosuppressive activity in neu-
roblastoma but can also be engaged as potent effectors of ADCC16.

Our immune-induction strategy demonstrates that copper che-
lation is an effective adjuvant to increase immune infiltration and
enhance tumor control in combination with anti-GD2 antibody
therapy.

Copper chelation modulates cytokine levels to drive immune
cell infiltration
The immunosuppressive tumor microenvironment is supported by
soluble cytokines and chemokines, that exert pleiotropic effects on
immune cells by regulatingmigration, infiltration, and effector activity
to facilitate tumor progression17. To understand how these processes
are altered during induction with TEPA, we performed multiplex
cytokine profiling to analyze serum and tumor milieus after 1 week of
treatment (Fig. 2a). Treatment was observed to modulate cytokine
levels associated with immune cell recruitment (RANTES/CCL5, GM-
CSF, KC/CXCL1) and pro-inflammatory effector functions (IFN-γ, IP-10/
CXCL10, TNF, IL-10, IL-2, IL-6) (Fig. 2b). Of note, copper chelation
significantly reduced levels of the immunosuppressive cytokine
transforming growth factor-beta (TGF-β) in both serum (p =0.007)
and the tumormicroenvironment (p =0.018), aligning with our recent
finding linking its expression to copper levels in a variety of cancer
types, including neuroblastoma18. Interestingly, statistically significant
changeswere restricted to the tumormicroenvironment except for KC
and IFN-γ, suggesting that copper chelation can induce a “finely tuned”
local shift in immune response.

Given the concomitant shift in cytokine profile and increase in
myeloid cell infiltration with copper chelation, we sought to elucidate
the composition of this immune compartment via flow cytometry.
Results revealed CD11b+Ly6G+ neutrophils as the major population,
exhibiting a nearly six-fold increase in tumoral infiltration, followed by
macrophages, monocytes, and dendritic cells (DCs) (Fig. 2c,d). Given
the systemic and local upregulation of KC (a known neutrophil che-
moattractant) with copper chelation therapy, we postulated that
treatment could stimulate neutrophil trafficking toward the tumor
site19.

To assess this, we immunophenotyped the peripheral blood of
control and TEPA-treated Th-MYCN animals and confirmed significant
increases in both the abundance (p =0.029) and relative percentages
(p = 0.029) of circulating neutrophils (Fig. 2e). No other immune sub-
sets or erythrocyte measurements were significantly affected (Supp.
Fig. 1), with these results underscoring an exclusive relationship
between copper chelation and tumoral neutrophil recruitment. Of
note, neutrophils have been demonstrated to mediate ADCC against
neuroblastoma in the presence of anti-GD2 antibody, illuminating a
possible link to the enhanced tumor clearance conferred by immu-
nocombination therapy in the Th-MYCN model (Fig. 1b,c)20.

These data suggest that copper chelation favorably modulates
cytokine levels to support the observed changes in immune cell infil-
tration, particularly neutrophils, thereby promoting an immune-
permissive neuroblastoma tumor microenvironment.

Copper chelation destabilizes the neuroblastoma tumor
microenvironment
To further characterize changes occurring during priming of the
tumor microenvironment, we constructed a tissue microarray of Th-
MYCN tumors consisting of untreated, control and TEPA-treated
tumors resected after 3 and 7 days of treatment. Utilizing the
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NanoString GeoMx Digital Spatial Profiling (DSP) platform, regions of
interest (ROIs; n = 100 total) were selected using a ratio of pan-
cytokeratin (PanCK) and pan-leukocyte marker CD45 to assign condi-
tional assignment of low/high immune infiltration for each region
(Supp. Fig. 12). We observed that copper chelation therapy with TEPA
was strongly associated with immune infiltration, as determined by
CD45-positive staining of tumor cores (Fig. 3a). When comparing low/
high infiltration assignments, TEPA-treated tumors were observed to

exhibit a time-dependent increase in immune infiltration (Fig. 3b).
Next, we performed a differential gene expression analysis comparing
3- and 7-day TEPA-treated low-infiltrated versus TEPA-treated high-
infiltrated ROIs to highlight crosstalk between tumor and immune cell
signals. Interestingly, we observed the upregulation ofMgp andMprip
together with Znrf1 which is suggestive of neuronal differentiation, a
key feature associated with a favorable clinical prognosis in neuro-
blastoma (Fig. 3c)21,22. Enrichment analyses revealed significant
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Fig. 1 | Copper chelation potentiates antitumor activity of anti-GD2 immu-
notherapy. a Experimental design and dosing strategy. Schematic created in
BioRender. Vittorio, O. (2024). BioRender.com/c53h577. b Individual tumor kinet-
ics of Th-MYCNmice. cKaplan–Meier survival curves ofTh-MYCNmice presented in
(b). Statistical pairwise comparisonswere calculated using a two-tailedMantel–Cox
log-rank test with p values displayed in the figure. For (b) and (c), data are n = 11
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experiment. d Representative images of merged OPAL multiplex immuno-
fluorescence spectra depicting the tumoral distribution of NCR1+ natural killer cells

(red), CD8+ cytotoxic T cells (yellow), CD11b+ myeloid (white) and DAPI nuclei stain
(blue) in Th-MYCN neuroblastoma tumor tissue 14 days post-treatment. Scale bar,
100 µm. e Immune cell quantification of (d) as positive counts per 1000 nuclei.
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changes in numerous pathways with copper chelation including
upregulation of pro-inflammatory pathways involved in interferon
(IFN) and tumor necrosis factor (TNF) signaling, the p53 pathway
involved in tumor suppression, and downregulation of MYC targets
responsible for oncogenic signaling (Fig. 3d,e).We observed increased
angiogenic signaling along with significant upregulation of the
hemoglobin family genes Hbb-b2, Hba-a1, and Hbb-b1 (Fig. 3c),

alluding to increased tumoral vascularity which may facilitate intra-
tumoral immune infiltration (Fig. 3d). Interestingly, pathwayswerealso
enriched for hypoxia and neutrophil degranulation activity, demon-
strating an interplay known to occur in inflamed environments and
further emphasizing the role of this immune population in the tumor
microenvironment (Fig. 3d,e)23. Notably, this enrichment analysis
showed remarkable overlap with a recently published dataset by He
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et al., which compared enriched pathways in low-risk versus high-risk
neuroblastoma clinical cohorts24.

Taken together, these results indicate that copper chelation can
shift neuroblastoma tumors towards a less aggressive phenotype by
destabilizing the tumor microenvironment.

Copper chelation enhances neutrophil infiltration in the neu-
roblastoma tumor microenvironment
To characterize functional changes at a single-cell resolution, we ana-
lyzed tumors treated for 7 days with saline or TEPA using the BD
Rhapsody system. Fresh tumor sections were dissociated using a
protocol that ensured high viability of both tumor and immune com-
partments for subsequent enrichment by flow cytometric sorting
(Fig. 4a). After quality control, dimensionality reduction, and cluster-
ing, we obtained 13,555 tumor cells (defined usingMycn+/Ptprc [CD45]−

gene expression; Fig. 4b). Importantly, tumor cells were highly
responsive to copper chelation therapy with a significant decrease in
gene expression of the metallothioneins Mt1 and Mt2 as surrogate
markers for intracellular copper levels (both p < 0.0001) (Fig. 4c)25.
Unexpectedly, the tumoral oncogene Mycn and its associated targets
were also significantly downregulated (p <0.0001), which is known to
decrease tumor cell proliferation and increase immunogenicity and
immune cell infiltration (Fig. 4c,d)26,27.

The immune compartment consisted of 12,127 immune cells
(defined using Ptprc [CD45]+ expression as Cd3-expressing T cells
also express low levels of Mycn; Fig. 4e) with a diverse repertoire
of 13 unique clusters identified in both treatment arms encom-
passing both lymphoid and myeloid lineages (Fig. 4e–g). This
data supports previously reported tumor-associated immune
subsets in the Th-MYCN model and clinical neuroblastoma sam-
ples as reviewed by Wienke and colleagues28; however, propor-
tions may vary owing to different analytical techniques and tumor
stage29,30 (Fig. 4f; Supp. Fig. 2a). Of note, copper chelation
resulted in increased numbers of CD8+ effector T cells yet
revealed a marginal decrease in NK cells, the latter contrasting
with our previous report12. Given animals commenced copper
chelation therapy immediately after weaning (tumor diameter
≤2mm) in the former study, we posit that the recruitment at a
larger tumor size herein (tumor diameter ≥ 3–4mm) may account
for this discrepancy. To address this, we performed flow cyto-
metry to determine the frequency of infiltrating NK cells in Th-
MYCN tumors and observed a marked but non-significant increase
with TEPA treatment (Supp. Fig. 2b). Taken together, this sug-
gests that NK infiltration may occur as a secondary effect during
the destabilization of the immunosuppressive tumor micro-
environment. We also observed a decrease in the infiltration of
CD4+ naive T cells with TEPA, which may lead to lower levels of
immunosuppressive regulatory T cells induced by exposure to
TGF-β31. Nonetheless, neutrophils still exhibited a profound five-
fold increase with treatment which is consistent with our tumoral
flow cytometric analysis (Fig. 4e,f; Fig. 2c, d). To assign this
neutrophil cluster, we used the recently identified gene markers

S100a8/a9 which together form the heterodimer calprotectin
involved in neutrophil recruitment and activation alongside pre-
viously established markers (Fig. 4g)29,32–34.

Collectively, these data demonstrate the impact of copper che-
lation in the neuroblastoma tumor microenvironment, including
tumoral downregulation of Mycn and its targets and increased neu-
trophil infiltration.

Copper chelation reinvigorates the anti-tumor immune
response via neutrophil signaling
Next, we sought to assess the impact of copper chelation on the
immune compartment by mapping biological processes in the treat-
ment versus control arms. We observed enrichment for gene sets
related to CD8+ T cell expansion, myeloid-associated hypoxia and
autophagy responses, lymphocyte and myeloid migration, differ-
entiation, and activation as well as cellular cytokine responses to IFN-γ
and the TNF family (Fig. 5a). Further, bar plots and top pathways
produced by gene set enrichment analysis for each immune cluster
with TEPA treatment indicate metabolic alterations associated with
activation of the innate immune response (Supp. Figs. 3,4).

The anti-tumor immune response involves the complex coordina-
tion of multiple cell types across both innate and adaptive cell subsets.
To understand how these processes may be facilitated, we used Cell-
ChatDB to examine changes in cell-cell communication between
immune and tumor clusters in the control and TEPA-treated datasets35.
We observed an overall increase in signaling networks occurring with
copper chelation, dictated by the presence and or increased strength of
cell-cell interactions (Fig. 5b). Furthermore, copper chelation treatment
caused neutrophils to supersede tumor cells when comparing incoming
interaction strengths, alluding to the dampening of tumoral-induced
immunosuppression (Fig. 5c; Supp. Fig. 5). Given the increase in tumor-
infiltrating neutrophils with TEPA treatment, we examined ligand-
receptor expression occurring between this cluster and other subtypes
and found this was largely driven by the Galectin-9 (Lgals9) and TNF
(Tnf) axes which are known to support CD8+ cytotoxic T and NK cell-
mediated cytotoxicity (Supp. Fig. 6)36,37.

We therefore posit copper chelation skews the immunosuppres-
sive tumor microenvironment and reinvigorates the antitumor
immune response via enhanced neutrophil signaling.

Mobilization of copper enhances the antitumor activity of
neutrophils
Given the critical importance of copper for effective immune function,
we sought to investigate changes in copper metabolism within the
immune compartment using our single-cell transcriptomics data38,39.
Comparing treatment groups, we did not observe changes in a selec-
ted set of copper-related genes which may be attributed to the tight
homeostatic regulation of copper in non-malignant cells (Fig. 6a)40.
However, we did observe neutrophil-restricted co-expression of
Slc31a1 (encoding Ctr1), Atp7a, and Steap4, the major genes respon-
sible for modulating intracellular copper import and export in
mammals41.

Fig. 2 | Copper chelation promotes an immune-permissive tumor micro-
environment. a Experimental design and dosing strategy of Th-MYCN model with
peripheral blood and tumors obtained after 1week of treatment. Schematic created
in BioRender. Vittorio, O. (2024). BioRender.com/c53h577.bCytokine levels in sera
and tumoral lysates obtained from control and TEPA-treated mice. Serum data
(excluding TGF-β) are presented as mean± SEM, n = 4 (both groups) biological
replicates, one independent experiment. Tumor microenvironment (TME) data
(excluding TGF-β) are presented as mean± SEM, n = 10 (Control) and n = 6 (TEPA)
biological replicates, one independent experiment. TGF-β serum and TME data are
presented as mean± SEM, n = 7 (both groups) biological replicates, two indepen-
dent experiments. Significance was calculated using a two-tailed Mann–Whitney
U test with p-values displayed in the figure. c Flow cytometric analysis of myeloid

subset frequencies from tumors after 1 week of treatment. Data are presented as
mean ± SEM, n = 3 (both groups) biological replicates, one independent experi-
ment. Significance was calculated using a two-tailed t-test with Welch’s correction
with p-value displayed in the figure. d Representative flow cytometry plots of
CD11b+Ly6G+ neutrophil frequency of tumors plotted in (c). e Count and percen-
tage of circulating neutrophils obtained from control and TEPA-treated mice. Data
are presented as mean ± SEM, n = 4 (both groups) biological replicates, one inde-
pendent experiment. Significancewas calculated using a two-tailedMann–Whitney
U test with p-values displayed in the figure. Abbreviations: n.d. no data available,
p.o. orally, TME tumor microenvironment. Source data are provided as a Source
Data file.
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Consistent with our previous observations, copper chelation
upregulated genes associated with neutrophil migration and extra-
vasation with the notable downregulation of Ccr7 (Fig. 6b). Ccr7 is
involved in neutrophil migration to lymph nodes where their accu-
mulation has been implicated in solid tumor progression and
metastases42,43. Mirroring the M1/M2 spectrum used for macrophage

polarization states, an N1/N2 classification has recently emerged for
neutrophils to assign anti- and pro-tumorigenic functions,
respectively44,45. Using published datasets, we curated N1 and N2 gene
signatures which revealed that copper chelation strongly promotes
the polarization of tumor-infiltrating neutrophils towards a pro-
inflammatory N1 phenotype (Fig. 6c,d). This was unsurprising given

PanCK Smooth Muscle Actin DAPICD45 Pan-Leukocyte

a Control TEPA

MYOGENESIS
HYPOXIA

CELL_MOTILITY
ANGIOGENESIS

APOPTOSIS
ADIPOGENESIS
COMPLEMENT

CHOLESTEROL_HOMEOSTASIS
MITOTIC_SPINDLE

INTERFERON_ALPHA_RESPONSE
NEUTROPHIL_DEGRANULATION

TNFA_SIGNALING_VIA_NFKB
ALLOGRAFT_REJECTION

HEME_METABOLISM
INTERFERON_GAMMA_RESPONSE

IL2_STAT5_SIGNALING
IL6_JAK_STAT3_SIGNALING

KRAS_SIGNALING_UP
P53_PATHWAY

HEDGEHOG_SIGNALING
XENOBIOTIC_METABOLISM

PEROXISOME
INFLAMMATORY_RESPONSE

DNA_REPAIR
E2F_TARGETS
MYC_TARGETS_V1

−2.50 0.0 2.50
Normalized enrichment score

3.751.25−1.25

d

c

Znrf1

Klhl34

Mprip

Hbb−b1

Sprn

Hba−a1

Pdzd3
Pnma2

Wdr17Ghsr
Peg3

Hmga2 Agpat4

Hfm1

Syt9

Mmp12Erlin2

Hbb−b2

Morn2

Col1a1

Rps6ka6

Tspan1

Cnpy4

Shc1
Ctbp2

Avpi1

Zcchc12

2610528J11Rik

Acad10
Tpsb2

Celsr3

Slc26a11
Tanc2

Fbxl13

Epb41l1

Lrriq1

Zfr

Cd276

Prss36

Ranbp3
Trim67

Picalm

Htd2

C2cd4b

Col1a2

Mt2

Ccser1

Col3a1

Fn1

Zfp57

Mgp
Acta2

Gm33888

Vim

Man2a1

AU018091

Gm10340

Fabp4

Fdx2

Ripply2

Tagln2

Cpq

Crip1

Gm40755

Bgn
Tagln

Calb2

Cartpt

Col4a1

S100a11

Sparc

Xrn1

Gm46840

Myh9

Dlx5Serpinh1
Col15a1

Postn

Mtch2

Col4a2

Cdkn2a

Col5a2

AI413582

Actg2Anxa2
Cd74B2m

Rbp1

Fstl1

Col6a1

Col6a3 Ppic
Igfbp7

−2

0

2

4

6

0.0 2.5 5.0 7.5

−Log10(p-value)

NS
Log2FC
p-value
p-value 
and Log2FC

b

730 73

TEPAControl

100 Regions of Interest

Infiltration key: Low High

Treatment days

Condition

e

GOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITYGOBP_CELL_MOTILITY

HALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSISHALLMARK_APOPTOSIS

HALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIAHALLMARK_HYPOXIA

HALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALINGHALLMARK_IL2_STAT5_SIGNALING

HALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALINGHALLMARK_IL6_JAK_STAT3_SIGNALING





HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1HALLMARK_MYC_TARGETS_V1

HALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKBHALLMARK_TNFA_SIGNALING_VIA_NFKB

BgnBgnBgnBgnBgnBgnBgnBgnBgnBgnBgnBgnBgnBgnBgnBgnBgn

Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1Hmox1

Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1Col5a1

Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2Anxa2

Cav1Cav1Cav1Cav1Cav1Cav1Cav1Cav1Cav1Cav1Cav1Cav1Cav1Cav1Cav1Cav1Cav1

Myh9Myh9Myh9Myh9Myh9Myh9Myh9Myh9Myh9Myh9Myh9Myh9Myh9Myh9Myh9Myh9Myh9

DcnDcnDcnDcnDcnDcnDcnDcnDcnDcnDcnDcnDcnDcnDcnDcnDcn

Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2Ccn2

Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1Ccn1
Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1Cavin1

Pck1Pck1Pck1Pck1Pck1Pck1Pck1Pck1Pck1Pck1Pck1Pck1Pck1Pck1Pck1Pck1Pck1

Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1Serpine1

LoxLoxLoxLoxLoxLoxLoxLoxLoxLoxLoxLoxLoxLoxLoxLoxLox Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1Nr3c1

Akap12Akap12Akap12Akap12Akap12Akap12Akap12Akap12Akap12Akap12Akap12Akap12Akap12Akap12Akap12Akap12Akap12

PfkpPfkpPfkpPfkpPfkpPfkpPfkpPfkpPfkpPfkpPfkpPfkpPfkpPfkpPfkpPfkpPfkp

Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5Ccn5

Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3Foxo3

Ets1Ets1Ets1Ets1Ets1Ets1Ets1Ets1Ets1Ets1Ets1Ets1Ets1Ets1Ets1Ets1Ets1

Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4Dpysl4

Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4Gpc4

Btg1Btg1Btg1Btg1Btg1Btg1Btg1Btg1Btg1Btg1Btg1Btg1Btg1Btg1Btg1Btg1Btg1

Ext1Ext1Ext1Ext1Ext1Ext1Ext1Ext1Ext1Ext1Ext1Ext1Ext1Ext1Ext1Ext1Ext1

Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1Dusp1

Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2Sdc2
JunJunJunJunJunJunJunJunJunJunJunJunJunJunJunJunJun

Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1Col1a1

Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1Col3a1

Fn1Fn1Fn1Fn1Fn1Fn1Fn1Fn1Fn1Fn1Fn1Fn1Fn1Fn1Fn1Fn1Fn1

Acta2Acta2Acta2Acta2Acta2Acta2Acta2Acta2Acta2Acta2Acta2Acta2Acta2Acta2Acta2Acta2Acta2

SparcSparcSparcSparcSparcSparcSparcSparcSparcSparcSparcSparcSparcSparcSparcSparcSparc

VimVimVimVimVimVimVimVimVimVimVimVimVimVimVimVimVim

PostnPostnPostnPostnPostnPostnPostnPostnPostnPostnPostnPostnPostnPostnPostnPostnPostn

Cd74Cd74Cd74Cd74Cd74Cd74Cd74Cd74Cd74Cd74Cd74Cd74Cd74Cd74Cd74Cd74Cd74

Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1Fstl1

Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1Col18a1

PtprtPtprtPtprtPtprtPtprtPtprtPtprtPtprtPtprtPtprtPtprtPtprtPtprtPtprtPtprtPtprtPtprt

Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5Anxa5

Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1Anxa1

Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14Mmp14

Timp1Timp1Timp1Timp1Timp1Timp1Timp1Timp1Timp1Timp1Timp1Timp1Timp1Timp1Timp1Timp1Timp1

Cd248Cd248Cd248Cd248Cd248Cd248Cd248Cd248Cd248Cd248Cd248Cd248Cd248Cd248Cd248Cd248Cd248

Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3Aoc3

MyadmMyadmMyadmMyadmMyadmMyadmMyadmMyadmMyadmMyadmMyadmMyadmMyadmMyadmMyadmMyadmMyadm

MylkMylkMylkMylkMylkMylkMylkMylkMylkMylkMylkMylkMylkMylkMylkMylkMylk

Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5Cdh5

Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3Celsr3

AdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoqAdipoq

McamMcamMcamMcamMcamMcamMcamMcamMcamMcamMcamMcamMcamMcamMcamMcamMcam

Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2Gnai2

TncTncTncTncTncTncTncTncTncTncTncTncTncTncTncTncTnc

Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6Gpc6

Saa3Saa3Saa3Saa3Saa3Saa3Saa3Saa3Saa3Saa3Saa3Saa3Saa3Saa3Saa3Saa3Saa3

Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1Nr2f1

VclVclVclVclVclVclVclVclVclVclVclVclVclVclVclVclVcl

Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1Thbs1

Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4Plxna4

Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7Chrna7

RhocRhocRhocRhocRhocRhocRhocRhocRhocRhocRhocRhocRhocRhocRhocRhocRhoc

Cd200Cd200Cd200Cd200Cd200Cd200Cd200Cd200Cd200Cd200Cd200Cd200Cd200Cd200Cd200Cd200Cd200

Lama4Lama4Lama4Lama4Lama4Lama4Lama4Lama4Lama4Lama4Lama4Lama4Lama4Lama4Lama4Lama4Lama4

FlnaFlnaFlnaFlnaFlnaFlnaFlnaFlnaFlnaFlnaFlnaFlnaFlnaFlnaFlnaFlnaFlna

Egr1Egr1Egr1Egr1Egr1Egr1Egr1Egr1Egr1Egr1Egr1Egr1Egr1Egr1Egr1Egr1Egr1

Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2Ntng2

Itga5Itga5Itga5Itga5Itga5Itga5Itga5Itga5Itga5Itga5Itga5Itga5Itga5Itga5Itga5Itga5Itga5 Apc2Apc2Apc2Apc2Apc2Apc2Apc2Apc2Apc2Apc2Apc2Apc2Apc2Apc2Apc2Apc2Apc2

Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12Adamts12

Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6Ccl6

Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5Tafa5

Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2Dapk2

Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2Cdh2
CygbCygbCygbCygbCygbCygbCygbCygbCygbCygbCygbCygbCygbCygbCygbCygbCygb

EngEngEngEngEngEngEngEngEngEngEngEngEngEngEngEngEng

Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2Cnn2

F11rF11rF11rF11rF11rF11rF11rF11rF11rF11rF11rF11rF11rF11rF11rF11rF11r

Cd24aCd24aCd24aCd24aCd24aCd24aCd24aCd24aCd24aCd24aCd24aCd24aCd24aCd24aCd24aCd24aCd24a

Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1Nrp1

Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2Ripor2

Hes1Hes1Hes1Hes1Hes1Hes1Hes1Hes1Hes1Hes1Hes1Hes1Hes1Hes1Hes1Hes1Hes1

Stat3Stat3Stat3Stat3Stat3Stat3Stat3Stat3Stat3Stat3Stat3Stat3Stat3Stat3Stat3Stat3Stat3

PtprmPtprmPtprmPtprmPtprmPtprmPtprmPtprmPtprmPtprmPtprmPtprmPtprmPtprmPtprmPtprmPtprm

Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1Hspb1

Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8Ccl8

Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1Lratd1

Cd34Cd34Cd34Cd34Cd34Cd34Cd34Cd34Cd34Cd34Cd34Cd34Cd34Cd34Cd34Cd34Cd34

Slit1Slit1Slit1Slit1Slit1Slit1Slit1Slit1Slit1Slit1Slit1Slit1Slit1Slit1Slit1Slit1Slit1

NarsNarsNarsNarsNarsNarsNarsNarsNarsNarsNarsNarsNarsNarsNarsNarsNars

Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1Lamc1

Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1Lamb1
MazMazMazMazMazMazMazMazMazMazMazMazMazMazMazMazMaz

Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1Wdr1

AxlAxlAxlAxlAxlAxlAxlAxlAxlAxlAxlAxlAxlAxlAxlAxlAxl

Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3Dpysl3

P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6P2ry6

RhobRhobRhobRhobRhobRhobRhobRhobRhobRhobRhobRhobRhobRhobRhobRhobRhob

PalldPalldPalldPalldPalldPalldPalldPalldPalldPalldPalldPalldPalldPalldPalldPalldPalld

ParvaParvaParvaParvaParvaParvaParvaParvaParvaParvaParvaParvaParvaParvaParvaParvaParva

Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1Serpinf1

Myo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1cMyo1c

Arf4Arf4Arf4Arf4Arf4Arf4Arf4Arf4Arf4Arf4Arf4Arf4Arf4Arf4Arf4Arf4Arf4

Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7Egfl7

Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1Il1r1

Tmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4xTmsb4x Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11Cdh11

Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1Akirin1

Sema3cSema3cSema3cSema3cSema3cSema3cSema3cSema3cSema3cSema3cSema3cSema3cSema3cSema3cSema3cSema3cSema3c

Csf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1rCsf1r

Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5Itgb5

DccDccDccDccDccDccDccDccDccDccDccDccDccDccDccDccDcc

Itga1Itga1Itga1Itga1Itga1Itga1Itga1Itga1Itga1Itga1Itga1Itga1Itga1Itga1Itga1Itga1Itga1

Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1Sulf1

Plk2Plk2Plk2Plk2Plk2Plk2Plk2Plk2Plk2Plk2Plk2Plk2Plk2Plk2Plk2Plk2Plk2

PltpPltpPltpPltpPltpPltpPltpPltpPltpPltpPltpPltpPltpPltpPltpPltpPltp

Epb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4bEpb41l4b

PtprjPtprjPtprjPtprjPtprjPtprjPtprjPtprjPtprjPtprjPtprjPtprjPtprjPtprjPtprjPtprjPtprj

PrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcdPrkcd

Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1Tpm1

Stard13Stard13Stard13Stard13Stard13Stard13Stard13Stard13Stard13Stard13Stard13Stard13Stard13Stard13Stard13Stard13Stard13

PdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrbPdgfrb

Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1Foxc1

Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1Amotl1

Tuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1aTuba1a

Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1Pecam1

Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4Ldlrad4

TspoTspoTspoTspoTspoTspoTspoTspoTspoTspoTspoTspoTspoTspoTspoTspoTspo

Cln3Cln3Cln3Cln3Cln3Cln3Cln3Cln3Cln3Cln3Cln3Cln3Cln3Cln3Cln3Cln3Cln3

Gas6Gas6Gas6Gas6Gas6Gas6Gas6Gas6Gas6Gas6Gas6Gas6Gas6Gas6Gas6Gas6Gas6

Drd4Drd4Drd4Drd4Drd4Drd4Drd4Drd4Drd4Drd4Drd4Drd4Drd4Drd4Drd4Drd4Drd4

Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2Ptgs2

Cep85lCep85lCep85lCep85lCep85lCep85lCep85lCep85lCep85lCep85lCep85lCep85lCep85lCep85lCep85lCep85lCep85l

Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3Anxa3

Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3Ntrk3

Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3Tlx3

VsirVsirVsirVsirVsirVsirVsirVsirVsirVsirVsirVsirVsirVsirVsirVsirVsir

Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4Ephb4

Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2Phldb2

SdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbpSdcbp

Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1Cyp1b1

Thy1Thy1Thy1Thy1Thy1Thy1Thy1Thy1Thy1Thy1Thy1Thy1Thy1Thy1Thy1Thy1Thy1Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24Arhgap24

Nf1Nf1Nf1Nf1Nf1Nf1Nf1Nf1Nf1Nf1Nf1Nf1Nf1Nf1Nf1Nf1Nf1

Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2Nrp2

Septin4Septin4Septin4Septin4Septin4Septin4Septin4Septin4Septin4Septin4Septin4Septin4Septin4Septin4Septin4Septin4Septin4

Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2Rarres2

Robo1Robo1Robo1Robo1Robo1Robo1Robo1Robo1Robo1Robo1Robo1Robo1Robo1Robo1Robo1Robo1Robo1

Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2Ccl2

Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1Dlc1

Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2Sfrp2

Lama5Lama5Lama5Lama5Lama5Lama5Lama5Lama5Lama5Lama5Lama5Lama5Lama5Lama5Lama5Lama5Lama5

Nav1Nav1Nav1Nav1Nav1Nav1Nav1Nav1Nav1Nav1Nav1Nav1Nav1Nav1Nav1Nav1Nav1

Swap70Swap70Swap70Swap70Swap70Swap70Swap70Swap70Swap70Swap70Swap70Swap70Swap70Swap70Swap70Swap70Swap70

Phox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2bPhox2b

Nav3Nav3Nav3Nav3Nav3Nav3Nav3Nav3Nav3Nav3Nav3Nav3Nav3Nav3Nav3Nav3Nav3

Sox17Sox17Sox17Sox17Sox17Sox17Sox17Sox17Sox17Sox17Sox17Sox17Sox17Sox17Sox17Sox17Sox17

Actg1Actg1Actg1Actg1Actg1Actg1Actg1Actg1Actg1Actg1Actg1Actg1Actg1Actg1Actg1Actg1Actg1

PtprcPtprcPtprcPtprcPtprcPtprcPtprcPtprcPtprcPtprcPtprcPtprcPtprcPtprcPtprcPtprcPtprc

Emp1Emp1Emp1Emp1Emp1Emp1Emp1Emp1Emp1Emp1Emp1Emp1Emp1Emp1Emp1Emp1Emp1

Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3Ifitm3

GsnGsnGsnGsnGsnGsnGsnGsnGsnGsnGsnGsnGsnGsnGsnGsnGsn

RelaRelaRelaRelaRelaRelaRelaRelaRelaRelaRelaRelaRelaRelaRelaRelaRela

B2mB2mB2mB2mB2mB2mB2mB2mB2mB2mB2mB2mB2mB2mB2mB2mB2m

Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2Ifitm2

OgfrOgfrOgfrOgfrOgfrOgfrOgfrOgfrOgfrOgfrOgfrOgfrOgfrOgfrOgfrOgfrOgfr

Parp12Parp12Parp12Parp12Parp12Parp12Parp12Parp12Parp12Parp12Parp12Parp12Parp12Parp12Parp12Parp12Parp12

Sp110Sp110Sp110Sp110Sp110Sp110Sp110Sp110Sp110Sp110Sp110Sp110Sp110Sp110Sp110Sp110Sp110

WarsWarsWarsWarsWarsWarsWarsWarsWarsWarsWarsWarsWarsWarsWarsWarsWars

Ly6eLy6eLy6eLy6eLy6eLy6eLy6eLy6eLy6eLy6eLy6eLy6eLy6eLy6eLy6eLy6eLy6eUbe2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6Ube2l6

Casp8Casp8Casp8Casp8Casp8Casp8Casp8Casp8Casp8Casp8Casp8Casp8Casp8Casp8Casp8Casp8Casp8

Lgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bpLgals3bp

Cd47Cd47Cd47Cd47Cd47Cd47Cd47Cd47Cd47Cd47Cd47Cd47Cd47Cd47Cd47Cd47Cd47

Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7Ncoa7
SellSellSellSellSellSellSellSellSellSellSellSellSellSellSellSellSell

ProcrProcrProcrProcrProcrProcrProcrProcrProcrProcrProcrProcrProcrProcrProcrProcrProcr Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2Rsad2

CfdCfdCfdCfdCfdCfdCfdCfdCfdCfdCfdCfdCfdCfdCfdCfdCfd

HpHpHpHpHpHpHpHpHpHpHpHpHpHpHpHpHp

Cd93Cd93Cd93Cd93Cd93Cd93Cd93Cd93Cd93Cd93Cd93Cd93Cd93Cd93Cd93Cd93Cd93

C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3

Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Ostf1Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5Adgre5

H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2

K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1

Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1Mgst1

AprtAprtAprtAprtAprtAprtAprtAprtAprtAprtAprtAprtAprtAprtAprtAprtAprt

CtssCtssCtssCtssCtssCtssCtssCtssCtssCtssCtssCtssCtssCtssCtssCtssCtss

Serpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6aSerpinb6a

Snap25Snap25Snap25Snap25Snap25Snap25Snap25Snap25Snap25Snap25Snap25Snap25Snap25Snap25Snap25Snap25Snap25

Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3Cyb5r3

Fcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2bFcgr2b

Sirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1aSirpb1a Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12Psmd12
Arl8aArl8aArl8aArl8aArl8aArl8aArl8aArl8aArl8aArl8aArl8aArl8aArl8aArl8aArl8aArl8aArl8a

Cant1Cant1Cant1Cant1Cant1Cant1Cant1Cant1Cant1Cant1Cant1Cant1Cant1Cant1Cant1Cant1Cant1

Serpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3cSerpinb3c

Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4Ubr4

Snap23Snap23Snap23Snap23Snap23Snap23Snap23Snap23Snap23Snap23Snap23Snap23Snap23Snap23Snap23Snap23Snap23

Cd36Cd36Cd36Cd36Cd36Cd36Cd36Cd36Cd36Cd36Cd36Cd36Cd36Cd36Cd36Cd36Cd36

Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2Nbeal2
CtsdCtsdCtsdCtsdCtsdCtsdCtsdCtsdCtsdCtsdCtsdCtsdCtsdCtsdCtsdCtsdCtsd

Cd300aCd300aCd300aCd300aCd300aCd300aCd300aCd300aCd300aCd300aCd300aCd300aCd300aCd300aCd300aCd300aCd300a

Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1Impdh1

PirbPirbPirbPirbPirbPirbPirbPirbPirbPirbPirbPirbPirbPirbPirbPirbPirbAtp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1Atp6v0a1

Cd55Cd55Cd55Cd55Cd55Cd55Cd55Cd55Cd55Cd55Cd55Cd55Cd55Cd55Cd55Cd55Cd55

Commd3Commd3Commd3Commd3Commd3Commd3Commd3Commd3Commd3Commd3Commd3Commd3Commd3Commd3Commd3Commd3Commd3 Actr1bActr1bActr1bActr1bActr1bActr1bActr1bActr1bActr1bActr1bActr1bActr1bActr1bActr1bActr1bActr1bActr1b

Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1Qsox1

PycardPycardPycardPycardPycardPycardPycardPycardPycardPycardPycardPycardPycardPycardPycardPycardPycard

Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1Pgrmc1

Stk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ipStk11ip
CatCatCatCatCatCatCatCatCatCatCatCatCatCatCatCatCat

Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1Sgk1

Klf2Klf2Klf2Klf2Klf2Klf2Klf2Klf2Klf2Klf2Klf2Klf2Klf2Klf2Klf2Klf2Klf2

Il15raIl15raIl15raIl15raIl15raIl15raIl15raIl15raIl15raIl15raIl15raIl15raIl15raIl15raIl15raIl15raIl15ra

Kdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6bKdm6b

Il23aIl23aIl23aIl23aIl23aIl23aIl23aIl23aIl23aIl23aIl23aIl23aIl23aIl23aIl23aIl23aIl23a

Dram1Dram1Dram1Dram1Dram1Dram1Dram1Dram1Dram1Dram1Dram1Dram1Dram1Dram1Dram1Dram1Dram1

Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20Ccl20
Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2Tnip2

Klf9Klf9Klf9Klf9Klf9Klf9Klf9Klf9Klf9Klf9Klf9Klf9Klf9Klf9Klf9Klf9Klf9

Irs2Irs2Irs2Irs2Irs2Irs2Irs2Irs2Irs2Irs2Irs2Irs2Irs2Irs2Irs2Irs2Irs2

Sod2Sod2Sod2Sod2Sod2Sod2Sod2Sod2Sod2Sod2Sod2Sod2Sod2Sod2Sod2Sod2Sod2

B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1B4galt1

Rnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19bRnf19b
JunbJunbJunbJunbJunbJunbJunbJunbJunbJunbJunbJunbJunbJunbJunbJunbJunb

TankTankTankTankTankTankTankTankTankTankTankTankTankTankTankTankTank

SnnSnnSnnSnnSnnSnnSnnSnnSnnSnnSnnSnnSnnSnnSnnSnnSnn

HbegfHbegfHbegfHbegfHbegfHbegfHbegfHbegfHbegfHbegfHbegfHbegfHbegfHbegfHbegfHbegfHbegf

AaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAa

Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213Rnf213

Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6Rapgef6

CiitaCiitaCiitaCiitaCiitaCiitaCiitaCiitaCiitaCiitaCiitaCiitaCiitaCiitaCiitaCiitaCiita

Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1Col6a1

Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2Mapkapk2

AlcamAlcamAlcamAlcamAlcamAlcamAlcamAlcamAlcamAlcamAlcamAlcamAlcamAlcamAlcamAlcamAlcam

Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2Syngr2

Adam19Adam19Adam19Adam19Adam19Adam19Adam19Adam19Adam19Adam19Adam19Adam19Adam19Adam19Adam19Adam19Adam19

CapgCapgCapgCapgCapgCapgCapgCapgCapgCapgCapgCapgCapgCapgCapgCapgCapg

Il13Il13Il13Il13Il13Il13Il13Il13Il13Il13Il13Il13Il13Il13Il13Il13Il13
Cst7Cst7Cst7Cst7Cst7Cst7Cst7Cst7Cst7Cst7Cst7Cst7Cst7Cst7Cst7Cst7Cst7

AhnakAhnakAhnakAhnakAhnakAhnakAhnakAhnakAhnakAhnakAhnakAhnakAhnakAhnakAhnakAhnakAhnak

S100a1S100a1S100a1S100a1S100a1S100a1S100a1S100a1S100a1S100a1S100a1S100a1S100a1S100a1S100a1S100a1S100a1

Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1Ccne1

Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2Ccnd2

Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1Ecm1

Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1Ncs1

OsmrOsmrOsmrOsmrOsmrOsmrOsmrOsmrOsmrOsmrOsmrOsmrOsmrOsmrOsmrOsmrOsmr

Tnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1aTnfrsf1a

0
1
2
3
4

log2FC

Lo
g 2F

C

Article https://doi.org/10.1038/s41467-024-54689-x

Nature Communications |        (2024) 15:10462 6

www.nature.com/naturecommunications


N2 polarization is chiefly mediated by TGF-β which is significantly
reduced in both serum and the tumor microenvironment with TEPA
treatment (Fig. 2b)44. Of note, treatment enriched the expressionof the
interferon response gene Isg15, a marker associated with a mature
neutrophil phenotype that can be secreted to promote NK prolifera-
tion, DC maturation, and T cell secretion of IFN-γ46,47. This was further
confirmed throughgene set enrichment analysis with copper chelation
inducing significant upregulation of the curated N1 anti-tumor phe-
notype and IFN-γ response pathways (Fig. 6e). IFN-γ stimulation has
been demonstrated to enhance N1-associated properties, production
of reactive oxygen species, direct and antibody-dependent cellular
cytotoxicity, as well as T cell recruitment and activation48,49.

Together, this suggests that copper chelation promotes the infil-
tration and polarization of N1 neutrophils in the neuroblastoma tumor
microenvironment.

Systemic copper deficiency has been associated with reduced
numbers of circulating neutrophils and depressed effector function,
which can be rapidly reversed with copper supplementation50,51. As
neuroblastoma cells exhibit elevated copper content to drive tumor
progression (e.g., proliferation, angiogenesis, metastasis), we rea-
soned this sequestration may create a copper-depleted micro-
environment to suppress immune cell function, particularly
neutrophils. We therefore postulated that copper chelating agents
suchasTEPAcan redirect theflowof copper ions from the “rich” tumor
cells to the “poor” immune cells to slow tumor progression and rein-
vigorate anti-tumor immunity.

To test this hypothesis, we first validated single-cell findings by
transducing the humanMYCN-amplified neuroblastoma cell line SK-N-
BE(2)-C with an MT1X-tGFP construct. This allowed us to qualitatively
confirm that fluorescent signal (proportional to MT1X expression, a
surrogate marker for intracellular copper) was indeed reduced in cells
after 24 h of TEPA treatment (Fig. 6f). This suggests that–within a
closed in vitro system–tumoral copper is released extracellularly and
therefore the copper concentration of media can be assayed to infer
copper biodistribution.

To this end, we devised a staggered co-culture system allowing
us to accurately trace copper ion flow during a simulated
neuroblastoma-neutrophil interaction using the SK-N-BE(2)-C cell
line. Conditioned media was collected, and copper concentration
was assayed before and after the addition of naive circulating neu-
trophils isolated from healthy donors. We noted copper concentra-
tion was marginally decreased in media isolated from untreated
neuroblastoma cells relative to control media which indicates tumor
cells sequester available copper to support their proliferation
(Fig. 6g, gray bars). Expanding on this observation, SK-N-BE(2)-C cells
monitored over 48 h continued to sequester copper from media to
support their growth (Supp. Fig. 7a,b). In line with our hypothesis, we
observed a repletion of copper in media after TEPA treatment which
was subsequently taken up by neutrophils after incubation
(p = 0.0024) (Fig. 6g, green bars). This phenomenon did not occur in
untreated neuroblastoma cells, indicating that copper chelation
therapy modulates levels of copper in the tumor microenvironment
to facilitate copper uptake by neutrophils.

In clinical support, elevated expression of the copper export
protein ATP7A (encoded by ATP7A) was significantly associated with

a T cell-infiltrated tumor microenvironment in a wide range of
solid human pediatric malignancies (p = 8.9e−05), and was also asso-
ciated with the improved survival of patients with neuroblastoma
(p = 7.4e−03) (Supp. Fig. 7c,d). Together, these data indicate that
redistribution of copper within the tumor microenvironment is highly
advantageous and is likely expedited with the use of copper chelation
therapy.

To understand how this copper uptake influences neutrophil
activity, we performed a series of functional studies using isolated
human neutrophils. Following incubation in conditioned media, qPCR
analysis of neutrophils revealed that the expression of genes asso-
ciated with intracellular copper (MT1X), migration (S100A8), and pro-
inflammatory activity (ISG15) were upregulated only in media from
TEPA-treated neuroblastoma cells (Fig. 6h)46,52. Consistent with these
results, weobserved amarginal increase inmigratory capacity towards
SK-N-BE(2)-C cells when pre-treated with TEPA, supporting our pre-
vious in vivo observations (Fig. 6i). Additionally, we observed
increased ADCC activity against GD2+/MYCN-amplified Kelly cells
opsonized with anti-GD2 antibody when pre-treated with TEPA
(p < 0.0001) (Fig. 6j).

These findings demonstrate that copper chelation can stimulate
the recruitment of pro-inflammatory neutrophils and enhance N1
effector functions associated with an anti-tumor response.

TETA plus anti-GD2 antibody immunocombination therapy
offers a curative strategy for neuroblastoma
While the Th-MYCN model is considered the standard for the pre-
clinical study of MYCN-amplified neuroblastoma, manual palpation is
used to determine tumor burden. To enable improved monitoring of
tumor growth kinetics, weutilized a syngeneicmodel generated by the
subcutaneous injection of NXS2 cells into immunocompetent A/J
mice53. This model has been widely used to study anti-GD2-directed
treatments including combination therapies54,55. Having demonstrated
the capabilities of copper chelation therapy, we sought to evaluate the
feasibility of repurposing TETA (triethylenetetramine; an analog of
TEPA marketed as Cuprior), an FDA-approved copper chelating agent
for the treatment of Wilson’s Disease, a genetic disorder resulting in
excess copper accumulation in the body.

Using the NXS2 model, animals commenced treatment (saline
control or TETA, 400mg/kg) 1 week after inoculation, with copper
chelation observed to slow tumor growth as a single agent (Fig. 7a).
Subsequently, dissociated tumors were evaluated for neutrophil infil-
tration via flow cytometrywith TETA similarly observed to increase the
frequency of CD11b+Ly6G+ neutrophils (p =0.029) (Fig. 7b). Moreover,
treatment with TETA similarly increased neutrophil infiltration in the
AB1-HA/BALB/c syngeneic model of mesothelioma (p =0.001) but not
in the AE17-OVA/C57BL/6 model, which is known to exhibit dysfunc-
tional neutrophil trafficking (Supp. Fig. 8a–c)56. This indicates that
TETA can similarly stimulate the infiltration of neutrophils, making it a
suitable adjuvant for anti-GD2 antibody therapy.

In patients with Wilson’s disease, copper chelation therapy can
generate bursts of free copper levels which can often induce toxic side
effects57. To identify potential adverse effects in a tumor-bearing
context, peripheral blood was obtained from NXS2-inoculated
mice following week-long TETA treatment and subjected to blood

Fig. 3 | Copper chelation reinvigorates antitumor immunity via pro-
inflammatory signaling. a Representative images of a tissue microarray contain-
ing control and TEPA-treated Th-MYCN tumor cores (n = 10/treatment, biological
replicates in technical duplicate, total n = 20 cores; one independent experiment)
and resected after 0, 3 or 7 days for NanoString GeoMx Digital Spatial Profiling,
stained with fluorescently conjugated antibodies to PanCK (red), smooth muscle
actin (yellow), CD45 (green) with DAPI nuclei stain (blue). Scale bar, 300 µm. One
independent experiment. b Sankey diagram of Th-MYCN tumor cores depicting
distribution of CD45-infiltrated low/high regions of interest, plotted against

treatment group and duration. c Volcano plot of genes upregulated and down-
regulated in TEPA-treated high versus low regions of interest. False discovery rate
(FDR) was adjusted using the two-tailed Benjamini–Hochberg procedure. Thresh-
olds: p <0.1; |log2FC | > 0.5. d Gene set enrichment analysis for TEPA-treated high-
infiltrated tumor regions compared to low-infiltrated regions presented as a bar
plot. e Network representation of selected pathways in (d) displaying differentially
expressed genes as branches. Themagnitude of change is reported as log2FC using
colored nodes. Abbreviations: FC fold change, PanCK pancytokeratin.
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Fig. 4 | The neuroblastoma tumor microenvironment is sensitive to copper
chelation therapy and promotes neutrophil infiltration. a Experimental design
and tumor processing workflow for single-cell RNA sequencing. Schematic created
in BioRender. Vittorio, O. (2024). BioRender.com/j88j488. b Uniform manifold
approximation and projection (UMAP) representation of integrated samples in the
tumoral compartment (13,544 cells), colored by treatment group. c Violin plots of
gene expression levels associated with intracellular copper levels (Mt1, Mt2) and
neuroblastoma oncogene Mycn, split by treatment group. Significance was

calculated using two-tailed differential expression analysis using the MAST algo-
rithm after batch correction with p-values displayed in figure. Horizontal line
indicates data median. d Gene set enrichment analysis plot for HALLMARK_MYC_-
TARGETS_V1 using the fgsea package. e Split UMAP representation of immune cell
compartment (12,127 cells) according to treatment arm and colored by annotated
immune subsets. f Bar plot of the proportion of immune cell subsets shown in (e).
gDot plot of gene expressionmarkers used to classify the immune subsets defined
in (e).
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Fig. 5 | Neutrophils supersede tumorigenic signaling to drive reinvigoration of
antitumor immunity. a Overrepresentation analysis of pathways relatively enri-
ched in TEPA-treated immune cell clusters compared to control, presented as
nodes with associated genes as branches using single-cell RNA sequencing.bCircle

plot of the aggregated cell-cell communication networks in control and TEPA-
treated single-cell samples. Edge width is proportional to the number of ligand-
receptor interactions between cell types. c Scatter plots comparing the outgoing
and incoming interaction strengths between control and TEPA-treated samples.

Article https://doi.org/10.1038/s41467-024-54689-x

Nature Communications |        (2024) 15:10462 9

www.nature.com/naturecommunications


chemistry analysis. TETA treatment did not impact any analyte con-
centrations associated with hepatic, renal, or overall systemic dis-
orders compared to the control (Supp. Fig. 9). This is particularly
important when considering the liver as the systemic reservoir of
copper. Overall, these results validate TETA as a non-toxic and effica-
cious alternative to TEPA to favorably remodel the neuroblastoma
tumor microenvironment.

This encouraging data prompted us to investigate the effect of
TETA and anti-GD2 antibody as a combination therapy in the NXS2
model. The treatment schedulewas similar to that utilized in the TEPA/
Th-MYCN model; however, treatment was ceased after four cycles of
combination therapy to evaluate relapse rates (Fig. 7c). To validate
model sensitivity, we confirmed GD2 expression on the NXS2 cell line
by flow cytometry prior to inoculation (Supp. Fig. 8d).
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Upon commencement of the treatment schedule, mice experi-
enced slight weight loss attributed to the introduction of daily gavage
as a stressor. Once accustomed, all treatments were well-tolerated
including the immunocombination arm with no adverse events
reported (Fig. 7d). As a highly aggressive model of neuroblastoma,
control arms exhibited rapid tumor expansion with the immuno-
combination arm observed to effectively restrain tumor growth
(Fig. 7e). Control arms (Saline + vehicle; Saline + IgG2a) were highly
similar in terms of tumor growth and survival which suggests the iso-
type antibody did not elicit an immunogenic effect. It is noted that
treatment with TETA + IgG2a sufficiently reduced tumor burden in a
single animal which succumbed to a rapid relapse following cessation
of treatment on day 42, potentially due to tumor escape. In contrast to
the Th-MYCNmodel (Fig. 1b,c), anti-GD2 therapy alone did notmediate
a substantial anti-tumor effect though the addition of TETA produced
a remarkable anti-tumor effect (median survival: 29 days vs. 19 days in
Saline + anti-GD2, p =0.0091) leading to durable eradication in ~40%of
animals (Fig. 7f). Notably, these animals did not exhibit any signs of
relapse following cessation of treatment up to the experimental end-
point of 90 days. Overall, the addition of TETA to anti-GD2 therapy
significantly extended survival when compared to the respective
monotherapy arms.

To examine changes in the immune compartment (NCR1+ NK
cells, CD8+ cytotoxic T cells, and CD11b+ myeloid cells) occurring
with treatment, we performed OPAL multiplex immunohis-
tochemistry in tumors resected 14 days post-treatment (Fig. 7g).
Across all subsets examined, TETA and anti-GD2 monotherapies
were comparable and significantly promoted immune infiltration
when compared to the control (Fig. 7h). The addition of TETA to
anti-GD2 therapy predominantly enhanced myeloid infiltration
(p = 0.023), with no observed changes occurring in NK or cyto-
toxic T cell frequencies (Fig. 7h). Remarkably, the combination
group exhibited exceptional tumor control, alluding to the TETA-
mediated reinvigoration of effector functions associated with an
anti-tumor immune response.

Collectively, our results reinforce the critical role of copper as a
modulator of the neuroblastoma tumor microenvironment. We have
demonstrated the ability of copper chelating agents to successfully cir-
cumvent immune evasion phenotypes and elicit a robust anti-tumor
immune response. Moreover, we have confirmed that TETA is a highly
effective, non-toxic, and specific copper chelating agent. Study findings
provide evidence for repurposing the clinically approved copper chelat-
ing agent Cuprior as an immunomodulatory agent to potentiate anti-GD2
immunotherapy and improve responses in patients with neuroblastoma.

Discussion
Anti-GD2 immunotherapy has improved the survival of patients with
high-risk neuroblastoma with efficacy likely hampered by the immu-
nosuppressive tumor microenvironment8. Current efforts are there-
fore focused on the characterization and therapeutic targeting of the
tumor microenvironment to improve patient responses. Here, we
report that copper chelation therapy induces a marked increase in the
infiltration of pro-inflammatory neutrophils and reprograms the neu-
roblastoma tumor microenvironment to reinvigorate anti-tumor
immunity. These findings establish the rationale for using copper
chelation as an immune-priming strategy to potentiate the effects of
anti-GD2 immunotherapy.

Leveraging spatial and single-cell transcriptomics, cytokine pro-
filing, and multiplex immunohistochemistry, we demonstrate that
copper chelation therapy can induce the downregulation of Mycn
expression and its targets whilst simultaneously enhancing the infil-
tration and activation of both lymphoid andmyeloid immune lineages.
A key driver of high-risk disease,MYCN amplification has been strongly
associated with tumor immune escape and adverse prognosis relative
to low-risk disease58. Our results are consistent with a recent study
showing that pharmacological targeting ofMYCN enhances activation
of interferon pathways and IP-10/CXCL10 expression to promote T cell
recruitment and activation26. In parallel, another study reported that T
cell infiltration was accompanied by NK cell infiltration, suggesting a
coordinated recruitment, and was associated with a favorable
prognosis59. Together, our data demonstrates that copper chelation
can remodel the tumor microenvironment to restore immune
recruitment and stimulate effector functions.

Although myeloid cells have been historically associated with an
immunosuppressive phenotype in neuroblastoma, recent investiga-
tions into subset diversity have revealed a heterogeneous range of
microenvironment-dependent populations (reviewed in ref. 60).
Herein we report the in silico and in vivo identification of major
myeloid-associated cell subsets including monocytes (differentiating
into macrophages, dendritic cells) and granulocytes (differentiating
into neutrophils, basophils, and eosinophils), which exhibited
enhanced activation consistent with an anti-tumor immune response
with short-term copper chelation therapy. Of strong interest, treat-
ment was found to polarize neutrophils towards an N1 pro-
inflammatory phenotype which was subsequently validated using
functional assays in human neutrophils.

Despite their abundance in both mice and humans, neutrophils
are underrepresented in single-cell RNA-sequencing datasets owing
to relatively low mRNA content resulting in fewer transcripts61. This

Fig. 6 | Copper chelation facilitates infiltration and N1-polarization of neu-
trophils via copper mobilization to exert an anti-tumor response. a Heatmap
comparing the average expression of genes associated with copper metabolism
across treatment arms within immune cell clusters. b Heatmap of log2FC in
expression between treatment arms for genes associated with migration and
extravasation within the neutrophils cluster. Heatmap of log2FC in expression for
genes associatedwith (c) N1 anti-tumorigenic or (d) N2pro-tumorigenic neutrophil
phenotypes from control vs. TEPA-treated Th-MYCN tumors within the neutrophils
cluster. Data presented in (a–d) were obtained from single-cell RNA sequencing
with relevant cell values averaged and scaled. eGene set enrichment analysis shows
top pathways relatively enriched in TEPA-treated neutrophils. The “N1_ANTI_-
TUMOR NEUTROPHILS” signature was constructed using the N1-associated genes
listed in (b). f IncuCyte cell imaging of neuroblastoma cell line SK-N-BE(2)-C
transfected with a plasmid encoding tGFP-tagged MT1X protein following 24h of
TEPA treatment (10× objective). Representative image obtained from one inde-
pendent experiment. Scale bar, 100 µm. g Concentration of copper in conditioned
media before and after 30min incubation with naive neutrophils isolated from
healthy donors. Data are presented as mean ± SEM, n = 4/condition, biological
replicates (healthy donors), three independent experiments. Significance was cal-
culated using a two-tailed paired t-test with p value displayed in the figure. h qRT-

PCR analysis for the expression of genes in human neutrophils associated with
intracellular copper (MT1X), migration (S100A8) and pro-inflammatory activation
(ISG15) obtained after 30min incubation in conditioned media as per (e). Data are
presented as mean, n = 2 biological replicates (healthy donors), one independent
experiment. i Transwellmigration assay of neutrophils towards untreated or TEPA-
treated SK-N-BE(2)-C cells. Migrated neutrophils were counted using flow cyto-
metry andpercentage transmigrationwas calculated relative to input cells. Data are
presented in a violin plot, n = 2 biological replicates (healthy donors) in triplicate,
two independent experiments. Data minima and maxima values are as indicated,
the median (solid line), and the first and third quartiles (dotted horizontal lines).
Significance was calculated using an ordinary one-way ANOVA with Tukey’s post-
hoc test with p-value displayed in the figure. j Antibody-dependent cytotoxicity
assay against the Kelly neuroblastoma cell line using neutrophils isolated from
healthy donors in the presence of anti-GD2 antibody (1 µg/ml) with caspase 3/7
activity quantified after 8 h. Data are presented as mean ± SEM, n = 3/condition,
biological replicates (healthy donors) in triplicate, one independent experiment.
Significance was calculated using a two-tailed Mann–Whitney U test with p-value
displayed in figure. Abbreviations: FC fold change, tGFP turbo green fluorescent
protein. Source data are provided as a Source Data file.
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technical hurdle reflects a known advantage of the BD Rhapsody
system in capturing an exceptionally high number of mRNA mole-
cules per cell, leading to unprecedented insight into neutrophil
heterogeneity and function62. Although the increase in CD11b+ cells
by immunohistochemistry was explicitly defined as neutrophils as
per single-cell transcriptomics and flow cytometry, future profiling
efforts should seek to elucidate their diversity and plasticity within

the neuroblastoma tumor microenvironment as per other solid
cancers63,64.

As copper deficiency is a cause of reversible neutropenia,we posit
that neuroblastomas mirror this occurrence within the local tumor
microenvironment to negatively regulate immune function. In support
of this hypothesis, we report that copper chelation can facilitate cop-
per transfer between neuroblastoma cells and neutrophils in vitro and
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enhance effector function. This work presents a biological phenom-
enon for neutrophils and future studies should explore the applic-
ability of this immunosuppressive mechanism in other solid
malignancies that may benefit from copper chelation as a treatment
adjuvant9.

In neuroblastoma, neutrophils are recognized as a key effector of
GD2 antibody therapy,mediating the eradicationof opsonized cells via
Fc gamma receptor IIa (FcγRIIa) binding65. In vitromechanistic studies
have recently revealed that neutrophil-mediated ADCC occurs pre-
dominantly via trogocytosis with cytotoxic activity enhanced by sti-
mulation with G-CSF65,66. The role of neutrophils in neuroblastoma has
also been evidenced clinically with superior responses to anti-GD2
antibody therapy obtained following the addition of GM-CSF to the
treatment regimen, and was further enhanced in patients who pos-
sessed a polymorphic variant of FcγRIIa67,68. Although there are
recognized distinctions between mouse and human neutrophils, we
have demonstrated that copper chelation can similarly promote neu-
trophil activity in both organisms to potentiate anti-GD2 antibody
efficacy in neuroblastoma69,70.

Virtually all patients with neuroblastoma experience substantial
treatment-associated acute toxicities with survivors often reporting
late effects, prompting the search for less toxic anti-cancer agents.
Drug repurposing is becoming an increasingly attractive approach to
reduce the time, resources, and risks associated with de novo drug
research and development71. We present compelling evidence to sup-
port the clinical repurposing of TETA, a non-toxic copper chelating
agent indicated for Wilson’s disease, to potentiate anti-GD2 antibody
therapy. For patients withWilson’s disease, treatmentwith TETA is life-
long and therefore extensive clinical and safety data is available72. The
preclinical TETA dose was determined to be clinically relevant in
pediatric patients using the body surface area normalizationmethod73.
Clinical data reports that TETA is efficacious in pediatric patients,
features a lowoccurrence of documented side effects (often reversible
after dose reduction or discontinuation), and is available as an oral
formulation for ease of administration74,75.

In conclusion, we report that copper chelation is a selective and
non-toxic strategy to disrupt the immunosuppressive neuroblastoma
tumor microenvironment and extend the benefits of anti-GD2 anti-
body therapy. This work provides a strong rationale for clinical testing
of this immune-based combination therapy in patients with
neuroblastoma.

Methods
In vivo studies
For neuroblastoma models, experimental procedures were approved
by the University of New South Wales Animal Care and Ethics Com-
mittee (Approval numbers: 20/25B, 21/96B, and 18/97B), and per-
formed in accordance with the 1985 Animal Research Act (New South

Wales, Australia) and the National Health and Medical Research
Council 2013 Australian Code of Practice for Care and Use of Animals
for Scientific Purposes. All animals were housed in a specific pathogen-
free facility, with a maintained temperature of 22–24 °C on a 12 h day/
night cycle. Mice were housed in Ventirack cages (Tecniplast, Italy),
provided food and water ad libitum, and received environmental
enrichment.

For in vivo treatment: the copper chelating agents tetra-
ethylenepentamine pentahydrochloride (TEPA [C8H23N5·5HCl], Sigma,
USA; #357683) and triethylenetetramine tetrahydrochloride (TETA
[C6H18N4·4HCl], Sigma, USA; #161969) were freshly dissolved in
medical-grade saline and administered by oral gavage at 400mg/kg.
The anti-GD2 monoclonal antibody (clone 14G2a, #BE0318) and IgG2a
isotype control (clone IgG2a, #BE0085) were obtained from BioXCell
(USA) and freshly diluted in medical-grade saline and administered
intraperitoneally in a 100μg bolus.

TheTh-MYCN (Tg(Th-MYCN)41Waw, 129/SvJTerbackcross)model
of neuroblastoma was kindly provided by Prof Michelle Haber (Chil-
dren’s Cancer Institute, Australia) and approved for use by the Insti-
tutional Biosafety Committee. Th-MYCN mice were maintained onsite
and genotyped with only homozygous mice used experimentally. For
tumor characterization studies, male and female animals were recrui-
ted when a small tumor (3–4mm in diameter) was palpated and were
treated for 7 days with saline or TEPA (400mg/kg) before tumor col-
lection and sectioning for downstream applications.

For immunotherapy combination studies, male and female mice
were recruited as above and randomly assigned to the following
treatment groups: Saline + saline vehicle; Saline + IgG2a; Saline + anti-
GD2; TEPA + IgG2a; TEPA + anti-GD2. This recruitment size was
selected to obtain adequate tumor material to study the synergy
between copper chelation and immunotherapy. Regarding survival
experiments, animals (n = 5/group/sex) were weighed and palpated
regularly for progression, regression or relapse and were sacrificed
when tumor diameter reached ≥10mm as the maximal burden.

Female A/J (A/JOzarc) mice were obtained from the Ozgene Ani-
mal Resources Centre (Perth, Australia) and the NXS2 cell line was
kindly provided by Prof. Holger Lode (University of Greifswald, Ger-
many). Animals aged 6–7 weeks were inoculated subcutaneously with
1.5 × 106NXS2 cells (derived fromahybridof theC1300neuroblastoma
cell line and dorsal root ganglion cells) in a 1:1 mix of serum-free Dul-
becco’s Modified Eagle Media (DMEM; Gibco, USA; #11995065) and
Matrigel (Corning, USA; #354234). Tumors were engrafted for 7 days
(reaching 50–100mm3) before commencing treatment with saline or
TEPA (400mg/kg) for 7 days. This dose was selected based on prior
optimization studies to ensure adequate tumor material was available
to study the synergy between copper chelation and immunotherapy.

Micewere assigned to treatment groups to achieve approximately
equal average initial tumor sizes to mitigate bias. Animals were

Fig. 7 | Copper chelating agent TETA synergizes with anti-GD2 therapy to
mediate antitumor activity in the syngeneic NXS2 model of neuroblastoma.
a Tumor growth kinetics in a syngeneic model of neuroblastoma involving the
subcutaneous inoculation of A/J mice with NXS2 cells. Animals commenced treat-
ment 1 week after inoculation (black arrow) and were treated by oral gavage with
saline (control) or TETA (400mg/kg/day) for 7 days before blood and tumor col-
lection. Data are presented as mean ± SEM, n = 6 (Control) and n = 7 (TETA) biolo-
gical replicates, two independent experiments. b Flow cytometric analysis of
neutrophil frequencies in NXS2 tumors after 1 week of TETA treatment. Data are
presented as mean± SEM, n = 4 (both groups) biological replicates, one indepen-
dent experiment. Significance was calculated using a two-tailed Mann–Whitney U
test with p-value displayed in the figure. c Experimental design of the syngeneic
NXS2→A/J preclinical model and immunocombination dosing strategy. Schematic
created in BioRender. Vittorio, O. (2024). BioRender.com/c53h577. For (d–f),
arrows indicate the treatment period. d Relative weight change in tumor-bearing
mice measured from date of inoculation. e Tumor growth kinetics of individual

tumors measured from date of inoculation. f Kaplan–Meier survival curves of
tumor-bearing mice measured from date of inoculation. Statistical pairwise com-
parisons were calculated using a two-tailed Mantel–Cox log-rank test with p-values
displayed in figure. For (d–f), data are presented as mean ± SEM, n = 8 (all groups)
biological replicates, one independent experiment. g Representative images of
merged OPAL multiplex immunofluorescence spectra depicting the tumoral dis-
tribution of NCR1+ natural killer cells (red), CD8+ cytotoxic T cells (yellow), CD11b+

myeloid (white) and DAPI nuclei stain (blue) in NXS2 neuroblastoma tumor tissue
14 days post-treatment. Scale bar, 100 µm. h Immune cell quantification of (g) as
positive counts per 1000 nuclei. Data presented as mean ± SEM, n = 3 (Saline +
IgG2a); n = 4, (Saline + anti-GD2, TETA + anti-GD2), n = 5 (TETA + IgG2a) biological
replicates with three technical replicates, one independent experiment. Sig-
nificance was calculated using a two-tailed Mann–Whitney U test with p values
displayed in the figure. Abbreviations: IP intraperitoneal, p.o. oral gavage, TF
tumor-free. Source data are provided as a Source Data file.
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weighed and tumor volumes measured twice weekly using digital
callipers (calculated as 0.5 × length ×width2). For immunotherapy
combination studies, mice were assigned to the following treatment
groups: Saline + saline vehicle; Saline + IgG2a; Saline + anti-GD2; TEPA+
IgG2a; TEPA + anti-GD2. Animals were sacrificed once tumor volume
reached ≥1000mm3 as the maximal burden in survival experiments.

For mesothelioma models, experimental procedures were
approved by the Harry Perkins Institute of Medical Research Animal
Ethics Committee (Approval number: AE271) and performed in
accordancewith guidelines of the and the National Health andMedical
Research Council 2013 Australian Code of Practice for Care and Use of
Animals for Scientific Purposes. Animals were maintained under stan-
dard, specific pathogen-free housing conditions.

Female BALB/c (BALB/cOzarc) andC57BL/6 (C57BL/6JOzarc)mice
were bred and maintained at the Ozgene Animal Resources Centre
(Perth, Australia) or Harry Perkins Institute of Medical Research
(Murdoch and Nedlands, Australia). Animals aged 8–10 weeks were
inoculated subcutaneously with 5 × 105 mesothelioma cell lines, AB1-
HA (Balb/c) or AE17-OVA (C57BL/6), both generated from intraper-
itoneal exposure to crocidolite asbestos. Cell lines were grown in
Roswell Park Memorial Institute (RPMI)−1640 supplemented with
20mM HEPES, 50μM 2-mercaptoethanol, 100U/ml of penicillin,
50 µg/ml of gentamicin, 10% fetal bovine serum (FBS), and 50mg/ml
G418 sulfate (Thermo Fisher Scientific, USA; #10131035). Tumors were
grown for 1 week until tumors reached 8–10mm2 (maximal burden:
1500mm3) then treated with saline or TETA for 7 days (400mg/kg) via
oral gavage and tumor kinetics measured as described above followed
by tumor collection for flow cytometric analysis.

We confirm that all animals were euthanized by exposure to CO2

upon reaching experimental endpoints and no animals exceeded the
maximal tumor burden.

OPAL multiplex immunohistochemistry (IHC)
Tumor sections were formalin-fixed and paraffin-embedded (FFPE) by
theKatharinaGaus LightMicroscopy Facility (KGLMF) at theUniversity
of New South Wales. Tumors were sectioned at 4μm and in prepara-
tion for staining, slides were baked for 1 h at 58 °C before depar-
affinization and rehydration using a Gemini AS Automated Slide
Stainer (Epredia, USA). Chromogen-based IHC analysis was performed
using the BOND-RX automated staining system (Leica Biosystems,
USA). Spleens obtained from tumor-bearing Th-MYCNmice were used
as a control for single antibody and OPAL multiplex optimization. The
following antibodies were all obtained from Abcam, UK: rabbit
monoclonal NCR1 (clone EPR23097-35, 1:500, #ab233558, Lots
GR3347976-1, GR3400659-6, EDTA pH 8-9 antigen retrieval), rabbit
monoclonal CD8a (clone EPR20305, 1:1000, #ab209775, Lots
GR3194554-6, GR3334378-1, GR3275780-5, EDTA pH 8-9 antigen
retrieval), and rabbit monoclonal CD11b (clone EPR1344, 1:20000,
#ab133357, Lots GR3209213-12, GR3345111-10, citrate pH 6 antigen
retrieval). Immunofluorescent signal was visualized using the OPAL
7-color Automation IHC kit (Akoya Biosciences, USA; #NEL871001KT)
using TSA dyes 650, 570, and 520 respectively, and counterstained
with spectral DAPI. Optimization also included the sequence of anti-
bodies which was determined to obtain the same dynamic ranges
between each fluorophore to avoid signal “cross-talk” known as the
umbrella effect76. Labeled slides were imaged using the Vectra Polaris
system (Akoya Biosciences, USA) using auto-exposure at 20× magni-
fication. Whole slides were imaged using Phenochart software v1.1.0
(Akoya Biosciences, USA) via multispectral field scans. Acquired ima-
ges were unmixed using Inform v2.5.1 (Akoya Biosciences, USA) and
subsequently stitched together in HALO suite v3.6 (Indica Labs, USA)
to produce a whole-slide multispectral TIFF image. Nuclei segmenta-
tion was performed using HALO artificial intelligence which leverages
machine learning to train the software. Cell phenotyping analysis was
performed using the HighPlex FL v4.2.5 module using defined

thresholds for nuclear detection andminimum fluorescence intensity.
The classifierwas trainedon all slides andnecrotic areaswere excluded
prior to analysis. Tumor sections (necrotic areas excluded) were
selected at random and were subjected to analysis and cells were
classified as positive if fluorescence intensity exceeded a predefined
threshold. Cell density was determined as the number of positive cells
per 1000 defined nuclei per tumoral section.

Peripheral and tumoral cytokine profiling
Peripheral blood was obtained from control and TEPA-treated Th-
MYCN animals after 1week and allowed to clot at room temperature for
15min. Samples were centrifuged at 2000 × g for 10min at 4 °C to
obtain serum. Serum cytokine levels were measured using the Quan-
titative Mouse Cytokine Antibody Array (Abcam, USA; #ab197465) as
per manufacturer’s instructions.

Frozen tumor sections were homogenized in RIPA lysis buffer
supplemented with 1× Protease and Phosphatase Inhibitors (Roche,
USA; #04693159001) using the TissueRuptor II (Qiagen, Germany;
#9002755). To standardize cytokine concentrations, total extracted
protein was calculated using the Pierce bicinchoninic acid (BCA) Pro-
tein Assay Kit (Thermo Fisher Scientific, USA; #23225) as per the
manufacturer’s instructions. Tumor cytokine levels were measured
using the 36-Plex Mouse ProcartaPlex Panel 1A (Thermo Fisher Scien-
tific, USA; #EPX360-26092-901) as per manufacturer’s instructions. A
Luminex MAGPIX System (Luminex Corporation, USA) was calibrated
withMAGPIX Calibration and Performance Verification Kits (Millipore,
USA) and data acquired using xPONENT software (Luminex Corpora-
tion, USA). Acquired data was analyzed using Multiplex Analyst soft-
ware v5.1 (Merck, Germany) as the Median Fluorescent Intensity (MFI)
with spline curve-fitting for calculating analyte concentrations in
samples. Transforming growth factor-beta (TGF-β) levels were deter-
mined using an enzyme-linked immunosorbent assay kit (Invitrogen,
USA; #BMS608-4) according to the manufacturer’s instructions. Sam-
ples were diluted 1:10 with assay diluent before running with resulting
concentrations normalized to extracted protein.

Flow cytometry immunophenotyping
For neuroblastoma tumors, fresh sections were roughly minced and
incubated in a tumor digestionmix consisting of DMEMsupplemented
with 25μg/mLDNase I (Sigma-Aldrich, USA; #11284932001) and 20μg/
mLCollagenase IV (Worthington Biochemical, USA; #LS004186) for 1 h
on an orbital shaker at 37 °C at 130RPM. A single-cell dissociation was
achieved by passing themixture through a 70μmMACS SmartStrainer
(Miltenyi Biotec, Germany; #130-110-916). Cells were pelleted at
330 × g for 5min and resuspended in room temperature ACK Lysis
Buffer to remove contaminating erythrocytes. Cells were stained in in
fluorescence-activated cell sorting (FACS) Buffer (1× Phosphate buf-
fered saline [PBS]/1% FBS/0.5mM EDTA) for the following surface
antibodies: CD45-BV510 (clone 30-F11, 1:250, BD Biosciences, USA;
#563891, Lot 169522), CD11b-APC-ef780 (clone M1/70, 1:400, Thermo
Fisher Scientific, USA; #47-0112-82, Lot 2272759), Biotin-Ly6G (clone
1A8, 1:300, BioLegend, USA; #127604, Lot B161712) and conjugated in-
house with Streptavidin-BUV737 (clone IM7, BD Biosciences, USA;
#612775, Lot 0233661), MHC-II-BV711 (clone M5/114.15.2, 1:250, BD
Biosciences, USA; #563414, Lot 1146367), CD64-AF647 (clone X54-5/
7.1, 1:100, BD Biosciences, USA; # 558539, Lot 0030911), CD11c-BV421
(clone HL3, 1:300, BD Biosciences, USA; #562782, Lot 3319725), and
Ly6C-PE-Cy7 (clone AL-21, 1:300, BD Biosciences, USA; #560593, Lot
0058963). Zombie UV dye (1:500, BioLegend, USA; #423108) was used
as a cell viability marker. Sample acquisition was performed using BD
FACSAria III (BD Biosciences, USA) and analyzed using FlowJo v10
(TreeStar, USA). A representative gating strategy is presented in Sup-
plementary Fig. 10a.

For mesothelioma tumors, fresh sections were roughly minced
and incubated in a tumor digestion mix consisting of PBS/2% FBS
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supplemented with 100μg/mL DNase I (Worthington Biochemical,
USA; #LS006331) and 1.5mg/mL Collagenase IV (Sigma-Aldrich, USA;
#C4-22-1G) for 1 h at 37 °C at 180RPM. Cells were strained and pelleted
as above before resuspension in FACS buffer and stained for the fol-
lowing surface antibodies: CD45-Spark Violet (clone 30-F11, 1:250,
Biolegend; #103179, Lot 7005686), CD3-FITC (clone 17A2, 1:500, Cytek
Biosciences; #35-0032-U100, Lot C0032100223353), CD11b-Spark YG
(clone M1/70, 1:400, Biolegend; #101281, Lot 8368394) and Ly6G-
PerCP (clone 1A8, 1:1000, Biolegend, #127653; Lot 38873). ViaDye Red
(1:1000, Cytek Biosciences; #R7-60008, Lot F-100322-02) was used as
a viability marker. Samples were analyzed on a Cytek 5L Aurora (Cytek
Biosciences, USA) with 200,000 events collected per sample. Analyses
were completedonFlowJo v10 (TreeStar, USA). A representative gating
strategy is presented in Supplementary Fig. 10b.

NXS2 cells were stained in FACS buffer as above and stained for
surface GD2-BV650 (clone 14.G2a, 1:150, BD Biosciences; #563705, Lot
0219086)with 7-AADused as a cell viabilitymarker. Sample acquisition
was performed using BD FACSAria III (BD Biosciences, USA) and ana-
lyzed using FlowJo v10 (TreeStar, USA). A representative gating strat-
egy is presented in Supplementary Fig. 8d.

Tissue microarray construction and digital spatial profiling
(DSP) hybridization
A tissue microarray (TMA) was prepared using 20 Th-MYCN tumor
samples (10 control, 10 TEPA-treated) in duplicate, cored at 1mm.
Coring sites were chosen at random with areas exhibiting necrosis
excluded prior by an experienced histopathologist using a
hematoxylin-eosin stain. The formalin-fixed paraffin-embedded TMA
block was sectioned at 4 µmand transferred to a Bond Plus slide (Leica
Biosystems, USA; #S21.2113.A) and were processed by the NanoString
GeoMx DSP Technology Access Program. In brief, slides were hybri-
dized with the GeoMx Mouse Whole Transcriptome Atlas (~18,000
targets) followed by immunofluorescent staining with pan-cytokeratin
(PanCK; clone AE1/AE3, Thermo Fisher Scientific, USA; #53-9003-82)
for identification of tumor cells, smoothmuscle actin (SMA, clone 1A4,
Abcam, UK; #ab184675) for extracellular matrix, CD45 (clone D3F8Q,
Cell SignalingTechnology, USA; #35154) for all hematopoietic cells and
DNA GeoMx Nuclear Stain (NanoString, USA; #121303303) for cell
nuclei. Post-staining, slides were loaded onto the NanoString GeoMx
instrument and scanned. For each tumor core, geometric regions of
interest (ROIs) were selected (n = 120) and were binarily defined as
having high or low immune infiltration, determined by the respective
presence or absence of CD45 staining (Supp. Fig. 12).

Digital spatial profiling data processing
Segments and probes quality control was performed using the Bio-
conductor package GeomxTools. Of note, twenty ROIs were found to
exhibit areas of necrosis and were subsequently excluded. The Seurat
package was used to perform the following downstream analyses.
Principal Component Analysis (PCA) was used to reduce the dimen-
sionality of the dataset, and 50 PCs were used to retain >85% of
variability. Unsupervised clustering did not reveal any pattern of var-
iation independent from treatment and infiltration. Differential gene
expression analysis used Seurat’s FindMarkers function and assumed
negative binomial distribution of the data, with three conditions
evaluated within groups of ROIs: treatment versus control; low-
infiltration vs. high-infiltration (treated ROIs); treatment vs. control
(infiltrated ROIs). Gene set enrichment analysis (GSEA) was performed
on the log2-transformed and scaled gene expression matrix of highly-
infiltrated vs. poorly-infiltrated TEPA-treated ROIs. The mouse hall-
mark gene sets from the Molecular Signatures Database (MsigDB) was
used, along with selected pathways of interest obtained from Reac-
tome and Gene Ontology (GO) databases (GO:0048870, R-MMU-
6798695). Enrichment scores were calculated to evaluate the enrich-
ment of the gene sets within the gene expression profiles of each cell

type. Gene expression profiles were ranked based on themagnitude of
change of genes significantly differentially expressed between control
and treatment. To visualize the results, bar plots were generated per
cell type, displaying the top significantly enriched pathways, each
associated with a specific negative enrichment score value. To further
explore the enriched pathways, network plots were created to high-
light the top ten genes associated with each gene set. Non-relevant or
less informative pathways were excluded from visualization to
emphasize the most relevant findings.

Statistical tests were implemented according to established
methods. Multiple testing corrections using the Benjamini–Hochberg
procedure (two-tailed) were applied to adjust p-values for multiple
comparisons. The significance thresholds for determining differen-
tially expressed genes and enriched pathways were determined based
on adjusted p-values and correspond to p-adj < 0.1.

Single-cell RNA sequencing (scRNA-seq)
Th-MYCN tumor sections were dissociated into single-cell suspensions
as previously described above except for the use of commercial Stain
Buffer (BD Biosciences, USA; #554656) in lieu of in-house FACS buffer
for ACK neutralization and flow cytometric staining. To reduce non-
specific antibody staining of IgG receptors, 1 × 106 cells were aliquoted
and pre-incubated with Mouse BD Fc CD16/CD32 Block (BD Pharmin-
gen, USA; #553142, Lot 8130843). Cells were incubatedwith CD3ε-FITC
(clone 145-2C11, 1:100, Thermo Fisher Scientific, USA; #11-0031-82, Lot
231864), NK1.1-PE (clone PK136, 1:200, Thermo Fisher Scientific, USA;
#12-5941-82, Lot 2142869) and CD11b-BV421 (clone M1/70, 1:200, Bio-
Legend, USA; #101251, Lot B322058). Tumor cells were selected for
using previously optimized gating strategy using the absence of
described markers. Approximately 50,000 single cells of each subset
(CD3-NK1.1-CD11b- tumor cells, CD3+/NK1.1+ lymphocytes and NK cells,
and CD11b+ myeloid cells) were sorted into a single tube containing
fetal bovine serum (Gibco, USA; #10100-147) using the BD FACSAria III
(BD Biosciences, USA). A representative gating strategy is presented in
Supplementary Fig. 11a.

The BD Rhapsody system (BD Biosciences, USA) was used to
capture the transcriptomic data of approximately 25,000 total cells
applied per cartridge (1× Control; 1× TEPA-treated). Whole tran-
scriptome libraries were constructed following the BD Rhapsody
single-cell whole transcriptome analysis (WTA) workflow according to
themanufacturer’s instructions. Libraries were quantified using a High
SensitivityDNAchip (Agilent, USA; #5067-4626) on aBioanalyzer 2200
and the Qubit High Sensitivity double-stranded DNA Assay Kit
(Thermo Fisher Scientific, USA; #Q32851). The resulting DNA libraries
were sequencedonan IlluminaNovaSeq6000S42 × 150bpkit to yield
an average of 80,000 reads per cell.

Raw sequencing data was converted into gene expression profiles
for individual cells using the BD Rhapsody WTA pipeline provided on
the Seven Bridges Platform (Seven Bridges Genomics, USA). The
pipeline involves the removal of low-quality reads, read alignment,
gene expressionquantification, anddata normalization. To reducebias
during dimensionality reduction, downstream analyses were con-
ducted separately for tumor and immune cell compartments. To iso-
late the tumor compartment, cells expressing Mycn>0 and Ptprc = 0
were retained, excluding cells that express at least one lymphocyte-
associated biomarker in the dataset (Cd3d, Cd3e, Cd3g, Cd8a, Cd8b1).
This yielded a total of 13,560 cells across control and treated groups in
the tumor compartment. To isolate the immune compartment, cells
expressing Ptprc >0 and Mycn =0 were retained, followed by the
additionofMycn >0 lymphocytes previously excluded from the tumor
compartment. This yielded a total of 22,182 cells across control and
treated groups in the immune compartment.

In the immune cell compartment, 12,127 cells passed filtering
conditions with the following thresholds: 200 <nFeature_RNA > 5500
(number of transcripts); nCount_RNA< 3000 (number of counts);
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percent.mt <25 (percentage of mitochondrial counts); and percen-
t.ribo <20 (percentage of ribosomal counts). In the tumor cell com-
partment, 13,544 cells successfully passed the following filtering
conditions: nFeature_RNA> 200; percent.mt <25, and percent.ribo <15.
Library-specific thresholds weremanually assessed after exploring the
empirical distribution of these variables in the 2D space. The CCA
Integration method implemented in Seurat was used to perform
integration-based anchoring to correct for batch effect. Raw counts
were normalized through natural-log transformation.

Separate Uniform manifold approximation and projection
(UMAP) plots were generated for the tumor and immune cell com-
partments. Principal Component (PC) Analysis was used to reduce the
dimensionality of the integrated dataset. For the immune cell com-
partment, 60 PCswere used to retain >70% of variability. Cells are then
clustered and sub-clustered via the Louvain algorithm, with a resolu-
tion ranging between 0.2 and 0.3. For the tumor cell compartment, 80
PCs were used to retain >86% of variability. Cells were then clustered
via the Louvain algorithm, with a resolution of 0.3.

Clustering annotation for the immune cell subsets was initially
performed using the scType platform and subsequently curated
manually based on the different gene markers identified by the MAST
algorithm after batch correction77. It was not possible to accurately
assign a cell type to 2/15 identified immune clusters due to theminimal
number of cells present (n < 50) and were therefore excluded from
analysis. Final cell annotations were performed using relevantmarkers
well-established in the literature78.

Pathway enrichment analysis was performed to gain insights into
the biological processes and pathways associated with each indepen-
dent cell cluster. The analysis consisted of two main steps: Gene Set
Enrichment Analysis (GSEA) using the fgsea function and Over-
Representation Analysis (ORA) using the clusterProfiler package. The
mouse hallmark gene sets from the Molecular Signatures Database
(MsigDB)were used, alongwith selected pathways of interest obtained
from Reactome, Gene Ontology (GO), and WikiPathways (WP) data-
bases (GO:0048870, R-MMU-6798695; WP3941, WP4466, WP412).
Additionally, custom-made signatures were included due to their
unavailability in the public databases: copper-related genes79, N1 anti-
tumor phenotype and N2 pro-tumor phenotype80–83.

To visualize GSEA results, the same approach for the GeoMX DSP
data was employed as above. For the ORA analysis, the GO database
was used to identify over-represented gene sets within each cell type.
Significantly enriched GO terms associated with biological processes
and molecular functions were identified using a two-tailed Fisher’s
exact test. To visualize the results of the ORA analysis, a selection of
enriched pathways was made for each cell type. A network plot was
generated, with each node representing a pathway and color-coded
according to the corresponding cell type. Additionally, enriched genes
within each pathway were identified and displayed within the network
plot, allowing for a comprehensive view of the genes associated with
each enriched pathway, per cell type.

Multiple testing correction using the Benjamini–
Hochberg procedure was applied to adjust values from multiple
comparisons, as per the GeoMX DSP data. Inference and analysis of
cell-cell communication networks were performed with CellChat (v2),
using the CellChatDB (v2) as the reference library which contains
~3300 validated ligand-receptor interactions. The number of inferred
signaling networks was narrowed down to 16 using a truncated mean
of 25% i.e., for a given certain cell group, the average gene expression
of a certain ligand-receptor pair is set to zero if the percentage of
expressed cells in that cell group is ≤25%.

MindRay Hematological analysis
To quantitate the circulating number and frequencies of immune
subsets, peripheral bloodwas obtained from control and TEPA-treated
Th-MYCN animals after 1 week of treatment. Samples were collected in

K2-EDTA tubes (Greiner, Germany; #450532) and analyzed immedi-
ately using the Mindray BC-5150 Auto Hematology Analyzer (Mindray,
China) according to the manufacturer’s instructions.

Generation of the SK-N-BE(2)-C pCMV6-Ac-GFP cell line
The neuroblastoma cell line SK-N-BE(2)-C was obtained from the
American Type Culture Collection with working stocks centrally
managed by the Children’s Cancer Institute Cell Bank. Bothmaster and
working stocks were validated using short tandem repeat profiling and
routinely verified as Mycoplasma negative. Cells were cultured in 10%
FBS/DMEM (see above), incubated under standard conditions (37 °C,
5% CO2, 95% humidity) and passaged routinely upon reaching a con-
fluencyof approximately 80%. The neuroblastoma cell line SK-N-BE(2)-
C was stably transfected with plasmid pCMV6-Ac-GFP containing the
transcript encoding the human MT1X protein (NCBI Reference
Sequence: NM_005952.4) with a c-terminal TurboGFP tag (tGFP) (Ori-
gene, USA; #RG207116). Cultures were kept under positive selection
using Geneticin Selective Antibiotic (G418 [Thermo Fisher Scientific,
USA; #10131035]) at 1mg/mL. Cells were plated and treated with 6mM
TEPA for 24 h and imaged using the IncuCyte Live-Cell Analysis system
(Essen BioScience, USA). Merged images were taken in phase contrast
and green fluorescence channels (auto-exposure) using a 10×
objective.

Staggered co-culture copper transfer assay
Media alone or containing 0.2 × 106 SK-N-BE(2)-C cells were seeded in
2% FBS/DMEM before overnight treatment with 1mM TEPA. The
resulting conditioned media was collected immediately after neu-
trophils were ready for incubation. A portion of the conditionedmedia
was collected as pre-incubation control, designated as: - neutrophil.

Peripheral blood from consenting male healthy donors (Uni-
versity of New South Wales Human Research Ethics Project Approval
Numbers: iRECS0865, HC180299) was collected by venipuncture into
K2‐EDTA tubes (BD Biosciences, USA; #366643). Erythrocytes were
sedimented using a 50% volume of Dextran solution (6% Dextran
[Merck, USA; #09184-50G-F]; 0.9% NaCl in ddH2O) for 30min. A Per-
coll gradient was prepared using 90% Percoll solution (Percoll [Merck,
USA; #P4937-100ML] in 10× PBS (No Ca2+/Mg2+) to form bottom (~55%
Percoll solution), middle (~68%) and top (~81%) layers in 1 × PBS (No
Ca2+/Mg2+).

Thebottom layerwas added to a freshFalcon tube followedby the
middle layer so as not to disturb the interface. The top layer of sepa-
rated blood containing lymphocytes was collected and centrifuged at
350× g for 20min (speed 9 for both acceleration and brake) at 20 °C.
Pelleted lymphocytes were gently resuspended in the top Percoll layer
which was then layered on top of the previously prepared gradient.
The resulting preparations were centrifuged at 700 × g for 20min
(speed 0 for both acceleration and brake) at 20 °C. The resulting Per-
coll gradient yielded a top lymphocyte layer and a bottom neutrophil
layer. The neutrophil layer was obtained and resuspended in 2% FBS/
DMEM and centrifuged at 250 × g for 6min (speed 5 acceleration,
speed 9 brake) at 20 °C. The supernatant was aspirated, and neu-
trophils were resuspended in 2% FBS/DMEM for counting.

0.25 × 106 neutrophils were aliquoted and spun in a microfuge at
250× g for 6min at 20 °C. Supernatant was aspirated and pellets were
gently resuspended in the respective conditioned media for 30min at
room temperature before centrifuging again at 1000× g at 20 °C for
5min. Cell-free conditioned media (designated as: + neutrophil) was
transferred to fresh Eppendorf tubes for copper concentration
analysis.

The concentration of copper in media samples was quantitatively
determined using the QuantiChrom Copper Assay Kit (Universal Bio-
logicals, UK; #DICU-250) according to themanufacturer’s instructions.
Absorbancewasdetermined using a Benchmark Plus Plate Readerwith
Microplate Manager v5.2.1 (Bio-Rad, USA) at a wavelength of 356nm.

Article https://doi.org/10.1038/s41467-024-54689-x

Nature Communications |        (2024) 15:10462 16

www.nature.com/naturecommunications


Neutrophil gene analysis
5 × 106 human neutrophils were resuspended in conditioned media as
above and incubated for 1 h at room temperature, centrifuged at
1000× g at 20 °C and washed twice with PBS. Neutrophil RNA was
extracted in TRI Reagent (Invitrogen, USA; #AM9738) according to
manufacturer’s instructions. A total of 210μg of RNA was converted to
cDNA, synthesized using mixed oligo(dT) (Promega, USA; #C1101) and
random hexamer primers (Promega, USA; #C1181) with using MMLV
RTase RNase H Minus (Promega, USA; #M5301) according to manu-
facturer’s instructions. Quantitative PCR analysis was performed using
SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, USA; #1725272)
and the QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific,
USA; #A34322). Primers used are as follows: ISG15 (F: AAGAGGCAGCGA
ACTCATCT and R: AGCTTCAGCTCTGACACCG), MT1X (F: GCTTCTCCT
TGCCTCGAAA and R: GCAGCAGCTCTTCTTGCAG), S100A8 (F: AAGG
GGAATTTCCATGCCGT and R: ACGTCTGCACCCTTTTTCCT). Quantifi-
cations were normalized using internal controls: ACTB (F: AGAAAAT
CTGGCACCACACC and R: AGAGGCGTACAGGGATAGCA) for ISG15 and
S100A8, and GUSB (F: TGGTGCGTAGGGACAAGAAC and R: CCAAGG
ATTTGGTGTGAGCG) for MT1X84.

Neutrophil migration assay
Media alone or containing 4 × 104 SK-N-BE(2)-C cells were seeded in 2%
FBS/DMEMbefore overnight treatment with 1mM TEPA in the bottom
chamber of 24-well Transwell with 5 µm pore polycarbonate mem-
brane (Corning, USA; #3421). Resuspension media was produced
similarly except for the addition of TEPA to establish a gradient. Neu-
trophils were isolated from the peripheral blood of healthy donors as
described above with 4 × 105 cells per chamber suspended in respec-
tive resuspension media and incubated at 37 °C for 4 h. After incuba-
tion, all cells were collected from the bottom chamber and stained
with CD11b-BV41 (clone M1/70, 1:100, BioLegend; #101251, Lot
B322058) and SPHERO AccuCount Particles (Spherotech, USA;
#QACBP-70-10, Lot AR01) used to determine the absolute number of
migrated cells using flowcytometry. Transmigrationwas calculated as:
(# cells migrated/400,000) × 100%. A representative gating strategy is
presented in Supplementary Fig. 11b.

Neutrophil ADCC
5 × 103 Kelly cells were seeded in a 96-well plate (Corning, USA; #3599)
in 2% FBS/DMEM before overnight treatment with 1mM TEPA. To
induce ADCC, the anti-GD2 monoclonal antibody (clone 14G2a,
[BioXCell, USA; #BE0318]) and IgG isotype control (clone IgG2a
[BioXCell, USA; #BE0085]) were added towells (1μg/ml) 2 h before the
addition of neutrophils in an effector:target ratio of 20:1 for 8 h.
Neutrophils were isolated from the peripheral blood of healthy donors
as detailed above. Incucyte caspase-3/7 green dye (1:4000) (Sartorius,
USA; #4440) was added and wells imaged using the IncuCyte Live-Cell
Analysis system (Essen BioScience, USA). ImageJ was used to quantify
caspase-3/7 activity, with values normalized against the IgG control. No
caspase activity was detected in matched conditions containing neu-
trophils or neuroblastoma cells only, indicating specific neutrophil-
mediated ADCC against neuroblastoma cells.

Neuroblastoma growth kinetics
3 × 103 SK-N-BE(2)-C cells were seeded in a 24-well plate (Corning, USA;
#3524) in 10% FBS/DMEM and counted daily over 48 h with matching
media sampled for copper concentration using the QuantiChrom
Copper Assay Kit (Universal Biologicals, UK; #DICU-250) according to
the manufacturer’s instructions.

Clinical expression of ATP7A
Relative expression levels of ATP7A in solid human pediatric cancers
were plotted according to Immune Paediatric Signature Score (IPASS)
status (cold vs. T cell-infiltrated) as previously published85.

R2 Kaplan–Meier analysis
A survival analysis of neuroblastoma patients was performed using the
publicly available R2: Genomics Analysis and Visualization Platform
(http://r2.amc.nl), screened byATP7A gene expression. Overall survival
data were obtained from the Tumor Neuroblastoma Bell (n = 95
patients) dataset, generated by way of bulk RNA sequencing.

VetScan blood chemistry analysis
Peripheral blood was obtained from animals and collected in lithium
heparin tubes (Greiner, Germany; #450536) and immediately analyzed
using the VetScan VS2 Chemistry Analyzer (Zoetis, USA) using the
Comprehensive Diagnostic Profile Rotor (Zoetis, USA; #500-0038)
according to the manufacturer’s instructions.

Statistical analysis
In vivo and in vitro data visualization and statistical analyses were
performed using GraphPad Prism v10 (Dotmatics, UK) with data pre-
sented as the means ± standard error of the mean (SEM). Differences
between the two groups were determined with Mann–Whitney U tests
(unpaired or paired where specified), paired t-tests or unpaired t-tests
withWelch’s correction where specified. Kaplan–Meier survival curves
were analyzed with two-tailed Mantel–Cox log-rank tests. An ordinary
one-way ANOVA with Tukey’s post-hoc test was used identify differ-
ences between three treatment groups. A two-wayANOVAwith Sidak’s
multiple comparisons test was used to identify differences between
two models with two treatments. A p value < 0.05 was considered
statistically significant for all experiments and is noted within figures
and the main text where relevant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed single-cell RNA sequencing data used in this study
are available in the NCBI Gene Expression Omnibus (GEO) database
repository with the dataset identifier GSE281843. Raw and processed
ng GeoMx Digital Spatial Profiling data used in this study are available
in the NCBI Gene Expression Omnibus (GEO) database repository with
the dataset identifier GSE281844. The remaining data are available
within the Article, Supplementary Information or from the corre-
sponding author upon request. Source Data are provided with
this paper.

Code availability
The R scripts generated during this study are available at the following
GitHub repository: https://github.com/antosalerno/TEPA_code_v2.0.
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