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ABSTRACT

eep Reinforcement Learning has demonstrated superior performance in var-

ious domains, such as recommender systems, health operations and au-

tonomous driving. Most traditional deep reinforcement learning can be char-
acterized as the search for a policy that obtains the highest cumulative reward in an
unknown but stationary environment with fixed state transitions and reward functions.
However, this assumption does not always hold in many practical scenarios; environ-
ments are non-stationary and have abrupt and unpredictable change points in many
cases. For example, when a well-trained deep reinforcement learning policy is applied to
an outdoor robot that may encounter different terrains and enter caves without light-
ing, the previous optimal policy may make mistakes or even fail. In these practical
environments, mistakes will be made repeatedly if the algorithm does not identify the
change and actively adapt to it. To address this problem, several methods are proposed
in this thesis to focus on deep reinforcement learning in challenging environments with

time-varying non-stationarity.

We first formalize the problem of deep reinforcement learning in non-stationary
environments with unknown change points. Then, we investigate both model-free and
model-based schemes, proposing several solutions to solve the defined problem. We
have developed four adaptive algorithms that incorporate change detection mechanisms
in the two representative deep reinforcement learning frameworks, proving superior

performance over existing methods.
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First, a formal model-free reinforcement learning framework that spans the entire
learning pipeline and clearly identifies the similarities and differences between the
proposed methods and existing schemes is proposed. Under this framework, three novel
methods with environment change detection and rapid adaptation are proposed. To
detect environmental changes, we consider variations in the joint distribution of states
and actions, changes in policy behavior due to abrupt environmental shifts, and al-
terations in Bayesian uncertainty during the training process. The distinct methods
for utilizing prior knowledge, drawing from aspects of gradients, policy behavior, and
Gaussian Process posteriors, focus on preserving knowledge beneficial to the current
setting. Each method is designed to adjust policy adaptation based on information from
change detection, considering proper response to different change extents. The flexible
adaptation mechanism ensures optimal performance in the current environment. Second,
we investigate the model-based framework targets in high-dimensional environments.
We propose a method for learning change dynamics within a latent space aimed at
environments with high-dimensional inputs such as image data. Our method identifies
change points in the non-stationary environment in the latent space, enabling online
detection and adaptation.

Overall, this thesis presents novel methodologies for change point detection and
online adaptation for deep reinforcement learning in non-stationary environments,
focusing on the robust ability to ensure adequate performance in the face of sequential
change in many realistic environments. The empirical results demonstrate the adequate
performance of our methods over other baselines, offering practical solutions for real-
world applications where the assumption of stationarity does not hold and ensuring

continued optimal performance in the face of non-stationary environments.
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CHAPTER

INTRODUCTION

achine learning has traditionally been centered around learning from static

datasets, where algorithms infer patterns and make predictions based on

historical data. However, the paradigm shifts when moving towards Rein-
forcement Learning (RL), an area of machine learning concerned with how intelligent
agents should take actions in an environment to maximize the cumulative reward. Unlike
its supervised and unsupervised counterparts, RL is distinguished by its focus on learn-
ing from interaction - agents are not merely passive recipients of data but active learners
engaged in a sequence of decision-making that is both influenced by and influences
the environment. With the development of deep neural networks, Deep Reinforcement
Learning (DRL) integrates the power of deep neural networks, enabling the handling of
unstructured and high-dimensional data spaces that were previously intractable. DRL
stands at the forefront of machine learning’s evolution, representing a cutting-edge blend
of learning through interaction and deep neural network representation learning. This
framework enables applications ranging from autonomous vehicles navigating through

traffic [2] to algorithms mastering the game of Go [3], where the agent must learn to
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CHAPTER 1. INTRODUCTION

make a series of decisions that lead to a long-term goal.

While DRL boasts remarkable successes across diverse fields, most schemes are
designed to learn an optimal policy in an unknown but stationary environment with
fixed state distributions, state transitions and reward functions [4]. Yet, many practical
environments are inherently non-stationary, characterized by temporal dynamics and un-
predictability. This disconnect posits a significant challenge: traditional DRL algorithms
may struggle to maintain their performance when faced with evolving environmental
factors. As Figure 1.1 shows, an agent with knowledge of a specific environmental con-
dition may make wrong decisions when facing changes. This thesis aims to bridge this
gap, extending the application of DRL to more realistic, dynamic environments with

time-varying unknown non-stationarity.

1.1 Background and Motivation

Most machine learning can be characterized as the search for a solution that, once
found, no longer needs to be changed [5], and so does deep reinforcement learning. This
assumption allows for simplifying the learning problem and has led to many of the
successes in DRL [6]. However, when this assumption does not hold, as is often the
case that many real-world environments are non-stationary and sometimes change
quite frequently [7], the learned policy may become obsolete or inappropriate for the
new state of the environment, leading to a decline in performance. For example, in
practical environments such as the fluctuating stock market, ever-changing e-commerce
user preferences, unpredictable road conditions in autonomous driving, variable energy
demands in smart grids, and the shifting landscapes of patient health in healthcare
monitoring, traditional DRL algorithms can encounter significant challenges. As the
environment evolves, errors are inevitable, and without timely and adaptive responses,

the situation can deteriorate progressively [5]. The reason is that when a well-trained
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. = 7

(b) Non-stationary Environment

Figure 1.1: Stationary and non-stationary environments. The state distribution, transi-
tions and expected outcomes are consistent and predictable in a stationary environment.
When an agent encounters non-stationary environments, such as a shift from daylight
to a dark cave, it probably leads to a wrong decision due to the traditional DRL model’s
inability to adapt to the new conditions.

policy faces a new environment, traditional DRL algorithms often lack mechanisms
for rapid adaptation and can be sample-inefficient, requiring large amounts of data to
learn or relearn a suitable policy. This weakness can lead to suboptimal performance
and escalating errors if the algorithms cannot adapt promptly and effectively to the
continuous changes.

Figure 1.2 shows the abstract Markov Decision Process (MDP) setting of our research
problem. The MDPs that agents interact with will come one after another, and agents
may not see a specific MDP after it comes. There is no particular order of MDPs, and

the steps that agents interact within each MDP are also not assumed. These MDPs
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Stationary Environment

Time

Non-stationary Environment

Environment 0 Environment 1 Environment k

Time >

Figure 1.2: The upper figure illustrates a stationary environment where the underlying
MDP is unknown but fixed. The bottom figure shows a non-stationary environment with
the switching MDPs with different state distributions, transitions or reward functions.

may differ in any aspect, such as state distribution, transition probability and reward
function. This thesis aims to address the critical need for DRL approaches that can not
only recognize these shifts but also adjust to them in real-time, ensuring sustained and

reliable functionality in the face of real-world unpredictability.

Several studies [8, 9, 10] have demonstrated the efficacy of DRL agents in dynamic
environments with known change points by leveraging the transfer of knowledge from
previously trained policies to adapt to new conditions quickly. However, in real-world
scenarios, agents often encounter environments with unknown change points, such as
a delivery drone navigating through varying weather conditions or a cleaning robot

adapting to different floor types and unexpected obstacles. These environments are
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characterized by unpredictable changes in state transitions and reward functions, mak-
ing them challenging for traditional DRL approaches. Despite the growing importance
of addressing this issue, there has been limited research focused on developing RL
algorithms capable of handling such dynamic and uncertain environments. One so-
lution is contextual detection for model-based RL [11], which detects environmental
changes by maintaining several models and replacing the currently active model with
the highest quality. Recently, Chen et al. [12] proposed an adaptive deep RL method
for non-stationary environments with piecewise-stable context. They infer the context
segment by Bayesian posterior and the belief context through observed data to adapt
to the context changes. However, learning an environmental model is not easy for high-
dimensional environments due to the limitations of sample efficiency. To address this,
Lomonaco et al. proposed CRL-Unsup [13], which determines environmental changes
using the difference between long-term and short-term reward averages and adapts
to new environment conditions using continual learning methods [8]. This detection
method requires a manually set threshold value. Alternatively, Padakandla et al. [14]
proposed an approach that detects environmental changes by recognizing shifts in the
distribution of the experience stream, albeit at the cost of higher computational complex-
ity. Most current approaches do not consider different change extents, which is crucial to

appropriately responding to policy learning.

This thesis aims to solve the long-existing problem by developing frameworks that
can actively and accurately identify the changes in non-stationary environments and
adapt to new environment conditions with the help of the change information. In non-
stationary environments, recognizing environmental shifts allows agents to update their
strategies promptly and maintain optimal performance with detected information. This
adaptability is essential for real-world applications, where conditions can change rapidly

and unpredictably. Effective change detection and adaptation mechanisms enable agents
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to remain robust and effective in the face of evolving challenges, ultimately leading to

more intelligent systems.

1.2 Research Questions and Objectives

We span the entire learning pipeline and primarily approach this problem using two
inseparable processes: identifying the environmental changes through a set of methods
and augmenting the policy training for the new environment by drawing on previously
well-trained policies using the detected change point and information.

According to the two schemes, the research questions and research objectives are

identified as:

QUESTION 1: How to identify unknown change points in non-stationary reinforcement

learning environments?

Identifying change points in non-stationary reinforcement learning environments
without predefined switch points presents a significant challenge. At the same time,
ensuring the accuracy and speed of detection is crucial. Accurate detection allows
the agent to adapt its strategy promptly and effectively, while fast detection mini-
mizes the impact of changes on the agent’s performance. For example, Lomonaco
et al. [13] identify change points by observing the discrepancy between short-
term and long-term rewards. This approach necessitates manual configuration of
threshold values and window sizes. One aim is to employ various autonomous tech-
niques that monitor environmental changes, ideally providing confidence intervals
for decision-making. Additionally, we aim to solve the change detection problem

without involving any extra parameters that must be tuned carefully.

QUESTION 2: How to rapidly adapt to the new environment condition using detected

change information?



1.2. RESEARCH QUESTIONS AND OBJECTIVES

Once a change in the environment is detected, rapid adaptation is essential to
maintain optimal performance. One practical approach is to leverage knowledge
like [8, 15], where previous experiences are used to adjust to new conditions quickly.
Another approach is to use additional regularization techniques to provide the
information required by the new environment. For example, methods proposed
in [16] and [17] introduce regularization terms that encourage the model to pre-
serve valuable knowledge from previous tasks while learning new information.
These approaches do not consider the response to different change levels. In con-
trast, we aim to achieve even more effective adaptation based on the information
obtained from the detection process. By integrating the detected changes into the
learning framework, we aim to develop algorithms that can dynamically adjust
their learning in response to the nature and magnitude of the detected environ-
mental shifts. For example, if a significant change is detected, the algorithm might
increase exploration to gather information about the new environment quickly.
Conversely, for minor changes, the algorithm could make subtle adjustments to

the policy while maintaining its current knowledge base.

QUESTION 3: How to enhance sample efficiency when adapting?

When using knowledge from previous environments to adapt, a straightforward
approach is to preserve experiences from well-learned environments. Still, the
vast amount of data can lead to prohibitively high associated costs. Therefore,
we focus on selecting valuable experiences from a well-learned environment to
represent the knowledge acquired by the policy, ensuring efficient and effective
knowledge retention. Then, we need to explore the strategy of retaining the most
representative interactions between agents and environments. There are some
works on improving sample efficiency based on reward [18], TD error [19] and global

distribution [20] to benefit policy learning. For adaptation in new environments, we
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need to explore a specific strategy to provide the most comprehensive information
for our problem setting. The goal is to use the most negligible storage to avoid the

extra cost of our framework.

QUESTION 4: How to learn in non-stationary environments with high dimensionality?

Model-free RL algorithms often need to take tens of millions of steps [21] to train
a policy that is good enough, which is impractical in many open-world applica-
tions, especially health and safety-related scenarios. In contrast, model-based RL
learns the transition and reward models to maintain high-quality environmental
planning and prediction, known for higher sample efficiency. However, modeling
high-dimensional RL environments is challenging because some data, like images,
do not always constitute a Markovian space in practice [22, 23]. If the environ-
ment is non-stationary, it introduces additional computational costs. Therefore, the
development of efficient mechanisms for the detection of environmental changes
is imperative. These mechanisms must be swift and accurate to ensure timely

adaptation, allowing the model to respond effectively to new conditions.

This research aims to achieve the following objectives, which are expected to answer

the above research questions:

OBJECTIVE 1: To develop methods that detect environment changes from data distri-

bution analysis.

This objective corresponds to Research Question 1. Our proposed algorithm an-
alyzes the data collected during the interaction process between agents and the
environment. By monitoring changes in these data, we aim to capture the underly-
ing environmental variations. This approach allows us to detect shifts in the state
space, changes in reward dynamics, or alterations in the transition probabilities,

which are critical for adapting the agent’s policy to maintain optimal performance.
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These algorithms employ statistical and machine learning techniques to identify
patterns and anomalies in the data that signify environmental changes, ensuring

its continued effectiveness in non-stationary settings.

OBJECTIVE 2: To develop methods that detect environment changes from deep learning

properties.

This objective corresponds to Research Question 1. Our proposed algorithm is
grounded in deep learning theory, encompassing aspects such as the relationship
between parameter changes and gradients during neural network training, as
well as the connection between neural networks and Bayesian surprise to detect
changes in the environment. This detection method, based on the models’ response
to environmental changes, offers a novel perspective to provide an innovative
approach to change detection, enhancing the adaptability and responsiveness of

deep learning models in dynamic settings.

OBJECTIVE 3: To develop adaptation mechanisms using self-adjusted regularization.

This objective corresponds to Research Questions 2. We aim to achieve knowledge
reuse by adding additional constraints to the objective function while considering
the degree of environmental changes. We employ behavior-guided and environment
model-guided self-regulation constraints that adjust the learning process based
on different environmental changes. This adaptive approach ensures that the
retained knowledge is not only preserved but also effectively utilized to maintain
optimal performance in the face of dynamic and evolving conditions. By integrating
these mechanisms, our algorithm seeks to balance stability and plasticity, enabling
the reinforcement learning agent to adapt efficiently to new situations without

forgetting previously acquired skills.

OBJECTIVE 4: To develop adaptation mechanisms according to deep learning proper-
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ties.

This objective corresponds to Research Questions 2. Our goal is to move beyond
simply retaining and applying knowledge straightforwardly; instead, we aim to
preserve knowledge that is specifically useful and relevant to the current environ-
ment. We aim to adapt to changes by utilizing the relationship between neural
network parameter changes and gradients, as well as the connection between neu-
ral networks and Gaussian processes. By leveraging these theoretical foundations,
our algorithm seeks to enhance the understanding and optimization of learning
based on prior knowledge. This approach not only contributes to the advancement
of reinforcement learning methodologies but also holds the potential to improve

the performance and generalization of tasks across various applications.

OBJECTIVE 5: To develop a trajectory selection method to improve the sample

efficiency of previous environments.

This objective corresponds to Research Question 3. We target selecting the most
valuable trajectories that can represent a well-learned environment. With the
selection, we can significantly improve the sample efficiency in model-free RL,
which often needs millions of trials to search for an optimal policy. There are
several reasonable selection strategies to pick memorable points for an RL task,
such as choosing the highest rewarded experiences, picking the points near decision
boundaries and selecting experiences with low TD error. We will investigate the
selection method based on sequentially non-stationary environments, leading to

better adaptation performance.

OBJECTIVE 6: To develop a model-based RL framework that monitors the shift of

complex changing environments with high-dimensional inputs.

This objective corresponds to Research Question 4. We aim to design a model-based

RL algorithm that can cope with potentially high-dimensional, non-stationary
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1.3

environments with change point monitoring and rapid adaptation. Learning en-
vironment transitions and reward functions have some practical problems. Thus,
we move model learning into a latent space, which is expected to demonstrate
Markov transition properties more clearly and, at the same time, significantly
reduce dimension compared to the raw observation space. At the same time, such
a latent space is also beneficial for reducing the detection cost, making it a more

efficient approach for managing dynamic environments in model-based RL.

Research Contributions

This thesis extends traditional deep reinforcement learning to more practical non-

stationary environments with unknown change points. The main contributions of this

study are concisely summarised as follows:

A formal model-free deep reinforcement learning scheme in non-stationary envi-
ronments with unknown change points. Our framework spans the entire learning
pipeline and identifies the methods’ similarities and differences with existing

methods.

A formal model-based deep reinforcement learning scheme in non-stationary envi-

ronments with both detection and adaptation in the latent space.

Two distribution-based change detection methods for reinforcement learning envi-
ronments to accurately identify the change of RL states, transitions and reward

functions, including high-dimensional and time-dependent data.

An environment change detection method closely linked to Bayesian surprise. This
method uses the GP predictive uncertainty that contains information about the

distribution of these inputs to determine change points.
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* An environment change detection method related to neural network updating. This
method uses the relationship between neural network weights and gradients to

identify sudden changes in environments.

¢ Two detection-boosted adaptation methods with regularization that quickly learn
a new policy once a change is detected with an ability to reduce the effect from

unrelated tasks.

* Two adaptation methods by using gradient constraints and optimizations to lever-
age the knowledge learned from the previous environment. We have considered

the influence of change extents and avoided conflict gradient editing.

* A data selection strategy that enhances the sample efficiency of adaptation mecha-
nisms and ensures high performance after environmental changes. This method

reduces the cost of the adaptation scheme.

* A learning strategy to learn effectively in non-stationary environments with high-
dimensional inputs. Our method detects the change points of non-stationary envi-

ronments in the latent space online and can adapt to new environments rapidly.

1.4 Thesis Organization

The structure of the thesis is shown in Figure 1.3, and the chapters are organized as

follows:

¢ Chapter 2 investigates the literature by categorizing studies based on whether
the change points in the environment are known or unknown. Simultaneously, we
also discuss the similarities and differences between our research question and

other related areas in detail. This chapter allows us to systematically analyze
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Figure 1.3: Thesis organization.

the methodologies, effectiveness, and limitations of RL algorithms in adapting to

varying degrees of environmental non-stationarity.

Chapter 3 presents a robust deep reinforcement learning algorithm for non-
stationary environments with unknown change points. The algorithm actively
detects change points by monitoring the joint distribution of states and actions. A
detection-boosted, gradient- constrained optimization method then adapts the train-

ing of the current policy with the supporting knowledge of formerly well-trained
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policies. Previous policies and experience help current policies adapt rapidly to en-
vironmental changes. Experiments show that the proposed algorithm accumulates
the highest reward among several alternatives and is the fastest to adapt to new

environments.

* Chapter 4 introduces Behavior-Aware Detection and Adaptation (BADA), an in-
novative framework that merges environmental change detection with behavior
adaptation. The key inspiration behind our method is that policies exhibit different
global behaviors in changing environments. Specifically, environmental changes
are identified by analyzing variations between behaviors using Wasserstein dis-
tances without manually set thresholds. The model adapts to the new environment
through behavior regularization based on the extent of changes. The results of a
series of experiments demonstrate better performance relative to several current

algorithms.

* Chapter 5 introduces Functional Detection and Adaptation (FDA) that incorporates
change detection and adaptation to new environments. This method focuses on
choosing the most representative trajectories of previous environments, addressing
the problem of high storage cost and limited access to the past environments. Then,
we employ Bayesian surprise to detect environmental changes. It also utilizes
the Gaussian process posterior to provide knowledge for the new environment.
Experimental results demonstrate the effectiveness of this approach in handling

non-stationary and evolving environments.

¢ Chapter 6 proposes a new model-based reinforcement learning algorithm that
proactively and dynamically detects possible changes and Learns these Latent and
Changing Dynamics (LLCD) in a latent Markovian space for real non-stationary
environments. To ensure the Markovian property of the RL model and improve

computational efficiency, we employ a latent space model to learn the environment’s
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transition dynamics. Furthermore, we perform online change detection in the latent
space to promptly identify change points in non-stationary environments. Then
we utilize the detected information to help the agent adapt to new conditions.
Experiments indicate that the rewards of the proposed algorithm accumulate for

the most rapid adaptions to environmental change, among other benefits.

Chapter 7 gives a brief summary of the thesis and its contributions. Potential

future studies are summarized as well.
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CHAPTER

LITERATURE REVIEW

he problem of Deep Reinforcement Learning (DRL) in non-stationary envi-

ronments has been a focal point of research in several studies. In real-world

scenarios, environments can exhibit a spectrum of complexity, ranging from
relatively simple settings with predefined change points to highly dynamic and unpre-
dictable situations where the temporal changes are unknown. To gain a comprehensive
understanding of the existing approaches and challenges, we investigate the literature
by categorizing studies based on whether the change points in the environment are
known or unknown. Simultaneously, we will discuss the similarities and differences
between our research question and other related areas in detail. This point of view allows
us to systematically analyze the methodologies, effectiveness, and limitations of DRL

algorithms in adapting to varying degrees of environmental non-stationarity.

In this chapter, we first summarize prior works similar to our research problem,
explicitly focusing on Deep Reinforcement Learning that continuously adapts in dynamic
environments with unknown change points. This review will provide a foundational

understanding of the current state of the art and identify critical areas where our
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Figure 2.1: The structure of the literature review.

research can contribute to the field. Following that, we analyze works in related fields

such as meta Reinforcement Learning, continual Reinforcement Learning, and transfer

Reinforcement Learning. We elucidate the differences between these approaches and

our focal problem from various perspectives, including problem settings and solution

methodologies.

2.1 Deep Reinforcement Learning Concepts and

Frameworks

DRL allows intelligent agents to learn an optimal policy by representing the complex

relationships between states and actions in an interactive game-like environment [24].
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Its powerful ability to model sequential decision-making has seen DRL widely used for

various applications [25, 26, 27, 28, 29].

A wide of representative works have been proposed, including model-free and model-
based approaches, both sharing the common goal of enabling agents to learn optimal
policies in complex environments. Model-free RL directly learns a policy or value function
from interactions with the environment, bypassing the need for an explicit model of the
environment’s dynamics. This approach does not have access to the transition probability
distribution. Model-free approaches are generally more straightforward, requiring much
data to achieve satisfactory performance. Representative algorithms include Vanilla
Policy Gradient (VPG) [30], Trust Region Policy Optimization (TRPO) [31] Proximal
Policy Optimization (PPO) [32], Deep Q Network (DQN) [24], Asynchronous Advantage
Actor-Critic (A3C) [33], Deep Deterministic Policy Gradient (DDPG) [34], Soft Actor-

Critic (SAC) [35], Twin Delayed Deep Deterministic Policy Gradient (TD3) [36] etc.

Among these state-of-the-art methods, VPG [30], TRPO [31] and PPO [32] are on-
policy algorithms whose function is learned from actions we took by the current policy.
There is a sampling policy and an update policy in the update scheme of model-free RL.
The sampling policy is the policy an agent follows when choosing which action to take in
the environment at each time step, and the update policy is how the agent updates the
Q-function. On-policy algorithms attempt to improve upon the current behavior policy
that is used to make decisions. Therefore, these algorithms learn the value of the policy
carried out by the agent. Off-policy algorithms learn the value of the optimal policy and
can improve upon a policy different from the behavior policy. Off-policy DRL maintains
a behavior policy and a target policy. While the behavior policy generates actions for
observed states, the target policy is trained iteratively using the subsequent outcome of
the action. The vanilla off-policy algorithms include DQN [24], TD3 [36], DDPG [34] and
SAC [35].
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Reinforcement learning can be applied in many domains, and the most famous
application is AlphaGo [37]. Furthermore, operations research [38], robotics [39], traffic
systems [40], recommender systems [41] and video games [42] are all making use of
DRL. For example, the application of DRL in robotics usually aims to create intelligent
machines that can assist humans in a variety of tasks and execute tasks that are beyond
human capabilities. Robotics can achieve the same task more safely and efficiently
than human beings. Robots are also used in space missions, emergency surgery, and
hospital meal preparation [43], among other things. DRL is applied successfully in
robotics with tasks like navigation [44, 45], control [46], target search [47, 48], multi-
agent coordination [49, 50], manipulation [51, 52, 53] and transport [54]. This tripartite
division underlines DRL’s adaptability across different robotic terrains and objectives.
The environment in which robotics work is relatively complex and changes over time.
However, agents usually have difficulty learning in these conditions because the rewards
are sparse; that is, the reward will not be obtained at each time step, and only a few

actions will be rewarded.

Another closely related application area of DRL is recommendation systems. The
problem of recommending the best items to a user is not only a prediction problem but a
sequential decision problem [55]. This suggests that the recommendation problem could
be modeled as an MDP and solved by DRL methods. A large amount of work [56, 57, 58]
applied DQN in recommender systems, and others use Actor-Critic methods [59, 60]. In a
typical DRL setting, an agent aims to maximize a numerical reward through interaction
with an environment. This is analogous to the recommendation problem, where the
recommend algorithm tries to recommend the best items to the user and to maximize

the user’s satisfaction.

However, the prior work on DRL in specific non-stationary environments is limited.

Most of them hold the assumption that the data are coming from a set of fixed states and
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take actions in a stationary environment. The reason why DRL does not work well in
complex environments is that adapting DRL to dynamic problems is the first step for the

DRL controller to more general applications, which has the central issue of scalability.

2.2 Deep Reinforcement Learning in Non-stationary
Environments

Addressing the problem of Reinforcement learning in non-stationary environments
with unknown change points typically involves two approaches. The first entails actively
detecting changes and adapting upon identifying such alterations. In contrast, the second
approach does not include change detection but focuses on continuous adaptation at each

time step.

2.2.1 Detecting Environment Change Points

Methods involving detection can more accurately identify task information and improve
algorithm efficiency, as adaptation typically begins only after changes have been detected.

Detect Dynamics Changes One approach is to model the environmental dynamics,
i.e., the transition function of the environment to be interacted with. With the modeled
dynamics, monitoring its change is straightforward. The classical approaches to this
problem are based on context detection. RL-CD (Reinforcement Learning with Context
Detection) [11] is the first presented algorithm for detecting RL environmental changes.
The core idea is to create and simultaneously update multiple partial models of the
environment dynamics. There are several partial models in the system, and each model
is used in different contexts. The method of detecting changes is introducing a quality
signal for the partial model. Thus, a confidence value that reflects the model performance

is presented. The confidence value relates to the trial times of an agent in a given
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state, so it is proportional to the quality of the models. RL-CD detects environmental
changes by replacing the currently active model with the highest quality. If the best
model performs poorer than a threshold, a new model is created to learn an optimal
policy. Based on RL-CD, Hadoux et al. [61] considered the non-stationary environment a
set of contexts (or modules). In the inside of one context, the environment is static. The
authors proposed a novel algorithm that detects context changes by learning a group of
unknown contexts, known as sequential analysis. Similarly, this algorithm estimates the
transition and reward functions but has fewer parameters. Banerjee et al. [62] pointed
out that what is optimal for optimizing rewards may not necessarily be optimal for
the quickest detection of model changes. This work computed Shiryaev algorithm [63],
CUmulative SUM statistic (CUSUM) [64] and Shiryaev-Roberts (SR) statistic [65] on a
sequence of random variables, i.e., the state and action pair over time, and switch to the
optimal policy for the model at the time when the change detection algorithm crosses
its threshold. Further, Alegre et al. [66] constructs a mixture model that ensembled
several probabilistic dynamics predictors. They also proposed the change detection for
the underlying MDP via a multivariate variant of CUSUM [67, 68] statistics. However,
sometimes, the drift of environments only permits limited interaction before the changes
occur in environmental properties. These interaction data reflect the transition function
and reward function of the environment while modeling the dynamics directly, which is

laborious and impractical in many scenarios.

Data Distribution Another approach to address this problem is to track changes
in the distribution of training data during the learning process. Azayev et al. [69] had
trained an extra classifier to determine which terrain the robot encounters. The method
is close to supervised learning because each terrain has a label. Padakandla et al. [14]
used an online change detection method [70], which is designed for the compositional

multivariate data modeled as Dirichlet distributions and divides the multiple change
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point detection into a sequence of single change point detection. There is only one
active window of a specific size, and the detection is carried inside. If a change point is
detected, the beginning of a new window is set to this point. Chen et al. [12] proposed an
adaptive deep RL method for non-stationary environments with piecewise-stable context.
Their method can infer the context segment structure and the belief context accordingly
from observed data, which can be leveraged to detect and adapt to context changes.
The detection method is similar to Bayesian Online Change Detection (BOCD) [71],

estimating the posterior for the current segment length.

Superise-based Methods Bayesian surprise [72] is a general concept derived from
the first Bayes principles. For data .#, given a prior distribution P(.#) of beliefs, the
fundamental effect of a new data observation D on the observer is to change the prior
distribution into the posterior distribution P(.# | &) via Bayes theorem. Thus, the
surprise is defined by the average of the relative entropy or Kullback-Leibler divergence
between the prior and posterior distributions. The concept can be used in outlier detection.
Thus, Nagayoshi et al. [73] proposed a representation method based on environment
entropy. The method tracks the entropy change in response to changing conditions.
However, in reality, the simulated environments are complex and difficult to reuse.
Similarly, in continual learning studies like [17, 16], they calculated the surprise when
the model is updated using each minibatch and performed Welch’s t-test [74] on the

adjacent surprise.

Reward-based Methods Lomonaco et al. [13] proposed and open-sourced CRLMaze,
which is a new benchmark for continuous reinforcement learning in a 3D changing
environment based on ViZDoom [75] and designed a variety of environmental changes.
The threshold for triggering change determination is the difference between the short-
term and long-term rewards. When the difference goes under the threshold, changes in

the reward function or non-stationary interrupts of the learning process can be mitigated
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by consolidation. However, reward-based methods are limited in environments with

sparse rewards and need manually set thresholds.

Learning Task Embeddings Lin et al. [76] learned the variance as a function in a
dynamic sparse reward environment with continuous action space. A significant variance
increases exploration in a state with a low chance of getting a high reward. Similarly,
Sutton et al. [5] tracked environment changes by fine-tuning the policy continuously
and underscored the importance of tracking in domains with temporal coherence for
meta-learning. Xie et al. [77] leveraged latent variable models to learn a representation
of the environment from current and past experiences and perform off-policy RL with
this representation. Most of these methods closely link to meta-learning [78, 79]. They
model some task-specific vectors, which can be used to predict the most transferable

source task for a given target task via the similarity between task embeddings.

2.2.2 Adapting to New Reinforcement Learning Environments

Adaptation to new environments has been extensively researched, with considerable
work done in various fields. In this section, we will focus only on methods relevant to
this thesis’s settings. Other approaches will be discussed and compared in detail in the
following sections, providing a comprehensive overview of the current state-of-the-art
and highlighting the unique contributions of our proposed methods within the broader
context of reinforcement learning and environmental adaptation.

Model-based methods da Silva et al. [11], and Hadoux et al. [61] estimated the
prediction quality of different models and instantiated new ones when none of the existing
models performed well in discrete settings. Further, Alegre et al. [66] extend it to the
continuous setting via a mixture model composed of a (possibly infinite) ensemble of
probabilistic dynamics predictors that model the different modes of the distribution over

underlying latent MDPs. Banerjee et al. [62] proposed a two-threshold switching policy
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based on KL divergence between transition models to adapt to different environments,
requiring prior knowledge of the dynamics.

Model-free methods Lomonaco et al. [13] used the gap between the short-term
and long-term rewards to indicate environmental shifts. Their adaptation method is
based on Elastic Weight Consolidation (EWC) [8], which aims to overcome catastrophic
forgetting in continual RL scenarios. Padakandla et al. [14] update the Q-functions when
a change point is detected. Another approach to adaptation is to adapt to the environment
continuously rather than detect change points. One idea proposed by [80] is that when
an environment changes, the learning records collected by the agent tend to increase
entropy. Thus, they introduced the new concept of surprise. This solution involves a
confidence model that describes the state most familiar to the agent and how it relates to
the distribution of states they have experienced. Experiencing a more familiar state will
result in a higher establishment function. The goal of the subsequent behavioral strategy
will be to select the behavior that allows the subject to continue in the most familiar
state. Kaplanis et al. [81] added an extra loss item into PPO to simultaneously remember
the agent’s policy at various timescales to learn without forgetting and adapting to new
environments. This approach saves on detection costs but performs poorly when faced
with more significant or more frequent environmental changes, especially when there

are changes in observations.

2.3 Multi-task Deep Reinforcement Learning

Multi-task RL aims to learn a shared policy for a diverse set of tasks. Multi-task RL
encompasses a wide array of transfer learning style methods. At its core, it is training
a single model to solve multiple tasks. The main challenge of multi-task RL is the
conflicting gradients among different tasks.

Some previous online RL works address this problem via gradient surgery [82], which
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projects the conflict gradient onto the normal vector of the other gradient. Liu et al. [83]
solved this problem via conflict-averse learning by finding the best update vector within
a ball around the average gradient that maximizes the worse local improvement between
task 1 and task 2. There are some prior works using parameter composition [84, 85].
Yang et al. [84] introduced an explicit modularization technique that uses a routing
network to reconfigure a base policy network for each task through soft combinations
of possible routes, improving sample efficiency and performance on various simulated
robotics manipulation tasks. Sun et al. [85] proposed a parameter-compositional approach
that learns a policy subspace represented by a set of parameters, allowing policies for

individual tasks to be composed by interpolating in this subspace.

For the offline setting, Decision-Transformer-based methods [86, 87, 88] rely on expert
trajectories and entail substantial training expenses. Yu et al. [88] proposed a method
that conditions a robotic policy on task embeddings comprised of visual demonstrations
and language instructions. This allows these two modalities to clarify ambiguities and
improve generalization performance over using either alone for complex pick-and-place
tasks. Lee et al. [87] demonstrated that scaling up transformer-based models trained on
diverse datasets using an offline reinforcement learning approach, similar to methods
used in vision and language domains, can produce highly capable generalist agents.
Kumar et al. [89] demonstrated that with appropriate design choices like ResNets,
cross-entropy distributional backups, and feature normalization, large-capacity offline
Q-learning models trained on heterogeneous datasets can achieve strong performance
that scales with model size. Yuan et al. [90] tackled the challenge of learning robust
task representations in offline meta-reinforcement learning by proposing a contrastive
learning framework with a bi-level encoder structure that maximizes mutual information
between task representations and rewards, using negative sample approximations to

make the representations invariant to the mismatch between training and test behavior
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policy distributions. There are also some work based on gradient descents in the finetun-
ing stage, such as Sun et al. [91], which presents a self-supervised multi-task pretraining
framework for sequential decision-making tasks that uses a Control Transformer cou-
pled with a carefully designed control-centric pretraining objective to learn transferable
representations that capture essential information for both short-term and long-term
control. Similarly, Taiga et al. [92] employed a method where an agent is pretrained on
multiple variants of the same Atari 2600 game before being fine-tuned on previously
unseen variants. Maurer et al. [93] extracted features for multiple tasks in a single
low-dimensional shared representation. Eramo et al. [94] further highlight the benefits
of learning a shared representation, as error propagation in approximate value iteration
and policy iteration improves when learning multiple tasks jointly.

These works aim to solve multi-task problems, which maintain consistency among
gradients in the subspace of tasks, thereby finding a compromise that satisfies multiple
tasks simultaneously. In our setting, where the environment is constantly changing and
unpredictable, the goal is to leverage knowledge gained from similar past experiences to
perform better in the current environment rather than striving to maintain performance

across all previously encountered environments.

2.4 Continual Deep Reinforcement Learning

Continual reinforcement learning algorithms aim to mitigate catastrophic forgetting,
where learning new tasks causes the agent to forget previously learned knowledge. In a
continual setting, the boundaries between tasks are often well-defined, and the agent
is expected to learn each task in sequence without forgetting previous tasks. According
to [95], the prior work can be divided into explicit parameter-based methods, replay-based
methods and structure-shared methods.

Parameter-based methods The parameter-based approach, as exemplified by [9],
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involved using the representations learned by networks from previous tasks as inputs for
subsequent tasks. Another approach is to retain a prior concerning the historical usage
levels of each parameter during learning, thus preserving significant prior knowledge [8].
Regrettably, this stability might constrain the possibility of backward transfer during the
process. Similar approaches [96, 97] accomplish this objective by utilizing the principle
of superposition, in which context information for each task is preserved, allowing the
weights to be distinctly broken down into orthogonal sub-networks. There are some
distillation-based researches [98, 99, 100, 101] involving using one neural network as a
reference or soft target for another. This technique can enhance the training process by
supplying an additional auxiliary target, which the trained network aims to replicate.

Another widely used approach is to emphasize the significance of past experiences.

Replay-based methods Another approach of continual RL is leveraging experience
replay. Replay methods like [102, 103, 104] can, therefore, assist in correcting the short-
term bias present in their objective function, provided that past experiences are a reliable
approximation for new events. To address the problem of significant storage cost, some
methods proposed pseudo-rehearsals sampled from a generative model [105, 106]. Lopez-
Paz et al. [15] added task labels as an extra input, storing the training data in episodic
memory. When a new task appears, the gradient of the previous task is calculated to
constrain the gradient of the current task. Instead of using shared replay, Kessler et
al. [107] learn a factorized policy, using the same feature extraction layers but different
heads, each specializing in a new task. This allows it to select the best policy for an

unlabeled task.

Structure-shared methods Some approaches within the structure-shared methods
domain emphasize modularity and composition [108, 109, 110, 111], where modules
specialized for each task can be composed for related tasks. Other research [112, 113,

114] focuses on the skills learned by the network, which can be generalized to other
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tasks. Similarly, work by [115, 116] concentrates on integrating skills and composition
seamlessly, facilitating the explicit reuse of previously acquired knowledge in the form of
skills. Some studies center on goals, which can be interpreted as states the agent aims to
reach, a reward the agent must achieve, or a termination point of a skill. An ambitious
approach is to discover general-purpose goals without relying on any reward signal, akin

to unsupervised learning [117, 118, 119, 117].

Lifelong learning While continual learning focuses on sequential task learning
within a specific domain, lifelong reinforcement learning [120] takes a broader per-
spective. It aims to enable an agent to continuously acquire and transfer knowledge
across various domains throughout its lifetime, posing additional challenges beyond
catastrophic forgetting. The core settings in most work are similar to continual reinforce-
ment learning. Fu et al. [121] presented a model-based lifelong reinforcement learning
strategy that enhances sample efficiency by distilling a hierarchical Bayesian posterior,
facilitating forward and backward knowledge transfer. Lu et al. [116] proposed a method
leveraging unsupervised skill learning and a dynamics model for planning, reducing the
need for extensive real-world interaction. Aljundi et al. [122] introduced another gate to
compare which new tasks are most similar to the previous training. The parameters of
the new network are then initialized according to the most similar task. Xie et al. [123]
measured the similarity between the past samples and the current task’s transition

dynamics to determine which samples to transfer in the online fine-tuning phase.

As a distinction between continual and lifelong reinforcement learning, our motiva-
tion is to enable the agent to adapt to changing environments and maintain stability
during changes. The underlying reason is that agents rarely encounter identical and
repeat environments in the practical scenario. Consequently, it is crucial to leverage prior
knowledge for rapid adaptation, ensuring optimal performance within the ever-changing

online environment. Furthermore, the change points of environments are unpredictable,

29



CHAPTER 2. LITERATURE REVIEW

which makes it challenging to deploy continual learning methods to our setting directly.

2.5 Transfer Deep Reinforcement Learning

Transfer Learning (TL) refers to leveraging knowledge learned from one task, usually
named as the source domain, to boost the performance of machine learning models on
another task, usually named as the target domain. A comprehensive survey of transfer
learning is given in [124].

In reinforcement learning, transfer learning techniques are faced with more chal-
lenges. Because the MDPs have complicated components, knowledge from the source
domain can be transferred in different ways [125]. The knowledge to be transferred can
be rewards, policies, demonstrations, or representations learned by deep neural networks.
Amounts of works have studied how to transfer these types of knowledge to boost the
performance of reinforcement learning models.

Share rewards The most intuitive way to share knowledge in reinforcement learning
is to share rewards. Reward sharing is a type of method to construct the distribution
of rewards in the target domain utilizing knowledge from the source domain. Potential
based Reward Shaping (PBRS) [126] is the most classic one among these types of
methods. In PBRS, a shaping function was proposed to measure the differences between
two potential functions. The shaping function provides the rewards containing knowledge
from the source domain to help agents make better decisions. Then Potential Based
state-action Advice [127] was proposed, where potential functions include actions as well.
Dynamic Value Function Advice [128] developed a framework to incorporate arbitrary
knowledge into dynamic potential functions via reward sharing.

Learning from demonstrations Another common type of shared knowledge is
demonstrations, which can lead to more efficient explorations. Among these methods, a

common assumption is that the source and target Markov Decision Processes are the
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same. Demonstrations are first introduced in [129]. Then Direct Policy Iteration with
Demonstrations [130] was proposed. Two complete demonstrated rollouts are sampled.
The one is from an expert policy. The other is from the self-generated. Then, the union of
two rollouts is utilized to learn the estimation of values in the Q table. In Approximate
Policy Iteration with Demonstration [131], only the rollout from the self-generated is
used to estimate the values in the Q table. The rollout from expert policy is used to learn
a value function. In [132], two separate replay buffers are used to cache the demonstrated
and self-generated data. Thus, the expert demonstrations can continuously be sampled
from the data in the buffer. In [133], a potential function represents the highest similarity
between a state-action pair and the expert demonstrations. In Generative Adversarial
Imitation Learning [134], the state-action distributions under a given policy are mea-
sured using an occupancy measure. Then, the new reward function is to maximize the
accumulated rewards encouraged and to minimize the distribution divergence between
the current policy and the expert policy. The RL can be transferred into an optimization

problem. Further, Kang et al. [135] improved the policy optimization compared to [134].

Policy transfer The main idea of policy transfer is to use pre-trained policies from
source domains in the target domain. Usually, the number of source domains is not
less than one. A student policy is learned from multiple teacher policies by minimizing
the divergence of the distributions of actions. In [136], the KL-Divergence is used to
measure the divergence of the distributions of each teacher and student. In [137, 138],the
trajectories of the teacher’s policy are replaced with that of the student’s policy during
optimization. Besides policy distillation, another idea is to reuse policies. Policies from
source domains are reused directly in the target domain. In [139], policies from source
domains are weighted and the target policy is yielded from the weighted combination of

these policies. Other similar methods include [140, 141].

Inter-task mapping These methods assume that there exists a one-to-one mapping
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between source domains and the target domain. Then, the mapping can be used to
transfer knowledge. In [142, 143, 144], mapping functions over the state space are
learned from data. In [145, 146], a mapping function over the transition dynamics space
is learned. These methods assume that there exists a similarity between the transition
probability and the state representations between source and target domains.

Share the representations The last category of methods is to share the represen-
tations learned by deep neural networks. In [147], progressive neural networks share
the representations. Progressive neural networks consist of multiple columns, each for
one specific task. For the target task, the columns for source tasks are frozen and the
representations from these columns are applied to the new column. Then Fernando
et al. [148] adopted a similar idea but used a fixed-size network. Instead of reusing
representations, other methods learn a disentangled representation across source and
target domains. These methods include Successor Representations [149, 150, 151] and
Universal Function Approximation [152, 153]. Eysenbachet al. [154] proposed an esti-
mated modified reward function to transfer experience. Xie et al. [123] solved multi-task
reinforcement learning by retaining and reusing prior experience. Chen et al. [155]
introduced a one-test-time trial scenario, where an agent must complete a task within a
single episode by learning to imitate fixed prior experiences.

It is noted that the common theme in these works is the presence of shifts between
train and test settings, while our setting lays on constant online adaptation with active

change detection simultaneously.

2.6 Meta Deep Reinforcement Learning.

Meta-reinforcement learning (meta-RL) is a paradigm in reinforcement learning that
aims to learn how to quickly adapt to new tasks or environments rather than solving a

single fixed task. The key idea is to leverage experience from a distribution of tasks to
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learn a general strategy that can be efficiently fine-tuned or adapted to solve new tasks
from the same distribution. More specifically, in meta-RL, there is a meta-training phase
where the agent is exposed to a set of training tasks sampled from a task distribution.
The goal is to learn a meta-policy or meta-learner that can quickly adapt to any new task
from the same distribution during a meta-testing phase, using only a few examples or a
small amount of experience from the new task. The meta-training process can be thought
of as learning a good initialization or representation that captures common structure
across tasks, which can then be fine-tuned or adapted efficiently for each new task.

Meta-RL algorithms aim to learn this efficient adaptation strategy during meta-training.

Some critical approaches in meta-RL include Model-Agnostic meta-learning, recur-

rent models, gradient-based methods and context-based methods.

Duan et al. [156] extended this idea to introduce an on-policy meta RL algorithm
corresponding to training an extra network with hidden states maintained across the
whole training procedure to help the policy learn new tasks rapidly. Aghapour et al. [157]
proposed a double meta RL algorithm, which adds an extra meta-model that learns
the dynamics of the environment and generates data to meta-train the policy. Z Xu et
al. [158] proposed a gradient-based meta-learner that improves the performance with
only a few gradient update steps by making use of the task embedding. Furthermore, Xie
et al. [77] leveraged latent variable models to learn a representation of the environment
from current and past experiences and perform off-policy RL with this representation.
However, this view may ignore the sequential nature of these tasks where learning
should be greedy. To differentiate with our motivation, we emphasize that in meta RL,
the training and testing tasks are separate, and the adaptation occurs while testing
rather than learning. Also, most meta-RL methods assume that tasks come from the
same distribution, while our motivation lies in handling more drastic environmental

changes.
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2.7 Contextual Markov Decision Process

There is also some fundamental research on MDP. Hallak et al. [159] introduce con-
textual MDP, which involves tuples with hidden parameters that are constant over
time. The different tasks of the non-stationary environment are identified by clustering
transition models. Modi and A. Tewari [160] studied the case where the transition kernel
of each MDP is specified with a generalized linear model of the context. Modi et al.
[161] used the context or side information to model multiple tasks in smoothly varying
environments and linear structured MDPs. Besides, many prior works have studied Con-
textual MDP [162, 163, 164], where contexts are sampled once and are fixed throughout
each episode. Building upon this, Dynamic Contextual MDPs are a generalization case,
where contexts can change over time in episodes. Tennenholtz et al. [165] considered
history-dependent dynamics of contexts and can capture slow changes. In contrast, Mao
et al. [166] aimed at a non-stationary contextual MDP is considered without dependence
on previous actions and states. Similarly, Ren et al. [167] propose a Bayesian approach
to learning contextual MDPs where dynamics are not state-action-dependent or history-
dependent. Sodhani et al. [6] proposed a block contextual MDPs, utilizing Lipschitz

properties to ensure the generalization ability to unseen tasks.

2.8 Partially Observed Markonv Decision Process

A partially observable Markov decision process (POMDP) [168, 169, 170] is also a gener-
alization of an MDP. A POMDP models an agent decision process in which it is assumed
that an MDP determines the system dynamics, but the agent cannot directly observe the
underlying state. One approach is to estimate the real POMDP model, which contains a
sensor model to the probability distribution of different observations given the underly-

ing state [171, 172], which build on the estimation of the parameters of hidden Markov
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models (HMMs) using spectral methods [173]. Instead of estimating the real POMDP
model, Jin et al. [174] utilized the observable operator model. Similarly, under complete-
ness assumptions, Guo et al. [175] proposed an offline RL algorithm that constructs
confidence regions for Bellman operators that characterize POMDPs. Jin et al. [176]
added a bonus to the rewards that penalize states not well-covered by the observed ones.
Zanette et al. [177] constructed an MDP model on which the performance of any policy
lower bounds that of the natural environment and then learned a near-optimal policy
on this model. Our idea is closest to the second approach. The POMDP framework is
general enough to model various real-world sequential decision processes. The research
problem in this thesis distinguishes POMDP from the assumption of the underlying

MDP changes.

2.9 Concept Drift

Our research problem is closely linked to concept drift [178, 179], which involves a
non-stationary data stream with changing labels and data. These data streams present
novel challenges for machine learning models, particularly concept drift. Concept drift
pertains to the phenomenon where the statistical properties of the target variable change
unpredictably over time. It poses a significant challenge to real-world machine learning
algorithms operating in dynamic and evolving environments. Concept drift is a prevalent
issue across various fields, including computer and telecommunication systems, traffic
monitoring, personalized recommendation systems, and medical decision support, among
others [179].

The most direct approach to address concept drift is to retrain a new machine learning
model with the incoming data. Upon detecting a drift signal, it’s typical to train a new
model to replace the old one. Alternatively, adaptive models possess the capability to

update themselves partially when concept drift is identified. This method proves to be
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more efficient, particularly when the drift occurs within a localized region. However,
these adaptive methods are constrained to specific types of models, such as tree models
[180, 181, 182], lazy learners [183, 184], and support vector machines [185].

In recent years, ensemble learning has garnered considerable attention in the field of
machine learning [186]. Ensemble methods consist of a collection of base classifiers, which
may vary in type or parameters. The predictions of each base classifier are combined
using specific voting rules to make predictions on newly arrived data. Numerous adaptive
ensemble methods have been devised to address concept drift, either by extending
classical ensemble methods or by devising specialized adaptive voting rules. Ensemble
methods encompass various techniques [187, 188, 189].

Deep learning has demonstrated remarkable success across a spectrum of appli-
cations. Deep neural networks are typically updated through gradient descent-based
optimization techniques, a methodology that can be extended to data stream settings for
online updating. In a recent study by Soleymani et al. [190], a pre-trained convolutional
neural network is proposed, with its parameters continuously updated online to adapt
to concept drift. Additionally, various deep model architectures have been explored to
tackle concept drift, including recurrent neural networks [191] and Long Short-Term
Memory (LSTM) networks [192]. However, a key challenge with deep learning lies in
its data hunger; deep neural networks require substantial amounts of data for effective
training. This poses a significant challenge when handling concept drift, as only limited

data may be available for training post-drift detection.
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CHAPTER

A GRADIENT-CONSTRAINED APPROACH

his chapter aims at the research objectives 1 and 4 mentioned in the Chapter.

1. In this chapter, we present a novel approach for detecting change points by

monitoring the joint distribution of states and actions. Central to the method
is leveraging the relationship between the distance metric in neural networks and
the associated gradients. Specifically, a relaxed, constrained gradient optimization is
employed as an adaptation mechanism. By monitoring shifts in the joint distribution over
states and actions, the algorithm can identify points where the environments undergo a
transition. The neural network distance metric provides a principled way to quantify
these gradient changes through the geometry induced on the network’s parameter space.
The gradient-based adaptation allows the framework to adjust to detected changes stably

and efficiently by leveraging knowledge from the previous operating environment.

This chapter is based on the paper "Deep Reinforcement Learning in Non-stationary
Environments with Unknown Change Points" IEEE Transactions on Cybernetics, 2024

(DOI: 10.1109/TCYB.2024.3356981)

37



CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

3.1 Background

Deep Reinforcement Learning (DRL) allows intelligent agents to learn an optimal policy
by representing the complex relationships between states and actions in an interactive
game-like environment [24]. Its powerful ability to model sequential decision-making
has seen DRL widely used for various applications [25, 26, 27, 28, 29]. A wide of repre-
sentative works have been proposed, including proximal policy optimization (PPO) [32],
asynchronous advantage actor-critic (A3C) [33], etc. When the applications of RL extend
from simulated environments to real-world settings, a challenge that needs to be ad-
dressed is that the environment is often non-stationary, where the reward distributions
and state transitions are constantly changing. So, an attractive topic of DRL is to explore
their ability to be robust in non-stationary environments during their lifetime. However,
one common assumption of standard DRL schemes is that the environment where the
agent operates is dynamic but stationary. This means the probability distribution of the
state transitions and the reward functions remain unchanged during the interaction.
Unfortunately, such an assumption does not always hold fast in practice. In the real
world, many environments are non-stationary and sometimes change quite often [7].
For example, a rescue robot may potentially venture into a cave with changing lighting
conditions or navigate through unexplored terrains during task execution. Similarly,
the chatbot should seamlessly adapt to changes in conversation topics, including those
previously unencountered. In these non-stationary environments, the policies learned
from the previous environment settings will not always work well. Accurate detection

and rapid adaptation to new environmental conditions in these scenarios are crucial.

Some research [8, 9, 10] help RL agents work successfully in environments where the
change points are presented because a model can learn a new policy relatively quickly
after a change by simply borrowing knowledge from former well-trained policies. In

practice, however, the agent is not always aware of the change points of environments.
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Figure 3.1: Illustration of non-stationary environments and their impact on reward
changes. Three sequentially changed Vizdoom environments with different light levels
will lead to a drop in reward. PPO is the baseline to obtain these rewards.

For example, a delivery drone needs to contend with changing weather and wind patterns,
and a mopping robot trained on a wooden floor must be able to cope with tiled floors
or the sudden appearance of a rug, a recently moved chair, or a discarded toy. These
environments usually have unpredictable time-varying state transitions and reward
functions. As depicted in Figure 3.1, an RL agent experiences a noticeable decline in
rewards when confronted with unforeseen changes in lighting, leading to its failure in a
dark environment. While solving this problem is becoming increasingly significant, only
a few studies have attempted to tackle the issue. One solution is contextual detection for
model-based RL [11, 62], which estimates the environmental models of different contexts
but is challenging to accomplish in complex scenarios. Maintaining an environmental
model is not easy for high-dimensional environments due to the limitations of sample
efficiency in RL. Another method [13] for model-free RL determines environmental
changes using the difference between long-term and short-term reward averages, which
requires a manually set threshold value. Alternatively, Padakandla et al. [14] recognize
the distribution shift of the experience stream to represent the environment change

points. As shown later in experiments, these methods are vulnerable to significant and