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A B S T R A C T

Precise prediction of wave energy is indispensable and holds immense promise as ocean waves have a power
capacity of 30–40 kW/m along the coast. Utilising this energy source does not generate harmful emissions,
making it a superior substitute for fossil fuel-based energy. The computational expense associated with
simulating and computing intricate hydrodynamic interactions in wave farms restricts optimisation methods to
a few thousand evaluations and makes a challenging situation for training in deep neural prediction models.
To address this issue, we propose a new solution: a Meta-learner gradient boosting method that employs four
multi-layer convolutional dense neural network surrogate models combined with an optimised extreme gradient
boosting. In order to train and validate the predictive model, we used four wave farm datasets, including the
absorbed power outputs and 2D coordinates of wave energy converters (WECs) located along the southern
coast of Australia, Adelaide, Sydney, Perth and Tasmania. Furthermore, the capability of the transfer learning
strategy is evaluated. The WECs used in this study are of the fully submerged three-tether converter type,
similar to the CETO prototype. The effectiveness of the proposed approach is assessed by comparing it with
15 well-established and effective machine learning (ML) methods. The experimental findings indicate that the
proposed model is competitive with other ML and deep learning approaches, exhibiting considerable accuracy
of 88.8%, 90.0%, 90.3%, and 84.4% in Adelaide, Perth, Sydney and Tasmania and improved robustness in
predicting wave farm power output.
1. Introduction

Ocean wave energy is considered one of the most efficient re-
newable energy sources. It has a high potential for large-scale clean
energy production, sometimes by orders of magnitude larger than
other sources of renewable energy like solar and wind [1]. The swift
progress of wave power technology hinges on the precise prediction
of power generation to ensure an unwavering and dependable power
supply to the grid. This entails forecasting variables such as dynamic
environmental conditions, wave parameters [2], power take-off [3],
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and the positioning of WECs [4] in wave farms. For example, accu-
rate predictions of ocean wave characteristics can estimate the power
produced by WECs while enhancing these converters’ performance [2].

Recently commissioned generators for WECs have shown consid-
erable promise, with a potential power output of up to 1 MW per
converter [5]. However, to be commercially viable, wave farms must
incorporate multiple converters. Determining the optimal placement of
WECs in a wave farm is a complex challenge, as there is no straight-
forward pattern for their arrangement in real wave scenarios. On the
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other hand, when the number of converters increases, optimising the
placement of buoys becomes even more difficult due to the complex
hydrodynamic interactions between the WECs. These interactions are
dependent on the position of the WECs, and the prevailing wave regime
can either enhance or diminish the average absorbed power output.
The process of modelling these nonlinear interactions for a moder-
ately or large-sized wave farm layout can take anywhere from several
minutes to an hour. Additionally, optimising farm layouts presents a
multi-modal problem that typically requires a large number of model
evaluations to explore the objective space properly. There is potential
to expedite this search process by using a reliable and precise prediction
model. However, the primary challenge is to train such a model quickly
enough to enable a reduction in overall optimisation runtime.

The prediction of wave power generated from WECs has gained
attention due to technological advancements. Two approaches, physical
and data-driven models [6], have been used for wave power fore-
casting. Physical-based methods employ numerical models to predict
wave parameters using geographical and meteorological data. These
numerical wave models (NWMs) are crucial for offshore engineering,
providing accurate forecasts and hindcasts. While effective for large-
scale areas, NWMs are computationally expensive and may not be
suitable for real-time forecasting due to high computational costs [7].
Machine learning (ML) methods have the capability to make accurate
predictions about wave power in the short and long term, which can
range from minutes to a day in advance. These predictions are made by
utilising a combination of previous power generation, wave data and
weather variables. In the field of ML models, linear approaches such as
auto-regression (AR) and autoregressive moving averages (ARMA) are
widely utilised [8] and have consistently shown improvements in terms
of reliability and efficiency [9]. However, linear models cannot accu-
rately capture complex and nonlinear relationships in wave power data,
resulting in lower forecasting accuracy. In order to tackle the challenges
of regression and classification tasks, various data-driven modelling
(DDM) approaches have been developed. In the last decade, deep-
learning (DL) networks derived from artificial intelligence (AI) have
gained immense popularity. This can be attributed to the increased
capability of computing power and the availability of vast amounts of
data. These DL networks have proven their prowess in a multitude of
domains, especially renewable energy forecasting. Their superiority lies
in their advanced adaptabilities, computational capacities and recogni-
tion abilities that have been demonstrated in recent studies, especially
in renewable energy forecasting [10].

One of the most significant applications of DL models in wave en-
ergy domains is to predict the optimal power take-off (PTO) parameters
in maximising the total absorbed power [11]. However, converting
wave energy to electricity requires significant effort in developing
efficient PTO control algorithms. Traditional model-based control al-
gorithms use reduced-order models that neglect other subsystem dy-
namics and can lead to misleading results in practice. Deriving a
model-based control for a highly nonlinear/complex system like a
wave-to-wire model is challenging. One of the initial studies in applying
the deep learning model in [12] Recently, advanced machine and deep
learning models have been considered to address various challenges
in predicting wave energy converters’ characteristics. For instance,
developing an efficient PTO control algorithm is complicated due to
a highly nonlinear and complex relationship between PTO parameters,
wave features and power output. To address this issue, Zou et at [13]
proposed a Deep Reinforcement Learning (DRL) control that optimises
the performance of Wave Energy Converters (WECs) from wave to
wire. The proposed DRL control outperforms conventional model-based
controls in numerical simulations, achieving up to 152% advancement
in energy production and 84% in power quality.

Time series vision is one of the most popular insights into wave
energy forecasting. Therefore, a wide range of sequential machine
2

learning methods has been modelled to predict the absorbed power of
WECs. An integrated long short-term memory (LSTM) with the prin-
cipal component analysis (PCA) proposed [14] to predict the electrical
power generation from a WEC, and the findings indicated a remarkable
performance compared with the LSTM alone. In another recent study
on eastern Australia coastal zones [2], to forecast peak wave energy
periods, the application of an extreme learning machine (ELM) was
suggested and was demonstrated that ELM is able to beat recurrent
neural network (RNN), convolutional neural network (CNN) and Con-
ditional Maximisation with Multiple Linear Regression (MLR-ECM).
However, the impact of hyper-parameters tuning was ignored and
not discussed. Considering decomposition techniques combined with a
CNN featuring bi-directional long short-term memory (Bi-LSTM) [15]
presented a competitive improvement (at 13%) in forecasting wave
power. In order to predict significant wave height at the North Sea [16],
a nested adaptive neuro-fuzzy inference system (ANFIS) integrated
with a particle swarm optimisation (PSO) algorithm was proposed and
compared with other classical ML models. The ANFIS delivered the
most accurate prediction of wave heights. However, the performance
of a time-series deep learning model was not compared with the ANFIS
predictor. In another successful example of DL models, a deep learning-
based model [17] was proposed for modelling the power of hinged-raft
WEC and compared with various ML models, including the LM, MLP,
CNN, LSTM and the GRU; the validation study showed that the deep
model could capture the WEC dynamics more accurately than others.

With regard to the applications of decomposition techniques used
for improving the performance of wave power predictor, Ni et al. [18]
introduced a hybrid deep learning model which effectively combines
the empirical wavelet transform (EWT) technique with a robust CNN
for wave power prediction. The employment of EWT allows for the
decomposition of wave power observations into sub-bands, each pos-
sessing distinct frequencies, enabling a detailed analysis of the under-
lying wave characteristics. On the other hand, the CNN architecture
excels at extracting spatial features from the multi-dimensional grid
data, thereby capturing the intricate relationships and patterns within
the wave power dataset. By merging these two powerful techniques, the
hybrid EWT-CNN model offers a comprehensive and holistic approach
to predicting wave power output accurately. The results obtained from
this comparative analysis reveal the superiority of the hybrid model in
accurately predicting short-term wave power output, leveraging both
time and space domain information. The incorporation of the EWT
technique and CNN architecture enables the hybrid model to effectively
capture the complex dynamics and temporal variations present in
the wave power dataset, resulting in enhanced predictive capabilities.
Despite the benefits of integrating decomposition techniques into the
forecasting model, there is a noticeable augmentation in the overall
complexity of the hybrid model [19]. Consequently, this augmentation
poses a formidable challenge regarding training and optimising the
combined model, especially for larger datasets and extended training
durations. Furthermore, the amplified complexity of the model may
also give rise to the problem of overfitting or hinder the generalisation
of the model to novel data.

This article suggests a new solution to overcome the aforementioned
obstacles by introducing a Meta ensemble extreme gradient boosting
model. A meta-ensemble model is a sophisticated hybrid machine-
learning technique that aims to optimise the combination of predictions
generated by multiple base models. This model predicts the overall
absorbed power of WECs in comprehensive layouts of the four real
wave scenarios located along the southern coast of Australia: Adelaide,
Perth, Sydney and Tasmania. The primary contributions of this research
are as follows:

• Develop a technical comparative framework for predicting the
wave farms’ power output using 15 well-known machine-learning

methods.
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Fig. 1. Artistic impression of a wave farm.

• Propose a new wave farm power output predictor by combining
an optimal number of base learners based on a comparative per-
formance between DNN and CDNN with a Meta-learner (best per-
formed of Extreme Gradient Boosting) to reinforce the prediction
accuracy.

• Optimise the architecture and hyper-parameters of the proposed
Meta ensemble learning model using a grid search technique.

• Develop a transfer learning approach to assess the generalisation
ability of the trained models using one wave farm and testing it
by other wave farm datasets.

• Evaluate the performance of the hybrid deep predictive model
using a comprehensive dataset based on a four real wave scenario.

We show that the hybrid model described it outperforms the other 15
prediction models regarding the accuracy and learning error.

In the following, we commence by providing an initial exposition on
the description and modelling of the WECs system, including not only
the fundamental equations of motion that govern its behaviour but also
a comprehensive explanation of the chosen deployment site and the
performance measures that will be employed to evaluate its effective-
ness (as expounded upon in Section 2). Following this, we introduce a
multitude of ML and deep learning algorithms, as well as the intricate
technical details of the proposed Meta ensemble deep learning method,
as outlined in Section 3. Subsequently, we meticulously outline the
numerical results obtained through the application of the method above
and provide an in-depth discussion of the findings in Section 4, thereby
facilitating a comprehensive comparison of the efficiency and effective-
ness of the proposed approach. Finally, we conclude the manuscript by
summarising the main findings and expounding upon the advantages
our proposed method (See Section 5) offers over existing approaches.

2. System description and modelling

The submerged sphere as an absorber of wave power was proposed
in [20] and is used in this study. The wave farm consists of multiple
WECs that operate relatively close to each other. The radius of the
sphere is set to 5 m, and the distance between the buoy’s centre of
mass and the still water level is set to 8.5 m. The sphere is attached to
the sea floor by three mooring lines. The arrangement of the mooring
system is symmetric to ensure that the power absorption of an isolated
WEC is independent of the wave direction. The mooring lines inclined
at 54 deg to the vertical lead to the maximum power absorption of the
submerged sphere, as shown in [21]. The buoys should be positively
buoyant to provide the tension in each mooring line, therefore, the
mass of the buoy is set to be half the mass of the displaced volume.
The wave farm consists of multiple WECs that operate relatively close
to each other as shown in Fig. 1.
3

2.1. Equations of motion

The WEC hydrodynamic loading is modelled using linear potential
flow theory [22]. The behaviour of the power take-off machinery of
each WEC is simplified to the linear spring–damper system with tunable
stiffness and damping control parameters. The WEC farm dynamics is
formulated in the frequency domain also taking into account the wave
directionality. Each WEC moves in the surge, sway, and heave modes,
while the rotational motion of the spherical WECs is neglected. The
equations of motion are written as:

𝐱(𝜔, 𝛽) =
(

−𝜔2 (𝐌 + 𝐀(𝜔)) + i𝜔
(

𝐁(𝜔) + 𝐁𝑝𝑡𝑜
)

+𝐊𝑝𝑡𝑜
)−1 𝐅𝑒(𝜔, 𝛽), (1)

where 𝜔 is the regular wave frequency, 𝛽 is the wave angle, 𝐱 is the
vector of complex amplitudes with dimensions of [𝑁 ×3, 1], where 𝑁 is
the number of WECs in a farm, 𝐌 is the diagonal mass matrix, 𝐀 and
𝐁 are the matrices of added mass and radiation damping coefficients
that take into account the hydrodynamic interaction between WECs in
the farm, 𝐊𝑝𝑡𝑜 and 𝐁𝑝𝑡𝑜 are the power take-off stiffness and damping
matrices that model the PTO action, and 𝐅𝑒 is the wave excitation
vector.

The average power absorbed by all WECs in a farm as a function of
the regular wave frequency and wave direction is evaluated as:

𝑃 (𝜔, 𝛽) = 𝜔2

2
𝐱T(𝜔, 𝛽)𝐁𝑝𝑡𝑜𝐱(𝜔, 𝛽), (2)

2.2. Deployment sites and wave climates

The performance of the wave farm is assessed for the four sea sites
in Australia. The hindcast data for these sites is shown in Fig. 2. The
data is obtained from the Australian Wave Energy Atlas.

2.3. Performance measures

Based on frequency domain data, it is possible to evaluate how
much power a wave farm can potentially absorb in the irregular wave
characterised by the significant wave height 𝐻𝑠, peak wave period 𝑇𝑝
and wave angle 𝛽:

𝑃𝑖(𝐻𝑠, 𝑇𝑝, 𝛽) = 2∫

∞

0
𝑆𝑖(𝜔)𝑃 (𝜔, 𝛽)d𝜔 (3)

where 𝑆𝑖 is the wave spectrum (Bretschneider in this study).
Once the wave farm power output for each 𝑖th sea state is eval-

uated, the average annual power production can be estimated taking
into account the probability of occurrence 𝑂𝑖(𝐻𝑠, 𝑇𝑝, 𝛽) of each wave
condition:

𝑃𝐴𝐴𝑃 =
𝑁𝑠
∑

𝑖
𝑃𝑖(𝐻𝑠, 𝑇𝑝, 𝛽) ⋅ 𝑂𝑖(𝐻𝑠, 𝑇𝑝, 𝛽) (4)

3. Methods and materials

3.1. Wave energy converters dataset

The Wave Energy Converters dataset developed by Neshat et al. and
published in UCI Machine Learning Repository [23] used in this study
includes measurements of the position and power output of 16 WECs
located in a wave farm based on the real wave scenario at the Adelaide
sea site. The dataset was obtained from simulations of a WEC system
developed by the wave energy team at the University of Adelaide. The
WEC model was simulated based on a fully submerged three-tether
converter called CETO [24] which has been designed and developed
by Carnegie Clean Energy, Australia. In the provided dataset, the Wave
Energy Converters (WECs) are positioned in a specific area with x-
positions defined as 𝑋 = [𝑥1,… , 𝑥𝑁 ] and corresponding y-positions
denoted as 𝑌 = [𝑦1,… , 𝑦𝑁 ]. The maximum number of WECs in the
dataset is predefined to be N = 16. Each buoy, represented by index
i, is characterised by its position coordinate [𝑥 , 𝑦 ]. Thus, a 16-buoy
𝑖 𝑖
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Fig. 2. Wave scatter diagrams and the directional wave roses of four sites: (a) Adelaide, (b) Perth, (c) Tasmania, and (d) Sydney.
Fig. 3. Some array examples of WECs from the dataset based on the Adelaide (first row) and Sydney (second row) wave scenario. a,e) an array with lowest absorbed power
output. (b), (c), (f), and (g) are four random arrays selected from the dataset. (d) and (h) an array with the highest produced total power output. Circles represent the WECs and
are highlighted based on the power output of each converter.
array can be represented as [(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥16, 𝑦16)]. The positions
of the WECs are not arbitrary but are confined within a defined area
denoted as . The dimensions of this area are determined by  =
𝐿×𝑊 , where both the length (𝐿) and width (𝑊 ) are equal to  = 𝐿×𝑊
and 𝐿 = 𝑊 =

√

𝑁 ∗ 20000 m. Thus, for a configuration with 16
WECs, the length and width of the area are set to 𝐿 = 𝑊 = 566 m.
Providing further technical details of the WECs in this dataset, each
buoy has a radius of 5 m, operates at a water depth of 50 m, and has
a submergence depth to the buoy centre of 8 m. The buoy itself has
a mass of 𝑚 = 376 × 103 kilograms. The Power Take-Off (PTO) system
associated with the buoy is characterised by a stiffness coefficient, Kpto,
of 2.7 × 105 N∕m and a damping coefficient, Bpto, of 1.3 × 105 N∕m.

The dataset contains 49 features, including 16 WECs’ coordination
values based on the X-axis of the farm map. In the following, we can see
16 coordination values of the WECs according to the Y-axis of the farm
map. Next, the power output of 16 WECs is listed, and finally, the total
power (Watt) out of the wave farm is reported. The dataset includes a
total of 72,000 instances. The main objective of the dataset is to predict
the total power output of the 16 WECs based on the position of the
floats. This dataset can be used for time-series analysis and modelling,
as well as for developing machine learning models for regression or
4

forecasting tasks. Fig. 3 shows four samples of 16-WEC arrays of the
dataset used with various arrangements and power outputs.

3.2. Meta ensemble model

Meta ensemble model is a type of stacking learning technique that
aims to create a diverse set of models by using different kinds of models
for training and combining their predictions [25,26]. Stacking involves
training a meta-learner to combine the predictions of several base
models, which are referred to as first-level learners. The meta-learner is
the second-level learner, and it is used to create an ensemble of models
that can make more accurate predictions. The first-level learners are
also known as level-0 models, while the model that combines their
predictions is referred to as a level-1 model. The standard approach
involves a two-level hierarchy of models. Still, more layers can be
added to the ensemble, such as using multiple level-1 models and a
single level-2 model to combine their predictions. By creating a diverse
set of models and combining their predictions, stacking can improve the
accuracy and robustness of machine learning models.

The motivation for stacking comes from the fact that different
base models may have different strengths and weaknesses, and by
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Fig. 4. The framework of the meta ensemble learning method.
combining them, we can leverage their strengths and compensate for
their shortcomings, resulting in better performance than any individual
model [27]. Another motivation for stacking is to reduce the risk of
overfitting. By using multiple base models trained on different subsets
of the data or with other algorithms, we can reduce the chances of
overfitting the training data. Stacking combines the predictions of
these base models, which can help generalise new, unseen data better.
Stacking also allows for more flexibility in model selection. Instead of
being limited to a single model, we can choose multiple base models
specialised for diverse aspects of the problem [28]. For example, we
could use a decision tree model to capture non-linear relationships
in the data, a linear regression model to capture linear relationships,
and a neural network model to capture complex interactions between
features. By combining the predictions of these models, we can obtain
a more comprehensive and accurate model [29]. The detailed sections
of the meta ensemble learning model can be seen in Fig. 4.

3.3. Convolutional deep learning models

Convolutional deep learning models (CNNs) are a type of multi-
layer feed-forward artificial neural network particularly well-suited for
image recognition tasks, extracting hidden spatial features [30] and
multi-dimensional signal modelling. They are based on the concept of
convolution, which involves sliding a small filter over an input image
and computing the dot product of the filter and the portion of the image
it is currently covering. This produces a feature map, representing
where the filter detected certain features in the image. The network
then applies several layers of these convolutions, followed by pooling
layers, which downsample the feature maps, and then fully connected
layers, which produce the final classification output. When compared to
other neural networks like the deep belief network (DBN) [31], a CNN
stands out due to its sparse connectivity and weight-sharing properties.
These characteristics significantly decrease the number of parameters
a CNN has to learn. In this research, a CNN is employed to discover
the potential spatial connection between the coordination elements of
a WECs and those of its neighbouring area, with the aim of minimising
power prediction errors. The primary CNN architecture includes three
sections: convolutional, pooling, and fully connected layers. The CNN
computation can be represented as follows [30]:

𝑓 𝑢𝑣
𝑚𝑛 = 𝑟𝑒𝑙𝑢(

∑

𝑙

ℎ′−1
∑

ℎ=0

𝑤′−1
∑

𝑤=0
𝑤ℎ𝑤

𝑚𝑛𝑙 .𝑚𝑎𝑝
(𝑢+ℎ)(𝑣+𝑤)
(𝑚−1)𝑙 + 𝑏𝑚𝑛) (5)

The equation uses variables to reference specific elements of the
convolutional neural network. Specifically, 𝑢 and 𝑣 correspond to the
row and column indices of the feature map, while ℎ and 𝑤 correspond
to the row and column indices of the convolution filter. ℎ and 𝑤
represent the number of rows and columns in the filter, respectively.
5

3.4. Extreme gradient boosting model

The Extreme Gradient Boosting (XGB) [32] technique, frequently
employed in predictive applications, utilises an aggregation of Decision
Trees (DT) to create a robust regression model. This large-scale ML
approach is designed to leverage multi-threaded parallelism, automati-
cally reducing computation time. Unlike gradient-boosted decision tree
(GBDT) models, XGB relies on the second-order Taylor expansion for
the loss function. Additionally, the regularisation components, specif-
ically tree depth and leaf node weights, are integrated into the XGB
objective function. Consequently, the iterative process minimises and
improves tree construction efficiency. To reduce model intricacy, a
level-wise decision tree expansion strategy is employed. The additive
strategy of the tree model is formulated as follows:

𝑦′ =
𝑁
∑

𝑖=1
𝑓𝑖(𝑥𝑖) → 𝑓𝑖 ∈ 𝐹 (6)

where 𝑓 and 𝑁 indicate the tree objects and their number. 𝐹 and 𝑥𝑖 are
the set of regression trees and the 𝑖th eigenvector, respectively. Thus,
the fitness function that should be minimised is

𝐿(𝛾) =
𝑁
∑

𝑖=1
𝑙(𝑦′, 𝑦𝑖) +

𝑁
∑

𝑖=1
𝜙(𝑓𝑖) (7)

𝜙(𝑓 ) = 𝛼𝑇 + 1
2
𝛽‖(𝑤)‖2 (8)

where loss function and model complexity penalty factor are indicated
by 𝑙 and 𝜙. 𝛼 and 𝛽 are 𝐿1 and 𝐿2 regularisation coefficients, and the
tree’s divided weight is shown by 𝑤. The challenging point in learning
tree parameters at once results in the developed objective function as
follows:

𝐿𝑡 =
𝑁
∑

𝑖=1
[𝑦𝑖, 𝑦

′(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)] + 𝜙(𝑓𝑖) (9)

The second-order Taylor expansion is used to modify the loss func-
tion:

𝐿𝑡 =
𝑁
∑

𝑗=1
[(
∑

𝑖∈𝐼𝑗

𝑔𝑖)𝑤𝑗 +
1
2
(
∑

𝑖∈𝐼𝑗

ℎ𝑖 + 𝜆)𝑤2
𝑗 ] + 𝜆𝑇 (10)

where 𝑔𝑖 and ℎ𝑖 are the loss function first and second derivatives in the
gradient direction.

3.5. Deep dense neural networks (DNNs)

DNNs are a popular artificial neural network type consisting of
multiple densely connected layers. A DNN typically contains several
hidden layers depending on the complexity level of data patterns [33].
In a DNN, each neuron in a layer is connected to every neuron in
the following layer, creating a dense matrix of connections. The input
layer receives the input data and then processes it through a series of
hidden layers consisting of densely connected neurons. Each neuron in
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Fig. 5. The architecture of dense learning model.

the hidden layer receives inputs from all the neurons in the previous
layer and applies a non-linear activation function to the weighted
sum of those inputs. The output of the activation function is then
passed on to the next layer as input. deep models (i.e., models with
many layers) are better able to capture and represent the intricate
relationships and details present in the input data. This is because
deeper layers of the model can learn to identify increasingly abstract
and complex features, which can help the model make more accurate
predictions or classifications. However, training deep neural networks
can be challenging due to the vanishing gradient problem, where the
gradients of the loss function concerning the weights become very small
as they propagate through multiple layers, leading to slow convergence
or even stagnation of the learning process [34]. The architecture of the
dense model applied in this study can be seen in Fig. 5.

3.6. Transfer learning approach

In traditional deep learning, when faced with new tasks, it is nec-
essary to thoroughly analyse the specific characteristics of these tasks
in order to formulate appropriate models. This process also requires a
substantial amount of data annotations. Additionally, it is crucial that
the training and test data are scheduled in the same distribution to en-
sure an accurate evaluation of the model’s performance [35]. However,
in order to enhance efficiency and save time, transfer learning presents
a different approach. The primary objective of transfer learning is to
identify similarities between a new problem and a previously solved
problem, allowing for the acquisition of new knowledge through the
process of feature transferring. Transfer learning [36] encompasses two
fundamental concepts, namely domain and task. The domain refers to
learning, which primarily consists of data and probability distributions.
On the other hand, the task represents the goal of learning, composed
of the labels and the corresponding functions.

3.7. 𝑒𝑡𝑎 Ensemble model with extreme gradient boosting (MLGBM)

This study considers some critical steps to propose an effective Meta
ensemble model to predict the total power putout of a wave farm with
16 WECs that is able to reduce bias and variance of the prediction error.
These steps include:

• The first step is carefully selecting the appropriate sub-learners
based on specific criteria. In the case of regression tasks, pre-
dictive accuracy is a common criterion. After conducting a lit-
erature review [11], it was determined that the most successful
deep learning algorithms for WEC power output generation fore-
casts are DNN, FFNN, MLP, Linear regressions and decision tree
methods. Therefore, we developed a comprehensive WEC power
prediction framework to compare and find the best-performed
base learner. The statistical analysis shows that DNN and CDNN
outperform other ML models considerably (See Table 3).
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• After selecting the sub-models, we trained them on various folds
of the training WECs data using k-fold cross-validation. In the
beginning, we selected just two sub-models for training and val-
idation. Next, we increased the number of sub-models until the
average performance improved in a greedy format.

• The next step involves defining the levelling of the base models.
In this case, only one level of stacked modelling was selected due
to the computational heaviness of deep learning. Adding more
layers would make the system more complex, and multi-level
deep learning stacking may not offer enough benefit in accuracy
relative to the computational cost.

• Selecting an appropriate meta-learner is significant in integrating
base learners’ outputs as the final decisions. Various meta-learners
were tested in this study to maximise diversity, including Ad-
aBoost, LightBoost, and XGBoost. The predominant method for
selecting the best meta-learner is to estimate the accuracy of
the problem. The results of the experiments showed that XG-
Boost outperformed all other learning algorithms. The role of
XGBoost as the meta-learner is to learn the optimal way to weigh
or combine the predictions of the base learners. It learns the
relationship between the base learners’ outputs and the target
variable, identifying patterns or dependencies that can improve
the overall predictive performance. By leveraging its gradient
boosting algorithm, XGBoost optimises the combination of base
learners’ predictions and generates a more accurate and robust
final prediction.

• In the final step, a grid search was used to find the optimal
hyper-parameters of the base learners and meta-learner.

The details of the proposed WEC prediction model are as follows
and can be seen in Fig. 6. The feature combination serves a crucial
role in our ensemble model. It fuses the predictions of the sub-learners
into a unified representation that can be utilised by the meta-learner, in
this case, XGBoost. This combined representation acts as a higher-level
feature representation that encapsulates the collective knowledge of
the sub-learners, significantly enhancing the model’s ability to capture
complex relationships and make accurate predictions. This is where the
true power of our ensemble model lies.

The primary reason for selecting DNN models is that they are
well known for their excellent flexibility and ability to generalise well
in various types of data. This can be attributed to their ability to
understand detailed patterns within the data and establish connections
between different parts of the input. More than that, DNNs possess the
amazing and interesting ability to gain representations of the data in
a self-ruling way, allowing them to extract and translate significant
features at many levels of data. However, it is important to note that
dense layers have certain negative effects. One such effect is their need
for a large memory, which can result in insignificant computational
expense during training. Also, dense layers are easily influenced by
overfitting, an important event in which the model simply memorises
the training data instead of learning patterns that can be applied to
new, hidden data.

We applied CDNNs as an alternative base-learner because they
employ convolutional layers and pooling operations to harness spatial
invariance and translational equivariance characteristics in data like
images. Furthermore, they make use of shared weights in convolu-
tional layers, which decreases the number of trainable parameters
in comparison to DNNs. This unique property of parameter-sharing
enables CDNNs to effectively learn from vast datasets without falling
into the trap of overfitting. Moreover, CDNNs incorporate multiple
convolutional layers to gradually extract hierarchical features from the
input, allowing them to grasp both local and global patterns present
in the data. Nevertheless, focusing on the computationally demanding
aspects is crucial, particularly when working with extensive datasets or
complex architectures. CDNNs are susceptible to overfitting, especially

in cases where the dataset is limited, or the model contains an excessive



Energy 304 (2024) 132122M. Neshat et al.
Fig. 6. The schematic of the proposed stacked ensemble model for predicting the total power out of a wave farm.
number of parameters. Therefore, it is essential to utilise effective
regularisation methods like dropout or weight decay to address this
challenge.

In our dataset [37], each feature corresponds to the coordinates (𝑥
or 𝑦) of a specific Wave Energy Converter (WEC). When predicting the
total power output of the wave farm, we made a deliberate decision
to retain all the features. This choice is primarily motivated by the
application of the developed predictor in real-world scenarios within
the wave energy industry. By including all the coordinate features,
we aim to capture the spatial information and preserve the holistic
representation of the wave farm. This ensures that the predictor can
effectively handle the complexity and interplay between the WECs’
positions, which is crucial for accurate power output estimation in
practical wave energy applications.

3.8. Outlier detection

In this study, outlier detection was performed using the Local Out-
lier Factor (LOF) [38] method to identify and remove outliers in the
dataset. LOF is a density-based method that assesses the local density
of data points compared to their neighbours, allowing it to effectively
detect anomalies. The outliers in this study were characterised by
layouts exhibiting unusually high or very low total power output. The
application of LOF resulted in the identification and removal of outliers
from the dataset. It is worth noting that the number of layouts that were
flagged as outliers and subsequently removed accounted for less than
1% of the total dataset. This indicates that the dataset contained a rela-
tively small proportion of anomalous layouts that deviated significantly
from the majority of the data points.

3.9. Transformation technique

Regarding the standardisation of data, we have implemented one
of the most renowned transformation techniques known as Min–Max
Normalisation (MMN). MMN stands as a highly favoured method [39]
that effectively adjusts the unprocessed data to fit within a predefined
lower and upper limit. Generally, this process involves re-scaling the
data to be confined within the spectrum of 0 to 1 or −1 to 1. The
mathematical expression for MMN is outlined by the proportion of
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the disparity between the value of the feature and its minimum value
to the span between the maximum and minimum values. The bound-
aries set for the re-scaling of the data are denoted by 𝑎𝑀𝑖𝑛 and 𝑎𝑀𝑎𝑥
correspondingly.

𝑎′𝑖,𝑛 =
𝑎𝑖,𝑛 − min

(

𝑎𝑖
)

max
(

𝑎𝑖
)

− min
(

𝑎𝑖
) (𝑎𝑀𝑎𝑥 − 𝑎𝑀𝑖𝑛) + 𝑎𝑀𝑖𝑛 (11)

Through the utilisation of MMN, a guarantee is established that
the altered data falls within the anticipated range, thereby streamlin-
ing consistent and comparable depictions of the characteristics. This
methodology ensures that the transformed data is standardised and uni-
form, enhancing the accuracy and reliability of the analysis conducted
on the dataset. By employing MMN, the data normalisation process
becomes more efficient and effective, enabling a seamless comparison
of various features within the dataset. The utilisation of MMN aids in
enhancing the interpretability and reliability of the data analysis re-
sults, as it ensures that the data is uniformly scaled and standardised for
accurate comparisons and evaluations. Consequently, adopting MMN
contributes to enhancing data quality and the precision of analytical
outcomes, fostering a more robust and insightful data analysis process.

3.10. Hyper-parameters tuning

Grid search is a widely used technique for hyper-parameter tuning
in machine learning [40]. The idea behind grid search is to create a
grid of possible hyper-parameter values and train the model with each
combination of values to find the best set of hyper-parameters that
result in the highest performance metric. The grid is constructed by
specifying a range of hyper-parameter values for each hyper-parameter
of interest. The range can be discrete or continuous. Grid search is
an exhaustive search method and can be computationally expensive,
especially when dealing with a large number of hyper-parameters or
a large dataset. However, it is a simple and effective way to find the
optimal hyper-parameters for a given model and dataset.

In this study, we consider the depth and number of estimator param-
eters in meta-learner (XGB), which are crucial hyper-parameters, and
optimising them can significantly improve the model’s overall perfor-
mance [40,41]. The depth of a tree in XGBoost controls the complexity
of the model and its ability to capture intricate relationships between
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Fig. 7. Adjusting hyper-parameters of (a) XGBoost and (b) DNN in Meta-learner model using grid search.
the features. A deeper tree can learn more complex interactions but can
also lead to overfitting. Therefore, finding the optimal depth is crucial
in balancing the trade-off between model complexity and generalisation
performance. The number of estimators in XGBoost controls the number
of trees trained and combined to make the final prediction. Increasing
the number of estimators can improve the model’s performance by
reducing the variance and expanding the model’s ability to capture
complex patterns in the data. However, increasing the number of
estimators beyond a certain point can lead to overfitting, increased
computational cost, and decreased model interpretability. Fig. 7 shows
the landscape of the grid search for tuning the XGB’s hyper-parameters.
For this case study, the best-performed parameters are depth= 10, and
the number of estimators= 20.

To optimise the performance of our sub-models (DNN or CDNN),
we conducted a hyper-parameter tuning experiment using a grid search
based on the Perth wave scenario. The experiment involved tuning
several key hyper-parameters, including the number of neurons in each
layer, the learning rate, the batch size, and the kernel initialisation
method. In particular, we focused on the learning rate, which controls
the step size for weight updates during training. We explored a range
of learning rates, from 1𝑒 − 01 to 1𝑒 − 05, as it can significantly impact
the model’s performance and convergence. A careful choice between
small and large learning rates is crucial. Another important hyper-
parameter we considered was the batch size. This parameter determines
the number of samples processed before weight updates occur in each
training iteration. We experimented with batch sizes ranging from 8
to 128. The reason for this range is that smaller batch sizes can lead
to faster convergence, while larger batch sizes can provide a more
accurate estimate of the gradient. Fig. 7 depicts the landscape analysis
of sub-model performance using different hyper-parameter settings.
The analysis was based on the R-value (7(b)) and mean absolute error
(MAE) (7(c)). We observed that smaller batch sizes, combined with
higher learning rates, led to more accurate power predictions and lower
validation errors. In addition to the previous findings, Fig. 8 provides
insights into the R-value of prediction validation results for different
configurations of three Dense layers in the sub-models. We varied the
number of neurons in these layers within a range of 8 to 512. Sig-
nificantly, we discovered a direct relationship between the prediction
accuracy and the number of neurons in the first layer. Figs. 8(a) to
8(e) vividly demonstrate this, showing a consistent increase in accuracy
as the number of neurons in the first layer escalates from 8 to 128.
This underscores the practical importance of the number of units in the
initial dense layer for achieving enhanced performance in real-world
scenarios. The colour scheme in Fig. 8 represents the accuracy levels,
where dark red and dark blue indicate the highest and lowest accuracy
in terms of the R-value, respectively. It is evident that the relationship
between the number of neurons in the second and third layers is nonlin-
ear, resulting in a multi-modal landscape. This observation implies that
the optimal configuration for these layers may not necessarily follow
a linear progression. By analysing the landscape of the R-value across
8

different configurations of the Dense layers, we gain valuable insights
into the impact of varying the number of neurons in each layer.

Table 1 shows the hyper-parameters and settings of the ML methods
applied in this study. It is noted that changing hyper-parameters may
lead to different prediction results.

3.11. Setup of implementations

The implementation was done through Spyder (4.1.5), a cross-
platform integrated development environment under the Anaconda
(2.1.1) distribution of Python (3.7.9). Developing all 15 machine learn-
ing models required using a modular and extensible open-source library
for Keras (2.12) [42] and scikit-learn (1.2.2) [43]. Keras works on
top of Tensorflow (2.12.0) [44], an open-source machine learning
platform developed by Google as an infrastructure layer for differential
programming. The XGBoost gradient boosting library was utilised from
Ref. [45] to develop the meta-learner.

4. Numerical results and discussions

In this section, we provide an overview of the ML models and their
settings employed in our study to predict the power output of wave
farms at four sea sites around Australia. Initially, we introduce all
the ML models utilised, including their configurations and parameters
(See Table 1). Afterwards, we thoroughly analyse and compare the
performance of our proposed model with other ML models employed in
the study. We assess the effectiveness of the proposed model by evaluat-
ing its performance in comparison to alternative models. Additionally,
we investigate the impact of varying the number of sub-learners on
the overall performance of the proposed predictor model. This anal-
ysis allows us to determine the optimal sub-learner configuration for
achieving the best predictive results. Finally, we assess the potential of
the proposed model for training based on a wave model dataset and
subsequently test it with different wave data.

4.1. Evaluation metrics

Several metrics can be considered when comparing the effectiveness
of a proposed prediction model with other models in a regression
problem. Choosing the appropriate metrics for the specific task and data
is essential to validate the model’s performance on a held-out test set
to ensure the model is balanced with the training data (no over-fitting
or under-fitting issues). This study considers a wide range of metrics
categorised into accuracy and bias. A list of applied evaluation metrics
in this study can be seen in Table 2.
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Fig. 8. Adjusting hyper-parameters of DNN in Meta-learner model using grid search.
Table 1
The technical settings of the Machine and Deep learning methods.
# Acronym Full name Hyper-parameters

1 KNN K Nearest Neighbours (K=Number of neighbours)

2 LoR Logistic Regression solver=‘lbfgs’, penalty=‘l2’,tol=0.0001, C=1.0, maxiter=100

3 LR Linear Regression pre-defined settings (scikit-learn)

4 Lasso Lasso Regression 𝛼=1.0, fit intercept=True, precompute=False, max iter=1000, tol=0.0001

5 EN Elastic Net 𝛼=1.0, L1 ratio=0.5, max iter=1000, tol=0.0001

6 DT Decision Tree Regressor criterion=‘squared error’, splitter=‘best’, max depth= 𝐷, min samples split=2, min
samples leaf=1, min weight fraction leaf=0.0,

7 MLP Multi-layer Perceptron solver=‘adam’, activation=‘relu’, alpha=1e−4, hidden layer sizes=(200,20,),
maxiter=1000

8 PAR Passive Aggressive Regressor C=1.0, fit intercept=True, max iter=1000, tol=0.001, early stopping=False,
validation fraction=0.1, n iter no change=5, shuffle=True, verbose=0,
loss=‘epsilon insensitive’, epsilon=0.1

9 BR Bayesian Regression niter=300, tol=0.001, 𝛼1=1e−06, 𝛼2=1e−06, 𝜆1=1e−06, 𝜆2=1e−06

10 SGD Stochastic gradient descent loss=‘squared error’, penalty=‘l2’, alpha=0.0001, l1 ratio=0.15, max iter=1000,
tol=0.001, shuffle=True, epsilon=0.1, learning rate=‘invscaling’, eta0=0.01,
power t=0.25,

11 AdaB AdaBoost number estimators=50, learning rate=1.0, loss=‘linear’, base
estimator=‘deprecated’

12 XGB XGBOOST Number of estimators=10,max depth=10 , 𝛾 = 2, 𝜂 = 0.99, 𝑟𝑒𝑔𝛼 = 0.5, 𝑟𝑒𝑔𝜆 = 0.5

13 LightGBM LightBoost metric= ‘rmse’, num iterations=50, num leaves= 100, learning rate= 0.001,
feature fraction= 0.9, max depth= 10

14 DNN Dense Neural networks Neuron number=32, 16, and 8, kernel initialiser=‘normal’, activation=‘relu’, lr =
0.0001, Optimiser=Adam

15 CDNN Convolutional Dense Neural networks filters=64, kernel size=3, kernel initialiser=‘normal’, activation=‘relu’, lr =
0.0001, loss=‘mean squared error’, Optimiser=Adam
4.2. Proposed model evaluations and comparisons

For a detailed comparison, we selected seven well-known linear and
extended linear regression models, including Lasso, Linear regression,
Logistic regression, Passive aggressive regression, Ridge regression,
Bayesian regression and Elastic net method, to predict 16 WECs power
output using a linear relationship estimation between dependent vari-
ables (coordination of WECs) and independent variables (Power Output
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(Watt)). Furthermore, to extract nonlinear and complex relationships
among the features and target, we tested the performance of five
advanced machine learning models such as SGD, SVM, MLP, DNN
and Decision tree. Finally, due to several sharp characteristics of en-
semble models, such as high accuracy, robustness to overfitting, and
better generalisation, we evaluated and compared the effectiveness
of three popular ensemble models, XGBoost [32], Adaboost [46] and
LightGBM [47]. The analyses presented in Tables 3, and 4 provide
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Table 2
The performance evaluation metrics for the prediction models.

Metrics Definition Equation

R-value Pearson correlation coefficient 𝑅 =
1
𝑁𝑠

∑𝑁𝑠
𝑘=1 (𝑓𝑒 (𝑘)−𝑓 𝑒 )(𝑓𝑡 (𝑘)−𝑓 𝑡 )

√

1
𝑁𝑠

∑𝑁𝑠
𝑘=1 (𝑓𝑒 (𝑘)−𝑓 𝑒 )2×

√

1
𝑁𝑠

∑𝑁𝑠
𝑘=1 (𝑓𝑒 (𝑘)−𝑓 𝑡 )2

EVS Explained variance score 𝐸𝑉 𝑆 = 1 −
∑𝑁𝑠

𝑘=1 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑓𝑡 (𝑘)−𝑓𝑒 (𝑘))
𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑓𝑡 (𝑘))

MAE Mean absolute error MAE = 1
𝑁𝑠

∑𝑁𝑠
𝑘=1 |𝑓𝑒(𝑘) − 𝑓𝑡(𝑘)|

MSLE Mean squared log error MSLE= 1
𝑁𝑠

∑𝑁𝑠
𝑘=1(𝑙𝑜𝑔𝑒(1 + 𝑓𝑡(𝑘)) − 𝑙𝑜𝑔𝑒(1 + 𝑓𝑒(𝑘)))2

RMSE Root mean square error RMSE =
√

1
𝑁𝑠

∑𝑁𝑠
𝑘=1(𝑓𝑒(𝑘) − 𝑓𝑡(𝑘))2

SMAPE Symmetric mean absolute percentage error SMAPE= 1
𝑁𝑠

∑𝑁𝑠
𝑘=1

|𝑓𝑡 (𝑘)−𝑓𝑒 (𝑘)|
( 1
2
(𝑓𝑡 (𝑘)+𝑓𝑒 (𝑘)))

× 100
Table 3
The statistical results of seven regression methods, Lasso, Bayesian, Linear, Logistic, Ridge, Passive Aggressive performance, and also Elastic-net, SGD, SVM, MLP, DNN, and Decision
Trees performance for ten independent runs with 5-fold cross-validation based on the Adelaide wave site.

Lasso

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 2.518E+09 5.018E+04 4.028E+04 1.264E−03 2.854E+00 1.703E−01 4.130E−01
Max 2.610E+09 5.109E+04 4.099E+04 1.309E−03 2.904E+00 1.896E−01 4.360E−01
Mean 2.571E+09 5.071E+04 4.068E+04 1.289E−03 2.881E+00 1.795E−01 4.238E−01
Median 2.572E+09 5.071E+04 4.069E+04 1.289E−03 2.881E+00 1.805E−01 4.248E−01
STD 2.469E+07 2.436E+02 2.023E+02 1.235E−05 1.422E−02 4.785E−03 5.647E−03

Linear Regression

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 2.507E+09 5.007E+04 4.030E+04 1.260E−03 2.856E+00 1.738E−01 4.170E−01
Max 2.610E+09 5.109E+04 4.096E+04 1.308E−03 2.899E+00 1.882E−01 4.341E−01
Mean 2.576E+09 5.075E+04 4.071E+04 1.292E−03 2.883E+00 1.807E−01 4.252E−01
Median 2.582E+09 5.081E+04 4.071E+04 1.294E−03 2.883E+00 1.813E−01 4.259E−01
STD 2.451E+07 2.421E+02 1.780E+02 1.210E−05 1.226E−02 3.727E−03 4.420E−03

Passive Aggressive Regression

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 2.565E+09 5.065E+04 4.019E+04 1.283E−03 2.846E+00 1.613E−01 4.019E−01
Max 2.673E+09 5.170E+04 4.113E+04 1.337E−03 2.913E+00 1.789E−01 4.234E−01
Mean 2.613E+09 5.111E+04 4.057E+04 1.306E−03 2.873E+00 1.706E−01 4.132E−01
Median 2.607E+09 5.106E+04 4.052E+04 1.304E−03 2.868E+00 1.713E−01 4.141E−01
STD 3.022E+07 2.953E+02 2.814E+02 1.546E−05 1.999E−02 4.136E−03 5.065E−03

Ridge Regression

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 2.524E+09 5.024E+04 4.031E+04 1.264E−03 2.853E+00 1.696E−01 4.121E−01
Max 2.615E+09 5.114E+04 4.108E+04 1.313E−03 2.910E+00 1.883E−01 4.340E−01
Mean 2.571E+09 5.070E+04 4.069E+04 1.288E−03 2.881E+00 1.794E−01 4.236E−01
Median 2.567E+09 5.067E+04 4.064E+04 1.286E−03 2.877E+00 1.801E−01 4.244E−01
STD 2.635E+07 2.599E+02 2.322E+02 1.357E−05 1.645E−02 5.291E−03 6.180E−03

Decision Tree

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 9.670E+08 3.110E+04 2.299E+04 5.058E−04 1.650E+00 6.709E−01 8.198E−01
Max 1.028E+09 3.206E+04 2.363E+04 5.379E−04 1.696E+00 6.889E−01 8.304E−01
Mean 1.005E+09 3.170E+04 2.342E+04 5.255E−04 1.682E+00 6.793E−01 8.247E−01
Median 1.009E+09 3.177E+04 2.349E+04 5.277E−04 1.687E+00 6.784E−01 8.241E−01
STD 1.798E+07 2.843E+02 1.881E+02 9.083E−06 1.324E−02 5.424E−03 3.232E−03

SVM

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 3.086E+09 5.555E+04 4.356E+04 1.532E−03 3.083E+00 1.326E−02 6.442E−01
Max 3.219E+09 5.674E+04 4.471E+04 1.598E−03 3.163E+00 1.362E−02 6.601E−01
Mean 3.165E+09 5.626E+04 4.428E+04 1.570E−03 3.133E+00 1.342E−02 6.524E−01
Median 3.174E+09 5.633E+04 4.434E+04 1.571E−03 3.137E+00 1.338E−02 6.520E−01
STD 3.206E+07 2.854E+02 3.072E+02 1.701E−05 2.168E−02 1.208E−04 4.261E−03

Bayesian Regression

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 2.523E+09 5.023E+04 4.027E+04 1.265E−03 2.852E+00 1.732E−01 4.163E−01
Max 2.609E+09 5.108E+04 4.105E+04 1.307E−03 2.906E+00 1.890E−01 4.350E−01
Mean 2.561E+09 5.061E+04 4.059E+04 1.283E−03 2.874E+00 1.815E−01 4.261E−01
Median 2.560E+09 5.060E+04 4.054E+04 1.281E−03 2.871E+00 1.815E−01 4.260E−01
STD 2.220E+07 2.192E+02 2.074E+02 1.106E−05 1.464E−02 3.805E−03 4.495E−03

Logistic Regression

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 1.699E+09 4.122E+04 3.184E+04 8.633E−04 2.262E+00 3.375E−01 6.072E−01
Max 2.063E+09 4.542E+04 3.473E+04 1.031E−03 2.459E+00 4.650E−01 7.014E−01
Mean 1.762E+09 4.196E+04 3.292E+04 9.155E−04 2.336E+00 4.277E−01 6.757E−01
Median 1.705E+09 4.129E+04 3.278E+04 8.998E−04 2.327E+00 4.353E−01 6.825E−01
STD 9.318E+07 1.086E+03 8.543E+02 4.609E−05 5.812E−02 3.644E−02 2.583E−02

Elastic net

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 2.573E+09 5.072E+04 4.051E+04 1.285E−03 2.868E+00 1.608E−01 4.105E−01
Max 2.646E+09 5.144E+04 4.114E+04 1.323E−03 2.912E+00 1.729E−01 4.309E−01
Mean 2.610E+09 5.109E+04 4.083E+04 1.306E−03 2.890E+00 1.671E−01 4.210E−01
Median 2.612E+09 5.111E+04 4.090E+04 1.307E−03 2.895E+00 1.665E−01 4.207E−01
STD 2.381E+07 2.332E+02 2.118E+02 1.204E−05 1.520E−02 3.739E−03 6.067E−03

SGD

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 2.526E+09 5.026E+04 4.038E+04 1.266E−03 2.859E+00 1.648E−01 4.078E−01
Max 2.626E+09 5.125E+04 4.109E+04 1.316E−03 2.909E+00 1.889E−01 4.348E−01
Mean 2.578E+09 5.078E+04 4.074E+04 1.292E−03 2.884E+00 1.768E−01 4.208E−01
Median 2.581E+09 5.080E+04 4.072E+04 1.293E−03 2.883E+00 1.776E−01 4.216E−01
STD 2.255E+07 2.222E+02 1.889E+02 1.123E−05 1.328E−02 5.626E−03 6.564E−03

MLP

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 9.967E+08 3.157E+04 2.475E+04 5.155E−04 1.768E+00 4.602E−01 6.784E−01
Max 1.710E+09 4.135E+04 3.311E+04 8.701E−04 2.353E+00 6.828E−01 8.264E−01
Mean 1.295E+09 3.587E+04 2.858E+04 6.635E−04 2.035E+00 5.889E−01 7.663E−01
Median 1.288E+09 3.588E+04 2.855E+04 6.615E−04 2.033E+00 5.950E−01 7.713E−01
STD 2.039E+08 2.837E+03 2.383E+03 1.015E−04 1.668E−01 6.396E−02 4.199E−02

DNN

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 8.881E+08 2.980E+04 2.314E+04 4.562E−04 8.030E−01 6.211E−01 8.030E−01
Max 1.191E+09 3.451E+04 2.675E+04 6.068E−04 8.535E−01 7.239E−01 8.535E−01
Mean 9.782E+08 3.125E+04 2.438E+04 5.007E−04 8.350E−01 6.881E−01 8.350E−01
Median 9.583E+08 3.096E+04 2.412E+04 4.903E−04 8.372E−01 6.944E−01 8.372E−01
STD 9.299E+07 1.451E+03 1.106E+03 4.623E−05 1.510E−02 3.049E−02 1.510E−02
a comparison of 15 ML models with the proposed Meta ensemble
model performance based on seven evaluation metrics for a case study
of the Adelaide wave site. The prediction accuracy shown by the R-
value should be maximised, and a wide range of metrics for measuring
the error of learning (MSE, RMSE, MAE, MSLE, and SMAPE) should
be minimised. Moreover, the EVS values near 1.0 are the best and
represent better squares of standard deviations of learning errors. As
can be seen, the highest average validation accuracy (R-value) achieved
by the proposed Meta ensemble model (MLGBM) at 88.8% and fol-
lowed by XGBoost, LightGBM and Decision tree at 85.6%, 84.4%,
and 82.5%, respectively. Therefore, the proposed model, which is a
combination of DNN and XGBoost as a stacked ensemble meta-learner
model, performed better than both DNN and XGBoost at 5.5% and
3.3%, respectively. Among seven linear and extended regression mod-
els, Logistic regression performance was considerably better than other
10
regression models because it can capture nonlinear relationships by
using nonlinear transformations of the independent variables, such as
polynomial or interaction terms [48].

A more comprehensive comparative analysis is visualised to show
the correlation coefficient between the predicted power output of WECs
and the true values based on the Adelaide wave scenario that can be
seen in Fig. 9. From this boxplot, we can observe that the prediction
accuracy of the proposed ensemble model (MLGBM) significantly out-
weighs other ML models. The second important observation is that the
performance of 20 independent runs of the MLGBM provides prediction
accuracy with low variance. A low variance indicates that the proposed
model is stable and consistent in its predictions across several runs.
This is a desirable characteristic for machine learning models, as it is
a sign that the model is reliable and can be trusted to make accurate
predictions on new and unseen data.
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Table 4
The statistical results of three ensemble ML models, including XGBoost, AdaBoost, LightGBM and also the proposed meta-learner model (MLGBM) performance for ten independent
runs with 5-fold cross-validation based on the Adelaide wave site.

XGBoost

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 8.156E+08 2.856E+04 2.107E+04 4.294E−04 1.516E+00 7.210E−01 8.501E−01
Max 8.805E+08 2.967E+04 2.193E+04 4.639E−04 1.576E+00 7.437E−01 8.642E−01
Mean 8.492E+08 2.914E+04 2.153E+04 4.475E−04 1.548E+00 7.301E−01 8.557E−01
Median 8.484E+08 2.913E+04 2.152E+04 4.465E−04 1.547E+00 7.301E−01 8.557E−01
STD 1.964E+07 3.374E+02 2.489E+02 1.034E−05 1.774E−02 5.725E−03 3.577E−03

AdaBoost

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 1.336E+09 3.655E+04 3.024E+04 6.700E−04 2.147E+00 6.622E−01 8.148E−01
Max 1.592E+09 3.990E+04 3.324E+04 8.047E−04 2.368E+00 6.978E−01 8.434E−01
Mean 1.465E+09 3.826E+04 3.173E+04 7.365E−04 2.255E+00 6.775E−01 8.280E−01
Median 1.470E+09 3.834E+04 3.177E+04 7.394E−04 2.259E+00 6.746E−01 8.278E−01
STD 5.525E+07 7.235E+02 6.670E+02 2.915E−05 4.911E−02 9.571E−03 7.642E−03

LightGBM

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 2.878E+09 5.365E+04 4.318E+04 1.436E−03 3.055E+00 6.304E−02 8.411E−01
Max 2.981E+09 5.460E+04 4.399E+04 1.487E−03 3.113E+00 6.431E−02 8.497E−01
Mean 2.936E+09 5.419E+04 4.356E+04 1.465E−03 3.082E+00 6.363E−02 8.443E−01
Median 2.944E+09 5.425E+04 4.355E+04 1.469E−03 3.083E+00 6.354E−02 8.431E−01
STD 3.417E+07 3.158E+02 2.513E+02 1.747E−05 1.799E−02 4.633E−04 3.092E−03

MLGBM

MSE RMSE MAE MSLE SMAPE EVS R-value

Min 6.504E+08 2.550E+04 1.970E+04 3.369E−04 1.408E+00 7.849E−01 8.859E−01
Max 6.815E+08 2.610E+04 2.010E+04 3.525E−04 1.437E+00 7.949E−01 8.916E−01
Mean 6.651E+08 2.579E+04 1.991E+04 3.442E−04 1.423E+00 7.886E−01 8.880E−01
Median 6.651E+08 2.579E+04 1.992E+04 3.442E−04 1.424E+00 7.875E−01 8.874E−01
STD 8.732E+06 1.692E+02 1.239E+02 4.321E−06 8.763E−03 3.938E−03 2.213E−03
Fig. 9. Statistical analysis of 15 machine learning models compared with the proposed
predictive model (MLGBM) in terms of prediction accuracy (R-value) of the total power
output of 16 WECs based on the Adelaide wave scenario. Each method runs 20 times
with random initialisation settings.

Analysing the learning error of the machine learning models and
comparing it with other models is essential because it assists in iden-
tifying shortages and potential sources of learning error in the ML
models. By understanding the learning error, we are able to identify
problem spaces where the ML models are not performing well and
improve their accuracy and reliability. In this regard, Fig. 10 shows
the statistical analysis of 15 ML models compared with the proposed
ensemble model based on the mean absolute validation error based
on the Adelaide wave scenario. It can be seen that the minimum MAE
recorded for MLGBM has a low variance. Moreover, the MAE of DNN
and XGBoost is significantly lower than DT, AdaBoost and LightGBM. In
order to evaluate effectively the proposed prediction model’s capacity
to extrapolate and excel in a multitude of distinct situations, we con-
ducted extensive experiments on a wide range of wave farm datasets
(Adelaide, Perth, Tasmania, and Sydney) with varying characteristics
in terms of their geographical disposition, wave dynamics, and spatial
arrangement. Consequently, subjecting the model to rigorous testing
using diverse wave farm datasets enables us to ascertain its proficiency
in delivering accurate predictions across many real-world scenarios,
strengthening its applicability and reliability in practical settings.

Through these experimental analyses, we selected seven best-
performed ML models from 15 ones to compare their effectiveness with
the MLGBM.

Table 5 represents the statistical prediction results of the proposed
model compared with others based on the Perth wave farm datasets.
In terms of accuracy (R-value) metric, MLGBM greatly outweighs other
ensemble and deep learning models and proposed a high level of accu-
racy of 90% on average. Moreover, MLGBM’s mean absolute learning
11
Fig. 10. Statistical analysis of 15 machine learning models compared with the proposed
predictive model (MLGBM) in terms of mean absolute evaluation error of the total
power output of the wave farm based on Adelaide wave scenario. Each method runs
20 times with random initialisation settings.

error is considerably less than AdaBoost, LightGBM, CDNN, DNN, and
XGBoost at 85.1%, 28.6%, 25.7%, 17.7%, and 7.4%.

The modelling statistical results of eight wave farm power predictors
for the Sydney wave site can be seen in Table 6. Similar to Adelaide
and Perth wave layout datasets, we can see a significant superiority
of the MLGBM compared with other popular models in seven various
evaluation metrics. As the Sydney wave scenario (See Fig. 2d) exhibits
different wave direction patterns and variability, we can evaluate the
robustness of the proposed deep model and assess how well it han-
dles different wave characteristic variations. These prediction results
help ensure that the proposed model performs reliably under various
conditions and is not overly sensitive to specific wave characteristics.

Finally, Table 7 shows the detailed prediction results of eight ML
models for modelling the total power output of 16 WEC layouts located
at the Tasmania sea site. Tasmania is exposed to the Southern Ocean,
which can result in powerful and consistent wave energy. These waves
can travel long distances before reaching the coastline, leading to larger
swells. The highest power prediction accuracy is related to MLGBM at
84.4%, where CDNN, XGBoost and DNN accuracy are 74%, 79.6%, and
81%, respectively.

Fig. 11 serves as an illustration, visually depicting the summary
statistics that are associated with the wave power predictors across
three distinct wave farms, which are specifically referred to as Perth
(a and b), Sydney (c and d), and Tasmania (e and f). To conduct a
comprehensive evaluation, two performance metrics, namely Accuracy
and MAE, are taken into consideration. It is significant to note that
summary statistics encompass fundamental measures such as median,
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Table 5
The statistical results of seven advanced machine learning methods compared with the proposed meta-learner model (MLGBM) performance for ten independent runs with 5-fold
cross-validation based on the Perth wave site.

XGBoost MLP

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 6.682E+08 2.585E+04 1.859E+04 3.612E−04 1.354E+00 7.372E−01 8.588E−01 Min 1.025E+09 3.201E+04 2.521E+04 5.369E−04 1.816E+00 4.872E−01 6.983E−01
Max 7.120E+08 2.668E+04 1.921E+04 3.859E−04 1.401E+00 7.575E−01 8.707E−01 Max 1.393E+09 3.732E+04 2.889E+04 7.325E−04 2.079E+00 6.266E−01 7.916E−01
Mean 6.900E+08 2.627E+04 1.882E+04 3.735E−04 1.371E+00 7.476E−01 8.649E−01 Mean 1.229E+09 3.503E+04 2.732E+04 6.449E−04 1.968E+00 5.498E−01 7.412E−01
Median 6.908E+08 2.628E+04 1.882E+04 3.740E−04 1.372E+00 7.484E−01 8.653E−01 Median 1.211E+09 3.480E+04 2.715E+04 6.359E−04 1.955E+00 5.515E−01 7.428E−01
STD 1.179E+07 2.245E+02 1.480E+02 6.647E−06 1.102E−02 4.661E−03 2.717E−03 STD 94 894 205 1362.107 1047.855 4.93E−05 0.074509 0.035772 0.024025

Decision Tree CDNN

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 9.849E+08 3.138E+04 2.312E+04 5.266E−04 1.679E+00 6.105E−01 7.887E−01 Min 7.323E+08 2.706E+04 2.000E+04 3.936E−04 1.453E+00 6.550E−01 8.093E−01
Max 1.056E+09 3.249E+04 2.394E+04 5.630E−04 1.736E+00 6.398E−01 8.047E−01 Max 9.522E+08 3.086E+04 2.323E+04 5.051E−04 1.680E+00 7.345E−01 8.571E−01
Mean 1.027E+09 3.205E+04 2.358E+04 5.489E−04 1.711E+00 6.238E−01 7.963E−01 Mean 8.586E+08 2.928E+04 2.198E+04 4.576E−04 1.592E+00 6.878E−01 8.292E−01
Median 1.033E+09 3.213E+04 2.358E+04 5.526E−04 1.712E+00 6.232E−01 7.959E−01 Median 8.653E+08 2.942E+04 2.218E+04 4.612E−04 1.606E+00 6.853E−01 8.279E−01
STD 1.849E+07 2.892E+02 2.273E+02 9.565E−06 1.590E−02 8.744E−03 4.848E−03 STD 8.097E+07 1.403E+03 1.212E+03 4.105E−05 8.565E−02 3.004E−02 1.804E−02

AdaBoost DNN

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 1.428E+09 3.779E+04 3.118E+04 7.315E−04 2.239E+00 5.891E−01 7.739E−01 Min 6.813E+08 2.610E+04 2.029E+04 3.564E−04 1.462E+00 7.232E−01 8.526E−01
Max 1.653E+09 4.065E+04 3.383E+04 8.500E−04 2.433E+00 6.366E−01 8.012E−01 Max 7.381E+08 2.717E+04 2.117E+04 3.860E−04 1.525E+00 7.510E−01 8.675E−01
Mean 1.536E+09 3.918E+04 3.248E+04 7.890E−04 2.334E+00 6.094E−01 7.866E−01 Mean 7.065E+08 2.658E+04 2.068E+04 3.706E−04 1.491E+00 7.394E−01 8.612E−01
Median 1.525E+09 3.905E+04 3.238E+04 7.823E−04 2.326E+00 6.077E−01 7.848E−01 Median 7.046E+08 2.654E+04 2.064E+04 3.701E−04 1.488E+00 7.398E−01 8.617E−01
STD 6.936E+07 8.830E+02 8.153E+02 3.640E−05 5.972E−02 1.378E−02 8.755E−03 STD 2.112E+07 3.967E+02 3.135E+02 1.092E−05 2.234E−02 8.858E−03 4.903E−03

LightGBM MLGBM

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 8.162E+08 2.857E+04 2.216E+04 4.343E−04 1.599E+00 6.845E−01 8.549E−01 Min 5.059E+08 2.249E+04 1.740E+04 2.675E−04 1.257E+00 8.082E−01 8.990E−01
Max 8.610E+08 2.934E+04 2.266E+04 4.595E−04 1.637E+00 7.036E−01 8.667E−01 Max 5.320E+08 2.306E+04 1.774E+04 2.808E−04 1.281E+00 8.167E−01 9.037E−01
Mean 8.414E+08 2.901E+04 2.246E+04 4.483E−04 1.622E+00 6.925E−01 8.594E−01 Mean 5.164E+08 2.272E+04 1.753E+04 2.726E−04 1.266E+00 8.109E−01 9.005E−01
Median 8.412E+08 2.900E+04 2.245E+04 4.481E−04 1.621E+00 6.931E−01 8.592E−01 Median 5.155E+08 2.270E+04 1.752E+04 2.721E−04 1.266E+00 8.107E−01 9.004E−01
STD 1.087E+07 1.875E+02 1.204E+02 6.237E−06 8.965E−03 4.477E−03 2.721E−03 STD 5.967E+06 1.310E+02 9.312E+01 3.215E−06 6.829E−03 2.254E−03 1.250E−03
Table 6
The statistical results of seven advanced machine learning methods compared with the proposed meta-learner model (MLGBM) performance for ten independent runs with 5-fold
cross-validation based on the Sydney wave site.

XGBoost MLP

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 1.640E+08 1.280E+04 9.128E+03 7.600E−05 6.180E−01 6.750E−01 8.277E−01 Min 2.386E+08 1.545E+04 1.177E+04 1.097E−04 7.949E−01 1.290E−01 3.591E−01
Max 1.759E+08 1.326E+04 9.464E+03 8.162E−05 6.410E−01 6.892E−01 8.358E−01 Max 4.678E+08 2.163E+04 1.731E+04 2.136E−04 1.166E+00 5.517E−01 7.428E−01
Mean 1.685E+08 1.298E+04 9.250E+03 7.813E−05 6.264E−01 6.839E−01 8.323E−01 Mean 3.110E+08 1.758E+04 1.366E+04 1.426E−04 9.218E−01 4.167E−01 6.401E−01
Median 1.677E+08 1.295E+04 9.244E+03 7.777E−05 6.259E−01 6.846E−01 8.321E−01 Median 3.040E+08 1.743E+04 1.362E+04 1.393E−04 9.190E−01 4.292E−01 6.551E−01
STD 3.188E+06 1.224E+02 7.704E+01 1.520E−06 5.272E−03 3.930E−03 2.241E−03 STD 52774057.87 1448.251034 1340.344529 2.38E−05 0.089713864 0.098886 0.086181

Decision Tree CDNN

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 1.371E+08 1.171E+04 5.074E+03 6.384E−05 3.451E−01 7.074E−01 8.552E−01 Min 1.232E+08 1.110E+04 8.219E+03 5.660E−05 5.554E−01 7.449E−01 8.631E−01
Max 1.565E+08 1.251E+04 5.525E+03 7.290E−05 3.757E−01 7.423E−01 8.719E−01 Max 1.409E+08 1.187E+04 8.823E+03 6.487E−05 5.959E−01 7.679E−01 8.763E−01
Mean 1.465E+08 1.210E+04 5.297E+03 6.826E−05 3.602E−01 7.258E−01 8.634E−01 Mean 1.313E+08 1.146E+04 8.525E+03 6.035E−05 5.758E−01 7.560E−01 8.695E−01
Median 1.467E+08 1.211E+04 5.295E+03 6.829E−05 3.601E−01 7.247E−01 8.625E−01 Median 1.312E+08 1.145E+04 8.503E+03 6.032E−05 5.742E−01 7.548E−01 8.688E−01
STD 4.891E+06 2.021E+02 1.059E+02 2.313E−06 7.242E−03 9.226E−03 4.295E−03 STD 3.966E+06 1.729E+02 1.658E+02 1.856E−06 1.114E−02 6.408E−03 3.682E−03

AdaBoost DNN

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 3.123E+08 1.767E+04 1.535E+04 1.417E−04 1.034E+00 6.101E−01 8.283E−01 Min 1.735E+08 1.317E+04 9.364E+03 8.023E−05 6.340E−01 6.418E−01 8.028E−01
Max 3.613E+08 1.901E+04 1.669E+04 1.641E−04 1.125E+00 6.673E−01 8.400E−01 Max 1.911E+08 1.383E+04 9.678E+03 8.850E−05 6.554E−01 6.672E−01 8.179E−01
Mean 3.411E+08 1.846E+04 1.610E+04 1.548E−04 1.085E+00 6.393E−01 8.348E−01 Mean 1.806E+08 1.344E+04 9.487E+03 8.346E−05 6.424E−01 6.560E−01 8.113E−01
Median 3.436E+08 1.854E+04 1.616E+04 1.559E−04 1.089E+00 6.399E−01 8.353E−01 Median 1.793E+08 1.339E+04 9.486E+03 8.285E−05 6.422E−01 6.578E−01 8.123E−01
STD 1.528E+07 4.158E+02 4.271E+02 6.957E−06 2.892E−02 1.466E−02 3.240E−03 STD 4.822E+06 1.784E+02 8.606E+01 2.287E−06 5.872E−03 7.849E−03 4.617E−03

LightGBM MLGBM

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 1.549E+08 1.245E+04 9.479E+03 7.157E−05 6.404E−01 6.938E−01 8.715E−01 Min 9.363E+07 9.676E+03 5.635E+03 4.347E−05 3.817E−01 8.106E−01 9.004E−01
Max 1.640E+08 1.281E+04 9.671E+03 7.586E−05 6.534E−01 7.063E−01 8.786E−01 Max 9.934E+07 9.967E+03 5.802E+03 4.615E−05 3.932E−01 8.232E−01 9.073E−01
Mean 1.600E+08 1.265E+04 9.565E+03 7.400E−05 6.463E−01 6.995E−01 8.748E−01 Mean 9.696E+07 9.847E+03 5.727E+03 4.506E−05 3.880E−01 8.167E−01 9.038E−01
Median 1.596E+08 1.263E+04 9.564E+03 7.380E−05 6.462E−01 6.998E−01 8.746E−01 Median 9.743E+07 9.871E+03 5.728E+03 4.528E−05 3.882E−01 8.165E−01 9.036E−01
STD 2.392E+06 9.463E+01 5.505E+01 1.146E−06 3.777E−03 2.730E−03 1.713E−03 STD 1.837E+06 9.353E+01 4.410E+01 8.680E−07 3.020E−03 3.604E−03 1.979E−03
quartiles, and the identification of potential outliers. It is worth high-
lighting that MLGBM, an advanced machine learning model, showcases
exceptional superiority in terms of accuracy when compared to other
advanced machine learning models across all three wave scenarios. This
remarkable capability of MLGBM, in turn, leads to the generation of the
lowest mean absolute error predictions for the wave models in Perth
and Tasmania. However, the decision tree (DT) model displays the
12

lowest average learning error in Sydney. As a result, these significant
findings provide invaluable insights into the model performances’ cen-
tral tendency, spread, and variability. The statistical prediction results
of the proposed model were compared with others based on the Perth
wave farm datasets can be seen in Fig. 11(a and b). In terms of accuracy
(R-value) metric, MLGBM greatly outweighs other ensemble and deep
learning models and proposed a high level of accuracy of 90% on aver-
age. Moreover, MLGBM’s mean absolute learning error is considerably

less than AdaBoost, LightGBM, CDNN, DNN, and XGBoost at 85.1%,
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Table 7
The statistical results of seven advanced machine learning methods compared with the proposed meta-learner model (MLGBM) performance for ten independent runs with 5-fold
cross-validation based on the Tasmania wave site.

XGBoost MLP

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 4.521E+09 6.724E+04 4.989E+04 3.297E−04 1.339E+00 6.258E−01 7.914E−01 Min 6.257E+09 7.910E+04 6.167E+04 4.468E−04 1.645E+00 1.404E−01 3.748E−01
Max 4.687E+09 6.846E+04 5.072E+04 3.431E−04 1.362E+00 6.381E−01 7.992E−01 Max 1.091E+10 1.045E+05 8.154E+04 7.724E−04 2.169E+00 4.943E−01 7.031E−01
Mean 4.602E+09 6.784E+04 5.036E+04 3.363E−04 1.352E+00 6.326E−01 7.957E−01 Mean 8.538E+09 9.204E+04 7.153E+04 6.070E−04 1.905E+00 3.201E−01 5.542E−01
Median 4.596E+09 6.780E+04 5.036E+04 3.359E−04 1.352E+00 6.335E−01 7.961E−01 Median 8.119E+09 9.010E+04 6.987E+04 5.778E−04 1.862E+00 3.566E−01 5.971E−01
STD 4.774E+07 3.517E+02 2.255E+02 3.760E−06 6.251E−03 3.641E−03 2.315E−03 STD 1566279906 8413.646357 6674.533896 0.00011 0.176017302 0.123267 0.117169

Decision Tree CDNN

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 6.663E+09 8.163E+04 6.092E+04 4.825E−04 1.632E+00 4.197E−01 6.863E−01 Min 5.097E+09 7.140E+04 5.498E+04 3.673E−04 1.470E+00 5.135E−01 7.168E−01
Max 7.319E+09 8.555E+04 6.342E+04 5.306E−04 1.701E+00 4.707E−01 7.100E−01 Max 6.104E+09 7.813E+04 5.977E+04 4.374E−04 1.596E+00 6.029E−01 7.765E−01
Mean 6.999E+09 8.366E+04 6.223E+04 5.076E−04 1.668E+00 4.435E−01 6.975E−01 Mean 5.672E+09 7.526E+04 5.764E+04 4.069E−04 1.539E+00 5.507E−01 7.418E−01
Median 6.956E+09 8.340E+04 6.221E+04 5.038E−04 1.668E+00 4.458E−01 6.978E−01 Median 5.688E+09 7.540E+04 5.778E+04 4.083E−04 1.543E+00 5.434E−01 7.370E−01
STD 1.882E+08 1.124E+03 6.942E+02 1.386E−05 1.902E−02 1.488E−02 5.978E−03 STD 4.298E+08 2.864E+03 1.957E+03 3.022E−05 5.168E−02 3.752E−02 2.515E−02

AdaBoost DNN

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 9.980E+09 9.990E+04 8.296E+04 7.060E−04 2.213E+00 4.272E−01 6.602E−01 Min 4.197E+09 6.479E+04 5.033E+04 3.020E−04 1.345E+00 6.301E−01 7.956E−01
Max 1.238E+10 1.113E+05 9.306E+04 8.890E−04 2.494E+00 5.026E−01 7.098E−01 Max 4.626E+09 6.802E+04 5.252E+04 3.337E−04 1.404E+00 6.701E−01 8.194E−01
Mean 1.105E+10 1.051E+05 8.765E+04 7.872E−04 2.343E+00 4.632E−01 6.838E−01 Mean 4.443E+09 6.665E+04 5.136E+04 3.203E−04 1.373E+00 6.484E−01 8.064E−01
Median 1.088E+10 1.043E+05 8.666E+04 7.775E−04 2.318E+00 4.666E−01 6.856E−01 Median 4.448E+09 6.669E+04 5.138E+04 3.211E−04 1.373E+00 6.515E−01 8.083E−01
STD 7.179E+08 3.395E+03 3.029E+03 5.293E−05 8.286E−02 2.049E−02 1.275E−02 STD 1.079E+08 8.114E+02 6.914E+02 7.911E−06 1.863E−02 9.775E−03 5.867E−03

LightGBM MLGBM

MSE RMSE MAE MSLE SMAPE EVS R-value MSE RMSE MAE MSLE SMAPE EVS R-value

Min 1.091E+10 1.045E+05 8.240E+04 7.728E−04 2.191E+00 1.070E−01 7.956E−01 Min 3.510E+09 5.925E+04 4.550E+04 2.535E−04 1.218E+00 7.030E−01 8.386E−01
Max 1.149E+10 1.072E+05 8.435E+04 8.130E−04 2.243E+00 1.117E−01 8.127E−01 Max 3.778E+09 6.147E+04 4.709E+04 2.735E−04 1.260E+00 7.197E−01 8.484E−01
Mean 1.119E+10 1.058E+05 8.341E+04 7.909E−04 2.217E+00 1.094E−01 8.042E−01 Mean 3.629E+09 6.024E+04 4.636E+04 2.624E−04 1.240E+00 7.120E−01 8.439E−01
Median 1.120E+10 1.058E+05 8.352E+04 7.916E−04 2.220E+00 1.093E−01 8.046E−01 Median 3.631E+09 6.026E+04 4.648E+04 2.624E−04 1.243E+00 7.116E−01 8.437E−01
STD 1.233E+08 5.826E+02 4.371E+02 8.605E−06 1.151E−02 1.069E−03 4.721E−03 STD 7.244E+07 6.006E+02 4.495E+02 5.363E−06 1.217E−02 4.538E−03 2.690E−03
28.6%, 25.7%, 17.7%, and 7.4%. In order to compare the performance
of the models used in this study with the proposed model (MLGBM),
we developed a statistical test called the Friedman test. This test is
an extension of the Wilcoxon signed-rank test and serves as a non-
parametric version of a one-way repeated measures analysis. As can
be seen in Fig. 12, it is noteworthy that the MLGBM model stood out
as the top-ranked model in four distinct wave situations, indicating its
exceptional performance. Also, we can see the performance of both XG-
Boost and LightGBM was considerable. Moreover, both CDNN and DNN
accuracy were competitive; in particular, the CDNN model achieved
impressive results in the Sydney and Adelaide wave scenarios, while
the DNN model excelled in the Perth and Tasmania wave scenarios.
These discoveries emphasise the effectiveness and competitiveness of
MLGBM, XGBoost, LightGBM, CDNN, and DNN models in meeting our
study’s goals. The unique strengths demonstrated by each model in
various wave scenarios offer valuable insights into their capabilities and
potential uses.

4.3. Impact of sub-learners number

In stacking ensemble models, the number of sub-learners is crucial
because it can impact the effectiveness of the whole model. Extending
the stack with more sub-learners can boost the variousness of the mod-
els and diminish the risk of overfitting. However, the complexity and
computational cost can be increased [49]. Generally, the stacked model
may not extract the various patterns in the data and may be biased
towards individual models. Conversely, if we select a large number
of sub-learners, the stacked model may become too complicated and
overfit the training data, leading to poor generalisation ability. In order
to choose a suitable number of sub-learners, we followed a greedy
strategy. We added the sub-learners until the average performance of
all sub-models was better than the newly added sub-model. Fig. 13
indicates the prediction accuracy of the proposed model with different
sub-learners numbers. It is obvious that four sub-learners could develop
more reliable collaborative performance compared with fewer or more
13

learners.
4.4. Transfer learning analysis

In this particular section of our study, we have conducted a series of
transfer learning experiments with the aim of assessing the potential of
utilising the knowledge acquired from training on a wave farm dataset
and applying it to a distinct dataset without any form of fine-tuning.
The results of these experiments, as presented in Table 8, and Fig. 14
exhibits the statistical analysis of the training process of the proposed
predictor, employing four diverse wave farm datasets and subsequently
testing this pre-trained model with three additional datasets. Notably,
the pre-trained model was not subjected to any form of retraining
concerning the target dataset; instead, it was solely tested. Significantly,
the highest level of accuracy was attained when the MLGBM was
trained using the Adelaide dataset and subsequently evaluated based on
the Perth dataset, yielding an accuracy rate of approximately 60%. This
impressive achievement can be attributed to the significant correlation
observed between the wave characteristics at the Adelaide and Perth
sea sites. On the other hand, the transfer learning model exhibited the
lowest level of performance when the Sydney dataset was employed as
the training dataset. This discrepancy in performance can be explained
by the fact that the wave directions at the Sydney sea site differ
significantly in comparison to the other three sites.

The above analysis on transfer learning demonstrates the inability
of a pre-trained model, in the absence of fine-tuning, to achieve com-
petitive performance when compared to the proposed model that does
not employ transfer learning. It is important to note that the correlation
between the wave scenarios of the source and target greatly influences
the effectiveness of the machine learning (ML) models in predicting the
power output of wave farms. This correlation serves as a crucial factor
in enhancing the overall performance of the ML model with transfer
learning. While fine-tuning is a beneficial approach, it is indeed worth
exploring alternative sub-learner choices to enhance the transfer learn-
ing process further in our future works. Furthermore, we recognise the
substantial role that techniques like Domain Adaptation [50] can play
in enhancing transfer learning performance. Approaches such as ad-
versarial training [51] or discrepancy-based methods can significantly
boost transfer performance by effectively aligning feature distributions
and addressing the disparity between source and target domains. These
techniques present exciting avenues for us to explore and incorporate

into our ongoing efforts to optimise the transfer learning process.



Energy 304 (2024) 132122M. Neshat et al.

(

Fig. 11. A comparison performance analysis of the eight advanced ML models in terms of a, c, and (e) Accuracy (R-value) and b, d, and (f) MAE with the proposed predictor
MLGBM) based on the Perth (a and b), Sydney (c and d), Tasmania (e and f) wave scenario.
Table 8
The statistical results of transfer learning based on the proposed meta-learner model (MLGBM) performance for ten independent runs with 5-fold cross-validation.

Train Test MSE RMSE MAE MSLE SMAPE EVS R-value

Perth
Adelaide 3.243E+09 5.694E+04 4.379E+04 1.597E−03 3.103E+00 3.131E−01 5.597E−01
Tasmania 5.702E+12 2.388E+06 2.386E+06 1.014E+00 9.291E+01 2.123E−01 5.163E−01
Sydney 1.684E+10 1.298E+05 1.265E+05 8.354E−03 8.896E+00 −5.827E−01 3.559E−01

Adelaide
Perth 1.777E+09 4.212E+04 3.285E+04 8.970E−04 2.346E+00 3.565E−01 5.995E−01
Tasmania 5.639E+12 2.375E+06 2.373E+06 9.945E−01 9.217E+01 2.148E−01 5.218E−01
Sydney 1.349E+10 1.161E+05 −1.802E−01 6.616E−03 7.933E+00 −1.802E−01 4.429E−01

Tasmania
Perth 5.432E+12 2.331E+06 2.330E+06 9.672E−01 9.106E+01 −3.230E−01 5.230E−01
Adelaide 5.361E+12 1.158E+06 2.315E+06 9.457E−01 9.018E+01 −1.015E−01 5.453E−01
Sydney 4.840E+12 1.100E+06 2.199E+06 8.252E−01 8.505E+01 −2.699E+00 2.802E−01

Sydney
Perth 8.606E+09 9.276E+04 8.039E+04 4.306E−03 5.659E+00 −1.333E−01 3.960E−02
Adelaide 7.059E+09 8.401E+04 7.184E+04 3.492E−03 5.029E+00 −1.945E−01 −2.212E−02
Tasmania 5.287E+12 2.299E+06 2.296E+06 8.906E−01 8.786E+01 −7.445E−02 −4.110E−02
14
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Fig. 12. A comparison performance (R-value) of the MLGBM with other ML models
using the Friedman test.

Fig. 13. A comparison performance analysis of the meta-learner using various
sub-models number (𝑁𝑠).

5. Conclusions

The prediction of power output in a wave farm is a complex task
due to the unpredictable and chaotic nature of wave characteristics, as
well as the intricate and non-linear hydrodynamic interaction between
wave energy converters (WECs). In this study, we propose an effective
Meta ensemble deep learning model that comprises an optimal number
of convolutional dense neural networks combined with the extreme gra-
dient boosting (XGBoost) method as a Meta-learner. The main objective
of this model is to accurately predict the total absorbed power output of
16 WECs. In order to evaluate the performance of our proposed model,
we compare it with 15 well-known machine-learning models.

To ensure the reliability and accuracy of our findings, we train and
test our model using four real wave energy farm datasets obtained from
the southern coast of Australia. Prior to the analysis, we conducted var-
ious pre-processing studies to enhance the effectiveness of the dataset.
These studies include addressing missing values, normalising the data,
and removing outliers. To determine an optimal number of sub-learners
in our stacked ensemble model, we develop a greedy search method.
This method allows us to find the best combination of sub-learners
that would yield the most accurate predictions. Also, in order to fine-
tune the hyper-parameters of the meta-learner, we employ a grid search
15
technique. This technique can identify the optimal tree depth and the
number of estimator parameters that would maximise the performance
of our model.

Furthermore, we assess the transfer learning ability of our proposed
model without fine-tuning. However, our analysis reveals that fine-
tuning and re-training are crucial steps in order to improve the accuracy
of the predictions. The experimental results obtained from our study
provide strong evidence that our proposed model outperforms the
other 15 machine-learning models that were considered. Our model
demonstrates exceptional prediction capability and adaptability when
it comes to handling complex and non-linear patterns present in wave
energy converter data. These findings highlight our proposed model’s
effectiveness and potential in accurately predicting wave farms’ power
output, ultimately contributing to the optimisation and efficiency of
wave energy conversion systems.

As part of our future strategic objectives, we intend to expand the
transfer learning framework by employing sophisticated methodologies
such as domain adaptation. This approach concentrates explicitly on
transferring expertise from a source domain to a target domain where
labelled data is scarce or absent. The ultimate goal is to bridge the
disparity between the source and target domains by aligning their char-
acteristic distributions or acquiring domain-invariant representations
through learning.
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Fig. 14. Transfer learning impact in predicting the power output of the wave farm based on four real wave scenarios and the proposed meta-learner model (MLGBM).
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