

Deep Reinforcement Learning in
Non-stationary Environments

by Zihe Liu

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy in Computer Science

under the supervision of Prof. Jie Lu,
A/Prof. Guangquan Zhang and Dr. Junyu Xuan

University of Technology Sydney
Faculty of Engineering and Information Technology

October 2024

AUTHOR’S DECLARATION

I, Zihe Liu, declare that this thesis is submitted in fulfilment of the

requirements for the award of Doctor of Philosophy, in the Australian

Artificial Intelligence Institute, Faculty of Engineering and Informa-

tion Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowl-

edged. In addition, I certify that all information sources and literature used

are indicated in the thesis.

This document has not been submitted for qualifications at any other aca-

demic institution.

This research is supported by the Australian Government Research Training

Program.

SIGNATURE:

Zihe Liu

DATE: Tuesday 8th October, 2024

PLACE: Sydney, Australia

i

Production Note:
Signature removed prior to publication.

ABSTRACT

Deep Reinforcement Learning has demonstrated superior performance in var-

ious domains, such as recommender systems, health operations and au-

tonomous driving. Most traditional deep reinforcement learning can be char-

acterized as the search for a policy that obtains the highest cumulative reward in an

unknown but stationary environment with fixed state transitions and reward functions.

However, this assumption does not always hold in many practical scenarios; environ-

ments are non-stationary and have abrupt and unpredictable change points in many

cases. For example, when a well-trained deep reinforcement learning policy is applied to

an outdoor robot that may encounter different terrains and enter caves without light-

ing, the previous optimal policy may make mistakes or even fail. In these practical

environments, mistakes will be made repeatedly if the algorithm does not identify the

change and actively adapt to it. To address this problem, several methods are proposed

in this thesis to focus on deep reinforcement learning in challenging environments with

time-varying non-stationarity.

We first formalize the problem of deep reinforcement learning in non-stationary

environments with unknown change points. Then, we investigate both model-free and

model-based schemes, proposing several solutions to solve the defined problem. We

have developed four adaptive algorithms that incorporate change detection mechanisms

in the two representative deep reinforcement learning frameworks, proving superior

performance over existing methods.

iii

First, a formal model-free reinforcement learning framework that spans the entire

learning pipeline and clearly identifies the similarities and differences between the

proposed methods and existing schemes is proposed. Under this framework, three novel

methods with environment change detection and rapid adaptation are proposed. To

detect environmental changes, we consider variations in the joint distribution of states

and actions, changes in policy behavior due to abrupt environmental shifts, and al-

terations in Bayesian uncertainty during the training process. The distinct methods

for utilizing prior knowledge, drawing from aspects of gradients, policy behavior, and

Gaussian Process posteriors, focus on preserving knowledge beneficial to the current

setting. Each method is designed to adjust policy adaptation based on information from

change detection, considering proper response to different change extents. The flexible

adaptation mechanism ensures optimal performance in the current environment. Second,

we investigate the model-based framework targets in high-dimensional environments.

We propose a method for learning change dynamics within a latent space aimed at

environments with high-dimensional inputs such as image data. Our method identifies

change points in the non-stationary environment in the latent space, enabling online

detection and adaptation.

Overall, this thesis presents novel methodologies for change point detection and

online adaptation for deep reinforcement learning in non-stationary environments,

focusing on the robust ability to ensure adequate performance in the face of sequential

change in many realistic environments. The empirical results demonstrate the adequate

performance of our methods over other baselines, offering practical solutions for real-

world applications where the assumption of stationarity does not hold and ensuring

continued optimal performance in the face of non-stationary environments.

iv

DEDICATION

To myself and my parents . . .

v

ACKNOWLEDGMENTS

Itis a life-changing journey to complete my Ph.D. study at the Australian Artificial

Intelligence Institute (AAII), UTS. It would not have been possible to do without

the support and guidance that I received from many people.

First, I extend my heartfelt thanks to my esteemed principal supervisor, Distin-

guished Prof. Jie Lu, for her invaluable supervision, support, and mentorship in my

Ph.D. research and navigating life in a foreign country. Her guidance and care have given

me tremendous strength to complete my PhD studies. Her patience, motivation, and

immense knowledge have guided me at every confusing moment. I have learned so much

from her, which would benefit my life. I also thank my co-supervisors A/Prof. Guangquan

Zhang for his kind mentorship, insightful comments, and encouragement. His strict

academic attitude and respectful personality have benefited my Ph.D. study. My sincere

gratitude goes to Dr. Junyu Xuan for his help and guidance throughout my Ph.D. journey.

His patience and professional feedback gave me so much support in every research stage.

Studying under Dr. Xuan’s mentorship has been an invaluable experience, and I am

genuinely thankful for all the opportunities and support he has provided me.

As a member of DeSI Lab, AAII, and FEIT, I would like to thank all staff, team

members, and students for their efforts and support. Thanks to Prof. Yi Zhang, Prof.

Shiping Wen, Dr. Feng Liu and Dr. Hua Zuo for organizing and taking panel positions on

my candidate assessments. Thanks to Wei Duan, En Yu, Wenting Zhang, Mengjing Wu,

Xinheng Wu, Guangzhi Ma, Ming Zhou, Xiaoyu Yang, Zhaoqing Liu, Nelson Ma, Zelia

vii

Soo, Yue Yang, Oscar Kiyoshige Garces, Pham Minh Thu Do, Dr. Feng Liu, Dr. Yiliao

Song, Dr. Kairui Guo, Dr. Keqiuyin Li, Dr. Zhen Fang, Dr. Bin Zhang and Dr. Tianyu

Liu for their assistance in my research and life. Thanks to Jemima de Vries, Jim Howes,

and Michele Mooney for proofreading my manuscripts. I also thank Robyn Barden, Esin

Morcos, Camila Cremonese, Lily Qian, and Margot Kopel for supporting my school life.

Thank you to all my friends for their tremendous support. I would like to thank

Wenting Zhang and Mengjing Wu for the time we spent together when arriving in Sydney.

Thanks to En Yu and Yiqiao Li, who enrolled offshore with me and have been struggling

together through every critical stage. I am grateful to Xinheng Wu for encouraging me

and advising me in many difficult moments. Thanks to Wei Duan for standing with

me during my Ph.D. study. Special thanks go to my friends in China - Lijun Wu, Dr.

Qianyun Yin, Meixin Sun, Li Wang, and Xuemin Cao for their continuous caring and

encouragement. Thanks to Dr. Jieru Zhao and Dr. Qimin Zhang; though separated by

vast oceans, we are united in one journey. Thanks to Dr. Bin Zhang, who has always

supported me in every moment we shared and every challenge we have overcome.

Finally, I would like to express my gratitude to my parents for their unwavering

support and unconditional love throughout my life. You have given me the strength and

courage to pursue my dreams.

Zihe Liu

Sydney, Australia, 2024

viii

LIST OF PUBLICATIONS

1. Zihe Liu, Jie Lu, Junyu Xuan and Guangquan Zhang, "Deep Reinforcement

Learning in Nonstationary Environments with Unknown Change Points," in IEEE

Transactions on Cybernetics, DOI: 10.1109/TCYB.2024.3356981.

2. Zihe Liu, Jie Lu, Guangquan Zhang and Junyu Xuan, "A Behavior-Aware Ap-

proach for Deep Reinforcement Learning in Non-stationary Environments without

Known Change Points," in Proceedings of the thirty-third international joint confer-

ence on artificial intelligence, IJCAI-24 Main Track, DOI: 10.24963/ijcai.2024/512.

3. Junyu Xuan, Mengjing Wu, Zihe Liu, Jie Lu. "Functional Wasserstein Varia-

tional Policy Optimization." in The 40th Conference on Uncertainty in Artificial

Intelligence (UAI) 2024.

4. Zihe Liu, Jie Lu, Junyu Xuan and Guangquan Zhang, "Learning Latent and

Changing Dynamics in Real Non-stationary Environments," submitted to IEEE

Transactions on Knowledge and Data Engineering. [under review]

5. Zihe Liu, Jie Lu, Junyu Xuan and Guangquan Zhang, "Functional Detection and

Adaptation in Non-stationary Environments," submitted to IEEE Transactions on

Neural Networks and Learning Systems. [under review]

ix

TABLE OF CONTENTS

List of Publications ix

List of Figures xv

List of Tables xxiii

Abbreviation and Notation xxv

1 Introduction 1

1.1 Background and Motivation . 2

1.2 Research Questions and Objectives . 6

1.3 Research Contributions . 11

1.4 Thesis Organization . 12

2 Literature Review 17

2.1 Deep Reinforcement Learning Concepts and Frameworks 18

2.2 Deep Reinforcement Learning in Non-stationary Environments 21

2.2.1 Detecting Environment Change Points 21

2.2.2 Adapting to New Reinforcement Learning Environments 24

2.3 Multi-task Deep Reinforcement Learning . 25

2.4 Continual Deep Reinforcement Learning . 27

2.5 Transfer Deep Reinforcement Learning . 30

xi

TABLE OF CONTENTS

2.6 Meta Deep Reinforcement Learning. 32

2.7 Contextual Markov Decision Process . 34

2.8 Partially Observed Markonv Decision Process 34

2.9 Concept Drift . 35

3 A Gradient-Constrained Approach 37

3.1 Background . 38

3.2 Problem Formulation . 41

3.3 Methodology . 44

3.3.1 Environment Change Detection . 44

3.3.2 Policy Adaptation . 48

3.3.3 Detection-Adaptation RL . 51

3.4 Experiments and Analysis . 52

3.4.1 Experiment Setups . 52

3.4.2 Results . 55

3.4.3 Ablation Studies . 59

3.4.4 Further Analysis . 65

3.5 Summary . 68

4 A Behavior-Aware Approach 71

4.1 Background . 72

4.2 Problem Formulation . 75

4.3 Methodology . 76

4.3.1 Behavior-based Change Detection . 76

4.3.2 Behavior-Aware Adaptation . 79

4.4 Experiments and Analysis . 82

4.4.1 Settings . 83

4.4.2 Overall Performance . 87

xii

TABLE OF CONTENTS

4.4.3 Ablation Study . 90

4.5 Summary . 95

5 A Sample Efficient Approach 97

5.1 Background . 98

5.2 Problem Formulation . 100

5.3 Methodology . 102

5.3.1 Detecting Environment Changes . 102

5.3.2 Adapting with Functional Regularizations 106

5.3.3 Computational Complexity Analysis 112

5.4 Experiment and Analysis . 113

5.4.1 Experiment Settings . 114

5.4.2 Main Results . 117

5.4.3 Ablation Study . 119

5.5 Summary . 123

6 An Approach for Latent Dynamics 125

6.1 Background . 126

6.2 Problem Formulation . 129

6.3 Methodology . 131

6.3.1 Learning Latent Dynamics . 132

6.3.2 Detecting Environment Changes . 134

6.3.3 Learning latent and changing dynamics 138

6.3.4 Planning in Real Non-stationary Environments 141

6.4 Experiments and Analysis . 144

6.4.1 Environments and setup . 145

6.4.2 Comparisons . 146

6.4.3 Overall performance . 147

xiii

TABLE OF CONTENTS

6.4.4 Ablation Studies . 150

6.5 Summary . 156

7 Conclusion and Future Research 159

Bibliography 163

xiv

LIST OF FIGURES

FIGURE Page

1.1 Stationary and non-stationary environments. The state distribution, transi-

tions and expected outcomes are consistent and predictable in a stationary

environment. When an agent encounters non-stationary environments, such

as a shift from daylight to a dark cave, it probably leads to a wrong decision

due to the traditional DRL model’s inability to adapt to the new conditions. . 3

1.2 The upper figure illustrates a stationary environment where the underlying

MDP is unknown but fixed. The bottom figure shows a non-stationary environ-

ment with the switching MDPs with different state distributions, transitions

or reward functions. 4

1.3 Thesis organization. 13

2.1 The structure of the literature review. 18

3.1 Illustration of non-stationary environments and their impact on reward

changes. Three sequentially changed Vizdoom environments with different

light levels will lead to a drop in reward. PPO is the baseline to obtain these

rewards. 39

3.2 When the environment changes, a notable drift is observed in the distance

between adjacent network weights. The results are derived from utilizing

PPO in the Cartpole environment, with a change point at 750. 45

xv

LIST OF FIGURES

3.3 Illustration of adaptation control differences between GEM and our method

in two gk situations, where a and c illustrate GEM; b and d illustrate our

method; g1 (blue) is with small distance to current MDP and g2 (red) is with

large distance; the (purple) overlap is the solution space for g̃; black vectors

are possible solutions. 49

3.4 We change the light level and texture of the ceiling in the shooting game

ViZDoom(upper) and the position of obstacles in the maze environment Mini-

Grid(bottom), respectively, during training. 54

3.5 Evaluation on detection accuracy and average reward in four environments.

The environment changes at episode {500, 1000} in Cartpole and LunarLander.

In MiniGrid, the environment changes at episode {15000, 30000}, and in

VizDoom, the environment changes at episode {2500, 5000}. Our method,

DARL, achieves the highest performance among the baselines. 57

3.6 Evaluation on adaptation method in four environments. The environment

changes at episode {500, 1000} in Cartpole and LunarLnader. In MiniGrid,

the environment changes at episode {15000, 30000}, and in VizDoom, the

environment changes at episode {2500, 5000}. From stage 2, GEM is obviously

affected by the ‘bad’ policy, while ours is affected less. 60

3.7 This figure depicts the training results using only detection without policy

adaptation. The complete DARL with detection and adaptation serves as a

comparison. Similarly, DARL also undergoes retraining after detecting change

points. 61

xvi

LIST OF FIGURES

3.8 This figure illustrates the results using episodic detection and policy detection

separately. The horizontal axis represents the entire training process, with

annotations based on the timeline. Yellow markers indicate the change points

detected by policy detection, while green markers represent those detected by

episodic detection. DARL makes change decisions on the points marked by

blue triangles. 61

3.9 The figure shows the reward curve of DARL using different detection windows.

The blue line indicates results with all change points detected correctly, and

the orange line shows the results with some incorrect change detections. The

circle with a dot indicates the change point detected. 62

3.10 This figure shows the evaluation results on the policy adaptation method w/o

change detection module in four environments, where the change points are

given to all methods. 64

3.11 The average rewards in a changing ViZDoom environment with different

amounts of change points. 66

3.12 The impact of the change detection window size is notable; we observe that

detection performance affects the reward, stabilizing once the window size

reaches a certain threshold. 68

4.1 When an outdoor robot moves from flat terrain to mountains, its speed, direc-

tion, and acceleration control changes corresponding to the changing condi-

tions. We believe these variations can be fully captured through behavior. . . 72

4.2 This figure presents a t-SNE plot of behavior. The distinct clusters demon-

strate the significant impact of environmental changes on behavior and inspire

us to use the behavior to adapt actively to coming changes. 78

xvii

LIST OF FIGURES

4.3 The BADA framework. When a change is detected through the behavior

distribution permutation test, regularization will be added to deviate policy

behavior from the previous optimum. 82

4.4 The simulated non-stationary environments. The upper setting is from high-

contrast simpler_basic to dimly lit basic scenario, and the bottom one is from

defend_the_line with a rectangular map to defend_the_center with a circular

map. 85

4.5 Performance comparison of different methods in non-stationary environments.

The vertical dashed lines represent the points of environmental change, and

the shaded areas around the reward lines indicate the standard deviation

over different runs. 86

4.6 Cumulative rewards of adaptation strategies in non-stationary environments

with known change points. 90

4.7 Average reward after the first change points in environments with increasing

change points. 93

4.8 The parameter sensitivity analysis of the adaptation regularization. The

orange lines represent the coefficient range we used. 94

5.1 The framework of Functional Detection Adaptation (FDA) detects change

points based on surprise, selects representative trajectories from interac-

tions, and deploys functional regularization to adapt to new environments

when changes are identified. If no change point is detected, the functional

regularization will not activate, degenerating into a traditional DRL problem. 100

5.2 We select trajectories that are not only closest to the decision boundaries

but also with the highest cumulative rewards. The orange curve denotes the

decision boundaries of action 1 and action 2. 111

xviii

LIST OF FIGURES

5.3 The simulated non-stationary environments are based on VizDoom. The

screenshots on the upper line depict the basic environment with different

wall textures and lighting levels. The screenshots on the bottom line show the

progression from defend_the_line to defend_the_center and finally to a darker

defend_the_center. 115

5.4 Reward curves in simulated non-stationary environments. The line is the

average of different seeds for ten runs. The shaded area denotes the standard

deviation. Our proposed method, FDA, is denoted by red curves. 119

5.5 Cumulative rewards of different selecting strategies used for adapting using

functional regularization. The line is the average of different seeds for ten

runs. The shaded area denotes the standard deviation. 119

5.6 The average rewards of different regularization coefficient ± in Eq. (5.13). The

error bar denotes the standard deviation over five runs. 120

5.7 The average rewards of different methods in increasingly non-stationary

environments. The results are based on 5 runs with different seeds. 122

6.1 In some non-stationary environments where the transition probability and

reward function change independently, a well-trained agent may find that its

existing knowledge is no longer sufficient in the new environment. 126

6.2 The formal MDP setting of the non-stationary environment. The switch points

of MDPs are unknown. 130

6.3 The figure shows a latent dynamic model with recurrent states. In the figure,

stochastic variables are depicted as circles, whereas deterministic variables

are shown as squares. Solid lines are used to represent the generative process,

while dashed lines signify the inference model. 133

xix

LIST OF FIGURES

6.4 The figure shows the distribution of the latent state in 5 episodes after conver-

gence (left) and after change points (right) in the Reacher-easy environment

and the corresponding detected run length posteriors. The data is dimension-

ality reduced using t-distributed Stochastic Neighbor Embedding (t-SNE,[1]).

When the model converges, the state shows a certain structure, while after

the change point, the state distribution tends to be random. 136

6.5 Illustration of latent and changing dynamics with change detection and

adaptation. The change detection is performed on latent states {s1, s2, . . . , st},

and if a change point is detected, an adaptation term will be added to the

training. 139

6.6 The illustration of an iteration of planning at time t. The sampling distribution

is initialized as N (0, I). To evaluate a sampled action sequence using the

transition and reward model, we sample a state trajectory with the beginning

state st and sum over the mean rewards expected along the series. Then,

the elite action sequences with the highest reward are picked to refine the

sampling distribution parameters. 142

6.7 Image-based control environments used in our experiments, where all the

basic environments are from dm_control. We change the skyboxes and compo-

nent materials at the change point to simulate different lighting conditions. . 145

6.8 The test reward of our problem setting. The solid line depicts the average

reward, while the dashed lines indicate the minimum and maximum reward

values. The shaded area represents the reward’s standard deviation over

multiple runs. 148

6.9 The simulated driving scenario and experiment results. 150

xx

LIST OF FIGURES

6.10 Visualization of the observation and latent state distribution using t-SNE. The

distribution shift is clearly seen in the latent state rather than raw observation

data. Also, the approximated run length of Bayesian online change detection

for the corresponding data is presented. The raw data does not have an

obvious change of run length distribution P (lt | s1:t), while the latent state

has a significant variation. 151

6.11 The average return after the change point varies under different degrees of

environmental changes of Cartpole-balance. The aboriginal RGB value of the

environment skybox is (102, 153, 204), and the change degree increases from

left to right. 152

xxi

LIST OF TABLES

TABLE Page

3.1 Settings for the Gym environment changes . 53

3.2 The implementation parameters of our method, DARL. 55

3.3 The F1 score of detection methods. 58

3.4 The detection performance of policy detection and episodic detection, respec-

tively. 58

3.5 The correct detected change points. The point where the actual change points

are {500,1000}. 59

3.6 The detection results of different window sizes. The setting number of change

points is two. 69

3.7 Window Size used when detecting environment change points. 70

4.1 Comparative F1 scores of change detection methods in non-stationary envi-

ronments. The results are based on ten runs of different seeds. 88

4.2 F1 scores for change detection methods across environments with increasing

number of change points. The results are based on ten runs with different seeds. 94

5.1 The F1-Score of detection methods. The average and standard deviation are

based on ten runs with different seeds. For all methods, the points detected in

no more than 5 epochs after the real change points are considered correct ones.116

xxiii

LIST OF TABLES

5.2 The average rewards of our method and BGPG-Restart. Our method achieves

higher reward than simply following plain RL update and restarting a new

training using RL objective. The results are based on ten runs with different

seeds. 121

5.3 F1 scores for change detection methods across environments with increasing

change points. 122

6.1 The model structures and training parameters of our method. 147

6.2 The performance (average return) of trained agents on non-stationary envi-

ronments with change point at the middle stage. The blank value represents

that the method fails in the corresponding task after the same training step

as LLCD and PlaNet. 147

6.3 The steps needed to converge for different methods. 153

6.4 Performance (average return) of trained agents on non-stationary environ-

ments with a change point in the early and late stages of training. For the

early change, a random change point was set within the first 20%°30% of

the total training steps, and for the late change, it was set within 70%°80%

of the total training steps. 156

xxiv

ABBREVIATION AND NOTATION

Abbreviations
RL: Reinforcement Learning
DRL: Deep Reinforcement Learning
MDP: Markov Decision Process
POMDP: Partially Observable Markov Decision Process
HMM: Hidden Markov Models
RSSM: Recurrent State-space Model
MPC: Model Predictive Control
RNN: Recurrent Neural Network
CEM: Cross-Entropy Method
GP: Gaussian Process
DNN2GP: Deep Neural Networks to Gaussian Process
MAP estimation: Maximum A Posteriori estimation
MMD: Maximize Mean Discrepancy
RBF kernel: Radial Basis Function kernel
NTK: Neural Tangent Kernel
KL divergence: Kullback-Leibler divergence
WD: Wasserstein Distance
DNN: Deep Neural Networks
TD error: Temporal Difference error
VPG: Vanilla Policy Gradient
TRPO: Trust Region Policy Optimization
PPO: Proximal Policy Optimization
DQN: Deep Q Network
A3C: Asynchronous Advantage Actor-Critic
DDPG: Deep Deterministic Policy Gradient

xxv

ABBREVIATION AND NOTATION

SAC: Soft Actor-Critic
TD3: Twin Delayed Deep Deterministic Policy Gradient
BGPG: Behavior Guided Policy Gradients
DARL: Detection-Adaptation Reinforcement Learning
BADA: Behavior-Aware Detection and Adaptation
LLCD: Learn Latent and Changing Dynamics
FDA: Functional Detection Adaptation
EWC: Elastic Weight Consolidation
GEM: Gradient Episodic Memory
ODCP: Online parametric Dirichlet Change Point
PC: Policy Consolidation

Notations

Chapter 3
gk The gradient of the policy associated to the kth task.
g The gradient trained from a standard policy gradient.
g̃ The optimal gradient vector of policy adaptation.
ḡ The normalized vector of the current gradient g.
h The normalized vector of the closest gradient g̃.
v The norm of current gradient g and optimal gradient g̃.
gl The gradient of the lth layer.
d(c) The distance between policies.
d(m) The distance between state distributions.
Wl The l-th layer neural network parameters.
¢W The parameter perturbation of neural network.

Chapter 4
ºµ The policy with parameter µ.
ø Trajectories of state, action and rewards.
© The behavioral embedding map function.
Pµ The behavior embedding distribution corresponding to the current policy ºµ.
Pt°1 The behavior embedding distribution corresponding to the previous policy ºt°1.
Pep The behavior embedding distribution corresponding to the policy at epoch ep.
Ppre The behavior embedding distribution corresponding to the previous converged policy.

xxvi

W(µ,∫) The Wasserstein distance between distribution µ and ∫.

Chapter 5
GP A Gaussian Process.
w The weight of a neural network.
º The reinforcement policy.
m The mean of a Gaussian Process.
K The kernel of a Gaussian Process.
§ The Hessian matrix.
J The Jacobians.
v The diagonal of the covariance.
p The prior distribution.
q The posterior estimation distribution.
S The surprise between prior and posterior.

Chapter 6
ot The raw observation at timestep t.
st The latent state at timestep t.
ht The deterministic variables at timestep t.
p The prior distribution.
q The posterior estimation distribution.
lt The run length at timestep t.

xxvii

C
H

A
P

T
E

R

1
INTRODUCTION

Machine learning has traditionally been centered around learning from static

datasets, where algorithms infer patterns and make predictions based on

historical data. However, the paradigm shifts when moving towards Rein-

forcement Learning (RL), an area of machine learning concerned with how intelligent

agents should take actions in an environment to maximize the cumulative reward. Unlike

its supervised and unsupervised counterparts, RL is distinguished by its focus on learn-

ing from interaction - agents are not merely passive recipients of data but active learners

engaged in a sequence of decision-making that is both influenced by and influences

the environment. With the development of deep neural networks, Deep Reinforcement

Learning (DRL) integrates the power of deep neural networks, enabling the handling of

unstructured and high-dimensional data spaces that were previously intractable. DRL

stands at the forefront of machine learning’s evolution, representing a cutting-edge blend

of learning through interaction and deep neural network representation learning. This

framework enables applications ranging from autonomous vehicles navigating through

traffic [2] to algorithms mastering the game of Go [3], where the agent must learn to

1

CHAPTER 1. INTRODUCTION

make a series of decisions that lead to a long-term goal.

While DRL boasts remarkable successes across diverse fields, most schemes are

designed to learn an optimal policy in an unknown but stationary environment with

fixed state distributions, state transitions and reward functions [4]. Yet, many practical

environments are inherently non-stationary, characterized by temporal dynamics and un-

predictability. This disconnect posits a significant challenge: traditional DRL algorithms

may struggle to maintain their performance when faced with evolving environmental

factors. As Figure 1.1 shows, an agent with knowledge of a specific environmental con-

dition may make wrong decisions when facing changes. This thesis aims to bridge this

gap, extending the application of DRL to more realistic, dynamic environments with

time-varying unknown non-stationarity.

1.1 Background and Motivation

Most machine learning can be characterized as the search for a solution that, once

found, no longer needs to be changed [5], and so does deep reinforcement learning. This

assumption allows for simplifying the learning problem and has led to many of the

successes in DRL [6]. However, when this assumption does not hold, as is often the

case that many real-world environments are non-stationary and sometimes change

quite frequently [7], the learned policy may become obsolete or inappropriate for the

new state of the environment, leading to a decline in performance. For example, in

practical environments such as the fluctuating stock market, ever-changing e-commerce

user preferences, unpredictable road conditions in autonomous driving, variable energy

demands in smart grids, and the shifting landscapes of patient health in healthcare

monitoring, traditional DRL algorithms can encounter significant challenges. As the

environment evolves, errors are inevitable, and without timely and adaptive responses,

the situation can deteriorate progressively [5]. The reason is that when a well-trained

2

1.1. BACKGROUND AND MOTIVATION

(a) Stationary Environment

(b) Non-stationary Environment

Figure 1.1: Stationary and non-stationary environments. The state distribution, transi-
tions and expected outcomes are consistent and predictable in a stationary environment.
When an agent encounters non-stationary environments, such as a shift from daylight
to a dark cave, it probably leads to a wrong decision due to the traditional DRL model’s
inability to adapt to the new conditions.

policy faces a new environment, traditional DRL algorithms often lack mechanisms

for rapid adaptation and can be sample-inefficient, requiring large amounts of data to

learn or relearn a suitable policy. This weakness can lead to suboptimal performance

and escalating errors if the algorithms cannot adapt promptly and effectively to the

continuous changes.

Figure 1.2 shows the abstract Markov Decision Process (MDP) setting of our research

problem. The MDPs that agents interact with will come one after another, and agents

may not see a specific MDP after it comes. There is no particular order of MDPs, and

the steps that agents interact within each MDP are also not assumed. These MDPs

3

CHAPTER 1. INTRODUCTION

Time

... ...

...
Environment 1Environment 0 Environment k

Time

Stationary Environment

Non-stationary Environment

Figure 1.2: The upper figure illustrates a stationary environment where the underlying
MDP is unknown but fixed. The bottom figure shows a non-stationary environment with
the switching MDPs with different state distributions, transitions or reward functions.

may differ in any aspect, such as state distribution, transition probability and reward

function. This thesis aims to address the critical need for DRL approaches that can not

only recognize these shifts but also adjust to them in real-time, ensuring sustained and

reliable functionality in the face of real-world unpredictability.

Several studies [8, 9, 10] have demonstrated the efficacy of DRL agents in dynamic

environments with known change points by leveraging the transfer of knowledge from

previously trained policies to adapt to new conditions quickly. However, in real-world

scenarios, agents often encounter environments with unknown change points, such as

a delivery drone navigating through varying weather conditions or a cleaning robot

adapting to different floor types and unexpected obstacles. These environments are

4

1.1. BACKGROUND AND MOTIVATION

characterized by unpredictable changes in state transitions and reward functions, mak-

ing them challenging for traditional DRL approaches. Despite the growing importance

of addressing this issue, there has been limited research focused on developing RL

algorithms capable of handling such dynamic and uncertain environments. One so-

lution is contextual detection for model-based RL [11], which detects environmental

changes by maintaining several models and replacing the currently active model with

the highest quality. Recently, Chen et al. [12] proposed an adaptive deep RL method

for non-stationary environments with piecewise-stable context. They infer the context

segment by Bayesian posterior and the belief context through observed data to adapt

to the context changes. However, learning an environmental model is not easy for high-

dimensional environments due to the limitations of sample efficiency. To address this,

Lomonaco et al. proposed CRL-Unsup [13], which determines environmental changes

using the difference between long-term and short-term reward averages and adapts

to new environment conditions using continual learning methods [8]. This detection

method requires a manually set threshold value. Alternatively, Padakandla et al. [14]

proposed an approach that detects environmental changes by recognizing shifts in the

distribution of the experience stream, albeit at the cost of higher computational complex-

ity. Most current approaches do not consider different change extents, which is crucial to

appropriately responding to policy learning.

This thesis aims to solve the long-existing problem by developing frameworks that

can actively and accurately identify the changes in non-stationary environments and

adapt to new environment conditions with the help of the change information. In non-

stationary environments, recognizing environmental shifts allows agents to update their

strategies promptly and maintain optimal performance with detected information. This

adaptability is essential for real-world applications, where conditions can change rapidly

and unpredictably. Effective change detection and adaptation mechanisms enable agents

5

CHAPTER 1. INTRODUCTION

to remain robust and effective in the face of evolving challenges, ultimately leading to

more intelligent systems.

1.2 Research Questions and Objectives

We span the entire learning pipeline and primarily approach this problem using two

inseparable processes: identifying the environmental changes through a set of methods

and augmenting the policy training for the new environment by drawing on previously

well-trained policies using the detected change point and information.

According to the two schemes, the research questions and research objectives are

identified as:

QUESTION 1: How to identify unknown change points in non-stationary reinforcement

learning environments?

Identifying change points in non-stationary reinforcement learning environments

without predefined switch points presents a significant challenge. At the same time,

ensuring the accuracy and speed of detection is crucial. Accurate detection allows

the agent to adapt its strategy promptly and effectively, while fast detection mini-

mizes the impact of changes on the agent’s performance. For example, Lomonaco

et al. [13] identify change points by observing the discrepancy between short-

term and long-term rewards. This approach necessitates manual configuration of

threshold values and window sizes. One aim is to employ various autonomous tech-

niques that monitor environmental changes, ideally providing confidence intervals

for decision-making. Additionally, we aim to solve the change detection problem

without involving any extra parameters that must be tuned carefully.

QUESTION 2: How to rapidly adapt to the new environment condition using detected

change information?

6

1.2. RESEARCH QUESTIONS AND OBJECTIVES

Once a change in the environment is detected, rapid adaptation is essential to

maintain optimal performance. One practical approach is to leverage knowledge

like [8, 15], where previous experiences are used to adjust to new conditions quickly.

Another approach is to use additional regularization techniques to provide the

information required by the new environment. For example, methods proposed

in [16] and [17] introduce regularization terms that encourage the model to pre-

serve valuable knowledge from previous tasks while learning new information.

These approaches do not consider the response to different change levels. In con-

trast, we aim to achieve even more effective adaptation based on the information

obtained from the detection process. By integrating the detected changes into the

learning framework, we aim to develop algorithms that can dynamically adjust

their learning in response to the nature and magnitude of the detected environ-

mental shifts. For example, if a significant change is detected, the algorithm might

increase exploration to gather information about the new environment quickly.

Conversely, for minor changes, the algorithm could make subtle adjustments to

the policy while maintaining its current knowledge base.

QUESTION 3: How to enhance sample efficiency when adapting?

When using knowledge from previous environments to adapt, a straightforward

approach is to preserve experiences from well-learned environments. Still, the

vast amount of data can lead to prohibitively high associated costs. Therefore,

we focus on selecting valuable experiences from a well-learned environment to

represent the knowledge acquired by the policy, ensuring efficient and effective

knowledge retention. Then, we need to explore the strategy of retaining the most

representative interactions between agents and environments. There are some

works on improving sample efficiency based on reward [18], TD error [19] and global

distribution [20] to benefit policy learning. For adaptation in new environments, we

7

CHAPTER 1. INTRODUCTION

need to explore a specific strategy to provide the most comprehensive information

for our problem setting. The goal is to use the most negligible storage to avoid the

extra cost of our framework.

QUESTION 4: How to learn in non-stationary environments with high dimensionality?

Model-free RL algorithms often need to take tens of millions of steps [21] to train

a policy that is good enough, which is impractical in many open-world applica-

tions, especially health and safety-related scenarios. In contrast, model-based RL

learns the transition and reward models to maintain high-quality environmental

planning and prediction, known for higher sample efficiency. However, modeling

high-dimensional RL environments is challenging because some data, like images,

do not always constitute a Markovian space in practice [22, 23]. If the environ-

ment is non-stationary, it introduces additional computational costs. Therefore, the

development of efficient mechanisms for the detection of environmental changes

is imperative. These mechanisms must be swift and accurate to ensure timely

adaptation, allowing the model to respond effectively to new conditions.

This research aims to achieve the following objectives, which are expected to answer

the above research questions:

OBJECTIVE 1: To develop methods that detect environment changes from data distri-

bution analysis.

This objective corresponds to Research Question 1. Our proposed algorithm an-

alyzes the data collected during the interaction process between agents and the

environment. By monitoring changes in these data, we aim to capture the underly-

ing environmental variations. This approach allows us to detect shifts in the state

space, changes in reward dynamics, or alterations in the transition probabilities,

which are critical for adapting the agent’s policy to maintain optimal performance.

8

1.2. RESEARCH QUESTIONS AND OBJECTIVES

These algorithms employ statistical and machine learning techniques to identify

patterns and anomalies in the data that signify environmental changes, ensuring

its continued effectiveness in non-stationary settings.

OBJECTIVE 2: To develop methods that detect environment changes from deep learning

properties.

This objective corresponds to Research Question 1. Our proposed algorithm is

grounded in deep learning theory, encompassing aspects such as the relationship

between parameter changes and gradients during neural network training, as

well as the connection between neural networks and Bayesian surprise to detect

changes in the environment. This detection method, based on the models’ response

to environmental changes, offers a novel perspective to provide an innovative

approach to change detection, enhancing the adaptability and responsiveness of

deep learning models in dynamic settings.

OBJECTIVE 3: To develop adaptation mechanisms using self-adjusted regularization.

This objective corresponds to Research Questions 2. We aim to achieve knowledge

reuse by adding additional constraints to the objective function while considering

the degree of environmental changes. We employ behavior-guided and environment

model-guided self-regulation constraints that adjust the learning process based

on different environmental changes. This adaptive approach ensures that the

retained knowledge is not only preserved but also effectively utilized to maintain

optimal performance in the face of dynamic and evolving conditions. By integrating

these mechanisms, our algorithm seeks to balance stability and plasticity, enabling

the reinforcement learning agent to adapt efficiently to new situations without

forgetting previously acquired skills.

OBJECTIVE 4: To develop adaptation mechanisms according to deep learning proper-

9

CHAPTER 1. INTRODUCTION

ties.

This objective corresponds to Research Questions 2. Our goal is to move beyond

simply retaining and applying knowledge straightforwardly; instead, we aim to

preserve knowledge that is specifically useful and relevant to the current environ-

ment. We aim to adapt to changes by utilizing the relationship between neural

network parameter changes and gradients, as well as the connection between neu-

ral networks and Gaussian processes. By leveraging these theoretical foundations,

our algorithm seeks to enhance the understanding and optimization of learning

based on prior knowledge. This approach not only contributes to the advancement

of reinforcement learning methodologies but also holds the potential to improve

the performance and generalization of tasks across various applications.

OBJECTIVE 5: To develop a trajectory selection method to improve the sample

efficiency of previous environments.

This objective corresponds to Research Question 3. We target selecting the most

valuable trajectories that can represent a well-learned environment. With the

selection, we can significantly improve the sample efficiency in model-free RL,

which often needs millions of trials to search for an optimal policy. There are

several reasonable selection strategies to pick memorable points for an RL task,

such as choosing the highest rewarded experiences, picking the points near decision

boundaries and selecting experiences with low TD error. We will investigate the

selection method based on sequentially non-stationary environments, leading to

better adaptation performance.

OBJECTIVE 6: To develop a model-based RL framework that monitors the shift of

complex changing environments with high-dimensional inputs.

This objective corresponds to Research Question 4. We aim to design a model-based

RL algorithm that can cope with potentially high-dimensional, non-stationary

10

1.3. RESEARCH CONTRIBUTIONS

environments with change point monitoring and rapid adaptation. Learning en-

vironment transitions and reward functions have some practical problems. Thus,

we move model learning into a latent space, which is expected to demonstrate

Markov transition properties more clearly and, at the same time, significantly

reduce dimension compared to the raw observation space. At the same time, such

a latent space is also beneficial for reducing the detection cost, making it a more

efficient approach for managing dynamic environments in model-based RL.

1.3 Research Contributions

This thesis extends traditional deep reinforcement learning to more practical non-

stationary environments with unknown change points. The main contributions of this

study are concisely summarised as follows:

• A formal model-free deep reinforcement learning scheme in non-stationary envi-

ronments with unknown change points. Our framework spans the entire learning

pipeline and identifies the methods’ similarities and differences with existing

methods.

• A formal model-based deep reinforcement learning scheme in non-stationary envi-

ronments with both detection and adaptation in the latent space.

• Two distribution-based change detection methods for reinforcement learning envi-

ronments to accurately identify the change of RL states, transitions and reward

functions, including high-dimensional and time-dependent data.

• An environment change detection method closely linked to Bayesian surprise. This

method uses the GP predictive uncertainty that contains information about the

distribution of these inputs to determine change points.

11

CHAPTER 1. INTRODUCTION

• An environment change detection method related to neural network updating. This

method uses the relationship between neural network weights and gradients to

identify sudden changes in environments.

• Two detection-boosted adaptation methods with regularization that quickly learn

a new policy once a change is detected with an ability to reduce the effect from

unrelated tasks.

• Two adaptation methods by using gradient constraints and optimizations to lever-

age the knowledge learned from the previous environment. We have considered

the influence of change extents and avoided conflict gradient editing.

• A data selection strategy that enhances the sample efficiency of adaptation mecha-

nisms and ensures high performance after environmental changes. This method

reduces the cost of the adaptation scheme.

• A learning strategy to learn effectively in non-stationary environments with high-

dimensional inputs. Our method detects the change points of non-stationary envi-

ronments in the latent space online and can adapt to new environments rapidly.

1.4 Thesis Organization

The structure of the thesis is shown in Figure 1.3, and the chapters are organized as

follows:

• Chapter 2 investigates the literature by categorizing studies based on whether

the change points in the environment are known or unknown. Simultaneously, we

also discuss the similarities and differences between our research question and

other related areas in detail. This chapter allows us to systematically analyze

12

1.4. THESIS ORGANIZATION

Chapter 3: A Gradient-constrained Approach

Chapter 6: An Approach for Latent Dynamics

Chapter 5: A Sample Efficient Approach

Chapter 4: A Behavior-Aware Approach

Chapter 7: Conclusion and Future Research

Chapter 2: Literature Review

Chapter 1: Introduction

Research
Objective 1

Research
Objective 2

Research
Objective 4

Research
Objective 3

Research
Objective 6

Research
Objective 5

1: To develop methods that detect environment changes from data distribution analysis.
2: To develop methods that detect environment changes from deep learning properties.
3: To develop adaptation mechanisms using self-adjusted regularization.
4: To develop adaptation mechanisms according to deep learning properties.
5: To develop a trajectory selection method to improve the sample efficiency
6: To develop a method that monitors the change of high-dimensional environments.

Research Objectives:

RQ1: Detect Changes RQ2: Adapt to Changes

RQ3: Sample Efficiency

RQ4: High-dimensionality

Figure 1.3: Thesis organization.

the methodologies, effectiveness, and limitations of RL algorithms in adapting to

varying degrees of environmental non-stationarity.

• Chapter 3 presents a robust deep reinforcement learning algorithm for non-

stationary environments with unknown change points. The algorithm actively

detects change points by monitoring the joint distribution of states and actions. A

detection-boosted, gradient- constrained optimization method then adapts the train-

ing of the current policy with the supporting knowledge of formerly well-trained

13

CHAPTER 1. INTRODUCTION

policies. Previous policies and experience help current policies adapt rapidly to en-

vironmental changes. Experiments show that the proposed algorithm accumulates

the highest reward among several alternatives and is the fastest to adapt to new

environments.

• Chapter 4 introduces Behavior-Aware Detection and Adaptation (BADA), an in-

novative framework that merges environmental change detection with behavior

adaptation. The key inspiration behind our method is that policies exhibit different

global behaviors in changing environments. Specifically, environmental changes

are identified by analyzing variations between behaviors using Wasserstein dis-

tances without manually set thresholds. The model adapts to the new environment

through behavior regularization based on the extent of changes. The results of a

series of experiments demonstrate better performance relative to several current

algorithms.

• Chapter 5 introduces Functional Detection and Adaptation (FDA) that incorporates

change detection and adaptation to new environments. This method focuses on

choosing the most representative trajectories of previous environments, addressing

the problem of high storage cost and limited access to the past environments. Then,

we employ Bayesian surprise to detect environmental changes. It also utilizes

the Gaussian process posterior to provide knowledge for the new environment.

Experimental results demonstrate the effectiveness of this approach in handling

non-stationary and evolving environments.

• Chapter 6 proposes a new model-based reinforcement learning algorithm that

proactively and dynamically detects possible changes and Learns these Latent and

Changing Dynamics (LLCD) in a latent Markovian space for real non-stationary

environments. To ensure the Markovian property of the RL model and improve

computational efficiency, we employ a latent space model to learn the environment’s

14

1.4. THESIS ORGANIZATION

transition dynamics. Furthermore, we perform online change detection in the latent

space to promptly identify change points in non-stationary environments. Then

we utilize the detected information to help the agent adapt to new conditions.

Experiments indicate that the rewards of the proposed algorithm accumulate for

the most rapid adaptions to environmental change, among other benefits.

• Chapter 7 gives a brief summary of the thesis and its contributions. Potential

future studies are summarized as well.

15

C
H

A
P

T
E

R

2
LITERATURE REVIEW

The problem of Deep Reinforcement Learning (DRL) in non-stationary envi-

ronments has been a focal point of research in several studies. In real-world

scenarios, environments can exhibit a spectrum of complexity, ranging from

relatively simple settings with predefined change points to highly dynamic and unpre-

dictable situations where the temporal changes are unknown. To gain a comprehensive

understanding of the existing approaches and challenges, we investigate the literature

by categorizing studies based on whether the change points in the environment are

known or unknown. Simultaneously, we will discuss the similarities and differences

between our research question and other related areas in detail. This point of view allows

us to systematically analyze the methodologies, effectiveness, and limitations of DRL

algorithms in adapting to varying degrees of environmental non-stationarity.

In this chapter, we first summarize prior works similar to our research problem,

explicitly focusing on Deep Reinforcement Learning that continuously adapts in dynamic

environments with unknown change points. This review will provide a foundational

understanding of the current state of the art and identify critical areas where our

17

CHAPTER 2. LITERATURE REVIEW

With provided change points

No provided change points

Deep Reinforcement Learning in Non-stationary
Environments

Seperate Tasks

Continual RL
Approaches

Transfer RL
Approaches

Learn to Adapt

Meta RL
Approaches

Multi-task RL
Approaches

Adaptive RL
Approaches

Generalization in
RL

Detect Environment
Changes

Reward Based
Approaches

State Based
Approaches

Retaining Weight
Approaches

Partially
Observed MDP

Adapt to New
Environments

Contextual MDPSuperise Based
Approaches

Figure 2.1: The structure of the literature review.

research can contribute to the field. Following that, we analyze works in related fields

such as meta Reinforcement Learning, continual Reinforcement Learning, and transfer

Reinforcement Learning. We elucidate the differences between these approaches and

our focal problem from various perspectives, including problem settings and solution

methodologies.

2.1 Deep Reinforcement Learning Concepts and

Frameworks

DRL allows intelligent agents to learn an optimal policy by representing the complex

relationships between states and actions in an interactive game-like environment [24].

18

2.1. DEEP REINFORCEMENT LEARNING CONCEPTS AND FRAMEWORKS

Its powerful ability to model sequential decision-making has seen DRL widely used for

various applications [25, 26, 27, 28, 29].

A wide of representative works have been proposed, including model-free and model-

based approaches, both sharing the common goal of enabling agents to learn optimal

policies in complex environments. Model-free RL directly learns a policy or value function

from interactions with the environment, bypassing the need for an explicit model of the

environment’s dynamics. This approach does not have access to the transition probability

distribution. Model-free approaches are generally more straightforward, requiring much

data to achieve satisfactory performance. Representative algorithms include Vanilla

Policy Gradient (VPG) [30], Trust Region Policy Optimization (TRPO) [31] Proximal

Policy Optimization (PPO) [32], Deep Q Network (DQN) [24], Asynchronous Advantage

Actor-Critic (A3C) [33], Deep Deterministic Policy Gradient (DDPG) [34], Soft Actor-

Critic (SAC) [35], Twin Delayed Deep Deterministic Policy Gradient (TD3) [36] etc.

Among these state-of-the-art methods, VPG [30], TRPO [31] and PPO [32] are on-

policy algorithms whose function is learned from actions we took by the current policy.

There is a sampling policy and an update policy in the update scheme of model-free RL.

The sampling policy is the policy an agent follows when choosing which action to take in

the environment at each time step, and the update policy is how the agent updates the

Q-function. On-policy algorithms attempt to improve upon the current behavior policy

that is used to make decisions. Therefore, these algorithms learn the value of the policy

carried out by the agent. Off-policy algorithms learn the value of the optimal policy and

can improve upon a policy different from the behavior policy. Off-policy DRL maintains

a behavior policy and a target policy. While the behavior policy generates actions for

observed states, the target policy is trained iteratively using the subsequent outcome of

the action. The vanilla off-policy algorithms include DQN [24], TD3 [36], DDPG [34] and

SAC [35].

19

CHAPTER 2. LITERATURE REVIEW

Reinforcement learning can be applied in many domains, and the most famous

application is AlphaGo [37]. Furthermore, operations research [38], robotics [39], traffic

systems [40], recommender systems [41] and video games [42] are all making use of

DRL. For example, the application of DRL in robotics usually aims to create intelligent

machines that can assist humans in a variety of tasks and execute tasks that are beyond

human capabilities. Robotics can achieve the same task more safely and efficiently

than human beings. Robots are also used in space missions, emergency surgery, and

hospital meal preparation [43], among other things. DRL is applied successfully in

robotics with tasks like navigation [44, 45], control [46], target search [47, 48], multi-

agent coordination [49, 50], manipulation [51, 52, 53] and transport [54]. This tripartite

division underlines DRL’s adaptability across different robotic terrains and objectives.

The environment in which robotics work is relatively complex and changes over time.

However, agents usually have difficulty learning in these conditions because the rewards

are sparse; that is, the reward will not be obtained at each time step, and only a few

actions will be rewarded.

Another closely related application area of DRL is recommendation systems. The

problem of recommending the best items to a user is not only a prediction problem but a

sequential decision problem [55]. This suggests that the recommendation problem could

be modeled as an MDP and solved by DRL methods. A large amount of work [56, 57, 58]

applied DQN in recommender systems, and others use Actor-Critic methods [59, 60]. In a

typical DRL setting, an agent aims to maximize a numerical reward through interaction

with an environment. This is analogous to the recommendation problem, where the

recommend algorithm tries to recommend the best items to the user and to maximize

the user’s satisfaction.

However, the prior work on DRL in specific non-stationary environments is limited.

Most of them hold the assumption that the data are coming from a set of fixed states and

20

2.2. DEEP REINFORCEMENT LEARNING IN NON-STATIONARY ENVIRONMENTS

take actions in a stationary environment. The reason why DRL does not work well in

complex environments is that adapting DRL to dynamic problems is the first step for the

DRL controller to more general applications, which has the central issue of scalability.

2.2 Deep Reinforcement Learning in Non-stationary

Environments

Addressing the problem of Reinforcement learning in non-stationary environments

with unknown change points typically involves two approaches. The first entails actively

detecting changes and adapting upon identifying such alterations. In contrast, the second

approach does not include change detection but focuses on continuous adaptation at each

time step.

2.2.1 Detecting Environment Change Points

Methods involving detection can more accurately identify task information and improve

algorithm efficiency, as adaptation typically begins only after changes have been detected.

Detect Dynamics Changes One approach is to model the environmental dynamics,

i.e., the transition function of the environment to be interacted with. With the modeled

dynamics, monitoring its change is straightforward. The classical approaches to this

problem are based on context detection. RL-CD (Reinforcement Learning with Context

Detection) [11] is the first presented algorithm for detecting RL environmental changes.

The core idea is to create and simultaneously update multiple partial models of the

environment dynamics. There are several partial models in the system, and each model

is used in different contexts. The method of detecting changes is introducing a quality

signal for the partial model. Thus, a confidence value that reflects the model performance

is presented. The confidence value relates to the trial times of an agent in a given

21

CHAPTER 2. LITERATURE REVIEW

state, so it is proportional to the quality of the models. RL-CD detects environmental

changes by replacing the currently active model with the highest quality. If the best

model performs poorer than a threshold, a new model is created to learn an optimal

policy. Based on RL-CD, Hadoux et al. [61] considered the non-stationary environment a

set of contexts (or modules). In the inside of one context, the environment is static. The

authors proposed a novel algorithm that detects context changes by learning a group of

unknown contexts, known as sequential analysis. Similarly, this algorithm estimates the

transition and reward functions but has fewer parameters. Banerjee et al. [62] pointed

out that what is optimal for optimizing rewards may not necessarily be optimal for

the quickest detection of model changes. This work computed Shiryaev algorithm [63],

CUmulative SUM statistic (CUSUM) [64] and Shiryaev-Roberts (SR) statistic [65] on a

sequence of random variables, i.e., the state and action pair over time, and switch to the

optimal policy for the model at the time when the change detection algorithm crosses

its threshold. Further, Alegre et al. [66] constructs a mixture model that ensembled

several probabilistic dynamics predictors. They also proposed the change detection for

the underlying MDP via a multivariate variant of CUSUM [67, 68] statistics. However,

sometimes, the drift of environments only permits limited interaction before the changes

occur in environmental properties. These interaction data reflect the transition function

and reward function of the environment while modeling the dynamics directly, which is

laborious and impractical in many scenarios.

Data Distribution Another approach to address this problem is to track changes

in the distribution of training data during the learning process. Azayev et al. [69] had

trained an extra classifier to determine which terrain the robot encounters. The method

is close to supervised learning because each terrain has a label. Padakandla et al. [14]

used an online change detection method [70], which is designed for the compositional

multivariate data modeled as Dirichlet distributions and divides the multiple change

22

2.2. DEEP REINFORCEMENT LEARNING IN NON-STATIONARY ENVIRONMENTS

point detection into a sequence of single change point detection. There is only one

active window of a specific size, and the detection is carried inside. If a change point is

detected, the beginning of a new window is set to this point. Chen et al. [12] proposed an

adaptive deep RL method for non-stationary environments with piecewise-stable context.

Their method can infer the context segment structure and the belief context accordingly

from observed data, which can be leveraged to detect and adapt to context changes.

The detection method is similar to Bayesian Online Change Detection (BOCD) [71],

estimating the posterior for the current segment length.

Superise-based Methods Bayesian surprise [72] is a general concept derived from

the first Bayes principles. For data M , given a prior distribution P(M) of beliefs, the

fundamental effect of a new data observation D on the observer is to change the prior

distribution into the posterior distribution P(M | D) via Bayes theorem. Thus, the

surprise is defined by the average of the relative entropy or Kullback-Leibler divergence

between the prior and posterior distributions. The concept can be used in outlier detection.

Thus, Nagayoshi et al. [73] proposed a representation method based on environment

entropy. The method tracks the entropy change in response to changing conditions.

However, in reality, the simulated environments are complex and difficult to reuse.

Similarly, in continual learning studies like [17, 16], they calculated the surprise when

the model is updated using each minibatch and performed Welch’s t-test [74] on the

adjacent surprise.

Reward-based Methods Lomonaco et al. [13] proposed and open-sourced CRLMaze,

which is a new benchmark for continuous reinforcement learning in a 3D changing

environment based on ViZDoom [75] and designed a variety of environmental changes.

The threshold for triggering change determination is the difference between the short-

term and long-term rewards. When the difference goes under the threshold, changes in

the reward function or non-stationary interrupts of the learning process can be mitigated

23

CHAPTER 2. LITERATURE REVIEW

by consolidation. However, reward-based methods are limited in environments with

sparse rewards and need manually set thresholds.

Learning Task Embeddings Lin et al. [76] learned the variance as a function in a

dynamic sparse reward environment with continuous action space. A significant variance

increases exploration in a state with a low chance of getting a high reward. Similarly,

Sutton et al. [5] tracked environment changes by fine-tuning the policy continuously

and underscored the importance of tracking in domains with temporal coherence for

meta-learning. Xie et al. [77] leveraged latent variable models to learn a representation

of the environment from current and past experiences and perform off-policy RL with

this representation. Most of these methods closely link to meta-learning [78, 79]. They

model some task-specific vectors, which can be used to predict the most transferable

source task for a given target task via the similarity between task embeddings.

2.2.2 Adapting to New Reinforcement Learning Environments

Adaptation to new environments has been extensively researched, with considerable

work done in various fields. In this section, we will focus only on methods relevant to

this thesis’s settings. Other approaches will be discussed and compared in detail in the

following sections, providing a comprehensive overview of the current state-of-the-art

and highlighting the unique contributions of our proposed methods within the broader

context of reinforcement learning and environmental adaptation.

Model-based methods da Silva et al. [11], and Hadoux et al. [61] estimated the

prediction quality of different models and instantiated new ones when none of the existing

models performed well in discrete settings. Further, Alegre et al. [66] extend it to the

continuous setting via a mixture model composed of a (possibly infinite) ensemble of

probabilistic dynamics predictors that model the different modes of the distribution over

underlying latent MDPs. Banerjee et al. [62] proposed a two-threshold switching policy

24

2.3. MULTI-TASK DEEP REINFORCEMENT LEARNING

based on KL divergence between transition models to adapt to different environments,

requiring prior knowledge of the dynamics.

Model-free methods Lomonaco et al. [13] used the gap between the short-term

and long-term rewards to indicate environmental shifts. Their adaptation method is

based on Elastic Weight Consolidation (EWC) [8], which aims to overcome catastrophic

forgetting in continual RL scenarios. Padakandla et al. [14] update the Q-functions when

a change point is detected. Another approach to adaptation is to adapt to the environment

continuously rather than detect change points. One idea proposed by [80] is that when

an environment changes, the learning records collected by the agent tend to increase

entropy. Thus, they introduced the new concept of surprise. This solution involves a

confidence model that describes the state most familiar to the agent and how it relates to

the distribution of states they have experienced. Experiencing a more familiar state will

result in a higher establishment function. The goal of the subsequent behavioral strategy

will be to select the behavior that allows the subject to continue in the most familiar

state. Kaplanis et al. [81] added an extra loss item into PPO to simultaneously remember

the agent’s policy at various timescales to learn without forgetting and adapting to new

environments. This approach saves on detection costs but performs poorly when faced

with more significant or more frequent environmental changes, especially when there

are changes in observations.

2.3 Multi-task Deep Reinforcement Learning

Multi-task RL aims to learn a shared policy for a diverse set of tasks. Multi-task RL

encompasses a wide array of transfer learning style methods. At its core, it is training

a single model to solve multiple tasks. The main challenge of multi-task RL is the

conflicting gradients among different tasks.

Some previous online RL works address this problem via gradient surgery [82], which

25

CHAPTER 2. LITERATURE REVIEW

projects the conflict gradient onto the normal vector of the other gradient. Liu et al. [83]

solved this problem via conflict-averse learning by finding the best update vector within

a ball around the average gradient that maximizes the worse local improvement between

task 1 and task 2. There are some prior works using parameter composition [84, 85].

Yang et al. [84] introduced an explicit modularization technique that uses a routing

network to reconfigure a base policy network for each task through soft combinations

of possible routes, improving sample efficiency and performance on various simulated

robotics manipulation tasks. Sun et al. [85] proposed a parameter-compositional approach

that learns a policy subspace represented by a set of parameters, allowing policies for

individual tasks to be composed by interpolating in this subspace.

For the offline setting, Decision-Transformer-based methods [86, 87, 88] rely on expert

trajectories and entail substantial training expenses. Yu et al. [88] proposed a method

that conditions a robotic policy on task embeddings comprised of visual demonstrations

and language instructions. This allows these two modalities to clarify ambiguities and

improve generalization performance over using either alone for complex pick-and-place

tasks. Lee et al. [87] demonstrated that scaling up transformer-based models trained on

diverse datasets using an offline reinforcement learning approach, similar to methods

used in vision and language domains, can produce highly capable generalist agents.

Kumar et al. [89] demonstrated that with appropriate design choices like ResNets,

cross-entropy distributional backups, and feature normalization, large-capacity offline

Q-learning models trained on heterogeneous datasets can achieve strong performance

that scales with model size. Yuan et al. [90] tackled the challenge of learning robust

task representations in offline meta-reinforcement learning by proposing a contrastive

learning framework with a bi-level encoder structure that maximizes mutual information

between task representations and rewards, using negative sample approximations to

make the representations invariant to the mismatch between training and test behavior

26

2.4. CONTINUAL DEEP REINFORCEMENT LEARNING

policy distributions. There are also some work based on gradient descents in the finetun-

ing stage, such as Sun et al. [91], which presents a self-supervised multi-task pretraining

framework for sequential decision-making tasks that uses a Control Transformer cou-

pled with a carefully designed control-centric pretraining objective to learn transferable

representations that capture essential information for both short-term and long-term

control. Similarly, Taiga et al. [92] employed a method where an agent is pretrained on

multiple variants of the same Atari 2600 game before being fine-tuned on previously

unseen variants. Maurer et al. [93] extracted features for multiple tasks in a single

low-dimensional shared representation. Eramo et al. [94] further highlight the benefits

of learning a shared representation, as error propagation in approximate value iteration

and policy iteration improves when learning multiple tasks jointly.

These works aim to solve multi-task problems, which maintain consistency among

gradients in the subspace of tasks, thereby finding a compromise that satisfies multiple

tasks simultaneously. In our setting, where the environment is constantly changing and

unpredictable, the goal is to leverage knowledge gained from similar past experiences to

perform better in the current environment rather than striving to maintain performance

across all previously encountered environments.

2.4 Continual Deep Reinforcement Learning

Continual reinforcement learning algorithms aim to mitigate catastrophic forgetting,

where learning new tasks causes the agent to forget previously learned knowledge. In a

continual setting, the boundaries between tasks are often well-defined, and the agent

is expected to learn each task in sequence without forgetting previous tasks. According

to [95], the prior work can be divided into explicit parameter-based methods, replay-based

methods and structure-shared methods.

Parameter-based methods The parameter-based approach, as exemplified by [9],

27

CHAPTER 2. LITERATURE REVIEW

involved using the representations learned by networks from previous tasks as inputs for

subsequent tasks. Another approach is to retain a prior concerning the historical usage

levels of each parameter during learning, thus preserving significant prior knowledge [8].

Regrettably, this stability might constrain the possibility of backward transfer during the

process. Similar approaches [96, 97] accomplish this objective by utilizing the principle

of superposition, in which context information for each task is preserved, allowing the

weights to be distinctly broken down into orthogonal sub-networks. There are some

distillation-based researches [98, 99, 100, 101] involving using one neural network as a

reference or soft target for another. This technique can enhance the training process by

supplying an additional auxiliary target, which the trained network aims to replicate.

Another widely used approach is to emphasize the significance of past experiences.

Replay-based methods Another approach of continual RL is leveraging experience

replay. Replay methods like [102, 103, 104] can, therefore, assist in correcting the short-

term bias present in their objective function, provided that past experiences are a reliable

approximation for new events. To address the problem of significant storage cost, some

methods proposed pseudo-rehearsals sampled from a generative model [105, 106]. Lopez-

Paz et al. [15] added task labels as an extra input, storing the training data in episodic

memory. When a new task appears, the gradient of the previous task is calculated to

constrain the gradient of the current task. Instead of using shared replay, Kessler et

al. [107] learn a factorized policy, using the same feature extraction layers but different

heads, each specializing in a new task. This allows it to select the best policy for an

unlabeled task.

Structure-shared methods Some approaches within the structure-shared methods

domain emphasize modularity and composition [108, 109, 110, 111], where modules

specialized for each task can be composed for related tasks. Other research [112, 113,

114] focuses on the skills learned by the network, which can be generalized to other

28

2.4. CONTINUAL DEEP REINFORCEMENT LEARNING

tasks. Similarly, work by [115, 116] concentrates on integrating skills and composition

seamlessly, facilitating the explicit reuse of previously acquired knowledge in the form of

skills. Some studies center on goals, which can be interpreted as states the agent aims to

reach, a reward the agent must achieve, or a termination point of a skill. An ambitious

approach is to discover general-purpose goals without relying on any reward signal, akin

to unsupervised learning [117, 118, 119, 117].

Lifelong learning While continual learning focuses on sequential task learning

within a specific domain, lifelong reinforcement learning [120] takes a broader per-

spective. It aims to enable an agent to continuously acquire and transfer knowledge

across various domains throughout its lifetime, posing additional challenges beyond

catastrophic forgetting. The core settings in most work are similar to continual reinforce-

ment learning. Fu et al. [121] presented a model-based lifelong reinforcement learning

strategy that enhances sample efficiency by distilling a hierarchical Bayesian posterior,

facilitating forward and backward knowledge transfer. Lu et al. [116] proposed a method

leveraging unsupervised skill learning and a dynamics model for planning, reducing the

need for extensive real-world interaction. Aljundi et al. [122] introduced another gate to

compare which new tasks are most similar to the previous training. The parameters of

the new network are then initialized according to the most similar task. Xie et al. [123]

measured the similarity between the past samples and the current task’s transition

dynamics to determine which samples to transfer in the online fine-tuning phase.

As a distinction between continual and lifelong reinforcement learning, our motiva-

tion is to enable the agent to adapt to changing environments and maintain stability

during changes. The underlying reason is that agents rarely encounter identical and

repeat environments in the practical scenario. Consequently, it is crucial to leverage prior

knowledge for rapid adaptation, ensuring optimal performance within the ever-changing

online environment. Furthermore, the change points of environments are unpredictable,

29

CHAPTER 2. LITERATURE REVIEW

which makes it challenging to deploy continual learning methods to our setting directly.

2.5 Transfer Deep Reinforcement Learning

Transfer Learning (TL) refers to leveraging knowledge learned from one task, usually

named as the source domain, to boost the performance of machine learning models on

another task, usually named as the target domain. A comprehensive survey of transfer

learning is given in [124].

In reinforcement learning, transfer learning techniques are faced with more chal-

lenges. Because the MDPs have complicated components, knowledge from the source

domain can be transferred in different ways [125]. The knowledge to be transferred can

be rewards, policies, demonstrations, or representations learned by deep neural networks.

Amounts of works have studied how to transfer these types of knowledge to boost the

performance of reinforcement learning models.

Share rewards The most intuitive way to share knowledge in reinforcement learning

is to share rewards. Reward sharing is a type of method to construct the distribution

of rewards in the target domain utilizing knowledge from the source domain. Potential

based Reward Shaping (PBRS) [126] is the most classic one among these types of

methods. In PBRS, a shaping function was proposed to measure the differences between

two potential functions. The shaping function provides the rewards containing knowledge

from the source domain to help agents make better decisions. Then Potential Based

state-action Advice [127] was proposed, where potential functions include actions as well.

Dynamic Value Function Advice [128] developed a framework to incorporate arbitrary

knowledge into dynamic potential functions via reward sharing.

Learning from demonstrations Another common type of shared knowledge is

demonstrations, which can lead to more efficient explorations. Among these methods, a

common assumption is that the source and target Markov Decision Processes are the

30

2.5. TRANSFER DEEP REINFORCEMENT LEARNING

same. Demonstrations are first introduced in [129]. Then Direct Policy Iteration with

Demonstrations [130] was proposed. Two complete demonstrated rollouts are sampled.

The one is from an expert policy. The other is from the self-generated. Then, the union of

two rollouts is utilized to learn the estimation of values in the Q table. In Approximate

Policy Iteration with Demonstration [131], only the rollout from the self-generated is

used to estimate the values in the Q table. The rollout from expert policy is used to learn

a value function. In [132], two separate replay buffers are used to cache the demonstrated

and self-generated data. Thus, the expert demonstrations can continuously be sampled

from the data in the buffer. In [133], a potential function represents the highest similarity

between a state-action pair and the expert demonstrations. In Generative Adversarial

Imitation Learning [134], the state-action distributions under a given policy are mea-

sured using an occupancy measure. Then, the new reward function is to maximize the

accumulated rewards encouraged and to minimize the distribution divergence between

the current policy and the expert policy. The RL can be transferred into an optimization

problem. Further, Kang et al. [135] improved the policy optimization compared to [134].

Policy transfer The main idea of policy transfer is to use pre-trained policies from

source domains in the target domain. Usually, the number of source domains is not

less than one. A student policy is learned from multiple teacher policies by minimizing

the divergence of the distributions of actions. In [136], the KL-Divergence is used to

measure the divergence of the distributions of each teacher and student. In [137, 138],the

trajectories of the teacher’s policy are replaced with that of the student’s policy during

optimization. Besides policy distillation, another idea is to reuse policies. Policies from

source domains are reused directly in the target domain. In [139], policies from source

domains are weighted and the target policy is yielded from the weighted combination of

these policies. Other similar methods include [140, 141].

Inter-task mapping These methods assume that there exists a one-to-one mapping

31

CHAPTER 2. LITERATURE REVIEW

between source domains and the target domain. Then, the mapping can be used to

transfer knowledge. In [142, 143, 144], mapping functions over the state space are

learned from data. In [145, 146], a mapping function over the transition dynamics space

is learned. These methods assume that there exists a similarity between the transition

probability and the state representations between source and target domains.

Share the representations The last category of methods is to share the represen-

tations learned by deep neural networks. In [147], progressive neural networks share

the representations. Progressive neural networks consist of multiple columns, each for

one specific task. For the target task, the columns for source tasks are frozen and the

representations from these columns are applied to the new column. Then Fernando

et al. [148] adopted a similar idea but used a fixed-size network. Instead of reusing

representations, other methods learn a disentangled representation across source and

target domains. These methods include Successor Representations [149, 150, 151] and

Universal Function Approximation [152, 153]. Eysenbachet al. [154] proposed an esti-

mated modified reward function to transfer experience. Xie et al. [123] solved multi-task

reinforcement learning by retaining and reusing prior experience. Chen et al. [155]

introduced a one-test-time trial scenario, where an agent must complete a task within a

single episode by learning to imitate fixed prior experiences.

It is noted that the common theme in these works is the presence of shifts between

train and test settings, while our setting lays on constant online adaptation with active

change detection simultaneously.

2.6 Meta Deep Reinforcement Learning.

Meta-reinforcement learning (meta-RL) is a paradigm in reinforcement learning that

aims to learn how to quickly adapt to new tasks or environments rather than solving a

single fixed task. The key idea is to leverage experience from a distribution of tasks to

32

2.6. META DEEP REINFORCEMENT LEARNING.

learn a general strategy that can be efficiently fine-tuned or adapted to solve new tasks

from the same distribution. More specifically, in meta-RL, there is a meta-training phase

where the agent is exposed to a set of training tasks sampled from a task distribution.

The goal is to learn a meta-policy or meta-learner that can quickly adapt to any new task

from the same distribution during a meta-testing phase, using only a few examples or a

small amount of experience from the new task. The meta-training process can be thought

of as learning a good initialization or representation that captures common structure

across tasks, which can then be fine-tuned or adapted efficiently for each new task.

Meta-RL algorithms aim to learn this efficient adaptation strategy during meta-training.

Some critical approaches in meta-RL include Model-Agnostic meta-learning, recur-

rent models, gradient-based methods and context-based methods.

Duan et al. [156] extended this idea to introduce an on-policy meta RL algorithm

corresponding to training an extra network with hidden states maintained across the

whole training procedure to help the policy learn new tasks rapidly. Aghapour et al. [157]

proposed a double meta RL algorithm, which adds an extra meta-model that learns

the dynamics of the environment and generates data to meta-train the policy. Z Xu et

al. [158] proposed a gradient-based meta-learner that improves the performance with

only a few gradient update steps by making use of the task embedding. Furthermore, Xie

et al. [77] leveraged latent variable models to learn a representation of the environment

from current and past experiences and perform off-policy RL with this representation.

However, this view may ignore the sequential nature of these tasks where learning

should be greedy. To differentiate with our motivation, we emphasize that in meta RL,

the training and testing tasks are separate, and the adaptation occurs while testing

rather than learning. Also, most meta-RL methods assume that tasks come from the

same distribution, while our motivation lies in handling more drastic environmental

changes.

33

CHAPTER 2. LITERATURE REVIEW

2.7 Contextual Markov Decision Process

There is also some fundamental research on MDP. Hallak et al. [159] introduce con-

textual MDP, which involves tuples with hidden parameters that are constant over

time. The different tasks of the non-stationary environment are identified by clustering

transition models. Modi and A. Tewari [160] studied the case where the transition kernel

of each MDP is specified with a generalized linear model of the context. Modi et al.

[161] used the context or side information to model multiple tasks in smoothly varying

environments and linear structured MDPs. Besides, many prior works have studied Con-

textual MDP [162, 163, 164], where contexts are sampled once and are fixed throughout

each episode. Building upon this, Dynamic Contextual MDPs are a generalization case,

where contexts can change over time in episodes. Tennenholtz et al. [165] considered

history-dependent dynamics of contexts and can capture slow changes. In contrast, Mao

et al. [166] aimed at a non-stationary contextual MDP is considered without dependence

on previous actions and states. Similarly, Ren et al. [167] propose a Bayesian approach

to learning contextual MDPs where dynamics are not state-action-dependent or history-

dependent. Sodhani et al. [6] proposed a block contextual MDPs, utilizing Lipschitz

properties to ensure the generalization ability to unseen tasks.

2.8 Partially Observed Markonv Decision Process

A partially observable Markov decision process (POMDP) [168, 169, 170] is also a gener-

alization of an MDP. A POMDP models an agent decision process in which it is assumed

that an MDP determines the system dynamics, but the agent cannot directly observe the

underlying state. One approach is to estimate the real POMDP model, which contains a

sensor model to the probability distribution of different observations given the underly-

ing state [171, 172], which build on the estimation of the parameters of hidden Markov

34

2.9. CONCEPT DRIFT

models (HMMs) using spectral methods [173]. Instead of estimating the real POMDP

model, Jin et al. [174] utilized the observable operator model. Similarly, under complete-

ness assumptions, Guo et al. [175] proposed an offline RL algorithm that constructs

confidence regions for Bellman operators that characterize POMDPs. Jin et al. [176]

added a bonus to the rewards that penalize states not well-covered by the observed ones.

Zanette et al. [177] constructed an MDP model on which the performance of any policy

lower bounds that of the natural environment and then learned a near-optimal policy

on this model. Our idea is closest to the second approach. The POMDP framework is

general enough to model various real-world sequential decision processes. The research

problem in this thesis distinguishes POMDP from the assumption of the underlying

MDP changes.

2.9 Concept Drift

Our research problem is closely linked to concept drift [178, 179], which involves a

non-stationary data stream with changing labels and data. These data streams present

novel challenges for machine learning models, particularly concept drift. Concept drift

pertains to the phenomenon where the statistical properties of the target variable change

unpredictably over time. It poses a significant challenge to real-world machine learning

algorithms operating in dynamic and evolving environments. Concept drift is a prevalent

issue across various fields, including computer and telecommunication systems, traffic

monitoring, personalized recommendation systems, and medical decision support, among

others [179].

The most direct approach to address concept drift is to retrain a new machine learning

model with the incoming data. Upon detecting a drift signal, it’s typical to train a new

model to replace the old one. Alternatively, adaptive models possess the capability to

update themselves partially when concept drift is identified. This method proves to be

35

CHAPTER 2. LITERATURE REVIEW

more efficient, particularly when the drift occurs within a localized region. However,

these adaptive methods are constrained to specific types of models, such as tree models

[180, 181, 182], lazy learners [183, 184], and support vector machines [185].

In recent years, ensemble learning has garnered considerable attention in the field of

machine learning [186]. Ensemble methods consist of a collection of base classifiers, which

may vary in type or parameters. The predictions of each base classifier are combined

using specific voting rules to make predictions on newly arrived data. Numerous adaptive

ensemble methods have been devised to address concept drift, either by extending

classical ensemble methods or by devising specialized adaptive voting rules. Ensemble

methods encompass various techniques [187, 188, 189].

Deep learning has demonstrated remarkable success across a spectrum of appli-

cations. Deep neural networks are typically updated through gradient descent-based

optimization techniques, a methodology that can be extended to data stream settings for

online updating. In a recent study by Soleymani et al. [190], a pre-trained convolutional

neural network is proposed, with its parameters continuously updated online to adapt

to concept drift. Additionally, various deep model architectures have been explored to

tackle concept drift, including recurrent neural networks [191] and Long Short-Term

Memory (LSTM) networks [192]. However, a key challenge with deep learning lies in

its data hunger; deep neural networks require substantial amounts of data for effective

training. This poses a significant challenge when handling concept drift, as only limited

data may be available for training post-drift detection.

36

C
H

A
P

T
E

R

3
A GRADIENT-CONSTRAINED APPROACH

This chapter aims at the research objectives 1 and 4 mentioned in the Chapter.

1. In this chapter, we present a novel approach for detecting change points by

monitoring the joint distribution of states and actions. Central to the method

is leveraging the relationship between the distance metric in neural networks and

the associated gradients. Specifically, a relaxed, constrained gradient optimization is

employed as an adaptation mechanism. By monitoring shifts in the joint distribution over

states and actions, the algorithm can identify points where the environments undergo a

transition. The neural network distance metric provides a principled way to quantify

these gradient changes through the geometry induced on the network’s parameter space.

The gradient-based adaptation allows the framework to adjust to detected changes stably

and efficiently by leveraging knowledge from the previous operating environment.

This chapter is based on the paper "Deep Reinforcement Learning in Non-stationary

Environments with Unknown Change Points" IEEE Transactions on Cybernetics, 2024

(DOI: 10.1109/TCYB.2024.3356981)

37

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

3.1 Background

Deep Reinforcement Learning (DRL) allows intelligent agents to learn an optimal policy

by representing the complex relationships between states and actions in an interactive

game-like environment [24]. Its powerful ability to model sequential decision-making

has seen DRL widely used for various applications [25, 26, 27, 28, 29]. A wide of repre-

sentative works have been proposed, including proximal policy optimization (PPO) [32],

asynchronous advantage actor-critic (A3C) [33], etc. When the applications of RL extend

from simulated environments to real-world settings, a challenge that needs to be ad-

dressed is that the environment is often non-stationary, where the reward distributions

and state transitions are constantly changing. So, an attractive topic of DRL is to explore

their ability to be robust in non-stationary environments during their lifetime. However,

one common assumption of standard DRL schemes is that the environment where the

agent operates is dynamic but stationary. This means the probability distribution of the

state transitions and the reward functions remain unchanged during the interaction.

Unfortunately, such an assumption does not always hold fast in practice. In the real

world, many environments are non-stationary and sometimes change quite often [7].

For example, a rescue robot may potentially venture into a cave with changing lighting

conditions or navigate through unexplored terrains during task execution. Similarly,

the chatbot should seamlessly adapt to changes in conversation topics, including those

previously unencountered. In these non-stationary environments, the policies learned

from the previous environment settings will not always work well. Accurate detection

and rapid adaptation to new environmental conditions in these scenarios are crucial.

Some research [8, 9, 10] help RL agents work successfully in environments where the

change points are presented because a model can learn a new policy relatively quickly

after a change by simply borrowing knowledge from former well-trained policies. In

practice, however, the agent is not always aware of the change points of environments.

38

3.1. BACKGROUND

Figure 3.1: Illustration of non-stationary environments and their impact on reward
changes. Three sequentially changed Vizdoom environments with different light levels
will lead to a drop in reward. PPO is the baseline to obtain these rewards.

For example, a delivery drone needs to contend with changing weather and wind patterns,

and a mopping robot trained on a wooden floor must be able to cope with tiled floors

or the sudden appearance of a rug, a recently moved chair, or a discarded toy. These

environments usually have unpredictable time-varying state transitions and reward

functions. As depicted in Figure 3.1, an RL agent experiences a noticeable decline in

rewards when confronted with unforeseen changes in lighting, leading to its failure in a

dark environment. While solving this problem is becoming increasingly significant, only

a few studies have attempted to tackle the issue. One solution is contextual detection for

model-based RL [11, 62], which estimates the environmental models of different contexts

but is challenging to accomplish in complex scenarios. Maintaining an environmental

model is not easy for high-dimensional environments due to the limitations of sample

efficiency in RL. Another method [13] for model-free RL determines environmental

changes using the difference between long-term and short-term reward averages, which

requires a manually set threshold value. Alternatively, Padakandla et al. [14] recognize

the distribution shift of the experience stream to represent the environment change

points. As shown later in experiments, these methods are vulnerable to significant and

39

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

sudden environmental changes.

This chapter presents an end-to-end model-free Reinforcement Learning algorithm

with sound and stable performance in non-stationary environments with unknown

change points. The key notion is that changes of the environment distribution P (a, s)

may have two possible reasons: the change of the agent policy P (a|s), and the change of

environment states distributionP (s). Our method first detects the environmental change

points by examining a joint distribution that comprises the state marginal distribution,

based on a Maximize Mean Discrepancy (MMD) [193], and the conditional distribution

with a deep neural network distance [194]. While Padakandla et al. [14] devised a method

using the marginal distribution to detect points of change in an environment, it is not

always reliable. Although the marginal distribution P (s) change works as an excellent

early-warning signal, underlying changes in the marginal distribution will lead to a

gradual shift in policy focus, but those shifts might not result in a significant decrease in

the performance of the policy. So, if the policy does not ultimately change, what would

have been an excellent early warning signal becomes more of a false alarm. To address

this problem, our idea adds the detection of policy P (a|s) changes using neural network

distance [194].

With the change points detected, a distance-relaxed adaptation method then aug-

ments the training of a new policy for the new environment by drawing on previously

well-trained policies. Our idea is to constrain the present gradient in terms of the former

policy gradients with the consideration of distances from detection. It is worth noting

that our goal is to stay robust in non-stationary environments by using previous policies,

which differs from the aim of continual RL that seeks to resist catastrophic forgetting.

With this objective, not all previously acquired policies prove to be with equal beneficial

contribution; some may even have a detrimental impact on the agent’s performance in the

current environment. Our new gradient-constrained idea can reduce the effect of the ‘bad’

40

3.2. PROBLEM FORMULATION

previous policies and trust those sourced from the ‘good’ previous policies. Experiments

comparing our algorithm with several alternative algorithms show that our solution

accumulates the highest reward and is the fastest to adapt to new environments. This

work holds strong potential for increasing the environmental applicability of intelligent

agents like drones, autonomous vehicles, and underwater robots.

The contributions of this chapter include the following:

• A formal model-free Detection-Adaptation RL (DARL) framework that spans the

entire pipeline of learning and clearly identifies the method’s similarities and differ-

ences to existing DRL schemes. The framework demonstrates strong performance

in more practical and challenging non-stationary environments.

• A change detection method to detect the change of environments accurately. Our

approach takes into consideration the joint, marginal/conditional distribution, i.e.,

experience streams and policies. For DRL in non-stationary environments, the

approach delivers not only good detection performance but also provides crucial

information for policy adaptation.

• A detection-boosted, gradient-constrained adaptation method that quickly learns

a new policy once a change is detected with an ability to reduce the effect of ’bad’

policies. The proposed method enables DRL agents to converge quickly to the

optimal reward, even in environments where the reward distributions and state

transition change during interactions.

3.2 Problem Formulation

A Markov decision process (MDP) is defined by a tuple M = {S , p0,A ,R,P }, where

S is the state space, p0(s) is the starting distribution of the states, A is the action

space, R(r|s,a) is the reward function R : S £A ! R, and P (st+1|st,a) is the state

41

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

transition probability. A policy ºµ(a|s) is a distribution over actions given a state, with µ

as the parameter set. When a deep neural network is used to model ºµ, µ contains the

weights of the network. Let eº denote an interaction trajectory with length T: eº,T =

{s0,a0, r0, s1,a1, ..., sT} under policy º. With discount factor ∞, the expected discounted

reward is defined as

¥(º)= Eeªº

∑X
t
∞tr(st,at)

∏
. (3.1)

The optimal policy º§ is the one that maximizes the value of ¥(º)

º§ = argmax
º

¥(º). (3.2)

RL employs algorithms to learn the optimal policy in the above setting. For example,

a straightforward procedure for finding the optimal policy [195] is to collect eº by

interacting with the environment under policy ºµ and then to update µ using gradient

information from Equation (4.1).

Standard RL assumes that the underlying MDP M is dynamic but fixed. When this

assumption does not stand, we have the RL scheme for non-stationary environments

instead. Further, when the change points are unknown, we have the following problem:

Problem 3.1. Reinforcement Learning in non-stationary environments with

known change points. Let {Mk=1:K } be a sequence of different MDPs with change points

{T1, ...,TK°1}. An agent will sequentially interact with {Mk=1:K }, where the change points

are given. The goal of the agent is to find a sequence of corresponding policies to obtain

the optimal expected discounted reward as

º§
1:K = argmax

º1:K
¥(º)= argmax

º1:K
Eeªº

"
X

k=1:K

TkX

t=Tk°1

∞tr(st,at)

#
, (3.3)

where we set T0 = 0.

Since we have detected the change point of the MDPs, we can quickly learn the

current policy by borrowing the knowledge from former policies. However, the change

42

3.2. PROBLEM FORMULATION

points are not always known or clear in practice. This problem is, therefore, formalized

as Problem 2 below.

Problem 3.2. Reinforcement Learning in non-stationary environments with

unknown change points. Let {Mk=1:K } be a sequence of different MDPs with change

points {T1, ...,TK°1}. An agent will sequentially interact with {Mk=1:K } with unknown

change points, where the goal is to find a sequence of policies for obtaining the optimal

expected discounted reward as

º§
1:J = argmax

º1:J
¥(º)= argmax

º1:J
Eeªº

2
4 X

k=1:J

T 0
kX

t=T 0
k°1

∞tr(st,at)

3
5 , (3.4)

where {T 0
1, ...,T

0
J°1} are detected change points by the agent, so they might not exactly

match with real change points {T1, ...,TK°1}. Since we have detected the change point

of the MDPs, we can quickly learn the current policy by borrowing the knowledge from

former policies.

Note that if the dimensions ofS andA change between {Mk=1:K }, it would be naive to

detect the change points of change. Hence, with Problem 1, our focus is solely on the same

state and action sets, noting that the underlying distributions and {Rk,Pk}k=1:K might

change sequentially from k = 1 to k =K . Unlike [196], we do not make an impractical

assumption about which part of the MDP will change. Beyond this, our DARL scheme

is model-free, which means we do not maintain an environment model like [11]. But,

in keeping with other studies that have attempted to resolve Problem 1, we do make

the assumption that there will be enough episodes in each environment Mk to ensure

the policy being trained converges before the following change. If the change points

{T1, ...,TK°1} are pre-defined, the problem will degenerate into a naive RL training

problem with sequential switches in environments.

43

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

3.3 Methodology

Our proposed end-to-end framework is designed explicitly for non-stationary environ-

ments with unknown change points. DARL comprises two closely related components:

change point detection and detection-boosted adaptation. Each is introduced here in

turn.

3.3.1 Environment Change Detection

As a model-free RL agent, the scheme only includes the following elements for each

time step t: a state, an action, a reward (observed from the environment), and a policy.

Hence, these are the only data through which to detect a change. The collected data

{st,at, rt, st+1} will be saved in the experience memory M . Note that the at is determined

by the policy º(at|st).

All these data points can be understood as samples from a joint distribution P (s,a)=

P (s)P (a|s), where s is an observed state and a the action taken, P (s) is the marginal

distribution of the states, and P (a|s) (policy) is the conditional distribution of the actions

given a state. The data is collected from an underlying and unknown MDP, and we

assume the data collected from an environment that feeding back states P (s) with a

well-trained policyP (a | s) represents an estimation of a certain joint distributionP (s,a),

which corresponds to the current environment. Hence, a reliable and sensitive method

for detecting the presence of change points in the environment should consider this

joint distribution. Unfortunately, the literature contains little research of this nature.

Specifically, the detection of DARL occurs over two steps. First, any changes in P (a|s)

are detected from a distance function in the neural network. Subsequently, changes in

P (s) are evaluated to ascertain whether a change has genuinely occurred.

Policy detection We detect the change of policy during the interaction with an envi-

ronment by considering the deep neural network representation in the literature [194].

44

3.3. METHODOLOGY

0 500 1000 1500
episode

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ne
ur

al
 n

et
w

or
k

w
ei

gh
t c

ha
ng

e

non-stationary environment
stationary environment

A1

A2

A3

A4

Figure 3.2: When the environment changes, a notable drift is observed in the distance
between adjacent network weights. The results are derived from utilizing PPO in the
Cartpole environment, with a change point at 750.

Consider a neural network with L layers, we denote the network parameters as W =

(W1,W2, . . . ,WL). After one update step,W will have a perturbation¢W = (¢W1,¢W2, . . . ,¢WL).

The relative difference between two sequential adjacent deep neural networks’ pa-

rameter W with the same structure is

d(c) =
LY

l=1

µ
1+ k¢Wlk2

kWlk2

∂
, (3.5)

where L is the network depth, k ·k2 denotes the Euclidean norm, and d(c) denotes the

distances within the conditional distribution (policy). It is worth noting that in neural

networks, the parameters of well-trained convolutional kernels follow a Gaussian-like

distribution, while fully connected layers and batch norm layers do not conform to a

well-defined distribution [197]. However, similar distribution characteristics have not

been observed for other learnable parameters. Consequently, we consider the policy as

a whole and use Euclidean distance to measure its difference rather than relying on

distribution-based metrics like KL divergence. As [194] outlines, this distance has a

45

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

useful property that it links with the network gradient change through

kgl(W +¢W)° gl(W)kF
kgl(W)kF

∑ d(c)°1, (3.6)

where gl is the gradient of the loss function L with respect to the parameter matrix

Wl(l = 1, . . . ,L).

The loss function used in this chapter follows PPO [32], which denotes as

L=min
µ

º(at | st)
ºold(at | st)

Ât(s,a), g
°
≤, Ât(s,a)

¢∂
, (3.7)

where º is the current policy with parameters W , ºold is the policy before the update. Ât

is an estimator of the advantage function at timestep t, and ≤ is a hyperparameter. In

the implementation, the specialized clipping in the objective function removes incentives

for the new policy to get far from the old policy.

g(",A)=

8
>><
>>:

(1+")A if A ∏ 0

(1°")A if A < 0
(3.8)

Equation (3.6) shows that the distance d(c) between the weights in Equation (3.5) is

the upper bound of the change in gradients due to the disruption of weights. This means

that a large d(c) might lead to greater gradient change of the neural networks (policies).

To further confirm this significance, we want to find the outlying point of the change

prior to the current time step t within a sliding first-in-first-out window of weights

©
Wt°(S°1), ...,Wt°1

™
)

n
d(c)
t°(S°1),t°(S°2), ...,d

(c)
t°2,t°1

o
, (3.9)

where S is the size of window, {W}t°1t°(S°1) is a window of policy weights, and {d(c)}t°2,t°1t°(S°1),t°(S°2)

is a window of corresponding relative distances. As stated in Equation (3.5), we use

the pair hWt°(S°1),Wt°(S°2)i to compute d(c)
t°(S°1),t°(S°2). According to the three-sigma

rule [198], 99.7% of the values in the window should obey normal distribution and be

concentrated in the (µ°3æ,µ+3æ) interval, where µ and æ denote the mean and stan-

dard deviation in a window. Hence, values beyond the range in this window should be

46

3.3. METHODOLOGY

considered as outliers. Even in the case of a non-normal distribution, there is also at

least an 88.8% probability that it will be within (µ°3æ,µ+3æ) according to Chebyshev’s

inequality [199]. Therefore, we consider this test method to be reliable.

To show the accuracy of this detection intuitively, Figure 3.2 gives a demonstration

where we can see that there is a significant and immediate change on the variable d(c)

when a sudden environmental change occurs at and only at episode 750 in area A1. We

can also observe that d(c) quickly decreases after the change point. The reason is that

as a deep neural network is trained with more incoming data, the weights will quickly

converge to some point with a gradually limited relative change. This is a phenomenon

consistent with a neural tangent kernel where we see small changes in the weights after

several training steps [200, 201]. This phenomenon reassures us to use the above outlier

judgment to detect policy change.

Episodic detection As also shown in Figure 3.2, significant changes in neural net-

work weights can be seen before and after episode 750, like A2, A3, and A4. The reason

behind the A2 change is that, when trained on incoming data at the beginning of the op-

timization process, the weights of the neural networks are normally randomly initialized

and will change severely before converging to a relatively stable point. The mutation

points are seen in A3 and A4, but they are the normal fluctuation of neural network

training. They are not likely due to environmental change. Hence, the detection method

will report many false change points if we rely only on detecting (policy) conditional

distribution changes. Therefore, it is essential to confirm each change in the marginal

distribution. Our idea is that the marginal distribution P (s) should have a significant

drift before and after a real environment change point, so if it does, it can be used as

additional confirmation. To this end, distribution drift detection is vital to determine

the source of the disturbance on network weights, i.e., whether it comes from training

or environmental change. The distribution drift is detected using the maximum mean

47

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

discrepancy (MMD) test [193] and based on the two collected interaction experience sets

before and after the detected change point. With this test, one can judge whether two

sample sets are from the same distribution with an associated p-value and output a

distance between two distributions

d(m) = 1
n(n°1)

X

i

X

j 6=i
¡(s0,i, s0, j)°

2
n2

X

i

X

j 6=i
¡(s0,i, s1, j)

+ 1
n(n°1)

X

i

X

j 6=i
¡(s1,i, s1, j),

(3.10)

where ¡ is a kernel (we use RBF kernel here), n is the size of two sets, (m) denotes the

distance of the marginal distribution, and s0,i is i-th experience of {s0}.

By jointly considering the policy and episodic experience changes, we can accurately

detect changes in the environment.

3.3.2 Policy Adaptation

With the detected change points, we carry out an adaptation procedure to augment the

training of a new policy for a new MDP with the help of former well-trained policies.

Directly applying existing adaptation ideas of DRL with known change points is not good

enough. The reasons are: 1) our detected change points might not be identical to the

ground-truth change points. An inaccurate estimation, such as a delay, leads to inaccurate

environment change point identification. If previous knowledge is leveraged directly

and equally to adapt to the current environment, incorrect environment estimation

can lead to confusion, such as mixing up two different environments that should be

identified as distinct entities. The policy learned from such a mixed environment may

lead to abnormal behavior and a ‘bad/negative’ impact on the current one. 2) Some former

policies trained in past MDPs might differ greatly from the current MDP. Uniformly

considering the contribution of different MDPs may lead to performance reduction in the

current environment. So, equally aggregating the contributions from all past policies is

not reasonable. We need a technique to reduce the effect of such a ‘bad/negative’ policy.

48

3.3. METHODOLOGY

a b

dc

g1g2 g1g2

g2g2

g1 g1

Figure 3.3: Illustration of adaptation control differences between GEM and our method
in two gk situations, where a and c illustrate GEM; b and d illustrate our method; g1
(blue) is with small distance to current MDP and g2 (red) is with large distance; the
(purple) overlap is the solution space for g̃; black vectors are possible solutions.

Thus, we propose a distance-relaxed adaptation method that includes the distances

defined in Equations (3.5) and (3.10). Inspired by Gradient Episodic Memory (GEM) [15],

the distance-relaxed cosine similarity between the gradients of the former policies

and the new policy is applied to constrain their angles within a feasible area. In this

section, we use the term "task" k to refer to the learning process of RL agents in

the corresponding environments, and in each environment, an optimal policy ºk with

gradient gk will be found. The advantage of this distance-relaxed cosine constraint is

illustrated in Figure 3.3, where two former policies º1,º2 with gradient g1, g2 exist

and with different distances to the current MDP (d(c)
1 is small and d(c)

2 is large). In

the first row of Figure 3.3, we illustrate an extreme situation where g1 and g2 have

exactly inverse directions. Under GEM, there are only two possible solutions (black

49

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

vectors) because the contributions from g1 and g2 are equally treated and neutralized,

as illustrated in Figure 3.3(a). However, there is a larger solution space (purple area)

under our method because we allow extending solution space constrained by g2 (red area)

because it has a larger distance from the current MDP. That is to say, the contribution

from the ‘bad’ g2 is reduced while the contribution from the ‘good’ g1 is enhanced, as

illustrated in Figure 3.3(b). The second row of Figure 3.3 shows a general case where g1

and g2 is neither inverse nor coincident but with an angle. The solution space (purple

area in Figure 3.3(c)) of GEM is symmetric for both g1 and g2, but the one (purple area

in Figure 3.3(d)) from our method has a preference to be closer to g1.

Additionally, we apply a distance-relaxed upper bound using Equation (3.6) to con-

strain the Euclidean distance of the gradients between the former policies and the new

policy within a feasible area. Thus, the complete optimization goal, with constraints, is

min
g̃

°cos(g, g̃)

s.t. cosh g̃, gki ∏ d(m)
k for all k< t

k g̃° gkk2 ∑ (d(c)
k °1)kgkk2 for all k< t,

(3.11)

where g is the current gradient vector trained from a standard policy gradient, g̃ is the

closest gradient vector satisfying all the constraints, gk is the gradient vector of task k

(in the implementation, we calculate gk using the kth policy on the current data Mc),

and t is the number of observed tasks now. d(m)
k is a normalized scalar for each task k

within [°1,0]. Note that this scope ensures that the solution space constrained by cosine

distance with all gk is not empty. To ease the optimization, we further fix the norm of

∫= k g̃k= kgk and assume g̃= h∫, and then our problem becomes,

min
h

° ḡTh

s.t. hT gk ∏ d(m)
k kgkk for all k< t

k∫h° gkk2 ∑ (d(c)
k °1)kgkk2 for all k< t,

(3.12)

50

3.3. METHODOLOGY

where ḡ is the normalized vector of the current gradient trained from a standard policy

gradient, and h is the normalized vector of g̃, which is the closest gradient vector

satisfying all the constraints in Equation (3.11). This is a standard Linear program

with linear and quadratic constraints, and we can solve it to obtain optimal h§ and

recover the optimal g̃§ = h§∫ easily. It is noted that the problem this chapter focuses

on is different from traditional continual learning. We aim to continuously adapt to

new environments quickly instead of combating catastrophic forgetting. To address this

problem, we aim to figure out the similarities between current policies and previous

policies by considering their behavior in the current environment. Therefore, instead

of following the typical continual learning approach where the gradient vector gk is

computed using the current policy ºc on all previous data {Mk}t°11 , we adopt a different

strategy. We calculate the gradient vector gk using the previous well-trained policy

on the current data Mc. Then we employ neural network distance d(c) and episodic

experience distance d(m) as constraints. This approach enables us to determine how

much the previous ones should impact the current gradient.

3.3.3 Detection-Adaptation RL

Our algorithm Detection-Adaptation RL (DARL) is illustrated in Algorithm. 7. First, we

interact with the environment using the current policy ºc to collect dataMc and compute

the gradient g. Then, we calculate the gradient distance d(c) between the current policy

ºc and the previous policy, as well as the distance d(m) between the collected data. If

a change point is detected, the gradient g will be optimized and overwritten according

to Equation (3.12), and the current policy and data memory will be stored. Otherwise,

the policy will maintain the original gradient. With the optimized gradient, the policy

will adapt to the new environment with the enhancement of previous knowledge. The

core of DARL adaptation is to leverage previously learned knowledge depending on the

51

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

Algorithm 1 Detection Adaptation RL (DARL)
1: Initialization: Current policy ºc, current experience memory Mc, previous policies

{ºk}, previous memories {Mk}.
2: repeat
3: while not done do
4: Collect {st,at, st+1, rt} using ºc and save to Mc.
5: end while
6: Compute the gradient g of ºc using Mc.
7: Calculate anomaly of previous neural networks’ distance d(c) using Equation (3.5).
8: Calculate the neighbouring experience distribution distance d(m) using Equa-

tion (3.10).
9: if Anomaly detected in d(c) sequence and neighbouring distribution shifts then

10: Optimize g according to Equation (3.12) to find an optimal solution g̃§.
11: Update g√ g̃§.
12: {Mk}√ {Mk}[Mc, {ºk}√ {ºk}[ºc.
13: end if
14: Update ºc along gradient g.
15: until Training ends.

similarity between different environments and policies through DARL detection. DARL

helps identify environmental change points and mitigate the adverse effects of potential

sudden environmental changes on policy learning.

3.4 Experiments and Analysis

Our experiments aim to answer several questions: 1) Does DARL outperform other

methods in cumulative reward? 2) Can DARL detect the change points accurately? 3) Is

the DARL adaptation strategy better than following RL updates? 4) Does joint detection

outperform sole detection? 5) Is there any factor that influences DARL performance?

3.4.1 Experiment Setups

Environments: We perform our experiment in the following environments with change

factors: Gym [202] with dynamic transitions, MiniGrid [203] with time-varying obsta-

52

3.4. EXPERIMENTS AND ANALYSIS

Table 3.1: Settings for the Gym environment changes

Stage Number CartPole(gravity, mass_pole, force_mag) LunarLander(wind_level)

0 (9.8,0.1,10) (0)

1 (20,10,10) (0.25)

2 (9.8,0.1,30) (0.5)

cles, and ViZDoom [204] with changing light levels and ceiling textures. The detailed

environment settings are listed in Table 3.1 and Figure 3.4.

For each environment, two change points are simulated. It is important to emphasize

that all environment-changing variables are not observable to the agent, and the agent

has no access to them when the environment changes.

We used the following environments:

• MiniGrid [203] is a 2D maze environment with an NxM grid of tiles, and the

agent can pick up and carry exactly one object. We put extra obstacles in rooms to

simulate change.

• ViZDoom [204] is an image-based environment that allows the agent to play Doom

using a screen buffer of the fps scenario. We simulate the environmental change by

varying light and texture.

• Gym [202]: We simulate the environmental change by varying gravity, mag force,

and mass in Cartpole. We involve an extra variable to simulate the wind in Lu-

narLander.

Comparative methods: Our target of experimental evaluation is to 1) verify the

effectiveness of our detection; 2) evaluate the effectiveness of our adaptation; 3) show

the overall performance of our DARL algorithm. Proximal policy optimization (PPO) [32]

was used as the base algorithm for all following comparative methods:

53

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

get to the green goal square get to the green goal square get to the green goal square

Stage 1 Stage 2 Stage 3

(a)

Lightlevel = 110
Textureceiling = ‘CEIL1_1’

Stage 1 Stage 2 Stage 3

Lightlevel = 90
Textureceiling = ‘CEIL1_2’

Lightlevel = 210
Textureceiling = ‘FLAT4’

(b)

Figure 3.4: We change the light level and texture of the ceiling in the shooting game
ViZDoom(upper) and the position of obstacles in the maze environment MiniGrid(bottom),
respectively, during training.

• Standard PPO without any detection and adaptation;

• Standard PPO with Gradient Episodic Memory (GEM) [8] gradient-constrained

adaptation and shown change points.

• CRL-Unsup [13] with both detection and adaptation.

• Online parametric Dirichlet change point (ODCP) algorithm [14, 70]; This algo-

rithm does not have an adaptation component so we use standard restart procedure.

• Policy Consolidation (PC) [81], which simultaneously remembers the agent’s policy

at a range of timescales and regularises the current policy by its own history to

54

3.4. EXPERIMENTS AND ANALYSIS

Table 3.2: The implementation parameters of our method, DARL.

Cartpole LunarLander MiniGrid VizDoom

Network Layer 2*Linear 2*Linear 3*Linear 4*Conv

Network Width 64 64 32 64

Episode 1500 1500 45000 7500

Batch Size 128 128 1024 1024

Learning Rate 0.001 0.001 0.001 0.001

improve the ability to learn. Hence, we evaluated the method as it is without

detection and adaptation.

Note that all algorithms are model-free and with the same setting unless otherwise

specified, like the policy neural network structure, learning rate, window size, etc.

Evaluation metrics: Any RL method’s goal is to obtain a high accumulative reward

and continuous interaction between agents and environments. In all experiments, the

most important metric is how much/high rewards each method can get. We actively

detect the possible changes because we believe we can obtain more rewards if we can

quickly detect and then adapt to the changed MDP.

For detection, we use F1 Score F1 = 2§P§R
P+R as the metric, where P is precision and R

is recall.

Implementation Details The hyper-parameters we used in our experiment imple-

mentation are listed in Table 3.2.

3.4.2 Results

We present a comprehensive comparison of reward curves and detection accuracy, pro-

viding insights into the relative performance of DARL. Figure 5.4 illustrates the results

55

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

in MiniGrid, VizDoom, and the relatively simpler Gym environments. We compare

performance using the training reward curve with shadowed 95% confidence intervals.

In MiniGrid and VizDoom, as well as in simpler environments like Cartpole and

LunarLander, the DARL method not only identifies change points with high accuracy

but also maintains a consistently high reward curve post-change, suggesting a robust

adaptation to the new environment dynamics. Notably, DARL’s performance in Cartpole

remains relatively stable across episodes, while in LunarLander, DARL demonstrates

superior recovery after initial performance dips at change points compared to other

methods. In high-dimensional, complex environments such as VizDoom, the adaptability

of DARL is evident as it outperforms other methods, particularly after the environ-

ment changes, maintaining higher reward consistency. This is crucial, considering the

complexity and the visual rendering that VizDoom presents. In the case of the simpler

environment Cartpole, while the rewards for DARL are not as high as some methods

initially, the performance after the change points shows DARL’s robustness, suggesting

that it doesn’t overfit to the initial environment setup and can maintain good perfor-

mance even when the environment dynamics are altered. The results in LunarLander

further solidify DARL’s position as a method that can quickly adapt to new environments.

Its reward curve post-change is not only higher but also more stable compared to other

methods, indicating a better understanding of the environment’s dynamics. It’s also

worth noting that the confidence intervals of DARL are tighter in environments like

Cartpole and LunarLander, which implies that DARL’s performance is more consistent

across different trials. This consistency is less pronounced in more complex environments

like VizDoom, which is understandable given the increased complexity and variability in

such environments.

Overall, DARL showcases an excellent balance between detection accuracy and

reward optimization across a variety of environments, confirming its versatility and

56

3.4. EXPERIMENTS AND ANALYSIS

0 1000 2000 3000 4000 5000 6000 7000
−250

−200

−150

−100

−50

0

50

100
ODCP CRL-Unsup GEM PC PPO DARL

Episode

R
ew

ar
ds

(a) Vizdoom

0 5k 10k 15k 20k 25k 30k 35k 40k 45k

0

0.2

0.4

0.6

0.8

1

1.2
ODCP CRL-Unsup GEM PC PPO DARL

Episode

R
ew

ar
ds

(b) Minigrid

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

ODCP CRL-Unsup GEM PC PPO DARL

Episode

R
ew

ar
ds

(c) Cartpole

0 200 400 600 800 1000 1200 1400
−200

−150

−100

−50

0

50

100

150

200

ODCP CRL-Unsup GEM PC PPO DARL

Episode

R
ew

ar
ds

(d) LunarLander

Figure 3.5: Evaluation on detection accuracy and average reward in four environments.
The environment changes at episode {500, 1000} in Cartpole and LunarLander. In
MiniGrid, the environment changes at episode {15000, 30000}, and in VizDoom, the
environment changes at episode {2500, 5000}. Our method, DARL, achieves the highest
performance among the baselines.

efficiency as a method for change point detection in reinforcement learning settings.

We detailed discuss the experiment results from two main aspects:

Detection accuracy The detection results are given in Table 3.3. Firstly, ODCP de-

tects environmental change points by testing the Dirichlet likelihood of the experience

tuples, where any discrete or continuous data will be transformed into compositional

data. The results show that ODCP reports change points frequently soon after the reward

converges. In contrast, our method can effectively filter out these false detections because

our method detects the joint distribution of states and actions. Secondly, CRL-Unsup

introduces the ratio between long-term and short-term rewards as the detection indicator.

The method will report a change when the ratio is larger than a (manually) given thresh-

57

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

Table 3.3: The F1 score of detection methods.

ODCP CRL-Unsup DARL

CartPole 0.67 1.0 1.0

Lunar-Lander 0.5 0.67 0.8

MiniGrid 0.4 1.0 1.0

VizDoom 0.4 1.0 1.0

Table 3.4: The detection performance of policy detection and episodic detection, respec-
tively.

Policy Detection Episodic Detection Full Detection

Vizdoom 0.67 0.57 1

Minigrid 0.4 0.57 1

LunarLander 0.46 0.4 0.8

Cartpole 0.36 0.57 1

old. The detection accuracy is close to ours, as shown in the tables. However, we want to

highlight that 1) the threshold value of CRL-Unsup highly relies on prior knowledge and

manual selection, but ours is without any manually adjusted hyperparameters; 2) CRL-

Unsup is a reward-based method which is straightforward, but sometimes we cannot

timely obtain the reward from the environments then these reward-based methods will

be delayed as well, and the rewards from two MDPs are sometimes not comparable so

the reward may remain unchanged but already not good enough in the new environment.

Our method focuses on the joint distribution of states and actions, which is more robust

and applicable than using reward only.

Adaptation performance At the first change point, the convergence speeds of the

three methods are approximately close without considering the effect of detection delay,

with CRL-Unsup achieving the fastest adaptation after episode 500 in CartPole and

58

3.4. EXPERIMENTS AND ANALYSIS

Table 3.5: The correct detected change points. The point where the actual change points
are {500,1000}.

CRL-Unsup DARL

CartPole {502,1003} {508, 1021}

Lunar-Lander {504, 1017} {515,1022}

ours achieving the fastest adaptation after episode 1000 in CartPole. In the image-based

environments VizDoom and MiniGrid, our method has the fastest convergence speed

among all methods. Additionally, to study the influence of a ’bad’ policy, the reward

curves in Figure 3.6 show that the traditional GEM with relatively strict constraints is

significantly affected by a precious ’bad’ policy, while DARL does not. The impact will

be discussed in detail following. In summary, our method has a faster convergence than

other baselines in all environments.

3.4.3 Ablation Studies

In this section, we systematically dissect the individual components of our model to

evaluate their respective contributions and understand their impact on the overall

performance.

Joint detection. To evaluate the performance of change detection, we analyzed two de-

tection schemes individually. Figure 3.8 shows the detected point of using policy detection

and episodic detection separately. Table 3.4 shows the F1 score of each separate detection

module and the full detection method. Upon individual assessment, it was observed that

neither policy detection (represented by yellow marks) nor episodic detection (denoted by

green marks) could, in isolation, accurately identify the actual change points (illustrated

by vertical bars). It is noted that our method only makes the decision (marked as blue

triangles in the figure) when both episodic changes and policy changes are detected

59

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

0 1000 2000 3000 4000 5000 6000 7000
−250

−200

−150

−100

−50

0

50

100
GEM DARL

Episode

R
ew

ar
ds

(a) Vizdoom

0 5k 10k 15k 20k 25k 30k 35k 40k 45k
0

0.2

0.4

0.6

0.8

1

1.2
GEM DARL

Episode

R
ew

ar
ds

(b) Minigrid

0 200 400 600 800 1000 1200 1400
−300

−250

−200

−150

−100

−50

0

50

100
GEM DARL

Episode

R
ew

ar
ds

(c) LunarLander

0 200 400 600 800 1000 1200 1400
0

50

100

150

200
GEM DARL

Episode

R
ew

ar
ds

(d) Cartpole

Figure 3.6: Evaluation on adaptation method in four environments. The environment
changes at episode {500, 1000} in Cartpole and LunarLnader. In MiniGrid, the environ-
ment changes at episode {15000, 30000}, and in VizDoom, the environment changes at
episode {2500, 5000}. From stage 2, GEM is obviously affected by the ‘bad’ policy, while
ours is affected less.

simultaneously within a very short timeframe (e.g., three episodes). These joint detec-

tions are visually encoded as blue triangles in Figure 3.8, signifying the points where

both detection methods concur on the presence of a change point. Our joint detection

approach yielded a notable increase in the fidelity of change point detection, which is

quantitatively captured in Table 3.4. The table is anticipated to showcase enhanced F1

scores for the combined method relative to the individual detection modules. The F1

score, a harmonic mean of precision and recall, is a robust measure of accuracy. We can

claim that using only one detection method is inaccurate, while the combined method

can filter most incorrect estimations.

60

3.4. EXPERIMENTS AND ANALYSIS

0 200 400 600 800 1000 1200 1400
−200

−150

−100

−50

0

50

100
DARL-Retrain DARL-Adaptation

Episode

R
ew

ar
ds

(a) LunarLander

0 1000 2000 3000 4000 5000 6000 7000
−200

−150

−100

−50

0

50

100
DARL-Retrain DARL-Adaptation

Episode

R
ew

ar
ds

(b) Vizdoom

Figure 3.7: This figure depicts the training results using only detection without policy
adaptation. The complete DARL with detection and adaptation serves as a comparison.
Similarly, DARL also undergoes retraining after detecting change points.

Cartpole

LunarLander

Minigrid

Vizdoom

Real Change Point Detected Episodic Detection Policy Detection

En
vi

ro
nm

en
t

Training Process

Figure 3.8: This figure illustrates the results using episodic detection and policy detection
separately. The horizontal axis represents the entire training process, with annotations
based on the timeline. Yellow markers indicate the change points detected by policy
detection, while green markers represent those detected by episodic detection. DARL
makes change decisions on the points marked by blue triangles.

Impact between tasks. Notably, DARL adapts faster because our method has the

ability to filter out the ‘bad’ effect from previous policies. This effect of the ‘bad’ policy

can be seen in Figure 3.6 more obviously, where we have added a random policy at the

beginning phase of the interactions. This policy is considered a well-trained policy in a

given MDP, which may differ from the following MDPs and contribute ‘bad’ information

to any following policy training. The results show that our algorithm can converge faster

61

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

0

50

100

0 2000 4000 6000

−100

DARLw/Error DARLw/oError

Episode

R
ew

ar
d

Figure 3.9: The figure shows the reward curve of DARL using different detection windows.
The blue line indicates results with all change points detected correctly, and the orange
line shows the results with some incorrect change detections. The circle with a dot
indicates the change point detected.

than GEM, the performance of which is heavily affected by the initial policy, but ours

is affected less. It should be highlighted that in stage 1, there is only one constraint, so

the tighter constraint in GEM can help it find a better solution faster than ours because

the gradient scope is relatively narrow, so it is faster to find a better one than ours

within this (relatively) small scope. However, a challenge arises as the number of change

stages increases: the gradient scope narrows exponentially, resulting in failure due to

the absence of suitable solutions for the target policy. That is why the performance of

GEM drops at stages 2 and 3. In contrast, the loose constraint causes slightly slower

convergence at the beginning, but as the number of change points (i.e., constraints)

increases, our method converges faster and better. This feature makes DARL more

robust in significantly different environments as we do not always need the guidance of

irrelevant previous environments and policies.

62

3.4. EXPERIMENTS AND ANALYSIS

Impact of incorrect detect points. During the process of detecting environmental

changes, a crucial aspect to consider is whether false detections could lead to significant

repercussions. As Figure 3.9 shows, when an incorrect point is detected (the second

point on the orange line), the reason may be the agent explored a new state space that

was never seen, which is far from the well-trained one. When a false alarm is detected,

an extra constraint would be added to policy adaptation, and the reward would drop

slightly and soon go back to a converged level. The reason is that DARL calculates

the policy and episodic distance at each update step while adapting. If the underlying

environment remains stationary, the disparities in experiences encountered at each step

will not be significant at each step for a long time. Likewise, any transient occurrences of

local outliers during neural network updates will be short-lived. Subsequently, as the

distance diminishes, the optimization process will converge toward the vicinity of the

original gradient direction. Furthermore, our relaxed constraint can induce the influence

of significantly different environments. If there were some missing points, for instance,

due to a smaller detection window size, the impact would be to slow the adaptation

down for the new environment. The reason is that when we optimize the gradient in

Equation (3.12), not every gk is identified, which would cause our optimization problem

to search for the optimal solution in a larger feasible space. Missing change points, which

lead to the use of fewer constraints, do not render the adaptation ineffective; they may

decelerate the adaptation process.

Policy adaptation. To evaluate the performance of policy adaptation, we involved

another two approaches as comparison methods: CAGrad [83] and PCGrad [82], which

can also deal with gradient transfer and leverage as comparison methods. PCGrad

projects the conflict gradient onto the normal vector of the other gradient. CAGrad finds

the best update vector within a ball around the average gradient that maximizes the

worse local improvement between task 1 and task 2. Figure 3.10 shows the ablation study

63

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

0 1000 2000 3000 4000 5000 6000 7000
−200

−150

−100

−50

0

50

100
GEM-w/oRelax CRL-Unsup CAGrad PCGrad PPO-Retrain DARL

Episode

R
ew

ar
ds

(a) Vizdoom

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

GEM-w/oRelax CRL-Unsup CAGrad PCGrad PPO-Retrain DARL

Episode

R
ew

ar
ds

(b) Cartpole

0 5k 10k 15k 20k 25k 30k 35k 40k 45k
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
GEM-w/oRelax CRL-Unsup CAGrad PCGrad PPO-Retrain DARL

Episode

R
ew

ar
ds

(c) Minigrid

0 200 400 600 800 1000 1200 1400
−200

−150

−100

−50

0

50

100

150

200
GEM-w/oRelax CRL-Unsup+CP CAGrad PCGrad PPO-Retrain DARL+CP

Episode

R
ew

ar
ds

(d) LunarLander

Figure 3.10: This figure shows the evaluation results on the policy adaptation method
w/o change detection module in four environments, where the change points are given to
all methods.

of the policy adaptation module. All of the methods are given change points in advance,

and we can observe that our method, DARL got the highest reward and convergence

speed overall comparison methods. Especially in Vizdoom, after the first change point,

all the adaptation methods have close reward curves. However, following the change

point, DARL demonstrates notably superior performance to other methods. The reason is

that CAGrad and PCGrad aim to solve multi-task problems, which maintain consistency

among gradients in the subspace of tasks, thereby finding a compromise that satisfies

multiple tasks simultaneously. In our setting, where the environment is constantly

changing and unpredictable, the goal is to leverage knowledge gained from similar

past experiences to perform better in the current environment rather than striving to

maintain performance across all previously encountered environments. Our adaptation

64

3.4. EXPERIMENTS AND ANALYSIS

method can maintain the adaptability required to handle the dynamic and evolving

nature of the environment, which may not always follow a consistent pattern. To ensure

performance in the current environment, the policy is optimized based on the specific

context and similarity to past experiences. Further, Figure 3.7 shows the result using

detection with policy adaptation and retraining. We can observe that using the policy

adaptation module obtains a faster convergence speed and higher average reward than

not using it. This result further demonstrates the effectiveness of using DARL adaptation,

which adapts to new environments faster than training directly with RL objectives.

3.4.4 Further Analysis

In this section, we have analyzed some special situations, the impact of parameters, and

limitations.

Change frequency. We assume the change occurs after the policy converges, but

what happens if the environment is dramatically unstable? We compare the following

experiment, as shown in Figure 3.11. As Figure 3.4 shows, the environment of 3 change

points follows the pattern of the stage {1, 2, 3}; the 5-change-point environment follows

the pattern of the stage {1, 2, 1, 2, 1}; the 10-change-point environment follows the pattern

of the stage of a randomly generated sequence {3, 2, 1, 3, 2, 3, 1, 3, 1, 2}. This result

shows that the obtained reward will decrease for any method if the environment changes

frequently. However, our method gets the highest reward in a volatile environment. Our

method, DARL, exhibits superior adaptability to baselines, particularly in the face of

high-frequency change scenarios, as represented by the 10-change-point environment.

DARL’s efficacy in these settings can be attributed to its agile policy update mechanism,

which facilitates prompt adaptation to new environmental states. In environments with

fewer change points, DARL maintains robust performance, underscoring its ability to

leverage previous policies effectively. This adaptability is contrasted by the performance

65

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

Change points = 3 Change points = 5 Change points = 10

−40

−20

0

20

40

DARL CRL-Unsup GEM PC ODCP PPO

Vizdoom with different change points

Av
er

ag
e

re
w

ar
d

pe
r e

pi
so

de

Figure 3.11: The average rewards in a changing ViZDoom environment with different
amounts of change points.

of the GEM algorithm, which underperforms in the context of frequent changes due to

its more stringent constraints. Policy consolidation performs better in slightly changing

environments than in other environments. This is because the previous policy is recorded

at each updating step, which helps to adapt quickly when the change is slight. Overall,

the frequency of environmental changes is a pivotal factor influencing the performance

of reinforcement learning algorithms. The results in Figure 3.11 substantiate that

increased change frequency generally diminishes the average rewards across all tested

algorithms. DARL, however, mitigates this effect by efficiently updating its policy, hence

sustaining higher rewards even as the change frequency intensifies. This capability is

crucial for applications in which the environment is subject to frequent and unpredictable

variations.

Detection window. The role of the detection window size as a hyperparameter is

pivotal in the performance of DARL, as discussed in section 3.3. The interplay between

window size and detection accuracy is a delicate one; an appropriately sized window

is imperative for the algorithm to capture enough information to discern changes in

66

3.4. EXPERIMENTS AND ANALYSIS

the environment accurately. Therefore, the question of how window size, as an essen-

tial hyperparameter, affects the performance of our method is a worthwhile answered

question. We conducted experiments with different window sizes in all four environ-

ments, as shown in Table 3.6 and Figure 3.12. It was found that a diminutive window

size adversely affects the performance by failing to detect some of the change points,

resulting from insufficient data within the window to make an accurate determination.

This underscores that too narrow a window may lead to premature conclusions. However,

we observed that with a certain amount of data, our adaptive method still performs

best over all baselines. Conversely, an excessively large window size could bring extra

computational costs. Thus, the optimal window size strikes a trade-off between accurate

detection and computation cost. The window size in each environment is highlighted

in bold in Table 3.6. Additionally, the detection results of different window sizes are as

Table 3.7. The setting number of change points is two.

Limitations. As discussed before, one limitation is that the frequency of change points

would affect the results. The reason is that when environmental changes occur too

frequently, the policy might not converge consistently each time, potentially leading to

the utilization of unwell-trained policies and missed change points, which can impact

the effectiveness of adaptation. Although DARL can handle relatively ’bad’ policies,

excessively frequent changes can significantly impact the underlying RL baseline itself,

consequently affecting the performance of DARL. Another limitation is that in relatively

simple environments where input and output are simple enough, the improvements

from policy adaptation might not be as great as in high-dimensional environments

with complex inputs, due to simpler environments facilitating easier convergence of

traditional algorithms. Finally, the current framework is designed for on-policy RL due

to the episodic feature, while extending it to off-policy RL shows promising potential.

67

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

100 150 200 250 300 350

170k

180k

190k

200k

210k

Window Size

A
cc

um
ul

at
iv

e
R

ew
ar

d

PPO

PC

ODCP

GEM

CRL-Unsup

(a) Cartpole

200 250 300 350 400 450
−300k

−250k

−200k

−150k

−100k

−50k

0

50k

Window Size

A
cc

um
ul

at
iv

e
R

ew
ar

d

PPO

PC

ODCP

GEM
CRL-Unsup

(b) LunarLander

200 400 600 800 1000 1200
10k

15k

20k

25k

30k

35k

40k

Window Size

A
cc

um
ul

at
iv

e
R

ew
ar

d

PPO

PC

ODCP

GEM

CRL-Unsup

(c) Minigrid

60 120 180 240 300 360

−100k

0

100k

200k

300k

400k

Window Size

A
cc

um
ul

at
iv

e
R

ew
ar

d

PPO

PC

ODCP

GEM

CRL-Unsup

(d) Vizdoom

Figure 3.12: The impact of the change detection window size is notable; we observe that
detection performance affects the reward, stabilizing once the window size reaches a
certain threshold.

3.5 Summary

In this chapter, we formalized the problem of reinforcement learning in non-stationary

environments with unknown change points. To handle such problems, we developed an

end-to-end algorithm involving two steps in the change detection and adaptation process.

First, points of change are detected from the joint marginal/conditional distribution.

Second, a distance-relaxed gradient-constrained adaptor quickly trains a new policy

68

3.5. SUMMARY

Table 3.6: The detection results of different window sizes. The setting number of change
points is two.

CartPole LunarLander

Window Size F1 Score Window Size F1 Score

100 0.67 200 0.5

150 0.5 250 0.8

200 0.8 300 1

250 1 350 1

300 1 400 1

350 1 450 1

MiniGrid Vizdoom

Window Size F1 Score Window Size F1 Score

200 0 60 0.57

400 0.5 120 0.67

600 0.5 180 0.8

800 0.8 240 0.8

1000 1 300 1

1200 1 360 1

with the help of former well-trained policies. We show that the joint distribution-based

detection is more accurate than the marginal distribution alone. We also demonstrate

that traditional multi-task/continual adaption is unsuitable for our sequential setting,

where it is beneficial to treat former policies differently. In a series of experiments in

different control environments, our approach accumulated the most rewards, adapted

the fastest, and demonstrated near-optimal change detection. Note that the framework

presented can be applied easily to other popular on-policy DRL algorithms.

In future work, we plan to investigate the theoretical guarantee of proposed ideas

related to policy improvement. Another interesting work will investigate the mutual

69

CHAPTER 3. A GRADIENT-CONSTRAINED APPROACH

CartPole LunarLander

Window Size Detected Error Window Size Detected Error

100 1 0 200 2 1

150 2 1 250 3 1

200 3 1 300 2 0

250 2 0 350 2 0

300 2 0 400 2 0

350 2 0 450 2 0

MiniGrid Vizdoom

Window Size Detected Error Window Size Detected Error

200 1 1 60 5 3

400 2 1 120 4 2

600 2 1 180 3 1

800 3 1 240 3 1

1000 2 0 300 2 0

1200 2 0 360 2 0

Table 3.7: Window Size used when detecting environment change points.

boosting of detection and adaptation. Extending this framework to off-policy algorithms

would also be appealing. For adaptation, further endeavoring to develop corresponding

strategies to make the most out of the samples is worth investigating.

70

C
H

A
P

T
E

R

4
A BEHAVIOR-AWARE APPROACH

This chapter aims at the research objectives 2 and 3 mentioned in the Chap-

ter. 1. The key inspiration behind our method in this chapter stems from the

observation that policies exhibit distinct global behaviors across changing

environments. Our approach forgoes manually set thresholds for change detection. In-

stead, we identify environmental changes by analyzing variations between the behaviors

induced by different environmental conditions. This analysis leverages Wasserstein

distances, a powerful metric for quantifying the discrepancy between probability distri-

butions over policy behaviors. By monitoring shifts in the Wasserstein distances between

current and past policy behaviors, we can detect points where the environment has

undergone a transition, triggering a change in the optimal policy.

This chapter is based on Z. Liu, J. Lu, J. Xuan and G. Zhang, "A Behavior-Aware

Approach for Deep Reinforcement Learning in Non-stationary Environments without

Known Change Points," in International Joint Conference on Artificial Intelligence

(IJCAI) 2024, [Accepted].

71

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

Behavior
Embedding Space

Trajectories

Figure 4.1: When an outdoor robot moves from flat terrain to mountains, its speed,
direction, and acceleration control changes corresponding to the changing conditions. We
believe these variations can be fully captured through behavior.

4.1 Background

Deep reinforcement learning has extensive applications in economics [205], energy en-

gineering [206, 207], medical analysis [208, 209] and other domains, where policies

are trained to make optimal sequential decisions in an assumed stationary environ-

ment. However, in practice, stationary environments are rare. Rather, the norm is

non-stationary environments where the underlying environment can change in quite

unpredictable and abrupt ways. For instance, outdoor robots must navigate constantly

changing terrain and lighting levels, while financial markets should rapidly shift along-

side breaking news and global events. Hence, ignoring the non-stationarity of underlying

environments will frequently lead to poor performance even using a superior algorithm.

There is no doubt that addressing this issue requires a dedicated strategy.

In prior work, several research teams have looked for solutions. Some have converted

the problem into a continual multi-task reinforcement learning problem [8, 10], while

others have transformed the issue into a meta reinforcement learning problem [210, 77].

Yet the common thread in all these studies is that the change points need to be known

72

4.1. BACKGROUND

in advance, as these change points are used to divide the non-stationary environment

into ’multiple tasks.’ However, there are often no ready-to-use indicators for unpre-

dictable changes. Furthermore, a typical continual learning setting focuses on preventing

catastrophic forgetting, while remembering the knowledge from previous tasks may

not contribute to the current adaptation, especially in more practical environments

without cyclically recurring tasks. Converting the problem into a continual problem can

be troublesome because one of the primary goals of any continually observed task is to

avoid catastrophic forgetting, but cyclically recurring tasks are not common in practical

environments. Furthermore, such conversion is problematic because their primary goal

is to resist catastrophic forgetting in continually observed tasks. As we know, there are

often no ready-to-use change points for unpredictable changes, and cyclically recurring

tasks are less common in more practical environments.

To address the absence of known change points, some research actively detects

environmental changes using methods like reward-based detection [13, 8] or state-based

detection [14]. However, the reward-based method generally requires timely rewards

and manually set thresholds. In addition, the state information is not comprehensive

and accurate enough for detection because different global behaviors may have the same

final state or perform similar actions at a local level [211]. Therefore, changes in state

alone do not serve as reliable indicators for determining environmental changes.

We posit that the agents in an environment can be better characterized through

their behavior. In our research, behavior represents the embeddings mapped from the

sequences of states, actions and rewards during a period. As demonstrated in Figure 4.1,

when an outdoor robot encounters environmental conditions change, such as terrain, its

speed and direction tend to demonstrate significant changes from those of the previous

terrain. However, the separate variables like speed and direction at a few time steps can

not describe the comprehensive trajectory change, making it tough to understand and

73

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

adapt to the new environment. In contrast, behavior can offer more comprehensive infor-

mation from a global level. We believe that behavior distribution changes simultaneously

reflect environmental changes and can help us adapt to new conditions, so our proposed

method uses behavior as a core indicator and knowledge. We propose using these shifts

in behavior distribution to detect environmental changes. Additionally, these changes

indicate that departing from the behavior in the original environment is beneficial for

optimal behaviors within the new conditions.

Inspired by this, we present a novel approach to detect environment changes by

monitoring behavior distribution shifts based on the Wasserstein distance [212, 213].

The agent(s)’ behavior is then regularized accordingly to help the policy steer away

from the previous optimum and adapt to new environmental conditions. Experiments

in benchmark environments prove our method to be effective and accurate compared to

other methods. We propose a setting that enhances the applicability and effectiveness

of reinforcement learning across diverse fields, from robotics navigating in dynamic

landscapes to trading systems that can respond to volatile markets.

Our main contributions are summarized as follows,

• We propose an environmental change detection method, testing environmental

change points through the Wasserstein distance between the global behavior

information without manually setting thresholds.

• With detected change points, we introduce a policy adaptation method that facili-

tates faster deviation from the previous optimum and exploration of new behavioral

regions. We adjust regularization based on the extent of change to ensure adapt-

ability under various conditions.

• We provide an end-to-end framework called Behavior-Aware Detection and Adap-

tation (BADA), which addresses deep reinforcement learning adaptability in non-

74

4.2. PROBLEM FORMULATION

stationary environments without known change points by analyzing and employing

behavior.

4.2 Problem Formulation

A Markov decision process M is defined by a state space S , a starting state distribution

p0(s), an action space A , and a reward function R :S £A !R. A policy ºµ is parameter-

ized by µ. The interaction trajectory ø= {s0,a0, r0, s1,a1, r1, ...} is collected by a policy ºµ.

With a discount factor of ∞, the optimal policy º§ is the one that maximizes the expected

discounted reward:

º§ = argmax
º

Eøªº

∑X
t
∞t
R(st,at)

∏
. (4.1)

Standard reinforcement learning assumes that the underlying M is dynamic but

fixed. When this assumption does not stand, a reinforcement learning scheme for non-

stationary environments must be implemented. Further, this chapter targets a specific

problem within non-stationary environments, settings in which the change points are

not known. Formally:

Problem 4.1. Let {Mk=1:K } be a sequence of different MDPs with the change points

{C1, ...,CK°1}. An agent will sequentially interact with {Mk=1:K } with unknown change

points, where the goal is to find a sequence of policies for obtaining the optimal expected

discounted cumulative reward:

º§
1:J = argmax

º1:J
Eøªº

2
4 X

k=1:J

C0
kX

t=C0
k°1

∞t
R(st,at)

3
5 , (4.2)

where {C0
1, ...,C

0
J°1} are the detected change points.

The problem encompasses two sub-goals: detecting change points accurately and

adapting to the new environment quickly detected changes.

75

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

4.3 Methodology

In this chapter, a fundamental assumption is that given a policy º, the trajectory has

different behavior distributions in different environments. This is the basis of change

point detection and new environment adaptation.

4.3.1 Behavior-based Change Detection

During the training process, the policy continuously interacts with the environment.

Within each update epoch t, the trajectories collected by ºµ are denoted as

ø= {s0,a0, r0, ..., sH ,aH , rH}, (4.3)

where H is the step taken in this epoch. A behavioral embedding map © :°! E is used

to map the trajectories into a behavioral latent space. In our particular implementation,

this map function is a multilayer perceptron. The embedding Pµ represents the behavior

embedding distribution corresponding to policy ºµ at epoch t.

As mentioned previously, environmental non-stationarity leads to a shift in the

trajectory. Therefore, the behavior distributions from two adjacent epochs {Pt°1,Pµ} are

used to quickly identify the change points promptly. Here, the Wasserstein distance [214,

213] is used as the measure for evaluating the difference between behavior trajectories.

The Wasserstein distance originates from the optimal transport problem, which evaluates

the cost required to transform one probability distribution into another. Given two

distributions µ,∫, the Wasserstein distance is defined as

W(µ,∫)= inf
∞2°(µ,∫)

Z
c(x, y)d∞(x, y), (4.4)

where ¶(·, ·) denotes the joint distribution with marginal distributions, and c(·, ·) denotes

the cost function quantifying the distance between two points. If the cost of a move is

simply the distance between the two points, then the optimal cost is identical to the

76

4.3. METHODOLOGY

definition of the Wasserstein 1-distance [215]. We calculate the distance by using the

dual form of Equation (4.4), which is defined as:

W(µ,∫)= sup
fµ, f∫

Z
fµdµ(x)°

Z
f∫d∫(y) , (4.5)

where fµ, f∫ :Rd !R and Lip(fµ)∑ 1. The Lip(f) denotes the minimal Lipschitz constant

for the function f . To calculate the Wasserstein distance, the objective is to find the

optimal f §µ , f §∫ to maximize the integral.

Wasserstein distance is a metric that reflects the proximity between two distribu-

tions, even if no overlap components exist. This property is important for our problem

because the agent may manifest completely different behavior before and after changes.

Therefore, the support between these distributions on behavior spaces would be lim-

ited, and then a proper distribution distance definition for such a situation is crucial.

Additionally, its symmetrical nature offers a more effective measure of the differences

between distributions compared with other options, like KL divergence. For example, as

Figure 4.2 shows, when a policy is sequentially trained from one environment to another -

say where the textures and lighting change - the agent’s behavior embedding distribution

will show a distinct shift in distribution without overlapping. This observation can also

help us identify these behavioral-level changes using the Wasserstein distance.

With the evaluated distance before and after a potential change point, we still need

to decide on the change, which is normally based on a manually determined threshold.

It is difficult because it depends on the environment and behavior distributions, and

what is even worse is that different change points may need different thresholds. Here,

we propose to perform the permutation test [216, 217], which infers the presence of any

change points. The permutation test is an exact statistical hypothesis test based on proof

by contradiction. This method involves permuting the order of samples, recalculating

statistical test metrics, constructing an empirical distribution, and then determining the

p-value based on this distribution to make inferences.

77

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

4 6

−10

−15

−5

0

5 Before

After

Behavior in Non-stationary Environments

0 2

Figure 4.2: This figure presents a t-SNE plot of behavior. The distinct clusters demon-
strate the significant impact of environmental changes on behavior and inspire us to use
the behavior to adapt actively to coming changes.

To explain the permutation idea, given two samples from adjacent behavior embed-

ding distributions Pµ,Pt°1 and calculate the test statistic T =W(Pµ,Pt°1). The typical

null hypothesis is given by:

H0 :Pµ =Pt°1, (4.6)

i.e., all samples come from the same distribution. Then, for each permutation e= 1,2, ...,E,

randomly permute the components of Pµ[Pt°1, and split the permuted data into P(e)
µ
,P(e)

t°1

with the original sizes, then calculate test statistics Te =W(P(e)
µ
,P(e)

t°1). By repeating the

permutation and calculation, a p-value is given by

p= 1
E

EX

t=1
1{Te ∏T}, (4.7)

where 1 is an indicator function. This test is guaranteed to control the type-I error [218]

because we evaluate the p-value of the test via the permutation approach. In addition, the

non-parametric nature, i.e., that it does not rely on assumptions about data distribution.

As Figure 4.2 shows, the trajectory distribution usually does not conform to an easily

computable and representable form of distribution. Therefore, using a permutation test

is highly suitable for solving our problem. If the p-value is lower than the significance

78

4.3. METHODOLOGY

Algorithm 2 Behavior Change Detection
Input: Behavior embedding Pep°1,Pep, number of permutation times Np and the selected
significance level Æ.
1: Calculate the Wasserstein Distance T =W(Pep°1,Pep between the original data.
2: for each permutation t= 1,2, ...,Np do
3: Shuffle the Pep°1[Pep randomly, and split the permuted data into P(t)

ep°1,P
(t)
ep of

the original sizes.
4: Calculate the Wasserstein Distance between the permuted data Tt =W(P(t)

ep°1,P
(t)
ep).

5: end for
6: return the p-value 1

Np

PNp
t=1 1{Tt ∏T}.

level, the current epoch t is noted as a change point c= t, and Ppre =Pc°1 is the optimal

behavior distribution corresponding to the previous environment. The detailed behavior-

based change detection method is presented in Algorithm 2. Then, the adaptation scheme

is involved.

4.3.2 Behavior-Aware Adaptation

Although the vanilla DRL can adapt to the new environment, it normally requires many

interactions that sample inefficient and generate great delay. With the detection signal

from the above section, we aim to achieve fast adaption. Since our detection is based on

Wasserstein distance, we follow Wasserstein-based policy gradient baseline - Behavior

Guided Policy Gradients (BGPG) [211]. Its training objective (for stationary environment)

is to maximize:

F(µ)= EøªPµ [R(ø)]°W(Pµ,Pt°1), (4.8)

where Pt°1 is the behavior distribution of last update epoch.

When a policy converges in one environment, the behavior will enter a relatively

stable distribution, and this provides a basis for us to detect changes in the environment.

When a change point is detected at epoch c, indicating that a significant change in the

environment has occurred, Pc°1 is saved as a previous optimal behavior distribution

Ppre. To assist the policy in quickly deviating from the optimal behavior of the previous

79

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

Algorithm 3 Behavioral Aware Detection and Adaptation (BADA)
Initialize: Policy ºµ, behavioral embedding mapping function ©, and significance level
Æ.
1: for Epoch t= 1,2, ..., do
2: Collect ø= {s0,a0, r0, ..., sH ,aH , rH} from the current environment.
3: Obtain behavior embedding Pµ by behavioral embedding mapping function ©.
4: Compute the original statistics T =W(Pµ,Pt°1).
5: for Permute iteration e= 1,2, ...E do
6: Shuffle Pµ [Pt°1 and split the data into P(e)

µ
,P(e)

t°1 and compute statistics Te =
W(P(e)

µ
,P(e)

t°1).
7: end for
8: Obtain the p-value 1

E
PE

t=1 1{Te ∏T}
9: if p-value∑Æ at epoch c then

10: Save Pc°1 as previous behavior distribution Ppre.
11: Update policy parameter by µt+1 √ µt°ÆrµF(µt) following Equation (4.9)
12: else
13: Update policy parameter by µt+1 √ µt°ÆrµF(µt) following Equation (5.12).
14: end if
15: Save Pt°1 √Pµ for environment change detection.
16: end for

environment, we propose to add a regularizer that maximizes the difference between the

current behavior distribution and the previously converged behavior distribution. This

new objective function is designed as follows:

F(µ)= EøªPµ [R(ø)]°W(Pµ,Pt°1)+±W(Pµ,Ppre), (4.9)

where R =P
Aºt°1 (si,ai) ºµ(ai |si)

ºt°1(ai |si) , A
ºt°1 (si,ai) is the advantage function, and Ppre is the

converged behavior distribution in the previous environment, and ± 2 R>0 is a hyper-

parameter. Here, we use the adjacent behavior distance on the detected change point

W(Pc°1,Pc) as ±, depending on the extent of change. This self-adjusted coefficient ensures

that the adaptation regularization has a greater impact as the level of environmental

change increases.

If no change is detected, the adaptation term will not work, so ± will be set as zero.

The first penalty constrains policy updates within a trust region, ensuring the validity

of importance sampling. However, this constraint can lead to slow adaptation when

80

4.3. METHODOLOGY

the environment undergoes abrupt changes, as the policy hesitates to deviate from its

previous optimal behavior. At the change point c, Pprev =Pc°1. Only following the first

penalty term at this point might trap the policy in a suboptimal area for an extended

period. Therefore, our second adaptation regularization serves as an adversarial term,

steering the policy away from previous behavior. As the policy gradually adapts to the

current environment, i.e., t ¿ c, the adaptation term W(Pµ,Pc°1) and the first term

W(Pµ,Pt°1) no longer conflict. The penalty constraints ensure performance improvement

in a stationary environment, and the role of the adaptation term weakens as the policy

moves away from the previous optimum.

With the optimal f §µ , f §∫ according to Equation (4.5), the regularization term in

Equation (4.9) is:

W(Pµ,Ppre)º EøªPµ [f
§
µ (ø)]°E¡ªPpre [f

§
µ (¡)]. (4.10)

Maximizing this term can guide the optimization by favoring those trajectories that

show more difference between old ones. When another change occurs, we consider only

the preceding behavior distribution. We believe that excessive constraints may lead

to a narrow area and result in local optima. Therefore, focusing on the immediate

historical behavior ensures adaptability to changing environments without introducing

unnecessary complexities. This training goal allows us to scale to scenarios with multiple

changes easily.

Overall, maximizing the difference between behaviors serves a contrastive term

compared to the RL constraint W(Pµ,Pt°1), which prevents the policy from deviating

excessively from the old one. As shown in Equation (4.9), our regularization W(Pµ,Ppre)

does not entirely dominate the search for optimal behaviors. These two constraints

achieve a balance by allowing the policy to adapt to new environments while simulta-

neously retaining some knowledge from the previous optimum. Additionally, when the

environment experiences minor changes in state distribution at point c, then W(Pc°1,Pc)

81

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

Adaptation regularization

Trust region constriant

Y

N

Step C:
Detect Behavior Changes

Behavior embedding space

Step A: Interact with Environments

Step B: Map Trajectories Step D: Update Policy
with Regularizations

Detected?

Figure 4.3: The BADA framework. When a change is detected through the behavior
distribution permutation test, regularization will be added to deviate policy behavior
from the previous optimum.

will be relatively small. Consequently, the regularization coefficient ± will be adjusted,

ensuring a flexible and relaxed constraint that responds appropriately to the extent

of change. Figure 5.1 illustrates the adaptation scheme, and Algorithm 4 sets out the

complete BADA method in detail.

4.4 Experiments and Analysis

This section comprehensively evaluates our BADA method, addressing key questions:

1) Can BADA achieve higher rewards in environments without known change points?

2) Is behavior-based change detection superior to alternative methods? 3) Does BADA’s

adaptation method outperform retraining and other adaptation approaches? 4) Can

BADA maintain performance with frequent environmental changes? These inquiries

guide our experiments and analysis.

82

4.4. EXPERIMENTS AND ANALYSIS

4.4.1 Settings

Environments. We conducted all experiments within ViZDoom [219], a first-person

shooting game with various scenarios. This environment allows reinforcement learning

agents to be developed using only visual information (the screen buffer). We chose four

scenarios through which to evaluate our proposed method. We employ distinct challenges

and modifications to simulate dynamic environments for training an agent. For example,

as Figure 5.3 shows, the environment transit from high-contrast simpler_basic to dimly

lit basic settings, shift from defending a line in a rectangle map to defending a point

in a circular map against enemies in defend_the_line/center. In addition, we adjust

the number of enemies in deadly_corridor and change the medikit textures in the

healt_gathering scenario to represent new rooms. Agents need to respond to these

changes.

• basic/simpler_basic: In basic scenario, a player faces off against a randomly

spawned monster. The player can go left/right and shoot to kill the monster. The

simpler_basic scenario works the same but uses different textures for better con-

trast to help the agent learn faster. We simulate the environment change by

switching from simpler_basic to basic with dimmer lighting.

• deadly_corridor: The map is a corridor with shooting monsters on both sides. A

green vest is placed at the opposite end of the corridor. The objective for the player

is to get the vest and avoid being killed somewhere along the way. The player can

choose from 7 available actions: move forward/backward/left/right, turn left/right,

shoot. We simulate environment changes by reducing the number of enemies.

• health_gathering: The map is a rectangle with a green, acidic floor, which hurts

the player periodically. There are some medkits spread uniformly over the map.

83

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

The player needs to pick up these medkits to survive. We changed the texture of

the medkits and walls to simulate entering a new room.

• defend_the_line/defend_the_center: In these two scenarios, a player is spawned

along the longer wall of a rectangular map, facing three melee-only and three

shooting monsters on the opposite wall. These monsters will respawn after a certain

period. In the altered environment, the agent’s objective shifts to eliminating

surrounding enemies at the center of a circular map.

Each training episode has a fixed tick depending on different scenarios, and the

agent is allowed to make an action every 12 frames. The action chosen based on the first

frame remains fixed and is consistently maintained throughout the subsequent frames.

If the agent performs one action per frame, the difference between the states is so subtle

that it significantly impedes the learning process. Therefore, we adopted a repeat action

strategy to solve this issue.

Comparison methods. In all experiments, we used the PPO/TRPO update, and once

the environment changed, the model could not access any information on the changed

environmental conditions. Further, we compared BADA to three baseline methods as

follows.

• PPO [32] and TRPO [31] without detection and adaptation;

• Behavior-based BGPG [211] without detection and adaptation;

• CRL-Unsup [13] with both detection and adaptation.

The agent architecture for all methods consisted of a 4-layer convolutional neural network

(ConvNet) with 3x3 kernels featuring 16 maps, complemented by ReLU activation

functions. This was followed by a fully connected layer that outputs a distribution of

action sizes.

84

4.4. EXPERIMENTS AND ANALYSIS

simpler_basic basic

defend_the_line defend_the_center

Figure 4.4: The simulated non-stationary environments. The upper setting is from
high-contrast simpler_basic to dimly lit basic scenario, and the bottom one is from
defend_the_line with a rectangular map to defend_the_center with a circular map.

To evaluate performance in terms of environmental change detection, we compared

BADA to:

• A permutation test using KL divergence

• A two-sample test using weighted maximum mean discrepancy (WMMD) [220]

• The online parametric Dirichlet change point (ODCP) [70]

85

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

5k 10k 15k 20k 25k 30k
−100

0

100

200

300

400

BADA CRL-Unsup BGPG PPO TRPO
deadly_corridor

Step

R
ew

ar
d

5k 10k 15k 20k
0

1

2

3

4

5

6

7

8

9
BADA CRL-Unsup BGPG PPO TRPO

defend_the_line/center

Step

R
ew

ar
d

10k 20k 30k 40k
0

50

100

150

200

250

300
Ours CRL-Unsup BGPG PPO TRPO

health_gathering

Step

R
ew

ar
d

5k 10k 15k
−200

−150

−100

−50

0

50

100
Ours CRL-Unsup BGPG PPO TRPO

basic

Step

R
ew

ar
d

Figure 4.5: Performance comparison of different methods in non-stationary environments.
The vertical dashed lines represent the points of environmental change, and the shaded
areas around the reward lines indicate the standard deviation over different runs.

• CRL-Unsup [13], which is based on long and short-term rewards.

Metrics. One metric is the commonly used cumulative reward. The other metric is

F1 Score F1 = 2§P§R
P+R [221], indicating the detection accuracy.

Training details. The agent architecture for all methods consisted of a 4-layer con-

86

4.4. EXPERIMENTS AND ANALYSIS

volutional neural network (ConvNet) with 3x3 kernels featuring 16 maps, complemented

by ReLU activation functions. This was followed by a fully connected layer that outputs

a distribution of action sizes.

4.4.2 Overall Performance

We evaluated the results from two aspects: cumulative reward and detection accuracy.

Cumulative rewards. As depicted in Figure 4.5, BADA (illustrated in red) demon-

strates a notable acceleration in reward accumulation following the change point (in-

dicated by the vertical dashed line in each graph). The rapid improvement in rewards

post-change point can be attributed not only to the efficiency of the adaptation regular-

ization, which enables a swift deviation from the previous optimal policy, but also to

BADA’s precise response to the environmental shifts.

In the basic scenario, where the lighting and wall texture undergo modifications, meth-

ods lacking adaptation mechanisms experience a considerable decline in performance.

CRL-Unsup showcases a commendable adaptation capacity, with a steady increase in

rewards after the initial detection of environmental changes, although slightly lagging

behind BADA. This suggests that our behavior-based regularization term facilitates

quicker adaptation to new settings.

In the health_gathering scenario, the alteration in the medkit’s texture has a less

pronounced effect than changes in lighting levels. The results reveal that even methods

without adaptation are capable of regaining relatively high rewards after a few updates.

Meanwhile, BADA’s rewards continue to ascend, highlighting its adaptability even in

environments with more subtle changes. However, CRL-Unsup appears susceptible to

false alarms regarding environmental changes, leading to unnecessary adaptations and

a less stable learning trajectory.

Interestingly, in the deadly_corridor scenario, a reduction in the number of enemies

87

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

Table 4.1: Comparative F1 scores of change detection methods in non-stationary environ-
ments. The results are based on ten runs of different seeds.

basic health_gathering

BADA(Ours) 0.95±0.08 0.90±0.11

Permutation(KL) 0.70±0.09 0.50±0.26

CRL-Unsup 0.80±0.12 0.35±0.16

WMMD 0.50±0.13 0.56±0.27

ODCP 0.55±0.36 0.37±0.07

deadly_corridor defend_the_line

BADA(Ours) 0.78±0.16 0.86±0.07

Permutation(KL) 0.69±0.09 0.50±0.26

CRL-Unsup 0.67±0.21 0.72±0.11

WMMD 0.47±0.19 0.62±0.15

ODCP 0.38±0.20 0.50±0.19

does not translate to additional rewards for well-trained agents that do not utilize

adaptation strategies. This could be due to their adherence to the original behavior,

resulting in a delayed response to the environmental alterations. In contrast, BADA

quickly attains higher rewards and maintains an upward trend, showcasing its capacity

to continuously learn from new environmental conditions.

In the defend_the_line/center scenarios, changes in the map shape and defended

goals compel each method to learn an entirely new task. Here, BADA and CRL-Unsup

surpass other baselines by swiftly attaining higher scores on the new task, with BADA

exhibiting superior performance overall. This underscores the effectiveness of moving

away from the previous optimal strategy to discover a new one.

Environment change detection accuracy. Table 4.1 provides a comparative analy-

sis of the F1 scores for change detection methods in various non-stationary environments,

88

4.4. EXPERIMENTS AND ANALYSIS

where BADA consistently surpasses other methods across all scenarios, indicating its

robust adaptability and precision in change detection. In the deadly_corridor scenario,

despite BADA’s lower accuracy compared to other environments, it still outperforms

other methods, which underscores the relative challenge of detecting changes in environ-

ments where the behavioral impact of changes is subtler, such as the reduced number of

enemies.

The table also reflects on the relative weakness of the permutation test based on

KL divergence, particularly in scenarios where environmental state distributions do

not align well with the prerequisites of KL divergence. The challenges in measuring

distributional shifts where data is sparse or supports do not overlap may lead to poorer

performance, a limitation evidently overcome by the Wasserstein-based approach used

by BADA. The Wasserstein distance, rooted in the concept of optimal transport, excels in

scenarios that feature stark distributional changes, as it encapsulates the minimum cost

to transform one distribution to another, proving particularly potent in non-stationary

settings encountered in reinforcement learning.

Furthermore, while CRL-Unsup shows reasonable performance, its reliance on exten-

sive testing for manual threshold selection is a significant drawback compared to the

BADA method, which requires no manual tuning of hyperparameters and inherently

provides a level of significance. This autonomy in BADA affords a more streamlined and

user-friendly application, removing the often labor-intensive process of hyperparameter

optimization. The table also indicates that methods like ODCP and WMMD fall short

in image-based scenarios, suggesting an inefficiency in handling the complexities of

high-dimensional data inherent to images.

These insights suggest several avenues for further research and development. Refin-

ing change detection mechanisms to improve accuracy and reduce the need for manual

interventions remains a priority. Moreover, exploring ways to extend the efficiency of

89

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

10k 20k 30k 40k
0

50

100

150

200

250

300

BADA BADA w/ kl CRL-Unsup Restart
health_gathering

Step

R
ew

ar
d

5k 10k 15k
−200

−150

−100

−50

0

50

100
BADA BADA w/ kl CRL-Unsup Restart

basic

Step

R
ew

ar
d

Figure 4.6: Cumulative rewards of adaptation strategies in non-stationary environments
with known change points.

the Wasserstein distance in even more diverse settings could help adapt these methods

to a broader range of practical applications. This could be especially beneficial in real-

world environments where changes are subtle and not easily discernible through raw

data analysis. By addressing these challenges, the potential to apply BADA and similar

methods to a wider array of domains-including those outside traditional reinforcement

learning applications-becomes increasingly feasible.

4.4.3 Ablation Study

Adaptation evaluation. To evaluate the performance of adaptation separately and

confirm whether the adaptation scheme contributes to new training as opposed to simply

retraining the agent following a reinforcement learning loss, we test the following

comparison methods:

• BADA w/ KL that employs KL divergence instead of Wasserstein distance as the

regularization term.

90

4.4. EXPERIMENTS AND ANALYSIS

• CRL-Unsup with the EWC adaptation method.

• Restarting training following a traditional PPO scheme.

All methods are provided with the change points to initiate adaptation or retraining.

The efficacy of the BADA method is clearly delineated in Figure 4.6, particularly in

scenarios where environmental change points are predetermined. Several key observa-

tions can be made regarding its performance:

Firstly, the advantage of BADA over the ’Restart’ method is unequivocal. This is

evidenced by the more rapid rebound and continuous upward trajectory of rewards

following a change point. BADA’s capability to swiftly shift from an erstwhile optimal

behavior to a new one underscores the limitations of reinitializing the training process.

Unlike restarting, which discards accumulated knowledge, BADA leverages past learning

to expedite the discovery of new optimal policies, highlighting the inefficiencies of starting

anew without retaining valuable insights.

Secondly, BADA’s superiority extends over alternative adaptation strategies as well.

The application of the Wasserstein Distance constraint, in particular, has demonstrated

more effectiveness than the KL divergence approach in guiding the adaptation process.

This suggests that the Wasserstein metric may provide a more nuanced and beneficial

gradient for learning new behaviors in altered environments. Furthermore, BADA’s

outperformance of CRL-Unsup showcases the merit of behavior-based adaptation strate-

gies. By focusing on the agent’s observable behaviors rather than unsupervised learning

indicators, BADA harnesses a more direct and possibly more robust signal for guiding

adaptation.

Moreover, BADA’s effectiveness implies a significant potential for applications in

various domains where environments are susceptible to sudden changes. For instance,

in robotics, where a machine may need to adapt to new terrains, or in finance, where

91

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

market conditions can shift abruptly, BADA’s ability to utilize past learning while quickly

adjusting to new circumstances can be particularly valuable.

Therefore, the results gleaned from the application of BADA affirm its advanced

capability for adaptation in the face of environmental changes. By integrating past

experiences and employing a more sensitive measure for divergence, BADA not only

improves upon the recovery time from disruptions but also enhances the overall learning

trajectory post-adaptation. This aligns with the ongoing pursuit in reinforcement learn-

ing to develop algorithms that not only learn efficiently but also possess the agility to

adapt to new and unforeseen challenges seamlessly.

Frequently changing environments. The efficacy of BADA in environments with

varying frequencies of change points underscores its robustness, but it also highlights the

intrinsic challenges associated with maintaining an optimal policy in the face of frequent

changes. In extremely non-stationary environments, where change is the only constant,

the constraints placed upon the distribution may not reflect the previous optimal policy

due to insufficient convergence time between changes.

As demonstrated in Figure 4.7, BADA’s ability to achieve higher average rewards, as

shown in red, even in environments peppered with frequent change points, is a testament

to its robustness. The performance trends reveal that while an increase in the number

of change points from 2 to 4 does not drastically affect performance, escalating the

frequency to 9 change points introduces a significant challenge, as evidenced by the

general performance dip across all methods. Nevertheless, BADA’s relatively smaller

decline in performance and its consistent outperformance of other methods speaks

volumes about its adaptability, even when environmental changes occur at a more rapid

clip.

Further insights gleaned from Table 5.3 show that detection accuracy for all methods

suffers as the number of change points climbs. This raises critical considerations for the

92

4.4. EXPERIMENTS AND ANALYSIS

2 changes 4 changes 9 changes

−80

−60

−40

−20

0

20

40
BADA CRL-Unsup BGPG TRPO PPO

Av
er

ag
e

re
w

ar
d

Loading [MathJax]/extensions/MathMenu.jsFigure 4.7: Average reward after the first change points in environments with increasing
change points.

application of BADA and similar approaches in environments characterized by a high

degree of volatility. As policies may not reach convergence within each environmental

iteration, agent behaviors can persist in a state of flux, which in turn could diminish

BADA’s change detection and subsequent adaptation efficiency.

To enhance BADA’s change detection and adaptation capabilities in such volatile

conditions, future research could explore strategies like increasing the diversity of

experience replay to buffer against frequent changes or incorporating predictive models

that anticipate changes before they occur. Another promising direction could be the

integration of online learning components that allow for continuous, real-time model

updates, thereby reducing the dependency on convergence at each environmental stage.

Overall, the insights from BADA’s application in highly dynamic environments il-

luminate the path forward for reinforcement learning in real-world scenarios, where

adaptability and resilience are not just beneficial but essential for success. The pursuit of

more agile, perceptive, and self-correcting reinforcement learning systems continues to

drive innovation in the field, with the ultimate goal of creating agents that can navigate

the unpredictability of real-life with grace and efficacy.

Parameter sensitivity. Figure 4.8 shows the parameter sensitivity analysis for

93

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

Table 4.2: F1 scores for change detection methods across environments with increasing
number of change points. The results are based on ten runs with different seeds.

2 changes 4 changes 9 changes

BADA(Ours) 0.89±0.12 0.78±0.16 0.56±0.20

Permutation (KL) 0.52±0.19 0.49±0.11 0.43±0.09

CRL-Unsup 0.71±0.13 0.60±0.17 0.37±0.08

WMMD 0.45±0.17 0.40±0.11 0.28±0.19

ODCP 0.25±0.15 0.21±0.11 0.20±0.13

0 2 4 6 8 10
50

100

150

200

250
health_gathering

Regularization Coefficient

Av
er

ag
e

R
ew

ar
ds

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

40
basic

Regularization Coefficient

Av
er

ag
e

R
ew

ar
ds

Figure 4.8: The parameter sensitivity analysis of the adaptation regularization. The
orange lines represent the coefficient range we used.

the adaptation regularization term W(Pµ,Ppre) in Equation (4.9). The emergence of a

pronounced peak in average rewards for both test environments suggests that there

is indeed an optimal coefficient value for the adaptation term, which aligns with the

range of our adaptive coefficient, highlighted in orange. This optimal value is crucial

as it correlates with the magnitude of environmental changes, essentially dictating the

degree to which the model should adapt its behavior in response to detected changes.

The experiments validate the efficacy of our self-adjusting coefficient, which dy-

namically calibrates according to the environment’s variability, thereby endorsing its

94

4.5. SUMMARY

implementation in practice. The observed decline in performance beyond the peak signals

the detrimental effects of an excessively zealous correction term, which could potentially

introduce volatility in the learning trajectory or even lead to detrimental overfitting to

the most recent changes, at the expense of previously learned knowledge.

This analysis underscores the necessity of a well-tuned balance in the adaptation

regularization term. It is not simply a matter of responding to environmental changes

but doing so with a nuanced approach that avoids overcorrection while still permitting

sufficient flexibility for the agent to incorporate new information effectively. To enhance

this balance further, future work could investigate more sophisticated, perhaps even

context-aware, mechanisms for determining the adaptation term, potentially involving

real-time assessments of environmental stability or the agent’s performance variability.

In sum, the adaptation regularization term is a pivotal component of the learning

framework, and its precise calibration is instrumental in maintaining an equilibrium

between stability and adaptability. The continued improvement of this calibration process

is expected to significantly advance the capabilities of reinforcement learning agents,

particularly in dynamic and unpredictable environments.

4.5 Summary

Our work addresses deep reinforcement learning in non-stationary environments without

known change points by developing the Behavior-Aware Detection and Adaptation

(BADA) framework. The behavior-based change detection method represents a novel

approach to monitoring and responding to environmental shifts by closely analyzing

policy behavior. This method has proven effective and accurate without any manually

set threshold, allowing for timely adjustments to the learning strategy. Furthermore,

the online adaptation mechanism integrates this behavioral information, providing a

self-adjusted regularization term. The behavior-based regularization can help policy steer

95

CHAPTER 4. A BEHAVIOR-AWARE APPROACH

from suboptimal areas and find potential behavior in new conditions. The experimental

results show its superior performance in accurately detecting changes and quickly

adapting to new environments compared to other methods. Future iterations of BADA

could benefit from exploring mechanisms for off-policy adaptations, broadening BADA’s

applicability in various RL settings.

While our BADA algorithm demonstrates robust performance in non-stationary RL

environments, it is not without limitations that merit further research and development.

One of the primary constraints is the requirement for tuning the parameters associated

with the adaptation loss term. Future iterations of BADA could benefit from exploring

mechanisms for automatic, dynamic adjustment of these parameters. Integrating self-

adaptive methods that can adjust the adaptation loss in response to the environment’s

dynamics would streamline the learning process, reducing the need for manual tuning

and enhancing the algorithm’s applicability to a broader range of scenarios. Another

limitation lies in the framework’s reliance on on-policy RL algorithms. The exploration

of off-policy adaptations would thus represent a significant step forward, broadening the

horizon of BADA’s applicability and efficiency in various RL settings.

96

C
H

A
P

T
E

R

5
A SAMPLE EFFICIENT APPROACH

This chapter aims to address research objectives 2, 4, and 5 mentioned in the

Chapter 1. The method in this chapter contributes a novel approach in function

space, converting the policy representation from a deep neural network to a

Gaussian Process. Leveraging the converted Gaussian Process, we introduce a Wasser-

stein surprise-based method for active change detection and a functional regularization

mechanism for rapid policy adaptation when the environment changes, incorporating the

detected change information. Our approach also employs a unique trajectory selection

strategy designed for adaptation regularization to reduce the computational cost signifi-

cantly. Empirical results demonstrate that our method achieves accurate detection and

effective adaptation across various environments with diverse change factors, ultimately

leading to enhanced performance and efficiency in various applications.

This chapter is based on Z. Liu, J. Lu, J. Xuan and G. Zhang "Functional Detection

and Adaptation in Non-stationary Environments," submitted to IEEE Transactions on

Neural Networks and Learning Systems, [under review]

97

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

5.1 Background

When an agent interacts continually with the environment, updating based on the latest

data, it provides adaptability to slowly evolving environments, particularly for on-policy

methods. However, agents often suffer from performance degradation or failure when

facing sudden and significant environmental changes. Therefore, to maximize long-term

rewards, a promising approach for DRL in non-stationary environments is to develop a

policy that detect environmental change points actively and adapt to new environments

accordingly.

Previous research has explored some techniques for detecting changes in non-stationary

environments. One method [14] fitted a Dirichlet distribution over multivariate data,

which is computationally intensive. Another method [13] identified change points by

comparing short-term and long-term rewards using a manually set threshold. There-

fore, developing a computationally efficient method without extra hyperparameter is

crucial. After the change points are detected, one adaptation strategy by retaining previ-

ous knowledge by leveraging the Fisher information matrix was proposed in previous

work [13]. The challenge with the weight regularizations arises from the fact that the spe-

cific values of the weights are not significant, mainly due to parametric symmetries [222].

Making current weights closer to the previous ones may not always ensure using the

previous optimal policy. In deep learning, the essential objective is to optimize the weight

of neural networks to build the function that maps inputs to outputs. The parameter

change does not provide a fully explained proxy for the change in the function [222],

leading to insufficient knowledge leveraging. For deep reinforcement learning in non-

stationary environments, the goal is to find a policy that achieves the highest cumulative

rewards in long-term learning. Hence, a better approach is to regularize the functions

directly.

We aim to address the critical need for DRL approaches to recognize and adjust to

98

5.1. BACKGROUND

changes effectively and accurately, ensuring sustained and reliable functionality amidst

real-world unpredictability. By exploring the entire learning pipeline and identifying the

similarities and differences among existing schemes, this chapter proposes Functional

Detection and Adaptation (FDA), which involves environmental change detection and

policy adaptation. The framework of our proposed FDA is illustrated in Fig. 5.1. Firstly,

we introduce an environmental change detection method based on Bayesian surprise [72].

The idea stems from a straightforward observation: posterior uncertainty increases as

the model is queried far from the observed data. To measure the model uncertainty,

we use a Gaussian Process (GP) approximation for a given deep neural network. The

Bayesian surprise is then measured by the 2-Wasserstein distance [223], and a Welch’s

t-test is performed between adjacent epochs to identify change points. With detected

changes, we performed functional regularization with the converted GP to enhance policy

adaptation in new environments. We also designed a trajectory selection strategy to

reduce the additional computational cost. The functional regularization of the FDA can be

self-adjusted according to change extents, making the policy adapt to new environments

accurately. The empirical results show that our proposed method outperforms other

baselines in non-stationary environments.

The contributions of this chapter are:

• Surprise-based Change Detection Method: We developed a Wasserstein surprise-

based detection method that accurately identifies environment change points

without requiring extra parameter tuning.

• Change-aware Functional Regularization: We proposed a functional regularization

method with a self-adjusted coefficient for on-policy RL to effectively adapt to

different environmental changes based on representative environment-related

data.

99

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

Select Trajectories

Weights

x

Functional Regularization

Detect Change Points

Measure Surprise

Measure Surprise

Weights

x

Functional GP Prior

detected

Statistical
Test

Pre-trained GP Prior

x

add

Representative Memory

Provide function inputs

Figure 5.1: The framework of Functional Detection Adaptation (FDA) detects change
points based on surprise, selects representative trajectories from interactions, and de-
ploys functional regularization to adapt to new environments when changes are iden-
tified. If no change point is detected, the functional regularization will not activate,
degenerating into a traditional DRL problem.

• Representative Trajectories Selection Strategy: We designed a trajectories selection

method to reduce the computational cost of functional regularization.

5.2 Problem Formulation

A MDP is defined by a tuple M = {S , p0,A ,R,P }, where S is the state space, p0(s)

is the starting distribution of the states, A is the action space, R(r|s,a) is the reward

function R : S £A ! R, and P (st+1|st,a) is the state transition probability. A policy

ºw(a|s) is a distribution over actions given a state, with w as the neural network weights.

These MDPs may differ in any aspect, such as state distribution, transition probability

and reward function. Then we have the formal definition of a stationary environment:

Definition 5.1. Stationary Environment A stationary environment can be defined

as a single MDP M characterized by a tuple M= {A ,S , p0,R,P }. The action space A ,

state space S , state distribution p0 and reward function R are deterministic and will

not change during interactions.

100

5.2. PROBLEM FORMULATION

Conversely, we define the non-stationary environment as:

Definition 5.2. Non-stationary Environment A non-stationary environment can be

defined as a sequence of MDPs {Mk}k2N+ , where the number of MDPs is unknown. Each

MDP Mk is defined by a tuple M= {A ,S , pk,Rk,Pk}, arriving sequentially over time.

Remark 5.3. The steps of the agent interacting with an arbitrary MDP Mi are not

predetermined, meaning the change points are unknown.

Remark 5.4. The MDPs have the same sizes of action and state space, while the state

transition function pk, reward function Rk, and state distribution p0 may vary arbitrar-

ily.

Remark 5.5. For different MDPs Mi and Mj (i 6= j), at least one component of them is

different.

Remark 5.6. The MDP components change unpredictably and are not assumed to satisfy

smooth or continuous conditions.

Remark 5.7. The MDPs are not assumed to increase in difficulty or complexity over time.

We identify the problem of learning in a non-stationary environment as follows:

Problem 5.8. In non-stationary environments, the goal is to find a policy to obtain the

maximum expected discounted cumulative reward for a sequence of MDPs {Mk}k2N+ , given

as follows:

º§ = argmax
º

E
øªº

KX

k=0
∞Rk(ø), (5.1)

where øªT ,T = {s0,a0, r0, . . . } collected from the interactions with environments, ∞ is

the discount factor, and K is the actual number of MDPs.

When there is a detection scheme to identify the MDP change, we use MDPs {M0
k}k02N+

to represent the detected MDPs, which may be different from the detected MDPs

{M0
k}k2N+ .

101

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

5.3 Methodology

In this paper, we solve the problem of DRL in non-stationary environments by actively

detecting change points and adapting to new conditions using learned knowledge and

change information. We develop a novel detection method without involving extra para-

meters that must be carefully tuned. If a change point is detected, a change-aware

functional regularization with a self-adjusted coefficient is deployed to adapt to different

extents of environmental changes.

5.3.1 Detecting Environment Changes

In non-stationary environments, a simple method to identify environmental changes is

based on an assumption: the uncertainty in a model’s outputs increases as it encounters

data that deviates from the previously trained data. This concept is closely related to

Bayesian surprise [72], which quantifies the divergence between posterior and prior

distributions. However, a policy modeled by a deterministic deep neural network has

limited capability in uncertainty modeling [224]. To measure the surprise by uncertainty,

we first convert DNN to Gaussian Process, representing a distribution over functions by

specifying a multivariate Gaussian distribution over all possible function values.

5.3.1.1 Modeling Uncertainty

According to Rasmussen and Williams [225], a linear model can be written as:

yi = fw(xi)+≤i, where fw(xi) :=¡(xi)>w,

wªN (0,±°1IP) and ≤i ªN (0,§°1)
(5.2)

with a feature map ¡(x). The parameter w is drawn from a Gaussian prior, where IP

is a P £P identity matrix and ± forms the covariance of the distribution. Then the

posterior distribution N (w |wlin,ßlin) corresponds to a GP posterior on function fwlin(x)

102

5.3. METHODOLOGY

is introduced with the following mean and covariance functions:

mlin(x) := fwlin(x), klin(x,x
0) :=¡(x)>ßlin¡(x0),

whereß°1
lin :=

X

i
¡(xi)§¡(xi)>+±Ip.

(5.3)

However, the linear model has a limited ability of representation. In this paper, we mainly

focus on deep reinforcement learning. Fortunately, similar to the standard weight-space

to function-space conversion for linear basis-function models, Khan et al. [226] proposed

an approach, DNN2GP, to convert deep neural networks to Gaussian processes.

Consider a policy ºw modeling by a DNN with weights w. Within each update epoch

t, the trajectories collected by ºw are denoted as Tt = {s0,a0, r0, ..., sH ,aH , rH}, where H

is the step taken in this epoch. Then, a batch with size B is sampled from Tt, denoted by

ø= {øi}i=Bi=0 . With the inputs ø, the policy outputs the predicted actions a= {ai}i=Bi=0 . Given

a local minimum w§ of loss `(w), which is assumed to be twice differentiable and strictly

convex in º, a GP approximation can be conducted. Following DNN2GP [226], we employ

a variant of the Laplace approximation with the mean µ§ =w§ and covariance

ß°1
§ =

NX

i=1
Jw§(øi)>§w§(øi,ai)Jw§(øi)+±Ip, (5.4)

where §w§(ø,a) :=r2`(a,º) is the scalar Hessian of the loss function, Jw§(ø) :=rwºw(ø)>

is the 1£P Jacobian. Therefore, comparing Eqs. (5.3) and (5.4), ß§ can be seen as

the covariance of a linear model with a feature map ¡(ø)=Jw§(ø)
> and noise precision

§=§w§(ø,a). Then, DNN2GP develops an approximate GP posterior for neural networks

for generic losses. For the deep reinforcement learning problem with multiple action

spaces A D , we consider it as a function with multi-class outputs using softmax function

S . The number of categories is D, while the softmax function maps to a D°1 dimensional

vector by ignoring the last category, ensuring identifiability. The mean and covariance

103

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

functions are:
mw§(ø) :=S (ºw§(ø)),

kw§(ø,ø
0) :=§w§(ø)Jw§(ø)ß§Jw§(ø

0)>§w§(ø),

whereß°1
§ :=

X

i
Jw§(øi)>§w§(øi)Jw§(øi)+±Ip

(5.5)

The§w§(ø)=S (ºw§(ø))[1°ºw§(ø)]
> is a (D°1)£(D°1) matrix and Jw§(ø) is the (D°1)£P

Jacobian matrix. P is the number of parameters.

The GP posterior in Eq. (5.5) is expensive. To reduce the computation complexity,

we model each class density by an independent GP and marginalize the latent GPs for

predictions like [227]. Under this assumption, consider there are D separate GPs instead

of D°1, the mean and covariance of GP posterior over each action a(d) (i.e., the d-th

item of a) for the input trajectory ø is:

mw§(ø) :=S (ºw§(ø))
(d),

kw§(ø,ø
0) :=§w§(ø)

(d)Jw§(ø)ß§Jw§(ø)
>§w§(ø)

(d)>

+§w§(ø)
(d,d),

whereß°1
§ :=

X

i
Jw§(øi)>§w§(øi)Jw§(øi)+±Ip

(5.6)

where S (ºw§(ø))
(d) is the d-th class of the output of the softmax function, §w§(ø)

(d)>

is the d-th row of the Hessian matrix, §w§(ø)
(d,d) is the d,d-th element of the Hessian

matrix and Jw§(ø) is the Jacobians with size D £P. Then, the kernel matrix of the

multi-output network is initialized as a block diagonal matrix with size B£B for each

class, allowing us only to compute the inverses of each diagonal block. This simplifies

the computational complexity of the full matrix with size D£B£B£D. Finally, the GP

approximate of a policy modeled by a DNN is denoted as GP (mw§(ø),kw§(ø,ø
0)).

5.3.1.2 Surprise-based Change Detection

With the converted GPs, previous work denoted the surprise by different metrics, such

as Euclidean distance [16] and symmetrized KL divergence [17]. However, Euclidean

104

5.3. METHODOLOGY

distance may become less informative due to the curse of dimensionality, and the KL

divergence is ill-defined with non-overlapping support [228]. To overcome the weakness

and limitations, our proposed method, FDA, utilizes the 2-Wasserstein Distance [223],

which is symmetric and finite in all cases, allowing us to measure Bayesian surprise

accurately.

During on-policy RL training, a policy º interacted with the environment and collected

trajectories øªTt at epoch t. By updating using these trajectories, the converted GP

at epoch t is GP (mt(ø),kt(ø,ø0)), where ø 2 Tt. This GP contains the information of

the newly collected trajectories ø 2Tt. Given a model prior GP (m0,k0) pre-trained on

random environments, we denote the surprise brought by the newly observed trajectories

Tt is denoted using 2-Wasserstein Distance:

St =WD[GP (m0,ø,k0,ø),GP (mt,ø,kt,ø)],

where ø 2Tt.
(5.7)

With multivariate Gaussian distribution, there is a closed form:

St = {S(i)
t }i=Bi=0 = {kmt,i°m0,ik22+

trace(kt,i+k0,i°2(k
1
2
0,ikt,ik

1
2
0,i)

1
2)}i=Bi=0 .

(5.8)

The mean and variance are evaluated on a batch sampled from the newly collected

øi 2Tt. It is noted that for multivariate problems with D classes, we use D individual

separate GP to calculate the distance to get a S(i)
t with size 1£D. Hence, St has the size

of B£D with the input batch of size B.

As mentioned before, if the environment changes, there will be a large surprise

between the predictions of the GP prior and posterior; conversely, the surprise will

not increase significantly. Therefore, with a fixed prior, the surprise from trajectories

collected in a stationary environment is predictive. In other words, if the environment

changes at epoch t, the surprise will significantly differ from the previous surprises.

Inspired by this, we perform a statistical test between the values St for the current

105

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

epoch and those from the previous epoch St°1 before updating the current policy. Using a

statistical test avoids manually selecting a threshold and provides a p-value indicating

the decision-making. A reasonable choice is Welch’s t-test, which does not assume equal

variances between the two groups, making it more robust when the two samples have

unequal variances. The null hypothesis is given by:

H0 :St =St°1, (5.9)

indicating that all samples come from the same distribution. For St and St°1 both with

sizes B£D, Welch’s t-test defines the statistic by the following formula:

t= (S̄t° S̄t°1)
p
B

q
æ2
t +æ2

t°1

(5.10)

where æt and æt°1 denote the sample standard error. The degrees of freedom for the test

can be approximated as:

∫º
°
æ2
t +æ2

t°1
¢2 (B°1)

æ4
t +æ4

t°1
(5.11)

The p-value can then be determined by comparing the calculated t-statistic to the t-

distribution with ∫ degrees of freedom. Given a significance level Æ, when p < Æ, we

reject the null hypothesis, i.e., making the decision that there is a change point at epoch

t.

5.3.2 Adapting with Functional Regularizations

Upon detecting environmental changes, a mechanism that adapts based on previously

acquired knowledge is crucial for acquiring higher cumulative rewards. One popular

approach is to keep some network weights to retain some general knowledge or to make

the outputs close to the values for previous tasks [8, ?]. However, when optimizing a neu-

ral network, weight change might serve as a poor proxy for the change in function [222].

Weight regularization may not always ensure the quality and effectiveness of previous

106

5.3. METHODOLOGY

knowledge. In contrast, functional regularization prioritizes the neural network’s learned

function by managing changes in how it processes data rather than merely adjusting its

internal settings. It provides a more consistent learning journey without depending too

much on intricate parameter adjustments.

5.3.2.1 Change-aware Functional Regularization

We design a self-adjusted functional regularization term that will be employed to adapt

to new environments by providing previously learned knowledge if a change point is

detected.

Initially, we follow Behavior Guided Policy Gradients (BGPG) [211] for regular RL

updates when no change point is detected. For a policy ºw, the training objective at epoch

t is to maximize:

F(w)t = EøªPt [R(ø)]°WD(Pt,Pt°1). (5.12)

where Pt is the trajectory distribution mapped by © :°! E from the collected trajectories

ø 2Tt. Similarly, Pt°1 corresponds to the trajectory distribution collected by ºt°1 before

the last update.

If a change point is identified at epoch c by our surprise-based change detection

method, functional regularization will be involved. According to Eq. (5.6), the neural

network of the policy before change is converted as GP (ºc°1 |mc°1,kc°1), providing

knowledge as a functional prior, trained over all the previous environments. The current

policy ºt can be represented as GP (ºt |mt,kt). Using a to denote the vector of function

values defined at trajectories from the representative memory MR , with a sample from

w ª q(w), a GP posterior can be inferred by q̃w(º) = N(º | mt(w),kt(w)), where the

mean and kernel can be deviated by evaluating GP (mt(ø),kt(ø,ø0)) at the representative

trajectories. Denoting a sample from qc°1(w) bywc°1, we can obtain another GP posterior,

which is used as a functional prior q̃wc°1(º)=N (º |mc°1,kc°1). Following Pan et al. [16],

107

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

we add a functional regularization Eq(w)[logqc°1(w)] º Eq̃(a)[log q̃c°1(a)], which has a

closed-form expression:

max
w

h
F(w)t°± · 1

2
£
Tr

°
k°1
c°1kt(w)

¢

+ (mt(w)°mc°1)>k°1
c°1 (mt(w)°mc°1)

§
+constant

i
.

(5.13)

The regularization plays the role of keeping the core knowledge useful for the fol-

lowing environments, and the coefficient ± is self-adjusted according to different change

extents. This coefficient is used to achieve change-aware functional regularization that

can adjust regularization according to different change extents. The reason is that em-

ploying function transfer directly to avoid catastrophic forgetting is not the core objective

in non-stationary environments. Completely keeping previous knowledge may not al-

ways contribute to the current environmental conditions. Thus we involve a self-adjusted

coefficient ± = |1/(Sc°Sc°1)|, where epoch c is the detected change point. This coeffi-

cient indicates the relative surprise brought by the new environment and is inversely

proportional to the change level. The flexible coefficient ensures different responses to

various conditions, making the regularization act as a contrastive term to the constraint

WD(Pt,Pt°1) in Eq. (5.12). If the difference of surprise is significant, i.e., the current en-

vironment is significantly different from the previous one, the functional regularization

will be weakened. In contrast, more knowledge is retained when the new environment

is similar to the previous one. This ensures our adaptation mechanism is sensitive to

different change levels.

To reduce the computational complexity, there are some approximations: 1) follow-

ing [16], we use the mean of qc°1(w) instead of a samplewt°1; 2) we ignore the derivative

concerning kt(w); 3) following [226], we set w=µ; 4) we use a diagonal ß which corre-

sponds to a mean-field approximation, reducing the cost of inversion. Then, the objective

108

5.3. METHODOLOGY

is:

max
w

F(w)t

°± · 1
2

X

d2A D
(mt,d°mc°1,d)>k°1

c°1,d(mt,d°mc°1,d),
(5.14)

where A
D is the action space, mt,d is the vector of mt(ø) for action d evaluated at

{øi} 2MR, mc°1,d is the vector of mc°1(ø) for action d, and kc°1,d is the kernel matrix

from the prior for action d over the trajectories.

As F(w)t is a loss function for a deep neural network, performing backward propaga-

tion on the objective is unfeasible. To address this problem, we follow [16] to compute an

additional gradient to the previous neural network gradient. We can approximate the

gradient of the functional regularization in Eq. (5.14) as:

g f = ± · 1
2

X

d2A D
(rmt,d)k°1

c°1,d(mt,d°mc°1,d), (5.15)

where rmt,d(w)[i]=rw[æ(ºt(øi)]=§w(øi)Jw(øi)>, which can be easily calculated by the

Jacobian and Hessian.

5.3.2.2 Selecting Representative Trajectories

Functional regularization often directly regularizes network outputs [222], which can

be computationally expensive when dealing with large input data points. In addition,

preserving all the trajectories from environments can lead to high storage costs. Some

previous research was working on reducing the computational complexity [16, 17] by pri-

oritizing memorable and important input samples in classification problems. Therefore,

designing a novel selection strategy for DRL in non-stationary environments is crucial

to improve efficiency. Selecting representative trajectories from each environment to

represent the knowledge learned by the policy ensures efficient and effective adaptation.

In this section, given the trajectories over time: T : {ø1,ø2, . . .øH}, we denote the selection

metric of each trajectory as C (øi), which is used to sort 8i and pick up the top ones.

109

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

There are several methods of selecting trajectories from interactions. One approach

is based on temporal difference (TD) error, which describes the prediction error made by

the network. It has been used as the foundation for a prioritized sampling strategy [19]

to enhance the RL sample efficiency. The high TD error helps the agent prioritize points

the model has not yet learned. Moreover, the points with high TD errors may be noisy or

not learnable by the model [229]. Therefore, the most representative trajectories should

be those with low TD errors, selecting by C (øi) = °(ri +∞maxs,aªøQ(s0i,a
0)°Q(si,ai)).

Another method is to select trajectories according to reward. Neuroscientific research

indicates that replay is more commonly associated with events that yield rewards [230].

It has also been observed that in reinforcement learning, biased sampling towards

rewarding transitions may be beneficial [18]. We employ the absolute value of the

future discounted return from an individual trajectory, denoted as C (øi)= |Ri(øi)|. The

other method considers that if the selected trajectories match the global distribution

in the learned environment, it is expected to get the closest performance. To ensure

a random sample across the global distribution, reservoir sampling [20] is a suitable

strategy that assigns a random value C (øi)ªN (0,1) to each trajectory. The probability

of every trajectory ti to add to the representative memory M is calculated as 8øi,P(øi 2

M) = min
≥
1, |M|

t

¥
, where t is the given moment and |M| signifies the total count of

representative trajectories. These methods are designed to enhance policy learning and

sampling efficiency rather than adaptation when change occurs. Therefore, we design

a novel selection strategy aimed at adapting to new environments based on previous

knowledge.

Inspired by selecting memorable points in classification problems [231], we consider

that trajectories close to the policy’s decision boundary (between choosing one action

over another) are highly influential. In other words, these trajectories can significantly

vary in different decision regions. For the MAP estimation, the examples with a high

110

5.3. METHODOLOGY

action 1

action 2

Selected trajectory

High rewarded trajectory
Close to boundary trajectory

Trajectories

Figure 5.2: We select trajectories that are not only closest to the decision boundaries
but also with the highest cumulative rewards. The orange curve denotes the decision
boundaries of action 1 and action 2.

value of noise precision §i contribute more to the decision-making according to the

objective: wMAP = argmaxwßN
i=1§i`(a,º). In other words, trajectories with large §i are

close to the decision boundary. These ideas are widely used in the theory of leverage-

score sampling [232] to identify the most influential examples. Similarly, in Eq. (5.6), the

quantity §w§(øi) plays the same role as the noise precision § [16]. Therefore, C (øi)=

§w§(øi) can be used to select the trajectories close to the decision boundary.

Further, building upon the foundation of proximity to decision boundaries, we aim

to identify more valuable trajectories. For RL problems, the reward directly denotes

the policy’s performance. Hence, prioritizing trajectories trajectory with higher rewards

directly aligns with the goal of reinforcement learning: maximizing cumulative rewards.

This can lead to the best representation of past environments. Therefore, we select

sequences that are not only closest to the decision boundaries but also have the highest

cumulative rewards (as Fig. 5.2 demonstrated), which is denoted as

C (øi)=§i+|Ri(øi)|. (5.16)

111

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

We consider the selection method can pick the trajectory that carries massive information

and higher value in a reinforcement learning environment. These trajectories can provide

core function inputs from previous learning and guide adaptation that is sensitive to

environmental change.

In the implementation, we retain a representative memory MR of size M to store the

selected trajectories before the change occurs. At epoch t with no change point detected,

the top M trajectories with highest C (øi) in Eq. (5.16) in MR [ø, where ø 2Tt will be

selected as the most representative trajectories of this environment. With the selected

trajectories, the regularization in Eq. (5.14) will be calculated only on the representative

memory, significantly reducing the computation cost.

5.3.3 Computational Complexity Analysis

The proposed Functional Detection and Adaptation (FDA) algorithm is illustrated in

Alg. (4). Upon traditional RL training, we add detection and adaptation procedures.

For the surprise measurement, according to Eq. (5.8), there is a complexity of O (DB3)

due to the matrix multiplication, where D is the action size and B is the batch size. This

increases linearly in action space size and is feasible when the batch size is not too large.

Welch’s t-test involves O (B) calculation.

For the functional adaptation, as Eq. (5.15) shows, every iteration requires functional

gradients, the cost of which is dominated by the computation of Jw(ø) at all ø 2MR.

Assuming the size of the representative points is M, this adds an additional O (DMP)

computation, where P is the number of parameters. Selecting the most representative

trajectories requires a forward pass over M +B trajectories, followed by picking the

top M samples. In addition, for each adaptation procedure, the functional prior on

representative trajectories needs to be calculated only once with a cost O (M3).

112

5.4. EXPERIMENT AND ANALYSIS

Algorithm 4 Functional Detection and Adaptation (FDA)
Initialize: Policy ºw, GP (m0,k0), Representative memory MR and significance level Æ.
1: for Epoch t= 1,2, ... do
2: Collect Tt = {s0,a0, r0, ..., sH ,aH , rH} using the policy from the environment.
3: Select representative trajectories øi according to Eq. (5.16) from Tt[MR and save

to MR .
// Change detection (Alg. (5)).

4: (mt,k°1
t),St, p=Detect(ºw, Tt,m0,k0, St°1)

5: if p∑Æ then
6: Mark epoch t as changed epoch c.
7: Initialize (mc°1,kc°1) using mt°1,k°1

t°1.
8: Compute functional regularize gradient g f according to Eq. (5.15).
9: Update policy parameter w following Eq. (5.13).

10: else
11: Update policy parameter w following Eq. (5.12).
12: end if
13: Update the surprise St°1 √St.
14: Save GP (mt°1,k°1

t°1)√ (mt,k°1
t).

15: end for

Algorithm 5 Surprise based Change Detection
Function Detect(ºw, Tt,m0,k0, St°1)

Get mt,k°1
t for ºw according to Eq. (5.6).

Compute surprise St according to Eq. (5.8).
Perform Welch’s t-test on (St,St°1) then get p-value p.
return (mt,k°1

t),St, p.

5.4 Experiment and Analysis

This section thoroughly examines our method, addressing critical questions: 1) Can our

method obtain higher cumulative rewards in non-stationary environments with unknown

change points? 2) Is Wasserstein surprise-based change detection more effective than

other detection methods? 3) Does our functional regularization surpass retraining, weight

regularization and other adaptation strategies? 4) Can our selection strategy outperform

other selection strategies? 5) Can FDA maintain performance in frequently changing

environments? These questions guide our experiments and analysis.

113

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

5.4.1 Experiment Settings

Environments We perform our experiment in ViZDoom [204] with changing condi-

tions:

• basic/simpler_basic: In basic scenario, a player faces off against a randomly

spawned monster. The player can go left/right and shoot to kill the monster. The

simpler_basic scenario works the same but uses different textures for better con-

trast to help the agent learn faster. We simulate the environment change by

changing from simpler_basic to basic with dimmer lighting, as Fig. 5.3 shows.

• defend_the_line/defend_the_center: In these two scenarios, a player is spawned

along the longer wall of a rectangular map, facing three melee-only and three

shooting monsters on the opposite wall. These monsters will respawn after a

certain period. In the altered environment, the agent’s objective shifts to elimi-

nating surrounding enemies at the center of a circular map. As shown in Fig. 5.3,

we first simulated the changed environment by changing defend_the_line to de-

fend_the_center, then turning down the lighting.

• deadly_corridor: The map is a corridor with shooting monsters on both sides. A

green vest is placed at the opposite end of the corridor. The objective for the player

is to get the vest and avoid being killed somewhere along the way. The player can

choose from 7 available actions: move forward/backward/left/right, turn left/right,

shoot. We simulate environment changes by reducing the number of enemies from

6 to 5 and 4.

For each environment, two change points are simulated. It is important to emphasize

that the way the environment changes is not provided to the agent, and the agent has no

access to know when the environment changes.

114

5.4. EXPERIMENT AND ANALYSIS

basic

defend_the_line/center

Figure 5.3: The simulated non-stationary environments are based on VizDoom. The
screenshots on the upper line depict the basic environment with different wall textures
and lighting levels. The screenshots on the bottom line show the progression from
defend_the_line to defend_the_center and finally to a darker defend_the_center.

Comparative methods To verify the efficiency of the FDA, we choose the following

methods for comparison:

• Weight Detection Adaptation (WDA), replacing our objective function in Eq. (5.14)

with a Wasserstein weight regularization term.

• Standard BGPG without any detection and adaptation;

• CRL-Unsup [13] with both detection and adaptation.

It is noted that BGPG [211] is used as the base algorithm for all methods. In the

experiments, all algorithms are model-free and have the same setting unless otherwise

specified, such as the policy neural network structure, learning rate, etc.

For detection methods, we choose:

115

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

Table 5.1: The F1-Score of detection methods. The average and standard deviation are
based on ten runs with different seeds. For all methods, the points detected in no more
than 5 epochs after the real change points are considered correct ones.

basic deadly_corridor defend_the_line/center

WMMD 0.49 ± 0.28 0.25 ± 0.08 0.29 ± 0.05
ODCP 0.52 ± 0.07 0.47 ± 0.18 0.53 ± 0.17
CRL-Unsup 0.64± 0.17 0.59± 0.16 0.63 ± 0.25
FRCL 0.44± 0.29 0.38 ± 0.13 0.51 ± 0.24
FROMP 0.60 ± 0.09 0.61 ± 0.28 0.45 ± 0.25
FDA 0.75 ± 0.30 0.69 ± 0.18 0.73 ± 0.13

• CRL-Unsup [13], which detects environment change by monitoring reward.

• Online parametric Dirichlet change point (ODCP) algorithm [14, 70]; This al-

gorithm does not have an adaptation component, so we use a standard restart

procedure.

• FRCL [17], which uses KL divergence to measure Bayesian surprise.

• FROMP [16], which uses Euclidean distance to measure Bayesian surprise.

• A two-sample test using weighted maximum mean discrepancy (WMMD) [220].

Evaluation metrics Any RL method aims to obtain a high accumulative reward and

continuous interaction between agents and environments. The most important metric in

all experiments is how much/high rewards each method can get. We actively detect the

possible changes because we believe we can obtain more rewards if we can quickly detect

and then adapt to the changed MDP. For detection, we use F1 Score F1 = 2§P§R
P+R as the

metric, where P is precision and R is recall.

116

5.4. EXPERIMENT AND ANALYSIS

5.4.2 Main Results

Change Detection Tab.5.1 lists the F1 scores for all the methods. As shown, our

Wasserstein surprise-based method outperforms other methods in all scenarios. First,

WMMD and ODCP show unsatisfactory results, especially in deadly_corridor and de-

fend_the_line/center, where the distribution of trajectories might not differ significantly.

CRL-Unsup performs better than the distribution-based methods; however, the size of

long-term and short-term windows and the threshold of decision need to be carefully

tuned. By contrast, the FDA does not require manually adjusting hyperparameters and

simultaneously provides a significance level. Further, the relatively poorer performance

of FRCL based on KL divergence compared to our Wasserstein-based approach can be

attributed to the definition of KL divergence. In scenarios where the probability distribu-

tions have non-overlapping supports, KL divergence is infinite, so it is hard to measure

the difference between distributions accurately. By contrast, Wasserstein distance is

based on the optimal transport problem, denoting the minimum “cost" of turning one

distribution into another. It is particularly beneficial in non-stationary reinforcement

learning environments, which often feature abrupt and significant change. FROMP

uses the Euclidean distance to denote the surprise, which may not perform well with

high-dimensional data as it fails to capture more complex relationships between data

points.

Cumulative Rewards Fig. 5.4 demonstrates the superior performance of our method,

FDA (illustrated in red), especially notable after environmental change points (indicated

by vertical dashed lines in each graph). This enhanced performance underscores the

effectiveness of our adaptation regularization, which swiftly adjusts the policy away from

its previous optimum in response to new environmental conditions.

In the basic scenario, where environmental changes involve adjustments to lighting

and wall textures, methods lacking adaptation mechanisms exhibit a significant decline

117

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

in performance. BGPG, following the plain RL update, trajectories a sharp decline post-

change, indicating poor adaptability to the new environment conditions. In contrast,

the CRL-Unsup method showcases considerable adaptability with a consistent reward

increase post-change, although it was still not as effective as FDA. This performance

differential highlights the advantages of our behavior-based regularization term, which

promotes quicker adaptation to novel environments. Moreover, the FDA employing

functional regularization outperforms the FDA with weight regularization, suggesting

that functional features offer a more holistic representation of environmental knowledge.

In the deadly_corridor scenario, characterized by an increased number of enemies, with

most competing methods struggling with local optima. WDA and CRL-Unsup fail to

maintain performance like BGPG, indicating that regularizing by weight may lead

to worse performance than following the RL objective. In contrast, the FDA excels

by adapting to intensified challenges effectively, demonstrating its robustness against

complex dynamic changes in the environment. The defend_the_line/center environment,

marked by a substantial shift in objectives, also sees a notable dip in rewards for all

methods except FDA. Our method not only minimizes performance degradation but

also adjusts more rapidly to the new objectives, emphasizing its capability to handle

drastic shifts in environmental demands effectively. WDA with a weight regularization

shows a significant drop in performance after the change and does not recover, indicating

that weight regularization is less effective in scenarios where quick adaptation to new

objectives is crucial. CRL-Unsup mirrors the decline in other methods but shows a minor

recovery later. Finally, BGPG performs poorly across the board in this scenario, with a

sharp decline and no significant recovery, indicating a struggle with rapid adaptation to

new game objectives.

Overall, these results affirm that FDA stands out in its ability to adapt to diverse

and dynamically changing environments, significantly outpacing traditional methods

118

5.4. EXPERIMENT AND ANALYSIS

10k 20k 30k 40k 50k 60k
0

1

2

3

4

5

6

7

8

9
FDA WDA CRL-Unsup BGPG

Step

R
ew

ar
d

0 10k 20k 30k 40k 50k 60k
0

50

100

150

200

250

300
FDA WDA CRL-Unsup BGPG

Step

R
ew

ar
d

defend_the_line/center

0 5k 10k 15k 20k 25k 30k
−250

−200

−150

−100

−50

0

50

100
FDA WDA CRL-Unsup BGPG

Step

R
ew

ar
d

basic deadly_corridor

Figure 5.4: Reward curves in simulated non-stationary environments. The line is the
average of different seeds for ten runs. The shaded area denotes the standard deviation.
Our proposed method, FDA, is denoted by red curves.

0 5k 10k 15k 20k 25k 30k
−250

−200

−150

−100

−50

0

50

100

150
FDA Boundaries Global Distribution TD Loss Reward None BGPG

Step

R
ew

ar
d

Figure 5.5: Cumulative rewards of different selecting strategies used for adapting using
functional regularization. The line is the average of different seeds for ten runs. The
shaded area denotes the standard deviation.

that fail to incorporate effective adaptation strategies.

5.4.3 Ablation Study

Selection Strategy Our experiments assessed the effectiveness of the novel selection

strategy designed to prioritize trajectories close to decision boundaries and exhibit high

cumulative rewards. Fig. 5.5 visually illustrates the impact of selecting high-rewarded

boundaries as a criterion for trajectory selection in reinforcement learning environments.

119

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

FDA Reward Boundaries

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−50

−40

−30

−20

−10

0

10

Coefficient

R
ew

ar
d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−50

−40

−30

−20

−10

0

10

Coefficient

R
ew

ar
d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−50

−40

−30

−20

−10

0

10

Coefficient

R
ew

ar
d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−50

−40

−30

−20

−10

0

10

Coefficient

R
ew

ar
d

Global Distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−50

−40

−30

−20

−10

0

10

Coefficient

R
ew

ar
d

TD Error

Figure 5.6: The average rewards of different regularization coefficient ± in Eq. (5.13).
The error bar denotes the standard deviation over five runs.

The effectiveness of the FDA is evident, highlighting its potential to enhance the efficiency

and efficacy of adaptation processes significantly. By concentrating on trajectories near

decision boundaries with high rewards, our agent demonstrated a remarkable ability to

adapt to environmental changes swiftly, yielding outcomes that surpassed those achieved

by other selection methods. This strategic focus not only reduces the computational

complexity of functional regularization but also ensures that the agent concentrates on

trajectories that are the most informative and valuable for adaptation.

Adaptation Efficiency Tab. 5.2 compares average rewards obtained by different

methods, illustrating the adaptation capabilities of each. Our method, FDA, consistently

achieves higher average rewards than FDA-R (Restart) and BGPG. FDA-R (Restart),

which resets the training to follow a basic objective denoted by Eq. (5.12) upon detecting

an environmental change, registers lower average rewards. This method’s approach of

restarting training may not efficiently utilize previously acquired knowledge, leading

to suboptimal performance in adapting to new conditions. In contrast, the plain BGPG

method, which does not incorporate adaptive or restarting mechanisms, records the

lowest average rewards in three tested environments. This indicates a significant dis-

advantage when the method lacks the flexibility to adjust to environmental changes.

The superior performance of the FDA demonstrates its robust adaptation ability, sig-

nificantly outperforming methods that rely solely on standard reinforcement learning

120

5.4. EXPERIMENT AND ANALYSIS

Table 5.2: The average rewards of our method and BGPG-Restart. Our method achieves
higher reward than simply following plain RL update and restarting a new training
using RL objective. The results are based on ten runs with different seeds.

basic deadly_corridor defend_the_line

BGPG -58.92±35.62 153.16±32.92 4.89±0.11
FDA-R(Restart) -35.74±40.23 203.83±28.46 3.54±0. 41
FDA 10.28±21.98 255.78±22.23 5.83±0.33

updates or that restart training from scratch upon each environmental shift. FDA

leverages accumulated knowledge from past environments, effectively adapting to new

challenges and variations, which results in consistently higher average rewards across

different scenarios. Overall, the data in Tab. 5.2 underscores the effectiveness of our FDA

method in handling non-stationary environments. It achieves commendable adaptation

performance without restarting the training process from the beginning or depending

exclusively on basic DRL updates. This capability makes the FDA preferable for envi-

ronments where conditions frequently change, highlighting its potential in dynamic and

complex settings.

Parameter Sensitivity Fig. 5.6 shows the average rewards obtained by different

regularization coefficients ± in Eq. (5.13). The y-axis displays the average reward, while

the x-axis represents the coefficient values ranging from 0.1 to 0.9. Our method, FDA,

is highlighted with red bars and consistently scores the highest average rewards for

most coefficient settings. This performance underscores the FDA’s ability to effectively

select representative trajectories from environments that have been thoroughly learned.

It utilizes this information to transfer knowledge from past environments, optimizing

current policies. Selecting trajectories based on reward, boundaries, global distribution

and td error performs relatively well for certain coefficient values but generally yields

lower average rewards than FDA. The error bars represent the standard deviation across

multiple experimental runs, reflecting the variation in results. This variation indicates

121

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

2 4 9

−80

−60

−40

−20

0

20

BGPG CRL-Unsup WDA FDA

Chang points

Av
er

ag
e

re
w

ar
d

Figure 5.7: The average rewards of different methods in increasingly non-stationary
environments. The results are based on 5 runs with different seeds.

Table 5.3: F1 scores for change detection methods across environments with increasing
change points.

2 changes 4 changes 9 changes

CRL-Unsup 0.71±0.13 0.60±0.17 0.37±0.08
WMMD 0.45±0.17 0.40±0.11 0.28±0.19
ODCP 0.25±0.15 0.21±0.11 0.20±0.13
FRCL 0.44± 0.29 0.32 ± 0.07 0.31 ± 0.10
FROMP 0.60 ± 0.09 0.43 ± 0.26 0.27 ± 0.08
FDA 0.75±0.30 0.63±0.13 0.53±0.29

the reliability and robustness of each method under different conditions. In summary, the

figures demonstrate that the FDA surpasses other trajectory selection strategies across

a broad range of regularization coefficients. This highlights its capability as a superior

method for leveraging past learning to enhance decision-making in new environments.

Change Frequency When the environment changes very gradually, there will be

no significant changes, and then our FDA will behave the same as the standard RL

122

5.5. SUMMARY

(e.g., BGPG used in the paper). Notably, these environments could be adapted well by

the standard RL. In contrast, when the environment is dramatically non-stationary,

i.e., abrupt changes happen very often, can FDA maintain performance? Therefore,

we evaluate the performance of methods in extremely non-stationary environments.

Fig. 5.7 provides a comparative overview of the different algorithms’ performances across

the basic environment with varying numbers of change points. As indicated in red,

the FDA consistently achieved higher average rewards than the other methods when

the environment changed in more frequently changing environments, demonstrating

its robustness in dealing with multiple change points. Our observations indicate that

increasing the number of change points from 2 to 4 will lead to a noticeable decline in the

performance of all methods. Among them, FDA trajectories have the smallest decrease,

maintaining a noticeable advantage. This suggests that FDA is particularly effective in

adapting to complex environments with frequent changes. Additionally, Tab. 5.3 displays

the detection accuracy in environments that change often. As the number of change

points increases, all methods are affected. In highly non-stationary environments, the

policy might not fully adapt in each setting, resulting in trajectories displaying random

patterns and failing to represent the underlying knowledge accurately. Furthermore, the

detection outcomes are also compromised by the model’s inability to converge. This is a

limitation of our method; if the policy is not fully converged, the detection and adaptation

performance will be affected. However, even under these circumstances, our approach

still exhibits better performance compared to other approaches, particularly traditional

DRL methods.

5.5 Summary

This paper introduces a novel functional deep reinforcement learning approach for detect-

ing changes and adapting in non-stationary environments. We have proposed a Bayesian

123

CHAPTER 5. A SAMPLE EFFICIENT APPROACH

surprise-based method for detecting environmental changes. This approach accurately

identifies change points, enabling the agent to respond to changes in the environment’s

dynamics quickly. Then, we developed a functional regularization technique based on

the representative trajectories and change information. This method helps the policy to

adapt rapidly in non-stationary environments, ensuring robust and efficient learning.

The new strategy for effectively selecting trajectories is to prioritize trajectories close

to the decision boundaries and have high cumulative rewards, ensuring that the most

informative and valuable trajectories are used for adaptation. The proposed framework,

Functional Detection Adaptation (FDA), can provide significant advancements, par-

ticularly in dynamic and unpredictable environments. The FDA enhances the agent’s

ability to learn and adapt, ultimately improving performance and efficiency in various

applications.

Expanding our on-policy framework to accommodate off-policy algorithms is a promis-

ing direction for future work. Further, in a multi-agent context, our detection-adaptation

framework could be crucial for understanding and responding to the complex dynamics

that emerge from agent interactions.

124

C
H

A
P

T
E

R

6
AN APPROACH FOR LATENT DYNAMICS

This chapter addresses research objectives 1, 4, and 5 mentioned in the Chap-

ter. 1. The primary contribution of this chapter is a model-based reinforce-

ment learning algorithm that features a change-sensitive and adaptive latent

space representation. A key novelty is that our method identifies change points in the

non-stationary environment directly in the latent space, enabling online detection and

adaptation. We demonstrate through extensive experiments on challenging real non-

stationary environments with high-dimensional inputs, where reward distributions and

state transition dynamics vary in unknown ways over time, that our algorithm achieves

robust performance by quickly recognizing and adjusting to the environmental changes

in the latent space.

This chapter is based on Z. Liu, J. Lu, J. Xuan and G. Zhang, "Learning Latent and

Changing Dynamics in Real Non-stationary Environments," in IEEE Transactions on

Knowledge and Data Engineering [under review].

125

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

Figure 6.1: In some non-stationary environments where the transition probability and
reward function change independently, a well-trained agent may find that its existing
knowledge is no longer sufficient in the new environment.

6.1 Background

Although many model-free RL algorithms perform excellently in various applications,

they offer high sample complexity and low sample efficiency in some environments like

robotics or video games [31]. That is to say, model-free RL algorithms often need to take

tens of millions of steps[21] to train a policy that is good enough, which is impractical

in many open-world applications, especially health and safety-related scenarios. Unlike

direct policy optimization in model-free RL, model-based RL uses an indirect learning

method that learns and maintains a high-quality environmental planning and prediction

model known for higher sample efficiency [233], e.g., video game[234], biological sequence

design[235], and robotics [236].

Model-based RL performance is highly dependent on the quality of the learned envi-

ronment model throughout interactions. A common assumption is that the environment

remains fixed during the entire course of interaction, i.e., the reward distributions and

state transitions do not vary in time. This assumption does not always hold in practice,

as Figure 6.1 indicates. On the contrary, many environments are non-stationary and

may change with time. For example, robots performing outdoor tasks may encounter new

126

6.1. BACKGROUND

and unfamiliar terrains; they may need to maintain stability in sudden gusts of wind or

adapt to changes in lighting when moving from sunlight into a dark area. Additionally,

various breaking news may influence the trading market, making it crucial to identify

the sudden situation and adapt the current investment models and strategies to new

conditions. More examples can be found in online advertisement auctions [237], dynamic

pricing [238] and traffic management [239], demonstrating the importance of developing

methods addressing model-based RL in non-stationary environments. The changes in

such an environment are usually unpredictable and may arrive in rapid succession.

Even well-trained agents will fail in non-stationary environments because their focus is

learning through interaction without considering environmental changes and unexpected

perturbations. Once the environment with which an RL agent interacts changes, its

original strategies or models no longer work. In other words, traditional model-based RL

agents cannot adapt to new variations rapidly, even for simple problems [240]. Hence,

quickly adapting to possible environmental changes is vital for a robust model-based RL.

Recently, some research [11, 62, 241] efforts generalized model-based RL to non-

stationary environments by considering it as a serial transition in various Markov

Decision Processes (MDPs). This was a bold initiative but still not good enough because

transition timing between MDPs needs to be given in advance, which is also impractical

sometimes. For example, a delivery drone does not know wind changes in advance,

and a chatbot does not know when a user starts a new topic. These context changes,

which we identify as real non-stationary environments (a formal definition is given in

the next section), are unpredictable and unexpected. Although RL agents can gradually

adapt to slightly changing environments during continuous interactions, they experience

significant reward drops when sudden changes occur. Post-change learning phases are

particularly challenging due to the lack of new data, making it difficult to escape local

minima. Therefore, detecting change points is crucial for fast performance recovery.

127

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

Actively identifying changes allows us to use change information, providing valuable

knowledge for adaptation. Additionally, detecting change points enables the model to

respond promptly to the new environment. Following the original RL update means the

system will take a long time to achieve good performance, highlighting the necessity of

an adaptation scheme for this problem. With the detection and adaptation ability, we

aspire for agents to recognize changes and promptly adapt by re-purposing knowledge

and information as humans do.

To solve this challenging problem, this chapter proposes a new solution named

Learn Latent and Changing Dynamics (LLCD) in real non-stationary environments.

More specifically, since some environments with image or sensor input typically do not

constitute a Markovian and compact space [22] and are often characterized by their

complexity and high dimensionality, identifying change within such a raw observation

space is challenging. As such, detecting and adapting to the changes becomes more

challenging with few trials and samples. Therefore, our idea is to move model learning

into a latent space, which is expected to demonstrate Markov transition properties more

clearly and, at the same time, significantly reduce dimensionality compared to the raw

observation space. Our method actively detects possible changes through a Bayesian

online change point detection method [71] and learns environment models in the latent

space, where the learned models are independent of specific situations and transfer well

to other contexts. The main contributions of this work are:

• Amodel-based reinforcement learning algorithm, LLCD, features a change-sensitive

and adaptive latent space.

• An environment change detection scheme that uses Bayesian theory in the latent

space and provides predictive distributions to the new environment learning.

• A model adaptation method based on the predictions, speeding RL performance

recovery when facing changed environments.

128

6.2. PROBLEM FORMULATION

We show experimentally that our approach achieves robust performance in challenging

real non-stationary environments where reward distribution and state transition vary

with time in an unknown manner.

6.2 Problem Formulation

We formalize three key definitions and establish our core problem setting to clarify the

objectives of this chapter and delineate the scope of the problem.

Definition 6.1 (Markov Decision Process). A Markov decision process (MDP) is a

discrete-time stochastic control process with a tuple M = hS ,A ,P,Ri, where S is the

state space, A is the action space, R :S £A !R is the reward function and P :S £A !

S is the state transition probability.

Given the current state st and the action at, the environment transits to the next

state according to the probability distribution p(st+1 | st,at), while r(rt|st,at) returns

a reward according to the state st and the chosen action at. Model-based RL aims to

enable an agent to construct functional representations of p(st+1 | st,at) and r(rt|st,at)

to obtain optimal trajectories that maximize cumulative reward.

Definition 6.2 (Stationary and non-stationary environment). If an environment

can be completely characterized by one and only one MDP, it is called a stationary

environment; if a sequence of MDPs is required, it is called a non-stationary environment.

To draw a clear line between traditional non-stationary environments, we define our

target as follows,

Definition 6.3 (Real Non-stationary Environments). A real non-stationary envi-

ronment is defined as a chronological sequence of MDPs {Mk = hS ,A ,Pk,Rki} with

unknown change points T , where S and A are the shared state and action spaces; Rk

129

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

… …
...

…
...

...

Figure 6.2: The formal MDP setting of the non-stationary environment. The switch
points of MDPs are unknown.

and Pk are the reward function and the dynamics of the k-th MDP; and T = {ø1,ø2, ..., } is

a non-decreasing integer series that means the environment changes from the previous

MDP Mk to a new one Mk+1 at change point øk.

As Figure 6.2 indicates, the changing dynamics of a real non-stationary environment

can be expressed as

p (st+1 | st,at)=

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

p0
°
s0 | s,a

¢
, t< ø1

p1
°
s0 | s,a

¢
, ø1 ∑ t< ø2

...

pk
°
s0 | s,a

¢
, øk ∑ t< øk+1

...

(6.1)

and the reward function will be

r(s)=

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

r0(s), t< ø1

r1(s), ø1 ∑ t< ø2
...

rk(s), øk ∑ t< øk+1
...

. (6.2)

If the change points T ¥ {ø1,ø2, ..., } are not given beforehand, it degenerates into

traditional non-stationary environments. It should be noted that the action space and

state space of the environment are assumed to be fixed because it is straightforward to

identify the environment changes when they occur.

130

6.3. METHODOLOGY

Theorem 6.4 (RL in real Non-stationary Environments). Assume that there is a

chronological sequence of different MDPs {Mk=1:K } with change points {ø1,ø2, ...,øK }. An

agent will sequentially interact with these MDPs, where the change points are not given

in advance. Through ongoing interactions, the agent needs to acquire the highest reward.

This chapter aims to learn and maintain an MDP M̂k model that best suits the

current environment. Then the model is used to maximize the expected sum of rewards.

Hence, the objective is

max
a1:T°1

X

k
Epk(st+1|st,at)

"
øk+1°1X

øk

r (st)

#
(6.3)

where pk(st+1 | st,at) is the transition of environment, r(st) is the reward function,

and {ø1,ø2, ...,øk°1} are the change points detected by our method. The core problem is

accurately representing the environment through the transition and reward models.

6.3 Methodology

We aim to design a model-based RL algorithm to manage complex and high-dimensional

environments with non-stationary dynamics, utilizing change point monitoring and

rapid adaptation. The natural idea is to learn a model from the image observation

and detect the distribution drift of the observed data. However, it has some practical

problems: 1) modeling high-dimensional RL environments is challenging because some

data, like images, do not always constitute a Markovian space in practice [22, 23]; 2)

directly monitoring a change in the complex distribution of raw observations is difficult

due to the considerable noise and sparsity of some high-dimensional data. We address

these issues by modeling the raw observation using Reccurent State-space Model(RSSM)

that can learn a pure latent space transition, similar to recently proposed methods

[23, 242, 243, 244], where the image of each time step is considered observation and the

latent states represent the underlying process that generates the observations.

131

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

6.3.1 Learning Latent Dynamics

At a discrete time step t of reinforcement learning, the tuple {ot,at, rt}Tt=1 will be intro-

duced, where ot is the image observation, at is the action vector, and rt is the reward

that the environment feeds back. In the context of RL, at a discrete time step t, the tuple

{ot,at, rt}Tt=1 represents a sequence of observations ot, actions at and the reward rt. A

model-based RL should learn the following two things:

Reward model rt ª p(rt | ot,at)

Transition model ot ª p(ot | ot°1,at°1).
(6.4)

Directly estimating the above two models can be challenging due to several factors.

In addition to the aforementioned concerns of computational cost and the absence of

the Markov property, there is also another issue, namely, image inputs may lack well-

defined transition or reward function mappings, as assumed. The reason is that images

typically contain a vast amount of information, making extracting relevant features

or interpreting pixel-level changes as meaningful transitions difficult [245]. Therefore,

we adopted a method of learning transition and reward functions in a compact Markov

latent space to ensure the accuracy of the model and enable efficient planning.

A typical latent state-space model is composed by

Reward model rt ª p(rt | st)

Transition model st ª p(st | st°1,at°1)

State decoder ot ª p(ot | st)

(6.5)

where st is a latent state at time t with significantly lower dimensionality compared with

ot, and the relationship with ot is expressed by a state decoder. As shown in Figure 6.3

(a), a hidden state sequence {st}Tt=1 is used to define the generative process of the images

and rewards. Given these components, a model-predictive control (MPC [246]) is used

to search for the best sequence of actions based on the observations on each time step.

132

6.3. METHODOLOGY

(a) State-space Model(SSM) (b) Reccurent State-space Model(RSSM)

Figure 6.3: The figure shows a latent dynamic model with recurrent states. In the figure,
stochastic variables are depicted as circles, whereas deterministic variables are shown
as squares. Solid lines are used to represent the generative process, while dashed lines
signify the inference model.

We do not have any extra policy or value neural network like model-free RL. This model

is purely stochastic, which helps prevent overfitting and allows for future possibilities.

However, this uncertainty can make it difficult to retain information over several time

steps. In most environments, rewards are often influenced by more than just short-term

observations, and the effects of actions or observations may not become apparent for an

extended period.

Following [23], we added a recurrent deterministic state to our model based on typical

latent dynamics to address this problem. This allows the model to remember information

in the time series and make accurate predictions while maintaining uncertainty. The

133

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

final model is illustrated in Figure 6.3 (b), and its components are as follows:

State decoder ot ª p (ot | ht, st)

Reward model rt ª p (rt | ht, st)

Stochastic transition model st ª p (st | ht)

Recurrent state model ht = f (ht°1, st°1,at°1) ,

(6.6)

where the recurrent state model is normally implemented using a Recurrent Neu-

ral Network (RNN) to handle sequential data, accepting the current input data and

previously received inputs, it is noted that the model uses pure deterministic variable

convergences based on a single value to arrive at local minima, preventing the model

from capturing multiple features. This is detrimental to exploration-dependent RL

training and may disable the agent from exploring enough paths. Therefore, our model

combines stochastic and deterministic variables to retain part of the uncertainty while

remembering the previous input.

To estimate these distributions, we use the variational inference. The posterior state

distribution is approximated by the encoder q(st | ht,ot), and the state posterior for a

whole time series is simply factorized as q (s1:T | o1:T ,a1:T)=
QT

t=1 q (st | ht,ot). It is noted

that the model uses pure deterministic variable convergences based on a single value

to arrive at local minima, preventing the model from capturing multiple features. This

is detrimental to exploration-dependent RL training and may disable the agent from

exploring enough paths. Therefore, our model combines stochastic and deterministic

variables to retain part of the uncertainty while remembering the previous input.

6.3.2 Detecting Environment Changes

As stated above, the dynamics of a real non-stationary environment vary unpredictably

with time. In such environments, detecting change points becomes essential for several

reasons. First, sudden environmental changes can cause significant performance drops if

134

6.3. METHODOLOGY

not promptly addressed. Change detection enables the model to adapt promptly when a

change is detected. Additionally, change points provide valuable information about when

and how the environment has changed. By identifying these points, the algorithm can

adjust its policy to suit the new conditions better, leading to more effective adaptation.

Therefore, the requirements of this detection method are: 1) it should be fast because

we are working online, and a judgment should be made at every time step; 2) it should

be able to output useful knowledge to guide the following adaption beyond the change

points. In previous work [13], monitoring rewards is useful for detecting environment

changes but is not applicable in some scenarios with sparse or delayed rewards. Also,

the standalone reward drop cannot provide enough information to guide adaptation.

In this paper, inspired by Bayesian online change point detection [71, 247], we firstly

introduce a new latent variable run length lt 2Z+ for each time step t, which represents

the time step since the last change point given the data so far observed. If a change

happens at time t, we have lt = 0; and the observations between two change points are

assumed to follow the same distribution. To complete the Bayesian model, lt is given a

Bernoulli process prior as

P (lt | lt°1)=

8
>>>>><
>>>>>:

1/Ø if lt = 0,

1°1/Ø if lt = lt°1+1,

0 otherwise.

(6.7)

which results in a geometric distribution with a mean Ø 2R>0 over partition lengths and

Ø 2R+ is a hyperparameter. Assume that we have a sequence of latent states {s1, s2, ..., st}

inferred by the transition model. The posterior distribution of l can be derived by

P (lt | s1:t)=
P (lt,s1:t)
P (s1:t)

= P (lt,s1:t)P
lt P (lt,s1:t)

(6.8)

135

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

−100 −50 0 50 100

−100

−50

0

50

100

Latent state distribution in a new environment

(a) State in a new envi-
ronment

(b) Detection results of
data in (a).

−100 −50 0 50 100

−100

−50

0

50

100

Latent state distribution after convergence

(c) State in a learned envi-
ronment

(d) Detection results of
data in (c).

Figure 6.4: The figure shows the distribution of the latent state in 5 episodes after con-
vergence (left) and after change points (right) in the Reacher-easy environment and the
corresponding detected run length posteriors. The data is dimensionality reduced using
t-distributed Stochastic Neighbor Embedding (t-SNE,[1]). When the model converges,
the state shows a certain structure, while after the change point, the state distribution
tends to be random.

where the joint distribution P (lt,s1:t) can be written recursively as

P(lt, s1:t)=
X

lt°1
P (lt, lt°1,s1:t)

=
X

lt°1
P (lt | lt°1)P

°
st | lt°1,st°lt:t°1

¢
P (lt°1,s1:t°1)

(6.9)

then, the predictive distribution is calculated by

P (st+1 | s1:t)=
X

lt
P

°
st+1 | lt,st°lt:t°1

¢
P (lt | s1:t) . (6.10)

Following the above update procedure, we can obtain the run length posterior

P (lt | s1:t) for each time point but cannot directly use it to make the decision on en-

vironmental change or not like the classical Bayesian online change point detection

[71, 247] did. The reason for this is that different from the classical Bayesian online

change point detection, where the data points are assumed to be independent and

identically distributed, the latent states here are sequentially dependent, and their

distributions are constantly changing due to the update of the transition model in (6.6).

When the model in (6.6) is well-trained in an environment, a meaningful structure will

be formed in latent state space, and state transitions within this space will account

136

6.3. METHODOLOGY

Algorithm 6 Environment Change Detection
Require: Latent states s1:T = {s1, s2, . . . , sT}, current run length sequence Lcurr = {l0},
and previous run lengths Lprev which contain the maximum run length in terms of each
detection window.
1: Initialize isChange= False, l0 = 0, P (l0 = 0)= 1, P(s1)ªN(∫prior,¬prior).
2: for st in s1:T do
3: Evaluate the predictive probability P (st | s1:t°1).
4: Calculate the joint distribution according to Equation (6.11).
5: Calculate the evidence P(s1:t).
6: Determine run length distribution according to Equation (6.8) ,select lt with a

maximum probability and Lcurr √Lcurr[{lt}.
7: Update predictive distribution statistics and perform prediction P(st+1) according

to Equation (6.10).
8: end for
9: if max(Lcurr)> 3§Var(Lprev) then

10: isChange=True.
11: end if
12: Lprev √Lprev[max(Lcurr).
13: return Predictive distribution P(s1:T), isChange, Lprev.

for the behavior of the RL agent. Hence, the state distributions at different time steps

will be different in a large probability; that is, lt will be near 0 in a large probability,

the same as our observations (see Figure 6.4 for example). When an RL agent enters a

new environment, the model trained in the previous environment will no longer behave

well. The model structure will have large variations, such as transition and reward

models, to adapt to this new environment. Hence, the states in this stage (from entering

a new environment to being well-trained) exhibit a near-random pattern and follow the

same Gaussian distribution. In other words, lt in this stage will keep growing. Accord-

ing to these observations, we can detect environmental change by monitoring the run

length each time. If it experiences significant growth at some time step, there will be a

change; otherwise, there is no change. In the implementation, our determination method

employed the 3-sigma rule [248]. The complete detection procedure is summarised in

Algorithm 6, and we make the following remarks about this detection method:

Remark 6.5. The distributions in Equations (6.8) and (6.11) are all exponential family

137

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

distributions, so the sequential update is in closed form. Furthermore, the dimensionality

of latent state space is significantly lower than that of raw observation space. Hence,

this detection method is lightweight.

Remark 6.6. There is a byproduct from the above detection method: P
°
st | st°lt:t°1

¢

in Equation (6.11) that is the predictive distribution over the latent state. Such a

distribution could assist in learning the transition model, as detailed in the following

section.

At each time step, it is necessary to compute the distribution. Thus, the cost brought

by using raw observation data for computation is extremely high. However, conducting

detection on the latent state not only effectively improves computational efficiency but

also leverages the predictive distribution to benefit model training. Figure 6.5 illustrates

the structure of latent dynamics, change detection and adaptation components. It is

evident that both the prediction distribution st+1, furnished by the change detection

mechanism, and the inferred state st+1 from the subsequent temporal dynamics encapsu-

late pertinent data from the prior environmental context. When environmental changes

occur, leading to the lack of sufficient data utilization, the information provided by the

change detection mechanism substantively facilitates the training of the model.

6.3.3 Learning latent and changing dynamics

Following [23, 22], we use the variational autoencoder to learn the complex posterior dis-

tributions in (6.6) with state decoder p(ot|st), encoder q(st|ot, st°1), and reward function

r(st). The variational distributions are defined as

q(s1:t | o1:t,a1:t)/
Y
t
p(ot|st)q(st|st°1,at°1),

q(r1:t | o1:t)/
Y
t
p(rt|st)q(st|st°1,at°1,ot),

(6.11)

138

6.3. METHODOLOGY

... ...

Planner

Change Detection

Adaptation

State Decoder

Reward Model

Stochastic State Model

Recurrent State Model

Run LengthObservation

Stochastic State Model

Figure 6.5: Illustration of latent and changing dynamics with change detection and
adaptation. The change detection is performed on latent states {s1, s2, . . . , st}, and if a
change point is detected, an adaptation term will be added to the training.

where s0 could be a fixed value or a sample from a non-informative prior, like a Gaussian

distribution with zero mean and identity covariance matrix, and a always maximizes

the reward. This probabilistic representation framework can reflect the uncertainty of

environments.

Once we detect changes in the environment, we can obtain a prediction distribution

p (st+1 | s1:t) which can provide useful information when there is not enough data for new

environments. The reason is that when the environment switches, the distribution fitted

by change detection contains this information over previous information. This will help

the model adapt to the current environment. Consequently, when changes occur in the

environment, the information on state transitions can help the agent swiftly identify the

optimal trajectory. Therefore, we incorporate it as a regularization term into the loss

139

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

function. The final objective is to maximize the following evidence lower bound (ELBO),

TX

t=1

µ
Eq(st|o∑t,a<t)[ln p(ot | st)]°Eq(sl:t°1)KL[q(st | ht,ot) || p(st | ht)]

°ØEq(sl:t°1)KL[q(st | ht,ot) || (st+1 | s1:t)]
adaptation term

∂
+

TX

t=1
Eq(rt|o∑t,a<t)[ln p(rt | st)],

(6.12)

where Ø controls how much the detection information regularizes the model. At the

beginning of the new environment, we use the adaptation term to help model adaptation

rapidly. After several update iterations, the regularization will be removed because the

model has collected enough data about the new environment. It is noted that if there is

no change point detected, the learning objective will follow the original RL objective:

TX

t=1

µ
E

q(st|o∑t,a<t)
[ln p(ot | st)]° E

q(sl:t°1)
[KLq(st | ht,ot) || p(st | ht)]

∂

+
TX

t=1
Eq(rt|o∑t,a<t)[ln p(rt | st)].

(6.13)

Adaptation Using Detected Information Once we detect changes in the envi-

ronment, we can obtain a prediction distribution p (st+1 | s1:t) which can provide useful

information when there is not enough data for new environments. The reason is that

when the environment switches, the distribution fitted by change detection contains this

information over previous information. This will help the model adapt to the current

environment. Consequently, when changes occur in the environment, the information on

state transitions can help the agent swiftly identify the optimal trajectory. Therefore, we

incorporate it as a regularization term into the loss function. Based on Equation (6.13),

we have
TX

t=1

µ
Eq(st|o∑t,a<t)[ln p(ot | st)]+

TX

t=1
Eq(rt|o∑t,a<t)[ln p(rt | st)]

°Eq(sl:t°1)[KL[q(st | ht,ot) || p(st | ht)]]°ØEq(sl:t°1)[KL[q(st | ht,ot) || (st+1 | s1:t)]]
∂

(6.14)

where Ø controls how much the detection information regularizes the model. At the

beginning of the new environment, we use the adaptation term to rapidly help model

140

6.3. METHODOLOGY

adaptation. After several update iterations, the regularization will be removed because

the model has collected enough data about the new environment.

6.3.4 Planning in Real Non-stationary Environments

Building upon the learned latent dynamics st ª p(st | ht) and reward distribution rt ª

p (rt | ht, st) as described in Equation (6.14), we adopt a planning approach that involves

maximizing the expected cumulative reward over a temporal horizon. The integral in

the planning equation efficiently marginalizes the latent states st, taking into account

the history of states and actions to yield the best immediate action a§t :

a§t= argmaxat

Z

st
p(rt | st)p(st | s1:t°1,a1:t°1). (6.15)

Upon computing a§t , the prediction of the subsequent latent state is informed by both

the previous latent state and the chosen action, as denoted byht = f (ht°1, st°1,at°1) and

st ª p (st | ht).

To ascertain the most advantageous action, we apply the Cross-Entropy Method

(CEM [249, 250, 251]), leveraging its population-based optimization characteristics.

CEM distinguishes itself through its iterative sample selection process, focusing on a sub-

set of top-performing candidates to fine-tune the action space towards the highest yields.

This method facilitates comprehensive planning that extends beyond immediate consider-

ations, incorporating the impact of potential actions on the agent’s future trajectory. Such

foresight allows the agent to deliberate on the balance between immediate rewards and

future payoffs, ensuring that the actions selected contribute maximally to the cumulative

reward over the planning horizon H. In implementing CEM, we provide a stochastic

yet systematically structured exploration of potential actions, guiding the agent toward

the sequence of actions that promises the greatest reward. This approach harnesses the

141

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

...

Sample action sequences

Action sequence distribution

Sample next states
using transition model

Calculate expected returns
 using reward model

Select K best-rewarded sequences

Update the sampling action distribution

Figure 6.6: The illustration of an iteration of planning at time t. The sampling distribu-
tion is initialized as N (0, I). To evaluate a sampled action sequence using the transition
and reward model, we sample a state trajectory with the beginning state st and sum
over the mean rewards expected along the series. Then, the elite action sequences with
the highest reward are picked to refine the sampling distribution parameters.

strengths of both stochastic sampling and deterministic optimization, thereby enhancing

the agent’s capability to make informed decisions in complex environments.

As illustrated in Figure 6.6, at each iteration, we repeatedly sample J action se-

quences from a time-evolving diagonal Gaussian distribution at:t+H ªN
°
µt:t+H ,diag

°
æ2
t:t+H

¢¢
.

These action sequences are simulated using the learned models to obtain approximate

resulting state sequences and a reward sum along the sequence. Then the sample dis-

tribution is re-fitted according to the best K sequences. After I iterations, the planner

returns the mean µt of the sample distribution of the current time step. The action

sampling distribution parameters are set initially as
°
µt:t+H = 0,æ2

t:t+H = I
¢
.

The effectiveness of our planning hinges critically on the accuracy of the underlying

142

6.3. METHODOLOGY

Algorithm 7 LLCD (Learn Latent and Changing Dynamics)
Require: State decoder p(ot|st), encoder p(st|o∑t,a∑t), transition model p (st | st°1,at°1)
, reward model p(rt|st), and memory D.
1: Initialize model parameters µ randomly, and initialize memory D with random seed

episodes.
2: for episode i ∑E do
3: for update step s= 1...S do
4: Sample

©
(ot,at, rt)L+kt=k

™B
i=1 ªD randomly from D.

5: if Change detected and i within adapt window then
6: Compute the loss from Equation (6.14) and update parameters µ √ µ °

ÆrµL (µ).
7: else
8: Compute the loss from Equation (6.13) and update parameters µ √ µ °

ÆrµL (µ).
9: end if

10: end for
o1 √ env.reset ()

11: for time step t= 1...T do
12: Infer latent state by the encoder q (st |O∑t,a<t).
13: Select at √ planner(q (st | o∑t,a<t)) and take action to get rt,ot+1 √ env.step(at).
14: end for
15: D√D[

©
(ot, st,at, rt)Tt=1

™

16: Perform change detection according to Algorithm 6 on {st}detect_window. // See
Table 6.1 for detecting window details.

17: end for

models employed. In dynamic settings, the agility with which the model adapts to new

environmental conditions directly influences the precision of subsequent planning. An

adept model swiftly aligns itself with the altered environment, enhancing the accuracy of

plans and thereby expediting the model’s convergence. This interdependence illustrates

the significance of a model’s adaptability to non-stationary environments, manifested

through the precise estimation of state transitions and reward functions. Accurate

transition and reward models in non-stationary environments are fundamental for

reliable state approximation and reward computation, serving as the cornerstones of our

planning algorithm. These models inform the planning process, enabling the agent to

make foresighted decisions that align with the shifting dynamics of the environment.

143

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

The more promptly and accurately these models can adjust to new conditions, the more

effectively they can guide the agent’s decision-making process, ensuring that actions are

relevant and optimally tuned to the present context.

Enhancing this adaptability involves continually refining these models, incorporating

new data, and updating estimates to reflect the current environment. By doing so, we en-

able the planning algorithm to maintain a trajectory that is not only anticipatory but also

responsive to environmental changes. Algorithm 7 delineates the step-by-step workflow

of our LLCD approach, encapsulating the entire adaptive cycle, detecting changes and

updating models to plan and execute actions. This comprehensive workflow is designed

to be robust and flexible, accommodating the intricacies of various non-stationary envi-

ronments and paving the way for more intelligent and versatile reinforcement learning

agents.

6.4 Experiments and Analysis

Our experiments aim to address the core problem: the existing model-based RL meth-

ods will be significantly affected by the real non-stationary environment with high-

dimensional observations, especially in the event of sudden changes. In contrast, our

method can rapidly adapt to sudden non-stationarity and obtain higher rewards.

We explore the problem by answering four key questions: 1) Does LLCD perform

better than model-based RL without any detection and adaptation methods? 2) Can the

latent space help identify environment change points rather than using raw observation

data? 3) Does the training phase in which the change point is located affect performance?

That is, if the change occurs before the model converges, what will happen? 4) Is LLCD

sensitive to environmental change degrees, and to what extent?

144

6.4. EXPERIMENTS AND ANALYSIS

(b) Finger-spin

(c) Cartpole-swingup

(d) Reacher-easy

(a) Cartpole-balance

Figure 6.7: Image-based control environments used in our experiments, where all the
basic environments are from dm_control. We change the skyboxes and component mate-
rials at the change point to simulate different lighting conditions.

6.4.1 Environments and setup

The environments are designed to exhibit sudden changes at unknown time steps. The

changes should be apparent from the pixel observation. Thus, as shown in Figure 6.7, we

change the robotics materials and the sky-box of whole environments to simulate the

lighting change for dm_control.

We evaluate our method LLCD on dm_control [21], which offers several continuous

control tasks with image observations. In all environments, the only observations are

third-person camera images of size 64£64£3 pixels. The environments are as follows:

• Cartpole-balance: The object of this task is to balance an un-actuated pole by

applying forces to a cart at its base. The objective of the task is to balance a pole on

top of a cart for a given number of timesteps.

• Cartpole-swingup: The system consists of a pole, which acts as an inverted

pendulum attached to a cart. The force applied to the cart can be controlled, and

145

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

the goal is to swing the pole up and balance it around the upward position.

• Reacher-easy: The two-link planar reacher with a randomized target location is a

typical application of RL algorithms with robotic manipulators. The agent will get

rewards when the end effector penetrates the target sphere.

• Finger-spin: This task requires predicting two separate objects and the interac-

tions between them. It includes contact dynamics between the finger and the object.

In the spin task, the body must be continually rotated.

6.4.2 Comparisons

Our standard baseline follows the Deep Planning Network (PlaNet, [23]), corresponding

to our method without any detection or adaptation process. This allows us to evaluate the

necessity of researching an approach that aims to adapt to non-stationary environments.

Also, we compare our method with CRL-Unsup[13] and Policy Consolidation (PC, [81]).

CRL-Unsup detects environment change points using reward and adapts Elastic Weight

Consolidation (EWC, [8]) to learn from previous knowledge. PC remembers the agent‚Äôs

policy at various timescales and regularizes the current policy based on its history to

improve learning within different tasks. The baseline we used in these two methods is

Proximal Policy Optimization (PPO, [32]). We also choose two model-free methods, the

on-policy method PPO and the off-policy method Soft Actor-Critic (SAC, [35]).

For LLCD and PlaNet, as shown in Eq. (6.6) the input observation ot size is 3£64£64;

the latent state st size is 1£30, and the recurrent hidden state ht size is 1£200. The

sample batch size for each update is 64, with a learning rate of 1£10°3. The state encoder

consists of four convolutional layers and a fully connected layer; the reward model has

three fully connected layers; the transition model has three fully connected layers; the

recurrent state model is implemented by GRU [252]. The neural network structure and

training parameters are listed in Table 6.1 in the implementation details.

146

6.4. EXPERIMENTS AND ANALYSIS

Table 6.1: The model structures and training parameters of our method.

Network Structure

State decoder 4* Convolutional +1*Linear Networks

Reward model 3*Linear Networks

Transition model 1*Linear Network

Recurrent state model 1*Linear Network+1*GRU

Training details

Learning rate 1£10°3 Update step 100

Recurrent state size 200 Latent state size 30

Chunk size 60 Batch size 50

Input size 3£64£64 Planning horizon 12

Detection window 1000 Adaptation ratio 0.1

Table 6.2: The performance (average return) of trained agents on non-stationary envi-
ronments with change point at the middle stage. The blank value represents that the
method fails in the corresponding task after the same training step as LLCD and PlaNet.

Cartpole-swingup Cartpole-balance Reacher-easy Finger-spin

LLCD(Ours) 462.0± 8.2 646.4±13.1 700.1 ± 23.2 410.5±9.7
PlaNet 449.8±6.2 541.8±9.2 514.7±32.9 407.4±7.8

CRL-Unsup 97.8±13.7 268.6±27.1 80.4±8.2 /
PC 81.5±8.3 271.4±9.5 77.0±7.4 /
PPO 73.1±9.6 204.9±11.2 82.6±11.2 /
SAC 156.3±15.6 286.3±14.9 123.2±13.8 179.8±20.2

6.4.3 Overall performance

Our experiments simulate the non-stationary environments. Over the training time

steps, a change point is set at the middle stage of training to simulate a sudden change

in lighting level, which is not shown in the model or algorithm.

The reward curve in Figure 6.8 proves that our method LLCD can converge more

rapidly than the baseline when change occurs as the response speed to sudden change is

faster than the baseline. After the change point, our method achieves higher rewards

147

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

10k 20k 30k 40k 50k 60k

200

400

600

800

1000 SAC
CRL-Unsup
PC
PPO
PlaNet
LLCD

Steps

R
ew

ar
d

(a) cartpole-balance

20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

0

500

1000

SAC
CRL-Unsup
PC
PPO
PlaNet
LLCD

Steps

R
ew

ar
d

(b) reacher-easy

Figure 6.8: The test reward of our problem setting. The solid line depicts the average
reward, while the dashed lines indicate the minimum and maximum reward values. The
shaded area represents the reward’s standard deviation over multiple runs.

sooner, while the baseline still struggles with new environments. This phenomenon

demonstrates that our approach can accurately identify the change points, and our regu-

larization term can also contribute to adapting to the new environment when a change

point is detected. For the cartpole-balance environment, LLCD (denoted by orange) and

148

6.4. EXPERIMENTS AND ANALYSIS

PlaNet demonstrate superior performance compared to other methods. Before the change

point, LLCD and PlaNet rapidly achieved high rewards, indicating efficient learning and

adaptation. Post-change, LLCD quickly recovers and surpasses PlaNet, achieving higher

rewards with lower variance. This showcases LLCD’s ability to detect changes and adapt

promptly, maintaining robust performance. In the reacher-easy environment, LLCD and

PlaNet also outperform other methods. LLCD’s rapid convergence before the change

point and swift recovery afterward highlight its effectiveness in handling non-stationary

environments. The larger fluctuations in PlaNet’s performance post-change suggest

it is less stable than LLCD. Other methods, such as CRL-Unsup, PC, PPO, and SAC,

struggle to achieve significant rewards, reflecting their lower adaptability and sample

efficiency. The results support our view that when an environment changes, the model

can only acquire a small amount of data from the new environment after the change

point, and training with adaptation is crucial at this time. Adaptation helps to obtain

more information in changed environments.

The complete results are shown in Table 6.2, the average return of all comparison

methods over four different environments. It is noted that both CRL-Unsup and PC

perform below the model-based benchmark. The probable reason for this is PPO, as

an on-policy method, inherently requires collecting a large amount of data for training

and has relatively lower sample utilization efficiency. Within the same agent steps,

LLCD and PlaNet have higher data utilization because both of them sample sequences
©
(ot,at, rt)L+kt=k

™B
i=1 ªD from the data memory repeatedly at each update step. For this

reason, model-based RL has more significant application potential for many scenarios

with challenging sampling requirements, such as safety-critical settings and autonomous

driving scenarios. Overall, our method achieved the highest average return in all do-

mains.

149

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

intersection-v1 highway-v0

(a) The simulated non-stationary environment: a car drives through an intersection and then
enters a highway.

100 200 300 400 500
0

10

20

PlaNet
CRL-Unsup
PC
PPO
SAC
LLCD

Episodes

R
ew

ar
d

(b) The reward curve of different methods. The solid lines indicate the mean over
multiple runs with 10 seeds. The shaded area is standard deviation.

Figure 6.9: The simulated driving scenario and experiment results.

6.4.4 Ablation Studies

Autonomous driving scenarios To evaluate the proposed method in a more realistic

scenario, we choose highway-env [253] to simulate driving scenes in daily life, which is

driving through an intersection and then entering a highway:

• intersection-v1: An intersection negotiation task with dense traffic. The task

requires the agent to make quick decisions to avoid collisions and ensure safe

passage.

150

6.4. EXPERIMENTS AND ANALYSIS

−100 −50 0 50 100

−100

−50

0

50

100

Before
After

Raw observation distribution

(a) T-sne plot of raw observation (b) Detection result of observation

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

80

Before
After

Latent state distribution

(c) T-sne plot of latent state (d) Detection results of latent state

Figure 6.10: Visualization of the observation and latent state distribution using t-SNE.
The distribution shift is clearly seen in the latent state rather than raw observation
data. Also, the approximated run length of Bayesian online change detection for the
corresponding data is presented. The raw data does not have an obvious change of run
length distribution P (lt | s1:t), while the latent state has a significant variation.

• highway-v0: An ego-vehicle is driving on a multilane highway populated with

other vehicles. The agent’s objective is to reach a high speed while avoiding col-

lisions with neighboring vehicles. Driving on the right side of the road is also

rewarded.

151

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

(102, 102, 102)

(77, 77, 77)

(51, 51, 51)

(26, 26, 26)

450

500

550

600

650

700

LLCD(Ours)
PlaNet

Simulated environment lighting change level(RGB)

A
ve

ra
ge

 re
tu

rn
 a

fte
r c

ha
ng

e
po

in
t

Average return before change point

Figure 6.11: The average return after the change point varies under different degrees of
environmental changes of Cartpole-balance. The aboriginal RGB value of the environ-
ment skybox is (102, 153, 204), and the change degree increases from left to right.

The settings and results in the autonomous driving environments are shown in Figure 6.9.

The autonomous driving environment’s shift from intersection to highway introduces

significant changes in the state dynamics and required models. The ability of LLCD to

quickly adjust to this shift is evident in the sharp increase in rewards after the change

point, highlighting its robustness in non-stationary settings. The superior performance

of LLCD compared to both PlaNet and the model-free methods demonstrates its sample

efficiency in rapidly learning and adapting to new environmental conditions. Among

the model-free methods, there is less pronounced improvement post the change point,

indicating a slower learning speed to the new driving conditions introduced in the

simulation. This is expected, as model-free methods typically lack the sample efficiency

that model-based methods possess. The results underscore LLCD’s performance in

environments requiring rapid adaptation to non-stationary conditions. LLCD efficiently

leverages the distribution predictions produced by the detection scheme, enabling it to

152

6.4. EXPERIMENTS AND ANALYSIS

Table 6.3: The steps needed to converge for different methods.

Steps needed for convergence

Method cartpole-balance cartpole-swingup reacher-easy finger-spin

PPO/CRL-Unsup 3.7£105 4.1£105 1.16£105 8.1£105

SAC 6.0£104 2.4£105 1.6£105 1.2£105

PC 3.7£105 4.7£105 1.03£105 7.7£105

PlaNet/LLCD 4.8£104 1.2£105 6.0£104 5.8£104

outperform both PlaNet and model-free methods, making it a promising approach for

various non-stationary environment settings.

Sample Efficiency Table 6.3 illustrates the number of steps needed for different

methods to converge across various tasks: cartpole-balance, cartpole-swingup, reacher-

easy, and finger-spin. Our method, LLCD, alongside PlaNet, exhibits superior sample

efficiency compared to model-free methods like PPO/CRL-Unsup, SAC, and PC. Specif-

ically, LLCD and PlaNet require significantly fewer steps to converge across all tasks.

This superior performance of LLCD and PlaNet can be attributed to their model-based

nature, which allows them to utilize samples more effectively by learning a model of the

environment and leveraging it for planning and decision-making. In contrast, model-free

methods rely solely on direct interactions with the environment, leading to less efficient

use of samples and thus requiring more steps to achieve convergence.

Latent state Learning from raw data is straightforward. Still, there are several

difficulties: 1) The transition model using observation data is p(ot|ot°1,at°1), which

needs to have a Markov property and only depends on the observation at time t°1.

This assumption is obviously unreasonable in a continuous control task with image

observations. Image data have various features, such as shapes, colors, textures, and

patterns. It is more challenging for environment models to extract specific transitions

from this information. 2) Using high-dimensional image data will lead to significantly

increased computational costs. Raw image data contains a large number of pixels, and

153

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

most may not contribute to the RL model or the specific task at hand.

To solve these issues, we learn the transition and reward models and then detect

environment change points in the latent space. As Figure 6.10 shows, the raw data

does not reflect a noticeable distribution shift when change occurs. The raw data before

and after the change do not overlap exactly, but it is difficult to distinguish. The high-

dimensional nature of raw data also poses some difficulties if it is used for change

detection. In contrast, the distribution of the latent state before and after the change

is clearly distinguished, which indicates that we can better identify the change in the

environment in the latent space. The latent state eliminates the redundant information

of the high-dimensional image input and thus transparently reflects the change of the

environment transition.

Furthermore, the detected run length distribution according to Equation. (6.8) is

also shown in Figure 6.10. After the environmental change points, the run length

distribution P (lt | s1:t) = P (lt, s1:t) /
P

lt P (lt, s1:t) still follows a similar pattern at each

time step, although the distribution of raw data has switched to another extent. However,

the run length of the latent state distribution has significantly changed around the

change point. Hence, using latent space will help us effectively identify the change point

when the environment changes. This finding further reinforces the motivation of the

learning transition and reward models in latent space.

Sensitivity to change levels As shown in Figure 6.11, the average reward after

the change point varies under different degrees of environmental changes. The initial

RGB value of the environment skybox is RGB (102, 153, 204), and we simulated four

change degrees by modifying the RGB level. From the figure, we can observe several

interesting facts. First, we may assume that the smaller the degree of change in the

observations, the less intuitively the impact on the model will be. Yet we found that

within a specific range of environmental change, the performance fluctuates within a

154

6.4. EXPERIMENTS AND ANALYSIS

specific range. Figure 6.10 illustrates that the change in observation distribution is not

entirely equivalent to the change in the latent state. However, significant observation

changes can lead to noticeable performance drops in latent states. Second, our method

LLCD performs better in each change level than the baseline. When the environment

changes slightly, the performance of the model may not drop noticeably, so the average

return is closed with mild changes. Finally, LLCD behaves more differently from the

baseline when the environmental changes become more drastic. The reason for this

is that when the changes are relatively minor, the information provided by our fitted

distribution makes a more limited contribution than the information the model obtains

through learning. When the environment approaches complete darkness (RGB (26,

26, 26)), both performances experience a sharp decline; however, LLCD still performs

better than the benchmark, indicating that our adaptation regularization is effective in

assisting training during drastic changes.

The results show that our approach works well for environmental changes that

cause the model to exhibit significant performance degradation. Both our method and

the baseline show significant performance loss if there are very drastic changes in the

environment. Nevertheless, LLCD still shows a solid ability to adapt to dramatic changes.

Change point position sensitivity The previous experiment simulated a change

point at the middle stage of training, after which we will test the performance with

random change to explain the effect of change points. If the change occurs before the

model fully converges, as shown in Table 6.4, LLCD can achieve a higher average return

in all domains than the baseline. This indicates that our detection and adaptation

methods can quickly make it fit new environments, even when the model does not fully

fit the current environment. In the case of insufficient environmental data, it is also valid

to use the detection distribution to regularize the latent state’s posterior distribution.

Similarly, LLCD outperforms the baseline when the model has fully converged. The

155

CHAPTER 6. AN APPROACH FOR LATENT DYNAMICS

Table 6.4: Performance (average return) of trained agents on non-stationary environ-
ments with a change point in the early and late stages of training. For the early change,
a random change point was set within the first 20%°30% of the total training steps, and
for the late change, it was set within 70%°80% of the total training steps.

Change in the early stage

Cartpole-swingup Cartpole-balance

LLCD (Ours) 156.7±16.8 741.9±12.9
PlaNet 135.9±19.6 627.0±8.9

Reacher-easy Finger-spin

LLCD (Ours) 694.4±20.6 248.0±15.4
PlaNet 693.9±28.4 196.0±13.7

Change in the late stage

Cartpole-swingup Cartpole-balance

LLCD (Ours) 129.7±28.4 751.5±12.3
PlaNet 123.5±17.7 742.1±11.5

Reacher-easy Finger-spin

LLCD (Ours) 725.7±26.6 369.7±20.3
PlaNet 690.1±16.6 367.1±21.9

results indicate that our method is not very sensitive to the location of change points

and is robust in different types and environments with varying points of change.

6.5 Summary

In this chapter, we formalized the problem of model-based reinforcement learning in non-

stationary environments with unknown change points. We introduce LLCD, a framework

that effectively identifies changes in the non-stationary environment and adjusts the

learned model to better fit the new one. Our method learns the transition model and

reward model in a latent space and plans the action using the represented environment.

At the same time, our approach detects the change points of non-stationary environments

online by monitoring the latent state and is able to adapt to new environments rapidly

156

6.5. SUMMARY

using a regularization term related to the detection results. The experiments show that

LLCD achieves robust performance including higher response speed and average return

in various non-stationary image-based continuous control environments where state

distributions vary with time in an unknown manner and with unknown change points.

In future work, we plan to investigate the theoretical guarantee of the proposed

ideas related to policy improvement. Another exciting work will be to investigate the

mutual boosting of detection and adaptation. Finally, applying this work to real-world

applications is also highly attractive.

157

C
H

A
P

T
E

R

7
CONCLUSION AND FUTURE RESEARCH

Deep Reinforcement Learning in non-stationary environments has been chal-

lenging and enlightening. Examples can be found in various domains, such as

robotics, finance and healthcare. This thesis addresses the critical challenge

of deep reinforcement learning in non-stationary environments with unknown change

points. To maximize the long-term rewards, it is essential to identify the environmen-

tal changes and respond to them promptly and appropriately. Aiming at the goals, we

have proposed comprehensive frameworks and innovative methods for environmen-

tal change detection and rapid adaptation. Our approach encompasses model-free and

model-based RL, leveraging techniques such as analysis of joint distribution variations,

policy behavior changes, Bayesian surprise, and latent space dynamics learning to detect

environment change points accurately. By preserving valuable information and adjusting

policy adaptation based on detected changes, we have enhanced the robustness and

effectiveness of RL agents in dynamic and unpredictable settings.

In Chapters. 3, 4 and 5, we formalized the problem of model-free reinforcement

learning in non-stationary environments with unknown change points. In Chapter 3,

159

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH

we developed an end-to-end algorithm involving two steps in the change detection and

adaptation process. First, points of change are detected from the joint distribution of state

and policy. Second, a distance-relaxed gradient-constrained adaptor quickly trains a new

policy with the help of former well-trained policies. The proposed framework, Detection-

Adaptation RL (DARL), is empirically proven to be effective in both high-dimensional

and simple environments. Chapter 4 proposes a behavior-based change detection method

representing a novel approach to monitoring and responding to environmental shifts

by closely analyzing policy behavior. Furthermore, the online adaptation mechanism

integrates this behavioral information, providing a self-adjusted regularization term.

Behavior-Aware Detection Adaptation (BADA) outperforms commonly used baselines in

various aspects. Further, Chapter 5 enhances the adaptation mechanism from function

space by approximating DNN to the Gaussian Process. With the approximated Gaussian

Process, the environmental change points are identified by Bayesian surprise. To reduce

complexity and storage costs, we proposed a novel trajectory selection method to pick

the most representative ones for an environment, which can provide valuable knowledge

for functional regularization. The experiment shows the proposed Functional Detection

Adaptation (FDA) has good performance in non-stationary environments. In Chapter 6,

we formalized the problem of model-based reinforcement learning in non-stationary

environments with unknown change points. We introduce Learn Latent and Changing

Dynamics (LLCD), which detects the change points of non-stationary environments

online by monitoring the latent state. It can adapt to new environments rapidly using a

regularization term related to the detection results. The experiments show that LLCD

achieves robust performance, including higher response speed and average return in

various non-stationary image-based continuous control environments.

The methodologies presented in this thesis contribute to advancing the field of

reinforcement learning, offering practical solutions for real-world applications where the

160

assumption of stationarity does not hold and ensuring continued optimal performance in

the face of non-stationary environments.

Future Research

In future work, we aim to delve deeper into the theoretical aspects of our proposed ideas,

particularly concerning policy improvement guarantees. We plan to develop further

strategies that maximize the utility of collected samples, enhancing the efficiency and

effectiveness of our methods. An avenue is to refine exploration strategies to ensure

that the collected samples cover a diverse set of states and actions. Techniques such

as intrinsic motivation, where agents are rewarded for exploring new and informative

states, could be utilized. This not only enhances sample diversity but also prevents the

agent from getting stuck in local optima. Furthermore, meta-learning approaches can be

incorporated to enable our agents to adapt to new tasks with minimal data quickly. By

training a meta-learner on a range of tasks, the agent can apply its learning algorithm to

new tasks, significantly improving its adaptation capabilities. Exploring the potential of

combining our approaches with state-of-the-art deep learning architectures will further

advance the capabilities of our models.

Multi-agent reinforcement learning can be categorized into competitive and cooper-

ative objectives. For each agent, the state it perceives is closely related to the actions

of other agents, inherently creating a non-stationary factor. Extending our detection-

adaptation framework to a multi-agent scenario is quite compelling. In a multi-agent

context, our detection-adaptation framework could be crucial for understanding and

responding to the complex dynamics that emerge from agent interactions. In competitive

settings, for instance, each agent must continuously adapt its strategy to outmaneu-

ver the others, and detecting shifts in opponents’ strategies becomes as essential as

recognizing environmental changes. Similarly, in cooperative settings, agents need to

161

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH

detect and adapt to the evolving strategies of their collaborators to achieve shared goals

more effectively. Ultimately, such an extension would enable agents to maintain robust

performance despite the non-stationarity that defines multi-agent environments, fos-

tering a deeper level of strategic interaction and collaboration. This could pave the way

for more advanced applications of multi-agent systems in areas such as autonomous

driving, where agents must navigate complex and dynamic scenarios with cooperative

and competitive elements.

Finally, the real-world applicability of our reinforcement learning methodologies

is not just an aspirational goal; it is a critical pathway to proving their value. By

transitioning from simulated environments to real-world scenarios, we can tackle the

inherent complexities and unpredictable nature of real-life applications. In robotics, our

methods can be applied to enhance autonomous manipulation and navigation, allowing

robots to learn from their interactions with the physical world. By doing so, robots can

become more adept at tasks such as assembly, logistics, and human assistance in domestic

or industrial settings. The field of autonomous vehicles stands to benefit significantly

from our work. Our methodologies can enhance the safety and reliability of these systems

by enabling vehicles to learn from a vast array of driving conditions and scenarios. In

healthcare, the potential impact of our reinforcement learning systems is profound. By

learning from patient data, medical robots can support surgeries and care. At the same

time, intelligent systems can assist in diagnosing and developing tailored treatment

plans, leading to better patient outcomes and more efficient healthcare services. Our

ambition is to bridge the gap between theoretical models and practical implementations,

ensuring that our reinforcement learning systems are not only theoretically sound but

also practically viable.

162

BIBLIOGRAPHY

[1] G. E. Hinton and S. Roweis, “Stochastic neighbor embedding,” Advances in neural

information processing systems, vol. 15, 2002.

[2] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and

P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,”

IEEE Transactions on Intelligent Transportation Systems, pp. 1–18, 2021.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Master-

ing the game of go with deep neural networks and tree search,” nature, vol. 529,

no. 7587, pp. 484–489, 2016.

[4] D. Abel, A. Barreto, B. Van Roy, D. Precup, H. P. van Hasselt, and S. Singh, “A

definition of continual reinforcement learning,” Advances in Neural Information

Processing Systems, vol. 36, 2024.

[5] R. S. Sutton, A. Koop, and D. Silver, “On the role of tracking in stationary environ-

ments,” in International conference on Machine learning (ICML), pp. 871–878,

2007.

[6] S. Sodhani, F. Meier, J. Pineau, and A. Zhang, “Block contextual mdps for continual

learning,” in Learning for Dynamics and Control Conference, pp. 608–623,

PMLR, 2022.

163

BIBLIOGRAPHY

[7] Y. Chandak, G. Theocharous, S. Shankar, M. White, S. Mahadevan, and P. Thomas,

“Optimizing for the future in non-stationary mdps,” in International Conference

on Machine Learning (ICML), pp. 1414–1425, 2020.

[8] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,

K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Overcom-

ing catastrophic forgetting in neural networks,” Proceedings of the National

Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[9] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,

K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural networks,”

arXiv preprint arXiv:1606.04671, 2016.

[10] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh, R. Pas-

canu, and R. Hadsell, “Progress & compress: A scalable framework for continual

learning,” in International Conference on Machine Learning(ICML), pp. 4528–

4537, 2018.

[11] B. C. Da Silva, E. W. Basso, A. L. Bazzan, and P. M. Engel, “Dealing with non-

stationary environments using context detection,” in International conference

on Machine learning (ICML), pp. 217–224, 2006.

[12] X. Chen, X. Zhu, Y. Zheng, P. Zhang, L. Zhao, W. Cheng, P. Cheng, Y. Xiong, T. Qin,

J. Chen, et al., “An adaptive deep rl method for non-stationary environments

with piecewise stable context,” Advances in Neural Information Processing

Systems, vol. 35, pp. 35449–35461, 2022.

[13] V. Lomonaco, K. Desai, E. Culurciello, and D. Maltoni, “Continual reinforcement

learning in 3d non-stationary environments,” in IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 248–249,

2020.

164

BIBLIOGRAPHY

[14] S. Padakandla, K. Prabuchandran, and S. Bhatnagar, “Reinforcement learning

algorithm for non-stationary environments,” Applied Intelligence, vol. 50, no. 11,

pp. 3590–3606, 2020.

[15] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,”

in Advances in Neural Information Processing Systems (NIPS), pp. 6467–6476,

2017.

[16] P. Pan, S. Swaroop, A. Immer, R. Eschenhagen, R. Turner, and M. E. E. Khan,

“Continual deep learning by functional regularisation of memorable past,”

Advances in neural information processing systems, vol. 33, pp. 4453–4464,

2020.

[17] M. K. Titsias, J. Schwarz, A. G. d. G. Matthews, R. Pascanu, and Y. W. Teh,

“Functional regularisation for continual learning with gaussian processes,”

arXiv preprint arXiv:1901.11356, 2019.

[18] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and

K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,”

arXiv preprint arXiv:1611.05397, 2016.

[19] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” in

4th International Conference on Learning Representations, 2016.

[20] D. Isele and A. Cosgun, “Selective experience replay for lifelong learning,” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[21] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdol-

maleki, J. Merel, A. Lefrancq, et al., “Deepmind control suite,” arXiv preprint

arXiv:1801.00690, 2018.

[22] O. Rybkin, C. Zhu, A. Nagabandi, K. Daniilidis, I. Mordatch, and S. Levine, “Model-

based reinforcement learning via latent-space collocation,” in International

165

BIBLIOGRAPHY

Conference on Machine Learning, pp. 9190–9201, PMLR, 2021.

[23] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson,

“Learning latent dynamics for planning from pixels,” in International conference

on machine learning, pp. 2555–2565, PMLR, 2019.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level con-

trol through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–

533, 2015.

[25] X. Wang, L. Ke, Z. Qiao, and X. Chai, “Large-scale traffic signal control using a

novel multiagent reinforcement learning,” IEEE Transactions on Cybernetics,

vol. 51, no. 1, pp. 174–187, 2021.

[26] Z. Wan, C. Jiang, M. Fahad, Z. Ni, Y. Guo, and H. He, “Robot-assisted pedes-

trian regulation based on deep reinforcement learning,” IEEE Transactions on

Cybernetics, vol. 50, no. 4, pp. 1669–1682, 2020.

[27] W. Bai, Q. Zhou, T. Li, and H. Li, “Adaptive reinforcement learning neural net-

work control for uncertain nonlinear system with input saturation,” IEEE

Transactions on Cybernetics, vol. 50, no. 8, pp. 3433–3443, 2020.

[28] J. Li, Y. Ma, R. Gao, Z. Cao, A. Lim, W. Song, and J. Zhang, “Deep reinforcement

learning for solving the heterogeneous capacitated vehicle routing problem,”

IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 13572–13585, 2022.

[29] Z. Wang, H.-X. Li, and C. Chen, “Reinforcement learning-based optimal sensor

placement for spatiotemporal modeling,” IEEE Transactions on Cybernetics,

vol. 50, no. 6, pp. 2861–2871, 2020.

[30] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods

for reinforcement learning with function approximation,” Advances in neural

166

BIBLIOGRAPHY

information processing systems, vol. 12, 1999.

[31] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy

optimization,” in International conference on machine learning, pp. 1889–1897,

PMLR, 2015.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy

optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[33] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in

International Conference on Machine Learning (ICML), pp. 1928–1937, 2016.

[34] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deter-

ministic policy gradient algorithms,” in International conference on machine

learning, pp. 387–395, Pmlr, 2014.

[35] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maxi-

mum entropy deep reinforcement learning with a stochastic actor,” in Interna-

tional conference on machine learning, pp. 1861–1870, PMLR, 2018.

[36] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in

actor-critic methods,” in International conference on machine learning, pp. 1587–

1596, PMLR, 2018.

[37] S. D. Holcomb, W. K. Porter, S. V. Ault, G. Mao, and J. Wang, “Overview on

deepmind and its alphago zero ai,” in Proceedings of the 2018 international

conference on big data and education, pp. 67–71, 2018.

[38] M. Schneckenreither and S. Haeussler, “Reinforcement learning methods for op-

erations research applications: The order release problem,” in International

Conference on Machine Learning, Optimization, and Data Science, pp. 545–559,

Springer, 2018.

167

BIBLIOGRAPHY

[39] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”

The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274,

2013.

[40] K.-L. A. Yau, J. Qadir, H. L. Khoo, M. H. Ling, and P. Komisarczuk, “A survey on

reinforcement learning models and algorithms for traffic signal control,” ACM

Computing Surveys (CSUR), vol. 50, no. 3, pp. 1–38, 2017.

[41] M. M. Afsar, T. Crump, and B. Far, “Reinforcement learning based recommender

systems: A survey,” ACM Computing Surveys, vol. 55, no. 7, pp. 1–38, 2022.

[42] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A survey of deep reinforcement

learning in video games,” arXiv preprint arXiv:1912.10944, 2019.

[43] M. A. Okyere, R. Forson, and F. Essel-Gaisey, “Positive externalities of an epidemic:

The case of the coronavirus (covid-19) in china,” Journal of medical virology,

vol. 92, no. 9, pp. 1376–1379, 2020.

[44] Y. Cheng and W. Zhang, “Concise deep reinforcement learning obstacle avoid-

ance for underactuated unmanned marine vessels,” Neurocomputing, vol. 272,

pp. 63–73, 2018.

[45] G. Frost, F. Maurelli, and D. M. Lane, “Reinforcement learning in a behaviour-

based control architecture for marine archaeology,” in OCEANS 2015-Genova,

pp. 1–5, IEEE, 2015.

[46] I. Carlucho, M. De Paula, S. Wang, Y. Petillot, and G. G. Acosta, “Adaptive low-level

control of autonomous underwater vehicles using deep reinforcement learning,”

Robotics and Autonomous Systems, vol. 107, pp. 71–86, 2018.

[47] X. Cao, C. Sun, and M. Yan, “Target search control of auv in underwater environ-

ment with deep reinforcement learning,” IEEE Access, vol. 7, pp. 96549–96559,

2019.

168

BIBLIOGRAPHY

[48] H. Hu, S. Song, and C. P. Chen, “Plume tracing via model-free reinforcement

learning method,” IEEE transactions on neural networks and learning systems,

vol. 30, no. 8, pp. 2515–2527, 2019.

[49] J. Zhu, J. Zhu, Z. Wang, S. Guo, and C. Xu, “Hierarchical decision and control for

continuous multitarget problem: Policy evaluation with action delay,” IEEE

transactions on neural networks and learning systems, vol. 30, no. 2, pp. 464–

473, 2018.

[50] J. Hu, H. Zhang, and L. Song, “Reinforcement learning for decentralized trajectory

design in cellular uav networks with sense-and-send protocol,” IEEE Internet

of Things Journal, vol. 6, no. 4, pp. 6177–6189, 2018.

[51] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task transformer

for robotic manipulation,” in Conference on Robot Learning, pp. 785–799, PMLR,

2023.

[52] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto, “Behavior transformers:

Cloning k modes with one stone,” Advances in neural information processing

systems, vol. 35, pp. 22955–22968, 2022.

[53] J.-B. Yi, J. Kim, T. Kang, D. Song, J. Park, and S.-J. Yi, “Anthropomorphic grasping

of complex-shaped objects using imitation learning,” Applied Sciences, vol. 12,

no. 24, p. 12861, 2022.

[54] H. Shi, X. Li, K.-S. Hwang, W. Pan, and G. Xu, “Decoupled visual servoing with

fuzzy q-learning,” IEEE Transactions on Industrial Informatics, vol. 14, no. 1,

pp. 241–252, 2016.

[55] G. Shani, D. Heckerman, R. I. Brafman, and C. Boutilier, “An mdp-based recom-

mender system.,” Journal of Machine Learning Research, vol. 6, no. 9, 2005.

169

BIBLIOGRAPHY

[56] X. Zhao, L. Zhang, Z. Ding, L. Xia, J. Tang, and D. Yin, “Recommendations with

negative feedback via pairwise deep reinforcement learning,” in Proceedings

of the 24th ACM SIGKDD international conference on knowledge discovery &

data mining, pp. 1040–1048, 2018.

[57] S. Liu, Y. Chen, H. Huang, L. Xiao, and X. Hei, “Towards smart educational

recommendations with reinforcement learning in classroom,” in 2018 IEEE

international conference on teaching, assessment, and learning for engineering

(TALE), pp. 1079–1084, IEEE, 2018.

[58] P. Wei, S. Xia, R. Chen, J. Qian, C. Li, and X. Jiang, “A deep-reinforcement-learning-

based recommender system for occupant-driven energy optimization in commer-

cial buildings,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6402–6413,

2020.

[59] L. Wang, W. Zhang, X. He, and H. Zha, “Supervised reinforcement learning with

recurrent neural network for dynamic treatment recommendation,” in Proceed-

ings of the 24th ACM SIGKDD international conference on knowledge discovery

& data mining, pp. 2447–2456, 2018.

[60] X. Zhao, L. Xia, L. Zhang, Z. Ding, D. Yin, and J. Tang, “Deep reinforcement

learning for page-wise recommendations,” in Proceedings of the 12th ACM

conference on recommender systems, pp. 95–103, 2018.

[61] E. Hadoux, A. Beynier, and P. Weng, “Sequential decision-making under non-

stationary environments via sequential change-point detection,” in Learning

over Multiple Contexts (LMCE), 2014.

[62] T. Banerjee, M. Liu, and J. P. How, “Quickest change detection approach to optimal

control in markov decision processes with model changes,” in American Control

Conference (ACC), pp. 399–405, 2017.

170

BIBLIOGRAPHY

[63] A. G. Tartakovsky and V. V. Veeravalli, “General asymptotic bayesian theory of

quickest change detection,” Theory of Probability & Its Applications, vol. 49,

no. 3, pp. 458–497, 2005.

[64] T. L. Lai, “Information bounds and quick detection of parameter changes in stochas-

tic systems,” IEEE Transactions on Information theory, vol. 44, no. 7, pp. 2917–

2929, 1998.

[65] G. V. Moustakides, A. S. Polunchenko, and A. G. Tartakovsky, “Numerical com-

parison of cusum and shiryaev–roberts procedures for detecting changes in

distributions,” Communications in Statistics-Theory and Methods, vol. 38,

no. 16-17, pp. 3225–3239, 2009.

[66] L. N. Alegre, A. L. Bazzan, and B. C. da Silva, “Minimum-delay adaptation in

non-stationary reinforcement learning via online high-confidence change-point

detection,” in Proceedings of the 20th International Conference on Autonomous

Agents and MultiAgent Systems, pp. 97–105, 2021.

[67] J. D. Healy, “A note on multivariate cusum procedures,” Technometrics, vol. 29,

no. 4, pp. 409–412, 1987.

[68] T. Sibanda and N. Sibanda, “The cusum chart method as a tool for continuous

monitoring of clinical outcomes using routinely collected data,” BMC medical

research methodology, vol. 7, pp. 1–7, 2007.

[69] T. Azayev and K. Zimmerman, “Blind hexapod locomotion in complex terrain with

gait adaptation using deep reinforcement learning and classification,” Journal

of Intelligent & Robotic Systems, pp. 1–13, 2020.

[70] K. Prabuchandran, N. Singh, P. Dayama, A. Agarwal, and V. Pandit, “Change point

detection for compositional multivariate data,” Applied Intelligence, pp. 1–26,

2021.

171

BIBLIOGRAPHY

[71] R. P. Adams and D. J. MacKay, “Bayesian online changepoint detection,” stat,

vol. 1050, p. 19, 2007.

[72] L. Itti and P. Baldi, “Bayesian surprise attracts human attention,” Vision research,

vol. 49, no. 10, pp. 1295–1306, 2009.

[73] M. Nagayoshi, H. Murao, and H. Tamaki, “Reinforcement learning for dynamic

environment: a classification of dynamic environments and a detection method

of environmental changes,” Artificial Life and Robotics, vol. 18, no. 1-2, pp. 104–

108, 2013.

[74] B. L. Welch, “The generalization of ’students’ problem when several different

population varlances are involved,” Biometrika, vol. 34, no. 1-2, pp. 28–35,

1947.

[75] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski, “Vizdoom: A

doom-based ai research platform for visual reinforcement learning,” in 2016

IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8,

IEEE, 2016.

[76] X. Lin, P. Guo, C. Florensa, and D. Held, “Adaptive variance for changing sparse-

reward environments,” in 2019 International Conference on Robotics and Au-

tomation (ICRA), pp. 3210–3216, IEEE, 2019.

[77] A. Xie, J. Harrison, and C. Finn, “Deep reinforcement learning amidst continual

structured non-stationarity,” in International Conference on Machine Learn-

ing(ICML), pp. 11393–11403, 2021.

[78] A. Achille, M. Lam, R. Tewari, A. Ravichandran, S. Maji, C. C. Fowlkes, S. Soatto,

and P. Perona, “Task2vec: Task embedding for meta-learning,” in Proceedings

of the IEEE/CVF international conference on computer vision, pp. 6430–6439,

2019.

172

BIBLIOGRAPHY

[79] L. Lan, Z. Li, X. Guan, and P. Wang, “Meta reinforcement learning with task

embedding and shared policy,” arXiv preprint arXiv:1905.06527, 2019.

[80] G. Berseth, D. Geng, C. Devin, N. Rhinehart, C. Finn, D. Jayaraman, and S. Levine,

“Smirl: Surprise minimizing rl in dynamic environments,” arXiv preprint

arXiv:1912.05510, 2020.

[81] C. Kaplanis, M. Shanahan, and C. Clopath, “Policy consolidation for continual

reinforcement learning,” arXiv preprint arXiv:1902.00255, 2019.

[82] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gradient surgery

for multi-task learning,” in Advances in Neural Information Processing Sys-

tems(NIPS), pp. 5824–5836, 2020.

[83] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu, “Conflict-averse gradient descent

for multi-task learning,” in Advances in Neural Information Processing Sys-

tems(NIPS), pp. 18878–18890, 2021.

[84] R. Yang, H. Xu, Y. Wu, and X. Wang, “Multi-task reinforcement learning with soft

modularization,” Advances in Neural Information Processing Systems, vol. 33,

pp. 4767–4777, 2020.

[85] L. Sun, H. Zhang, W. Xu, and M. Tomizuka, “Paco: Parameter-compositional

multi-task reinforcement learning,” Advances in Neural Information Processing

Systems, vol. 35, pp. 21495–21507, 2022.

[86] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron,

M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg, et al., “A generalist agent,”

arXiv preprint arXiv:2205.06175, 2022.

[87] K.-H. Lee, O. Nachum, M. S. Yang, L. Lee, D. Freeman, S. Guadarrama, I. Fischer,

W. Xu, E. Jang, H. Michalewski, et al., “Multi-game decision transformers,”

173

BIBLIOGRAPHY

Advances in Neural Information Processing Systems, vol. 35, pp. 27921–27936,

2022.

[88] A. Yu and R. Mooney, “Using both demonstrations and language instructions

to efficiently learn robotic tasks,” in International Conference on Learning

Representations (ICLR), 2023.

[89] A. Kumar, R. Agarwal, X. Geng, G. Tucker, and S. Levine, “Offline q-learning

on diverse multi-task data both scales and generalizes,” arXiv preprint

arXiv:2211.15144, 2022.

[90] H. Yuan and Z. Lu, “Robust task representations for offline meta-reinforcement

learning via contrastive learning,” in International Conference on Machine

Learning, pp. 25747–25759, PMLR, 2022.

[91] Y. Sun, S. Ma, R. Madaan, R. Bonatti, F. Huang, and A. Kapoor, “Smart: Self-

supervised multi-task pretraining with control transformers,” arXiv preprint

arXiv:2301.09816, 2023.

[92] A. A. Taiga, R. Agarwal, J. Farebrother, A. Courville, and M. G. Bellemare, “Inves-

tigating multi-task pretraining and generalization in reinforcement learning,”

in The Eleventh International Conference on Learning Representations, 2022.

[93] A. Maurer, M. Pontil, and B. Romera-Paredes, “The benefit of multitask repre-

sentation learning,” Journal of Machine Learning Research, vol. 17, no. 81,

pp. 1–32, 2016.

[94] C. DEramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters, “Sharing knowledge

in multi-task deep reinforcement learning,” in Eighth International Conference

on Learning Representations (ICLR 2020), OpenReview. net, 2020.

[95] K. Khetarpal, M. Riemer, I. Rish, and D. Precup, “Towards continual reinforcement

learning: A review and perspectives,” Journal of Artificial Intelligence Research,

174

BIBLIOGRAPHY

vol. 75, pp. 1401–1476, 2022.

[96] B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and B. Olshausen, “Superposition

of many models into one,” Advances in neural information processing systems,

vol. 32, 2019.

[97] M. Wortsman, V. Ramanujan, R. Liu, A. Kembhavi, M. Rastegari, J. Yosinski, and

A. Farhadi, “Supermasks in superposition,” Advances in Neural Information

Processing Systems, vol. 33, pp. 15173–15184, 2020.

[98] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pas-

canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, “Policy distillation,” arXiv

preprint arXiv:1511.06295, 2015.

[99] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern

analysis and machine intelligence, vol. 40, no. 12, pp. 2935–2947, 2017.

[100] T. Zhang, X. Wang, B. Liang, and B. Yuan, “Catastrophic interference in reinforce-

ment learning: A solution based on context division and knowledge distillation,”

IEEE Transactions on Neural Networks and Learning Systems, 2022.

[101] M. Igl, G. Farquhar, J. Luketina, J. Böhmer, and S. Whiteson, “Transient non-

stationarity and generalisation in deep reinforcement learning,” in 9th Interna-

tional Conference on Learning Representations, 2021.

[102] Y. Oh, J. Shin, E. Yang, and S. J. Hwang, “Model-augmented prioritized experience

replay,” in International Conference on Learning Representations, 2021.

[103] C. Henning, M. Cervera, F. D’Angelo, J. Von Oswald, R. Traber, B. Ehret,

S. Kobayashi, B. F. Grewe, and J. Sacramento, “Posterior meta-replay for

continual learning,” Advances in neural information processing systems, vol. 34,

pp. 14135–14149, 2021.

175

BIBLIOGRAPHY

[104] X.-H. Liu, Z. Xue, J. Pang, S. Jiang, F. Xu, and Y. Yu, “Regret minimization

experience replay in off-policy reinforcement learning,” Advances in Neural

Information Processing Systems, vol. 34, pp. 17604–17615, 2021.

[105] C. Atkinson, B. McCane, L. Szymanski, and A. Robins, “Pseudo-rehearsal: Achiev-

ing deep reinforcement learning without catastrophic forgetting,” Neurocom-

puting, vol. 428, pp. 291–307, 2021.

[106] Z. Daniels, A. Raghavan, J. Hostetler, A. Rahman, I. Sur, M. Piacentino, and

A. Divakaran, “Model-free generative replay for lifelong reinforcement learning:

Application to starcraft-2,” arXiv preprint arXiv:2208.05056, 2022.

[107] S. Kessler, J. Parker-Holder, P. J. Ball, S. Zohren, and S. J. Roberts, “Same state,

different task: Continual reinforcement learning without interference,” ArXiv,

vol. abs/2106.02940, 2021.

[108] J.-B. Gaya, T. Doan, L. Caccia, L. Soulier, L. Denoyer, and R. Raileanu, “Building a

subspace of policies for scalable continual learning,” in International Conference

of Learning Representations, 2023.

[109] W.-C. Tseng, J.-S. Lin, Y.-M. Feng, and M. Sun, “Toward robust long range policy

transfer,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 35, pp. 9958–9966, 2021.

[110] S. Lee, S. Behpour, and E. Eaton, “Sharing less is more: Lifelong learning in deep

networks with selective layer transfer,” in International Conference on Machine

Learning, pp. 6065–6075, PMLR, 2021.

[111] M. B. Chang, S. Levine, A. Gupta, and T. L. Griffiths, “Automatically composing

representation transformations as a means for generalization,” in 7th Interna-

tional Conference on Learning Representations, ICLR 2019, 2019.

176

BIBLIOGRAPHY

[112] C. Tessler, S. Givony, T. Zahavy, D. Mankowitz, and S. Mannor, “A deep hierar-

chical approach to lifelong learning in minecraft,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 31, 2017.

[113] V. Campos, A. Trott, C. Xiong, R. Socher, X. Giró-i Nieto, and J. Torres, “Explore,

discover and learn: Unsupervised discovery of state-covering skills,” in Interna-

tional Conference on Machine Learning, pp. 1317–1327, PMLR, 2020.

[114] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all you need: Learning

skills without a reward function,” in International Conference on Learning

Representations, 2018.

[115] A. Barreto, D. Borsa, S. Hou, G. Comanici, E. Aygün, P. Hamel, D. Toyama,

S. Mourad, D. Silver, D. Precup, et al., “The option keyboard: Combining skills in

reinforcement learning,” Advances in Neural Information Processing Systems,

vol. 32, 2019.

[116] K. Lu, A. Grover, P. Abbeel, and I. Mordatch, “Reset-free lifelong learning with

skill-space planning,” in International Conference on Learning Representations,

2020.

[117] C. Jin, A. Krishnamurthy, M. Simchowitz, and T. Yu, “Reward-free exploration

for reinforcement learning,” in International Conference on Machine Learning,

pp. 4870–4879, PMLR, 2020.

[118] A. Touati and Y. Ollivier, “Learning one representation to optimize all rewards,”

Advances in Neural Information Processing Systems, vol. 34, pp. 13–23, 2021.

[119] W. Zhang, D. Zhou, and Q. Gu, “Reward-free model-based reinforcement learning

with linear function approximation,” Advances in Neural Information Process-

ing Systems, vol. 34, pp. 1582–1593, 2021.

177

BIBLIOGRAPHY

[120] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong

learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71,

2019.

[121] H. Fu, S. Yu, M. Littman, and G. Konidaris, “Model-based lifelong reinforcement

learning with bayesian exploration,” Advances in Neural Information Process-

ing Systems, vol. 35, pp. 32369–32382, 2022.

[122] R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong learning with

a network of experts,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 3366–3375, 2017.

[123] A. Xie and C. Finn, “Lifelong robotic reinforcement learning by retaining experi-

ences,” in Conference on Lifelong Learning Agents, pp. 838–855, 2022.

[124] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[125] Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, “Transfer learning in deep reinforcement

learning: A survey,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 45, no. 11, pp. 13344–13362, 2023.

[126] A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance under reward trans-

formations: Theory and application to reward shaping,” in Proceedings of the

Sixteenth International Conference on Machine Learning, ICML ’99, (San Fran-

cisco, CA, USA), p. 278‚Äì287, Morgan Kaufmann Publishers Inc., 1999.

[127] E. Wiewiora, G. Cottrell, and C. Elkan, “Principled methods for advising reinforce-

ment learning agents,” in Proceedings of the Twentieth International Conference

on International Conference on Machine Learning, ICML’03, p. 792‚Äì799, AAAI

Press, 2003.

178

BIBLIOGRAPHY

[128] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowe, “Expressing arbitrary reward

functions as potential-based advice,” Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 29, Feb. 2015.

[129] D. P. Bertsekas, “Approximate policy iteration: A survey and some new methods,”

Journal of Control Theory and Applications, vol. 9, no. 3, pp. 310–335, 2011.

[130] J. Chemali and A. Lazaric, “Direct policy iteration with demonstrations,” in Pro-

ceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15,

p. 3380‚Äì3386, AAAI Press, 2015.

[131] B. Kim, A.-m. Farahmand, J. Pineau, and D. Precup, “Learning from limited demon-

strations,” in Advances in Neural Information Processing Systems (C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, eds.), vol. 26, Curran

Associates, Inc., 2013.

[132] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan,

J. Quan, A. Sendonaris, I. Osband, G. Dulac-Arnold, J. Agapiou, J. Z. Leibo, and

A. Gruslys, “Deep q-learning from demonstrations,” in Proceedings of the Thirty-

Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative

Applications of Artificial Intelligence Conference and Eighth AAAI Symposium

on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18,

AAAI Press, 2018.

[133] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé,

“Reinforcement learning from demonstration through shaping,” in Proceed-

ings of the 24th International Conference on Artificial Intelligence, IJCAI’15,

p. 3352‚Äì3358, AAAI Press, 2015.

[134] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances

in Neural Information Processing Systems 29: Annual Conference on Neural

Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain

179

BIBLIOGRAPHY

(D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, eds.),

pp. 4565–4573, 2016.

[135] B. Kang, Z. Jie, and J. Feng, “Policy optimization with demonstrations,” in Pro-

ceedings of the 35th International Conference on Machine Learning, ICML

2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018 (J. G. Dy and

A. Krause, eds.), vol. 80 of Proceedings of Machine Learning Research, pp. 2474–

2483, PMLR, 2018.

[136] A. A. Rusu, S. G. Colmenarejo, Ç. Gülçehre, G. Desjardins, J. Kirkpatrick, R. Pas-

canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, “Policy distillation,” in 4th

International Conference on Learning Representations, ICLR 2016, San Juan,

Puerto Rico, May 2-4, 2016, Conference Track Proceedings (Y. Bengio and Y. Le-

Cun, eds.), 2016.

[137] E. Parisotto and R. Salakhutdinov, “Neural map: Structured memory for deep

reinforcement learning,” arXiv preprint arXiv:1702.08360, 2017.

[138] W. M. Czarnecki, R. Pascanu, S. Osindero, S. M. Jayakumar, G. Swirszcz, and

M. Jaderberg, “Distilling policy distillation,” in The 22nd International Con-

ference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April

2019, Naha, Okinawa, Japan (K. Chaudhuri and M. Sugiyama, eds.), vol. 89 of

Proceedings of Machine Learning Research, pp. 1331–1340, PMLR, 2019.

[139] F. Fernández and M. M. Veloso, “Probabilistic policy reuse in a reinforcement

learning agent,” in 5th International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8-12, 2006

(H. Nakashima, M. P. Wellman, G. Weiss, and P. Stone, eds.), pp. 720–727,

ACM, 2006.

[140] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

180

BIBLIOGRAPHY

[141] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, D. Silver, and H. van Has-

selt, “Successor features for transfer in reinforcement learning,” in Advances

in Neural Information Processing Systems 30: Annual Conference on Neural

Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,

USA (I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.

Vishwanathan, and R. Garnett, eds.), pp. 4055–4065, 2017.

[142] G. D. Konidaris and A. G. Barto, “Autonomous shaping: knowledge transfer in

reinforcement learning,” in Machine Learning, Proceedings of the Twenty-Third

International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June

25-29, 2006 (W. W. Cohen and A. W. Moore, eds.), vol. 148 of ACM International

Conference Proceeding Series, pp. 489–496, ACM, 2006.

[143] H. Bou-Ammar and M. E. Taylor, “Reinforcement learning transfer via common

subspaces,” in Adaptive and Learning Agents - International Workshop, ALA

2011, Held at AAMAS 2011, Taipei, Taiwan, May 2, 2011, Revised Selected

Papers (P. Vrancx, M. Knudson, and M. Grzes, eds.), vol. 7113 of Lecture Notes

in Computer Science, pp. 21–36, Springer, 2011.

[144] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant feature

spaces to transfer skills with reinforcement learning,” in 5th International

Conference on Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings, OpenReview.net, 2017.

[145] A. Lazaric, M. Restelli, and A. Bonarini, “Transfer of samples in batch rein-

forcement learning,” in Machine Learning, Proceedings of the Twenty-Fifth

International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008 (W. W.

Cohen, A. McCallum, and S. T. Roweis, eds.), vol. 307 of ACM International

Conference Proceeding Series, pp. 544–551, ACM, 2008.

181

BIBLIOGRAPHY

[146] H. Bou-Ammar, K. Tuyls, M. E. Taylor, K. Driessens, and G. Weiss, “Reinforce-

ment learning transfer via sparse coding,” in International Conference on

Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain,

June 4-8, 2012 (3 Volumes) (W. van der Hoek, L. Padgham, V. Conitzer, and

M. Winikoff, eds.), pp. 383–390, IFAAMAS, 2012.

[147] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,

K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural networks,”

CoRR, vol. abs/1606.04671, 2016.

[148] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and

D. Wierstra, “Pathnet: Evolution channels gradient descent in super neural

networks,” CoRR, vol. abs/1701.08734, 2017.

[149] P. Dayan, “Improving generalization for temporal difference learning: The succes-

sor representation,” Neural Comput., vol. 5, no. 4, pp. 613–624, 1993.

[150] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman, “Deep successor rein-

forcement learning,” CoRR, vol. abs/1606.02396, 2016.

[151] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep reinforcement

learning with successor features for navigation across similar environments,”

in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems,

IROS 2017, Vancouver, BC, Canada, September 24-28, 2017, pp. 2371–2378,

IEEE, 2017.

[152] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function ap-

proximators,” in Proceedings of the 32nd International Conference on Machine

Learning, ICML 2015, Lille, France, 6-11 July 2015 (F. R. Bach and D. M. Blei,

eds.), vol. 37 of JMLR Workshop and Conference Proceedings, pp. 1312–1320,

JMLR.org, 2015.

182

BIBLIOGRAPHY

[153] A. Barreto, D. Borsa, J. Quan, T. Schaul, D. Silver, M. Hessel, D. J. Mankowitz,

A. Zídek, and R. Munos, “Transfer in deep reinforcement learning using succes-

sor features and generalised policy improvement,” in Proceedings of the 35th

International Conference on Machine Learning, ICML 2018, Stockholmsmäs-

san, Stockholm, Sweden, July 10-15, 2018 (J. G. Dy and A. Krause, eds.), vol. 80

of Proceedings of Machine Learning Research, pp. 510–519, PMLR, 2018.

[154] B. Eysenbach, S. Asawa, S. Chaudhari, S. Levine, and R. Salakhutdinov, “Off-

dynamics reinforcement learning: Training for transfer with domain classifiers,”

in International Conference on Learning Representations(ICLR), 2021.

[155] A. Chen, A. Sharma, S. Levine, and C. Finn, “You only live once: Single-life

reinforcement learning,” in Advances in Neural Information Processing Sys-

tems(NIPS), vol. 35, pp. 14784–14797, 2022.

[156] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel, “Rl2:

Fast reinforcement learning via slow reinforcement learning,” arXiv preprint

arXiv:1611.02779, 2016.

[157] E. Aghapour and N. Ayanian, “Double meta-learning for data efficient policy

optimization in non-stationary environments,” in 2021 IEEE International

Conference on Robotics and Automation (ICRA), pp. 9935–9942, 2021.

[158] Z. Xu, X. Chen, and L. Cao, “Fast task adaptation based on the combination

of model-based and gradient-based meta learning,” IEEE Transactions on

Cybernetics, vol. 52, no. 6, pp. 5209–5218, 2020.

[159] A. Hallak, D. Di Castro, and S. Mannor, “Contextual markov decision processes,”

arXiv preprint arXiv:1502.02259, 2015.

[160] A. Modi and A. Tewari, “Contextual markov decision processes using generalized

linear models,” CoRR, vol. abs/1903.06187, 2019.

183

BIBLIOGRAPHY

[161] A. Modi, N. Jiang, S. Singh, and A. Tewari, “Markov decision processes with

continuous side information,” in Algorithmic Learning Theory, pp. 597–618,

PMLR, 2018.

[162] L. Zintgraf, K. Shiarlis, M. Igl, S. Schulze, Y. Gal, K. Hofmann, and S. Whiteson,

“Varibad: A very good method for bayes-adaptive deep rl via meta-learning,”

arXiv preprint arXiv:1910.08348, 2019.

[163] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire, “Contex-

tual decision processes with low bellman rank are pac-learnable,” in Interna-

tional Conference on Machine Learning, pp. 1704–1713, PMLR, 2017.

[164] J. Kwon, Y. Efroni, C. Caramanis, and S. Mannor, “Rl for latent mdps: Regret

guarantees and a lower bound,” Advances in Neural Information Processing

Systems, vol. 34, pp. 24523–24534, 2021.

[165] G. Tennenholtz, N. Merlis, L. Shani, M. Mladenov, and C. Boutilier, “Reinforcement

learning with history dependent dynamic contexts,” in International Conference

on Machine Learning, pp. 34011–34053, PMLR, 2023.

[166] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh, “Variance

reduction for reinforcement learning in input-driven environments,” arXiv

preprint arXiv:1807.02264, 2018.

[167] H. Ren, A. Sootla, T. Jafferjee, J. Shen, J. Wang, and H. Bou-Ammar, “Reinforce-

ment learning in presence of discrete markovian context evolution,” arXiv

preprint arXiv:2202.06557, 2022.

[168] K. J. Åström, “Optimal control of markov processes with incomplete state informa-

tion i,” Journal of mathematical analysis and applications, vol. 10, pp. 174–205,

1965.

184

BIBLIOGRAPHY

[169] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in

partially observable stochastic domains,” Artificial intelligence, vol. 101, no. 1-2,

pp. 99–134, 1998.

[170] N. Vlassis, M. L. Littman, and D. Barber, “On the computational complexity of

stochastic controller optimization in pomdps,” ACM Transactions on Computa-

tion Theory (TOCT), vol. 4, no. 4, pp. 1–8, 2012.

[171] Y. Xiong, N. Chen, X. Gao, and X. Zhou, “Sublinear regret for learning pomdps,”

Production and Operations Management, vol. 31, no. 9, pp. 3491–3504, 2022.

[172] Z. D. Guo, S. Doroudi, and E. Brunskill, “A pac rl algorithm for episodic pomdps,” in

Proceedings of the 19th International Conference on Artificial Intelligence and

Statistics (A. Gretton and C. C. Robert, eds.), vol. 51 of Proceedings of Machine

Learning Research, (Cadiz, Spain), pp. 510–518, PMLR, 09–11 May 2016.

[173] A. Anandkumar, D. Hsu, and S. M. Kakade, “A method of moments for mixture

models and hidden markov models,” in Proceedings of the 25th Annual Con-

ference on Learning Theory (S. Mannor, N. Srebro, and R. C. Williamson, eds.),

vol. 23 of Proceedings of Machine Learning Research, (Edinburgh, Scotland),

pp. 33.1–33.34, PMLR, 25–27 Jun 2012.

[174] C. Jin, S. Kakade, A. Krishnamurthy, and Q. Liu, “Sample-efficient reinforcement

learning of undercomplete pomdps,” Advances in Neural Information Processing

Systems, vol. 33, pp. 18530–18539, 2020.

[175] H. Guo, Q. Cai, Y. Zhang, Z. Yang, and Z. Wang, “Provably efficient offline re-

inforcement learning for partially observable markov decision processes,” in

International Conference on Machine Learning, pp. 8016–8038, PMLR, 2022.

[176] Y. Jin, Z. Yang, and Z. Wang, “Is pessimism provably efficient for offline rl?,” in

International Conference on Machine Learning, pp. 5084–5096, PMLR, 2021.

185

BIBLIOGRAPHY

[177] A. Zanette, M. J. Wainwright, and E. Brunskill, “Provable benefits of actor-critic

methods for offline reinforcement learning,” Advances in neural information

processing systems, vol. 34, pp. 13626–13640, 2021.

[178] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under concept

drift: A review,” IEEE transactions on knowledge and data engineering, vol. 31,

no. 12, pp. 2346–2363, 2018.

[179] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey

on concept drift adaptation,” ACM computing surveys (CSUR), vol. 46, no. 4,

pp. 1–37, 2014.

[180] P. Domingos and G. Hulten, “Mining High-Speed Data Streams,” in Proceedings

of the Sixth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’00, (New York, NY, USA), pp. 71–80, Association for

Computing Machinery, 2000.

event-place: Boston, Massachusetts, USA.

[181] C. Manapragada, G. I. Webb, and M. Salehi, “Extremely Fast Decision Tree,” in

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, KDD ’18, (New York, NY, USA), pp. 1953–1962,

Association for Computing Machinery, 2018.

event-place: London, United Kingdom.

[182] B. Krawczyk, “Tensor decision trees for continual learning from drifting data

streams,” Machine Learning, vol. 110, pp. 3015–3035, Dec. 2021.

[183] V. Losing, B. Hammer, and H. Wersing, “KNN Classifier with Self Adjusting

Memory for Heterogeneous Concept Drift,” in 2016 IEEE 16th International

Conference on Data Mining (ICDM), pp. 291–300, 2016.

186

BIBLIOGRAPHY

[184] F. Dong, J. Lu, Y. Song, F. Liu, and G. Zhang, “A Drift Region-Based Data Sample

Filtering Method,” IEEE Transactions on Cybernetics, vol. 52, no. 9, pp. 9377–

9390, 2022.

[185] H. Yu, J. Lu, and G. Zhang, “Continuous Support Vector Regression for Nonsta-

tionary Streaming Data,” IEEE Transactions on Cybernetics, vol. 52, no. 5,

pp. 3592–3605, 2022.

[186] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A Survey on Ensemble

Learning for Data Stream Classification,” ACM Comput. Surv., vol. 50, Mar.

2017.

Place: New York, NY, USA Publisher: Association for Computing Machinery.

[187] J. Z. Kolter and M. A. Maloof, “Dynamic Weighted Majority: An Ensemble Method

for Drifting Concepts,” Journal of Machine Learning Research, vol. 8, no. 91,

pp. 2755–2790, 2007.

[188] Y. Sun, K. Tang, Z. Zhu, and X. Yao, “Concept Drift Adaptation by Exploiting

Historical Knowledge,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 29, no. 10, pp. 4822–4832, 2018.

[189] P. Zhao, L.-W. Cai, and Z.-H. Zhou, “Handling concept drift via model reuse,”

Machine Learning, vol. 109, pp. 533–568, Mar. 2020.

[190] F. Soleymani and E. Paquet, “Financial portfolio optimization with online deep

reinforcement learning and restricted stacked autoencoder‚ÄîDeepBreath,”

Expert Systems with Applications, vol. 156, p. 113456, 2020.

[191] M. N. Fekri, H. Patel, K. Grolinger, and V. Sharma, “Deep learning for load fore-

casting with smart meter data: Online Adaptive Recurrent Neural Network,”

Applied Energy, vol. 282, p. 116177, 2021.

187

BIBLIOGRAPHY

[192] S. Yen, M. Moh, and T.-S. Moh, “CausalConvLSTM: Semi-Supervised Log Anomaly

Detection Through Sequence Modeling,” in 2019 18th IEEE International

Conference On Machine Learning And Applications (ICMLA), pp. 1334–1341,

2019.

[193] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel

two-sample test,” Journal of Machine Learning Research, vol. 13, no. 1, pp. 723–

773, 2012.

[194] J. Bernstein, A. Vahdat, Y. Yue, and M.-Y. Liu, “On the distance between two neural

networks and the stability of learning,” in Advances in Neural Information

Processing Systems (NIPS), pp. 21370–21381, 2020.

[195] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,” in Advances

in Neural Information Processing Systems (NIPS), pp. 1057–1063, 2000.

[196] B. C. Csáji and L. Monostori, “Value function based reinforcement learning in

changing Markovian environments,” Journal of Machine Learning Research,

vol. 9, no. 54, pp. 1679–1709, 2008.

[197] Z. Huang, W. Shao, X. Wang, L. Lin, and P. Luo, “Rethinking the pruning criteria for

convolutional neural network,” in Advances in Neural Information Processing

Systems(NIPS), pp. 16305–16318, 2021.

[198] F. Pukelsheim, “The three sigma rule,” The American Statistician, vol. 48, no. 2,

pp. 88–91, 1994.

[199] E. R. Ziegel, “Statistical case studies for industrial process improvement,” Techno-

metrics, vol. 40, no. 2, pp. 163–163, 1998.

[200] A. Jacot, C. Hongler, and F. Gabriel, “Neural tangent kernel: Convergence and gen-

eralization in neural networks,” in Advances in Neural Information Processing

188

BIBLIOGRAPHY

Systems (NIPS), pp. 8580–8589, 2018.

[201] J. Lu, J. Xuan, G. Zhang, and X. Luo, “Structural property-aware multilayer

network embedding for latent factor analysis,” Pattern Recognition, vol. 76,

pp. 228–241, 2018.

[202] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” 2016.

[203] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic gridworld environ-

ment for openai gym,” 2018.

[204] M. Wydmuch, M. Kempka, and W. Jaśkowski, “Vizdoom competitions: Playing

doom from pixels,” IEEE Transactions on Games, vol. 11, no. 3, pp. 248–259,

2019.

[205] A. Mosavi, Y. Faghan, P. Ghamisi, P. Duan, S. F. Ardabili, E. Salwana, and S. S.

Band, “Comprehensive review of deep reinforcement learning methods and

applications in economics,” Mathematics, vol. 8, no. 10, p. 1640, 2020.

[206] A. Delarue, R. Anderson, and C. Tjandraatmadja, “Reinforcement learning with

combinatorial actions: An application to vehicle routing,” Advances in Neural

Information Processing Systems, vol. 33, pp. 609–620, 2020.

[207] K. M. Oikonomou, I. Kansizoglou, and A. Gasteratos, “A hybrid spiking neural

network reinforcement learning agent for energy-efficient object manipulation,”

Machines, vol. 11, no. 2, p. 162, 2023.

[208] M. Hu, J. Zhang, L. Matkovic, T. Liu, and X. Yang, “Reinforcement learning in med-

ical image analysis: Concepts, applications, challenges, and future directions,”

Journal of Applied Clinical Medical Physics, vol. 24, no. 2, p. e13898, 2023.

189

BIBLIOGRAPHY

[209] P. Tiwari, A. Lakhan, R. H. Jhaveri, and T.-M. Gronli, “Consumer-centric internet

of medical things for cyborg applications based on federated reinforcement

learning,” IEEE Transactions on Consumer Electronics, 2023.

[210] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-

world: A benchmark and evaluation for multi-task and meta reinforcement

learning,” in The Conference on Robot Learning (CoRL), pp. 1094–1100, 2020.

[211] A. Pacchiano, J. Parker-Holder, Y. Tang, K. Choromanski, A. Choromanska, and

M. Jordan, “Learning to score behaviors for guided policy optimization,” in

International Conference on Machine Learning, pp. 7445–7454, 2020.

[212] C. Villani et al., Optimal transport: old and new, vol. 338.

Springer, 2009.

[213] V. M. Panaretos and Y. Zemel, “Statistical aspects of wasserstein distances,” Annual

review of statistics and its application, vol. 6, pp. 405–431, 2019.

[214] I. Olkin and F. Pukelsheim, “The distance between two random vectors with given

dispersion matrices,” Linear Algebra and its Applications, vol. 48, pp. 257–263,

1982.

[215] L. Xu, “Approximation of stable law in wasserstein-1 distance by stein’s method,”

The Annals of Applied Probability, vol. 29, no. 1, pp. 458–504, 2019.

[216] W. J. Welch, “Construction of permutation tests,” Journal of the American Statisti-

cal Association, vol. 85, no. 411, pp. 693–698, 1990.

[217] C. D. Van Borkulo, R. van Bork, L. Boschloo, J. J. Kossakowski, P. Tio, R. A.

Schoevers, D. Borsboom, and L. J. Waldorp, “Comparing network structures on

three aspects: A permutation test.,” Psychological methods, 2022.

[218] P. Good, Permutation tests: a practical guide to resampling methods for testing

hypotheses.

190

BIBLIOGRAPHY

Springer Science & Business Media, 2013.

[219] M. Wydmuch, M. Kempka, and W. Jaśkowski, “ViZDoom Competitions: Playing

Doom from Pixels,” IEEE Transactions on Games, vol. 11, no. 3, pp. 248–259,

2019.

The 2022 IEEE Transactions on Games Outstanding Paper Award.

[220] A. Bellot and M. van der Schaar, “A kernel two-sample test with selection bias,”

in Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial

Intelligence (C. de Campos and M. H. Maathuis, eds.), vol. 161 of Proceedings

of Machine Learning Research, pp. 205–214, 2021.

[221] Y. Sasaki et al., “The truth of the f-measure,” Teach tutor mater, vol. 1, no. 5,

pp. 1–5, 2007.

[222] A. Benjamin, D. Rolnick, and K. Kording, “Measuring and regularizing networks

in function space,” in International Conference on Learning Representations,

2018.

[223] L. V. Kantorovich, “Mathematical methods of organizing and planning production,”

Management science, vol. 6, no. 4, pp. 366–422, 1960.

[224] T. Furmston and D. Barber, “Variational methods for reinforcement learning,” in

International Conference on Artificial Intelligence and Statistics, pp. 241–248,

2010.

[225] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning,

vol. 2.

MIT press Cambridge, MA, 2006.

[226] M. E. E. Khan, A. Immer, E. Abedi, and M. Korzepa, “Approximate inference

turns deep networks into gaussian processes,” Advances in neural information

processing systems, vol. 32, 2019.

191

BIBLIOGRAPHY

[227] T. Galy-Fajou, F. Wenzel, C. Donner, and M. Opper, “Multi-class gaussian process

classification made conjugate: Efficient inference via data augmentation,” in

Uncertainty in artificial intelligence, pp. 755–765, PMLR, 2020.

[228] D. R. Burt, S. W. Ober, A. Garriga-Alonso, and M. van der Wilk, “Understanding

variational inference in function-space,” in Third Symposium on Advances in

Approximate Bayesian Inference, 2020.

[229] S. Sujit, S. Nath, P. Braga, and S. Ebrahimi Kahou, “Prioritizing samples in

reinforcement learning with reducible loss,” Advances in Neural Information

Processing Systems, vol. 36, 2024.

[230] L. A. Atherton, D. Dupret, and J. R. Mellor, “Memory trace replay: the shaping of

memory consolidation by neuromodulation,” Trends in neurosciences, vol. 38,

no. 9, pp. 560–570, 2015.

[231] G. Z. Grudic and L. H. Ungar, “Localizing search in reinforcement learning,” in

AAAI/IAAI, pp. 590–595, 2000.

[232] P. Ma, M. Mahoney, and B. Yu, “A statistical perspective on algorithmic leveraging,”

in International conference on machine learning, pp. 91–99, PMLR, 2014.

[233] M. P. Deisenroth, G. Neumann, J. Peters, et al., “A survey on policy search for

robotics,” Foundations and trends in Robotics, vol. 2, no. 1-2, pp. 388–403, 2013.

[234] J. Ke, F. Xiao, H. Yang, and J. Ye, “Learning to delay in ride-sourcing systems: A

multi-agent deep reinforcement learning framework,” IEEE Transactions on

Knowledge and Data Engineering, vol. 34, no. 5, pp. 2280–2292, 2022.

[235] C. Angermueller, D. Dohan, D. Belanger, R. Deshpande, K. Murphy, and L. Col-

well, “Model-based reinforcement learning for biological sequence design,” in

International conference on learning representations, 2019.

192

BIBLIOGRAPHY

[236] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforcement learning:

Applications on robotics,” Journal of Intelligent & Robotic Systems, vol. 86,

no. 2, pp. 153–173, 2017.

[237] J. Lu, C. Yang, X. Gao, L. Wang, C. Li, and G. Chen, “Reinforcement learning with

sequential information clustering in real-time bidding,” in ACM International

Conference on Information and Knowledge Management (CIKM), pp. 1633–

1641, 2019.

[238] S. Chawla, N. R. Devanur, A. R. Karlin, and B. Sivan, “Simple pricing schemes

for consumers with evolving values,” in Annual ACM-SIAM symposium on

Discrete algorithms (SODA), pp. 1476–1490, 2016.

[239] C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu, and Z. Li, “Toward

a thousand lights: Decentralized deep reinforcement learning for large-scale

traffic signal control,” in AAAI Conference on Artificial Intelligence (AAAI),

vol. 34, pp. 3414–3421, 2020.

[240] E. Bengio, J. Pineau, and D. Precup, “Interference and generalization in temporal

difference learning,” in International Conference on Machine Learning, pp. 767–

777, PMLR, 2020.

[241] E. Lecarpentier and E. Rachelson, “Non-stationary markov decision processes, a

worst-case approach using model-based reinforcement learning,” Advances in

neural information processing systems, vol. 32, 2019.

[242] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt, “Deep variational bayes

filters: Unsupervised learning of state space models from raw data,” in 5th

International Conference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net,

2017.

193

BIBLIOGRAPHY

[243] A. Doerr, C. Daniel, M. Schiegg, N.-T. Duy, S. Schaal, M. Toussaint, and T. Sebas-

tian, “Probabilistic recurrent state-space models,” in Proceedings of the 35th

International Conference on Machine Learning (J. Dy and A. Krause, eds.),

vol. 80 of Proceedings of Machine Learning Research, pp. 1280–1289, PMLR,

10–15 Jul 2018.

[244] L. Buesing, T. Weber, S. Racaniere, S. Eslami, D. Rezende, D. P. Reichert, F. Viola,

F. Besse, K. Gregor, D. Hassabis, et al., “Learning and querying fast generative

models for reinforcement learning,” arXiv preprint arXiv:1802.03006, 2018.

[245] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn, “Offline reinforcement learning

from images with latent space models,” in Learning for Dynamics and Control,

pp. 1154–1168, PMLR, 2021.

[246] A. G. Richards, Robust constrained model predictive control.

PhD thesis, Massachusetts Institute of Technology, 2005.

[247] R. Alami, O. Maillard, and R. Féraud, “Restarted bayesian online change-point de-

tector achieves optimal detection delay,” in International conference on machine

learning, pp. 211–221, PMLR, 2020.

[248] F. Pukelsheim, “The three sigma rule,” The American Statistician, vol. 48, pp. 88–

91, 1994.

[249] R. Y. Rubinstein, “Optimization of computer simulation models with rare events,”

European Journal of Operational Research, vol. 99, no. 1, pp. 89–112, 1997.

[250] H. Bharadhwaj, K. Xie, and F. Shkurti, “Model-predictive control via cross-entropy

and gradient-based optimization,” in Learning for Dynamics and Control,

pp. 277–286, PMLR, 2020.

[251] C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolinek, and G. Mar-

tius, “Sample-efficient cross-entropy method for real-time planning,” in Confer-

194

BIBLIOGRAPHY

ence on Robot Learning, pp. 1049–1065, PMLR, 2021.

[252] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using RNN encoder-decoder

for statistical machine translation,” in Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing, EMNLP 2014, October

25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of

the ACL (A. Moschitti, B. Pang, and W. Daelemans, eds.), pp. 1724–1734, ACL,

2014.

[253] E. Leurent, “An environment for autonomous driving decision-making.” https:

//github.com/eleurent/highway-env, 2018.

195

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

	List of Publications
	List of Figures
	List of Tables
	Abbreviation and Notation
	Introduction
	Background and Motivation
	Research Questions and Objectives
	Research Contributions
	Thesis Organization

	Literature Review
	Deep Reinforcement Learning Concepts and Frameworks
	Deep Reinforcement Learning in Non-stationary Environments
	Detecting Environment Change Points
	Adapting to New Reinforcement Learning Environments

	Multi-task Deep Reinforcement Learning
	Continual Deep Reinforcement Learning
	Transfer Deep Reinforcement Learning
	Meta Deep Reinforcement Learning.
	Contextual Markov Decision Process
	Partially Observed Markonv Decision Process
	Concept Drift

	A Gradient-Constrained Approach
	Background
	Problem Formulation
	Methodology
	Environment Change Detection
	Policy Adaptation
	Detection-Adaptation RL

	Experiments and Analysis
	Experiment Setups
	Results
	Ablation Studies
	Further Analysis

	Summary

	A Behavior-Aware Approach
	Background
	Problem Formulation
	Methodology
	Behavior-based Change Detection
	Behavior-Aware Adaptation

	Experiments and Analysis
	Settings
	Overall Performance
	Ablation Study

	Summary

	A Sample Efficient Approach
	Background
	Problem Formulation
	Methodology
	Detecting Environment Changes
	Adapting with Functional Regularizations
	Computational Complexity Analysis

	Experiment and Analysis
	Experiment Settings
	Main Results
	Ablation Study

	Summary

	An Approach for Latent Dynamics
	Background
	Problem Formulation
	Methodology
	Learning Latent Dynamics
	Detecting Environment Changes
	Learning latent and changing dynamics
	Planning in Real Non-stationary Environments

	Experiments and Analysis
	Environments and setup
	Comparisons
	Overall performance
	Ablation Studies

	Summary

	Conclusion and Future Research
	Bibliography

