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Abstract: Localization has emerged as an important and critical component of research in Wireless
Sensor Networks (WSNs). WSN is a network of numerous sensors distributed across broad areas of
the world to conduct numerous activities, including sensing the data and transferring it to various
devices. Most applications, like animal tracking, object monitoring, and innumerable resources put
in the interior as well as outdoor locations, need to identify the position of the occurring incident.
The primary objective of localization is to identify the locality of sensor nodes installed in a network
so that the location of a particular event can be traced. Different optimization approaches are
observed in the work for solving the localization challenge in WSN and assigning the apt positions
to undiscovered sensor nodes. This research employs the approach of localizing sensor nodes
in a 2D platform utilizing an exclusive static anchor node and virtual anchors to detect dynamic
target nodes by projecting these six virtual anchors hexagonally at different orientations and then
optimizing the estimated target node co-ordinates employing Whale Optimization-based Naked
Mole Rat Algorithm (WONMRA). Moreover, the effectiveness of a variety of optimization strategies
employed for localization is compared to the WONMRA strategy concerning localization error and
the number of nodes being localized, and it has been investigated that the average error in localization
is 0.1999 according to WONMRA and is less than all other optimization techniques.

Keywords: WSN; optimization; localization; WONMRA

MSC: 68W50

1. Introduction

The development of wireless technology has inspired numerous researchers to study
WSNs. These networks allow for the placement of nodes that can sense, calculate, and
transmit critical information to other nodes in the vicinity of the area of concern [1]. With
sensor nodes placed randomly or in specified locations, WSNs can be applied to a number
of tasks, including reducing air pollution, detecting forest fires, military applications, and
spying [2]. WSNs offer a number of advantages: accommodating new devices at any time,
avoiding the need for wiring, accessing through a centralized mirror, and flexibility to move
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through partitions. At the same time, WSN has its disadvantages, too, including distraction
by various elements like Bluetooth. It is also easier for hackers to hack and possesses lower
communication speed. There are two different types of WSNs: structured and unstructured.
Lesser nodes make up a network referred to as a “structured WSN.” Unstructured WSNs
struggle with a number of issues, such as network upkeep and ensuring node connec-
tivity [2]. Nodes, once installed in the remote environment, remain disregarded, thereby
making their security difficult and problematic. Sensor networks include a number of traits,
including compact size, lesser consumption of energy, fewer storage needs, and limited
computing capability, due to which sensor networks are among the intriguing research
topics. Moreover, sensor nodes are more energy-intensive and unstable but can be used
often as they are less expensive.

These numerous issues in WSNs need to be addressed, including the architecture of
the network, routing, finding the location of nodes, power limits, memory, and others [3–5].
Localization is a significant problem as it is crucial to know the location of the reporting
incidence because without it the data will be worthless. Thousands of nodes need to
locate their positions in WSN. The localization also has to deal with node failure and node
self-localization [6–8]. Routing between the numerous sensor nodes and power problems
are two additional WSN concerns.

The most crucial aspect of WSNs is localization, which can be employed in static as
well as dynamic scenarios. Finding each sensor’s exact location in 2D and 3D scenarios
is the main objective [9]. The sensors deployed in large areas and having movement are
more complicated to discover. Because of cost and power limits, equipping each node with
GPS functionality is also impractical. In some places, localization is also performed in a
dynamic context for moving sensor nodes [10–12].

The practice of assigning a location in respect of two-dimensional as well as three-
dimensional sets of parameters to each node or set of nodes deployed collectively or alone
in the sensor region is known as localization. There are numerous ways to allocate node
positions, such as manually or by employing a Global Positional System (GPS). Manual
location allocation is a complicated task, but employing the GPS in all the sensor nodes
is also not a feasible option due to the increasing cost of deploying nodes in the field. To
overcome this situation, some of the nodes are equipped with GPS and are referred to as
anchor nodes. These anchor nodes are used as a reference to compute the location of the
unknown nodes. The localization approach restricts sensor nodes in WSNs on the basis of
input applied. If the WSN has anchor nodes, the position of their nodes is used as an intake.

The strategies of localization are segregated among the range-based and range-free
approaches. Range-based techniques make use of the distance between the nodes based
on the received strength of the signal, angle of arrival of the signal, and time of arrival
of the signal, while range-free techniques make use of hop counts between the nodes
with minimum infrastructure. Sensor nodes with unidentified parameters, referred to as
target nodes, are located using localization algorithms. Anchor nodes may be utilized to
investigate the position of all undiscovered nodes because they have inbuilt GPS capability,
so their exact location is already known.

Discovering in-range anchor nodes, computing the distance as well as position, and
estimating the location are three basic steps of the localization task. After estimating
the distance between the anchors and the relevant target nodes, the parameter values
of the target nodes are calculated. Figure 1 depicts the five different types of WSN
localization techniques.

Many researchers have worked in this area, but the problem is 2–3 anchor nodes
are required to compute the location of undiscovered nodes. Moreover, there is a need
to improve the accuracy of localized target nodes. So, in this work, the notion of taking
an exclusive anchor node along with its virtual projection in six different orientations at
an angle of 60◦ is presented by utilizing the Whale Optimization-based Naked Mole Rat
algorithm. When the movable target node falls within the span of the anchor node, an
anchor node along with two nearby virtual anchors are chosen, and distance calculations
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between the anchor and target nodes are performed. Then, by using the Centroid formula,
the co-ordinates of the target node are computed. These are further optimized by the
WONMRA algorithm to minimize the localization error. The simulation results carried out
in MATLAB proved that the localization error computed by WONMRA is minimum in
contrast to other optimization algorithms.
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The hybrid approach of the Whale Optimization-based Naked Mole Rat algorithm
is used in this paper. The main cause of using the hybrid approach is that the WOA has
weak exploitation operations despite its efficiency in searching the search space, whereas
NMRA has weak exploration abilities, thereby causing it to become stuck in local optima.
To resolve this issue, the worker phase of WOA comprises extra prospective equations that
will significantly enhance the algorithm’s capacity for searching globally. Additionally, the
fundamental NMRA’s mating factor parameter λ is crucial in regulating the algorithm’s
performance and needs to be inspected for self-adaptive algorithms. This work considers
these two factors into account and utilizes the novel self-adaptive Whale Optimization-
based NMRA in this work.

The main contributions of this work include the following:

• The state-of-art review on the localization techniques used to localize the sensor nodes
in a 2D environment.

• A new approach of taking a single anchor along with virtual projection in six varying
orientations to find the entire undetermined nodes is used. The single anchor node,
along with two virtual nodes, is chosen to locate its position as soon as the target
nodes fall within the span of the anchor node.

• The work utilized a novel Whale Optimization-based Naked Mole Rat Algorithm
(WONMRA) to provide more accurate results.

• The WONMRA performance experiments on the Wireless Sensor Networks Localiza-
tion problem, and the findings reveal that it has better convergence accuracy, the least
localization error, and a strong optimization capability when compared with the other
existing algorithms, including PSO, HPSO, BBO, FA, NMRA, and WOA.

The paper is categorized as follows: Section 2 includes a thorough survey of local-
ization. The WONMRA approach with its algorithm is discussed in Section 3. Section 4
describes the localization approach employing an individual anchor node, Section 5 in-
cludes the numerous challenges in localization, Section 6 presents the discussion on Simu-
lation results and experiments, and the conclusion along with future scope are included
in Section 7.

2. Literature Review

The count of anchors in a sensor network is generally limited. The benefit of the
anchor nodes is that we know where they are after they are deployed. Because of the price
and complexity limits, certain node locations are unknown, as it is not possible to deploy
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every node with GPS functionality. The position of the anchor node is applied to estimate
the position of these nodes. Many other approaches to localization have been proposed
by researchers in recent years [13]. In this study, unknown nodes are approximated by
applying distance measurements, and the evaluated location is optimized by making use
of a meta-heuristic approach in a mobility-based scenario.

Various homogeneous as well as heterogeneous sensor nodes are included in WSN,
with every node having the capacity to collect, measure, and transfer data to the node to
which it is related before transferring to the sink node. The information sent and obtained is
useful and instructive since it aids in pinpointing the actual location of the desired node. It
would take a long time and be completely impossible to manually add position information
to every node in many applications. WSN has recently attained remarkable advances in the
field of wireless communications. The advancement in sensor network equipment covers a
wide range of applications [13]. The node location has become a critical need for effective
WSN applications. The variety of localization methods includes range-based and range-
free procedures. TOA [14], TDOA, AOA [15], and RSSI [16] are examples of range-based
approaches for determining the angle or distance among two neighbouring nodes.

Lee et al. [17] developed a novel method in which limited anchor nodes are stationed
in the network. On the basis of change in the path, a novel approach to measure the
distances is discovered by approximating the shortest path to evaluate their Euclidean
distance. In anisotropic networks, limited anchors are necessary to achieve high accuracy.
Garg et al. [18] suggested another strategy on the basis of RSSI for locating the movable
node, with anchor nodes placed at the vertex and at the four corners of target nodes placed
randomly. Graefenstein et al. [19] proposed an RSSI-based approach for calculating the
distance between the anchor and destination nodes. Moreover, after obtaining distances
from the various anchors and virtual anchors, the trilateration method was employed
to determine the location. Sumathi and Srinivasan [20] explained an RSS-based anchor
localization algorithm in which the target nodes’ location was estimated using the least
square method. Guo et al. [21] suggested a perpendicular intersection (PI) approach to
localization on the basis of mobility. This strategy is unable to directly map distance from
RSSI data. The node position was calculated using the PI’s geometric link.

Kim and Lee [22] proposed a particle size update technique based on certain filters,
and they evaluated the algorithm by applying simulations with data generated through
on-site trials. Furthermore, the Kalman filter-based location, as well as mapping techniques
for real-time localization, are known in the literature [23]. Many computational intelligence
(CI) strategies were addressed by the researchers with the purpose of boosting the accuracy
and lessening the complexity of a localization challenge. Genetic algorithms (GA), as well
as other stochastic methods such as simulated annealing (SA), are used in the static scenario
in the literature. To attain the lowest localization error, Kulkarni and Venayagamoorthy [24]
put forward the localization method on the basis of particle swarm optimization (PSO)
as an alternative to stochastic techniques. To optimize the nodes’ position in the WSNs,
Gopakumar and Jacob [25] suggested another new global swarm intelligence (SI)-based ap-
proach. The suggested approach streamlines the implementation process while using little
memory, making PSO-based algorithms more suitable in constrained situations. The HPSO
technique was developed as a quick convergence framework for optimizing the target
node’s position. In order to improve precision in the localization problem, biogeography-
based optimization (BBO) can be applied [25,26]. Kumar et al. [27] suggested combining
the BBO and the hybrid PSO (HPSO) for range-free BBO and range-free HPSO localization
approaches in anisotropic WSN.

A computational intellect algorithm on the basis of particle swarm optimization was
introduced for finding the locality of the moving target nodes [28–31]. With anchor nodes
placed in the corners of the sensing field, the procedure is segregated into two parts. The
first step includes the distance estimation approximations. The subsequent step assumes the
anchor nodes virtually in six varied orientations at ideally 60◦ each to find the undiscovered
nodes. By combining a PSO optimization method with Centroid computations at this
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point, the findings showed a faster convergence time. Binary PSO employed received
signal strength indicator to compute the distance among the anchor and target nodes
thereby enhancing the network lifetime with decreasing power utilization due to quicker
convergence. Singh and Mittal [32] suggested a hybrid DA-FA approach for locating mobile
target nodes in Wireless Sensor Networks by using only one anchor node. When compared
to other techniques, such as PSO, FA, BBO, and HPSO, the findings show lower localization
error and convergence rate. Mittal et al. [33] optimized the Cognitive Radio System to
determine the best channels in the vicinity to avoid congestion and traffic in the network.

This work utilizes a new method of employing virtual anchor nodes in two dimensions
using the Whale Optimization-based Naked Mole Rat Algorithm (WONMRA) [34] to
locate undiscovered nodes. WONMRA is a newly developed optimization algorithm that
improves computing time while simultaneously minimizing localization error.

3. Whale Optimization-Based Naked Mole Rat Algorithm (WONMRA)

Swarm optimization approaches like the Whale Optimization Algorithm (WOA) [35]
and Naked Mole Rat Algorithm (NMRA) [36] give dependable results to optimization
issues and are very encouraging algorithms despite their performance not being as stable as
that of sophisticated hybrid and adaptive algorithms. The main cause is that the WOA has
weak exploitation operations despite appearing to be efficient in searching the search space,
whereas NMRA has weak exploration abilities, thereby causing it to be stuck in local optima.
To address this issue, the worker phase of WOA comprises extra prospective equations that
will significantly enhance the algorithm’s capacity for searching globally. Additionally, the
fundamental NMRA’s mating factor parameter λ is crucial in regulating the algorithm’s
performance and needs to be inspected for self-adaptive algorithms. This work considers
these two factors and utilizes the novel self-adaptive Whale Optimization-based NMRA
with the following key features:

• The worker phase of NMRA is improved by utilizing the hybrid concept of WOA
and NMRA.

• For carrying out the worker’s phase, the actual NMRA equations [36] are utilized for
the first half of iterations, and WOA’s mathematical equations [35] are utilized for the
second half.

• To make the algorithm self-adaptive and eliminate the need for user-driven parameter
customization, the simulated annealing (sa)-based mutation operator is used for the
major parameter (λ) of the fundamental NMRA.

WONMRA Approach: Its Requisites and Phases [34]

It is becoming harder and harder to decide which optimization method is best as new
ones continue to appear. A single optimization technique is insufficient for performance
evaluation of all domain research challenges, as demonstrated by the no free lunch (NFL)
theory. Therefore, it is necessary to find new optimization techniques based on modifica-
tions that can help with the resolution of a range of actual optimization issues. The key
justification for the addition of changes to the original algorithm is that every domain
research challenge can have a different set of circumstances, including size, complexity,
type (either limited or unconstrained), and dimension. It is challenging for researchers
to develop better versions and provide findings that are acceptable because of the high
dimensional difficulties and abundance of local minimal solutions. In this case, fundamen-
tal NMRA reduces algorithmic efficiency and suffers from weak exploration features. To
ensure that trustworthy exploration operations are carried out and to keep the algorithm
from being stuck in the local minima, a new equation for the worker phase must be cre-
ated. The addition of these new equations must be performed so as to avoid altering the
fundamental structure of the NMRA in any manner.

So, the WOA mathematical equations are included in the fundamental NMRA equa-
tions, and the entire search is run through a predetermined number of iterations. Through
the generation of random solutions and thorough investigation of every inch of the search
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area, the extra equations obtained from WOA are utilized to enhance the exploration prop-
erties of the suggested algorithm. Additionally, the mating factor λ parameter is altered to
become self-adaptive, negating the need for user interaction. It is assumed that the NMRA’s
original structure would remain intact.

The following Equation (1) [36] is utilized to initialize the search candidates randomly
within a given interval at the beginning of the process.

W Ni,j = W Nmin,j + rand(0, 1)×
(
W Nmax,j − W Nmin,j

)
(1)

In the above equation, i ϵ [1, 2, 3 . . . n], n represents the count of search candidates(mole-
rats), j ϵ [1, 2, 3 . . . d]; d is optimization problem dimension; W Nmin,j, and W Nmax,j are
the lower and upper boundaries of the test problem; W Ni,j represents the solution of the
ith search candidate for the jth dimension; and rand(0, 1) is randomly distributed in the
range [0, 1].

• Exploration Phase (Worker): The worker phase of WONMRA employs two randomly
selected search pool solutions to locate a nearly optimum solution. It has been found
after thorough investigation that the worker phase is less reliable and that more work
is required to enhance its functional features. Therefore, the worker phase of the
NMRA is enhanced by embracing the intrinsic qualities of WOA. So, the following
Equations (2)–(5) [34] of WOA are included in WONMRA, and the actual structure of
the algorithm remains intact.

→
X

t+1
=

→
H′.ebl .cos(2πl) +

→
X
∗t

(2)∣∣∣∣→H′ =
→
X
∗t
−

→
X

t∣∣∣∣ indicates the difference between the whale and the best candidate for

the prey. The logarithmic spiral form is represented by a constant value for b, and the
random distribution of l between −1 and 1. It is considered that there is a 50% possibility
of choosing a spiral model or a shrinking mechanism for carrying out exploitation, i.e., the
prey attacking. This can be quantitatively stated as the final equation:

→
X

t+1
=


→
X
∗t
−

→
F .

→
H i f u < 0.5

→
H′.ebl .cos(2πl) + X∗t i f u ≥ 0.5

(3)

The random number lies uniformly in the range [0, 1].

→
H =

∣∣∣∣→G.
→
Xrd −

→
X

t∣∣∣∣ (4)

→
X

t+1
= Xrd −

→
F .

→
H (5)

Xrd represents the randomly selected search candidate from the whole population.

• Exploiting Phase (Breeder): The actual fundamental NMRA structure is utilized to
carry out this phase of WONMRA. Breeder rats can only mate with the queen in
the global solution. It follows that the exploitation operation will take place at the
same time as the breeding phase. Exploitation is primarily used in the global search
phase because it searches for a solution that is almost identical to the best solution
currently in use and is expected to yield a global solution towards the conclusion of
the iterations. There have been no modifications made to the breeder phase of the new
proposed method (WONMRA), which is the same as the NMRA phase.

• Parameter adaptation: The suggested algorithm (WONMRA) heavily relies on the
mating factor λ of the fundamental NMRA. In the fundamental NMRA, this parameter
is specified by random values; hence, it needs to be changed to yield better results.
Thus, this parameter has been adjusted so that it does not require any adjustments at
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the user level. Thus, the best randomization results are obtained when parameter λ
is implemented using simulated annealing (sa)-based mutation [33]. The following
is the generalised equation [33] that was utilized to carry out the sa-based mutation
operation:

αk = αmin + (αmax − αmin)× bk−1 (6)

k, αmax, and αmin are constants in the range[0, 1], the value of b is 0.95.
• Greedy Selection: The WONMRA’s selection phase is regarded as its last stage. The

current work applies a greedy selection strategy, wherein a freshly generated solution
surpasses the solution from the prior generation and is replaced as the current local
best solution.

Equation (7) [33] provides the selection strategy for a generalised minimization process
with fitness f

(
W Ni

t
)

for the W Ni
t solution.

W Nt+1
new =

{
W Nnew i f f (W Nnew) < f

(
W Ni

t

)
W Nt

i otherwise
(7)

The pseudocode of WONMRA is explained below in Algorithm 1.

Algorithm 1: Pseudocode of WONMRA

Start:
Inputs: Define the random population of NMRs: (n)

Decide count of breeder mole-rats(B) = n/5
Decide count of worker rats(W) = n − B
Initialize breeding probability value (bp)
Define problem’s dimension (d)

Output: Evaluate best search candidate (Nbest)
while t ≤ maximum iteration count (tmax)

for i = 1:W
if Current iteration ≤ tmax/2

execution of NMRA worker phase
else

execution of WOA equations by (2), (3), (4) and (5)
end if

end for
for i = 1:B

if rand(0,1) > bp
execution of breeder phase

end if
end for

perform greedy selection by Equation (7)
update λ using sa mutation operator
unite new mole rats (W &B)
update (Nbest)
increment t

End while
Save Nbest
Stop

4. Localization Employing Exclusive Anchor Node

To locate moveable target nodes, a single anchor node is used. The unknown target
nodes are distributed randomly. The entire sensor area is divided into circular fields and
is located within the anchor node’s span. A beacon wave is sent by the anchor node to
let the moveable target nodes find themselves individually. Movable target nodes first
watch the beacon signal and gather the RSS data from the anchor node when they arrive
under the span of the anchor node. The distance between the anchor and target nodes is
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calculated after collecting RSS data. In order to investigate the localization of the moveable
target nodes, six virtual anchors are projected hexagonally at a 60◦ angle with the anchor
node, and two of them will be selected at random as a minimum of three reference nodes is
required. In this study, all nodes are assumed to have identical hardware configurations
and transmission ranges. Figure 2 explains the general localization procedure.
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The localization of the target node involves the following steps:

1. The 15 × 15 m2 area is filled with one anchor node and ‘N’ number of target nodes.
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2. The mobile target nodes falling within the exclusive anchor node’s span keep note of
the distances between the anchor and the target node as well as two virtual anchors
nearby since a minimum of three reference nodes count is taken as three to find
unknown nodes. Figure 3 displays the idea of the sensor field.

3. Then, WONMRA is used to assess unknown nodes’ positions.
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Figure 3 depicts the distance between the anchor node and each moving target node.
Each anchor node uses two virtual anchor nodes as a minimum of three reference nodes
are being taken to compute the two-dimensional position of the target node.

di =

√
(xt − x)2 + (yt − y)2 (8)

Here, (x, y) denotes the current locality of the anchor node, and (xt, yt) represents the
locality of the target node. Equation (9) estimates the Centroid position, and its representa-
tion is shown in Figure 4.

xc, yc =

(
x + xv1 + xv2

3
,

y + yv1 + yv2

3

)
(9)

The application of WONMRA to determine the parameters of a target node indicated
by (xs, ys) is shown in Figure 5. The objective is to decrease the gap between the calculated
and real node co-ordinates, which is stated in Equation (10):

f (xs, ys) =
1
M∑

(√
(xe − xi)

2 + (ye − yi)
2 − d̂i

)2
(10)

where M represents the count of beacons taken as greater than three in this study, (xe, ye)
represents the estimated position of the target node, and (xi, yi) represents the locality of
anchor node i in the neighbourhood of the target node.
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The localization error is computed by employing Equation (11) and is depicted in
Figure 6.

Et =
1

NL
∑

√
(xe − xt)

2 + (ye − yt)
2 (11)

The ideal position of the target node is computed for WONMRA till the stopping
condition is reached.
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5. Challenges in Localization

• Resource limitations: Nodes need to be extremely simple to deploy and inexpensive to
manufacture. The designers need to make a concerted effort to reduce the localization
algorithms’ power, hardware, and deployment costs. It must also be simple to deploy.

• Terrain irregularities and environmental barriers: These factors can also have a sig-
nificant negative impact on localization. For example, in an outdoor setting, large
boulders may block the line of sight, making TDoA ranging impossible, or they may
interfere with radio signals, causing errors in RSSI ranges and erroneous hop count
ranges. Measurements can also be hampered indoors by walls. Since genuine deploy-
ments are likely to encounter all of these problems, localization systems ought to be
equipped to handle them.

• Security: The primary concern in localization is security since, when data are moved
from a beacon node to an anchor node, any insecure mobile beacons that act as original
mobile beacons may transmit misleading messages, causing an error that could be
detrimental to computation.

• Density of Nodes: The node density affects a lot of localization algorithms. For exam-
ple, in order to ensure that the hop count approximation for distance is accurate, hop
count-based methods generally require high node density. When a region’s beacon
density is insufficient, algorithms that rely on beacon nodes malfunction. Implicit den-
sity assumptions are crucial when developing or evaluating algorithms since, in certain
cases, achieving high node density might be costly, if not completely impractical.

6. Simulation Parameters, Results, and Analysis

The simulations were carried out in MATLAB, taking 20 movable target nodes along
with a single anchor node by employing the different optimization algorithms, including
FA, BBO, PSO, HPSO, NMRA, WOA, and WONMRA. On a MacBook Air having RAM
4 GB and an i5 processor, the simulations were run. The anchor node is kept in the centre of
the 15 × 15 m2 sensor area and is stationary. The anchor node keeps sending beacon signals
to all the nodes in the sensor area. The target nodes are dispersed across the sensor area
initially and their random locations are taken. Then, mobility is applied to target nodes.
Whenever the movable target node enters into the anchor node’s span, the signal is received
from the anchor node, the received signal strength value is taken at the target node, and
six virtual nodes are projected at different orientations of 60◦ in all directions. Then, the
anchor and two virtually projected anchor nodes from six are considered to compute the
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co-ordinates of the undiscovered node. When virtual anchor nodes are employed, LOS
problems can also be minimized. Numerous simulations are performed using FA, BBO,
PSO, HPSO, NMRA, WOA, and WONMRA optimization algorithms in order to assess
the different optimization algorithms’ effectiveness in achieving accuracy in localizing the
target node. On a sensor area of 15 × 15 m2, simulations were run. Even though virtual
anchors more than six can be employed, in this case six virtual anchors are required to
satisfy the condition for selecting the three closest anchor nodes when locating nodes in a
two-dimensional scenario.

Table 1 displays the co-ordinates for the anchor node and virtual anchor nodes. Table 2
displays the calculated distance between the target nodes, anchor nodes, and virtual anchor
nodes. In this work, the anchor node is used first, and five different movements are taken
into consideration for the motion of all target nodes.

Table 1. Virtual anchor nodes and anchor node co-ordinates.

Co-ordinates AN VAN1 VAN2 VAN3 VAN4 VAN5 VAN6

X 7.5 11.131 6.310 3.539 5.565 8.810 11.527
Y 7.5 10.464 10.899 6.841 4.464 3.953 5.639

Virtual anchor node (VAN), anchor node (AN).

Table 2. Distance estimation between anchor node and target nodes deployed in the area.

S. No. AN VAN1 VAN2 VAN3 VAN4 VAN5 VAN6

TN:1 6.101 7.988 9.866 8.769 6.028 1.598 3.376
TN:2 5.248 5.334 8.679 9.237 9.421 6.342 1.365
TN:3 8.576 9.345 4.784 8.278 11.775 12.461 12.718
TN:4 4.928 7.459 8.877 8.455 6.225 3.528 3.192
TN:5 9.468 5.039 9.875 11.745 12.442 12.219 6.457
TN:6 5.969 5.232 2.739 7.221 10.348 10.844 7.953
TN:7 5.739 8.319 10.543 10.314 7.723 3.454 2.589
TN:8 6.286 1.777 5.320 8.993 10.351 9.289 5.406
TN:9 9.549 11.485 11.133 7.631 4.774 9.420 12.363

TN:10 7.465 9.354 12.463 11.432 10.131 5.357 1.784
TN:11 7.378 7.256 10.189 11.741 11.693 7.873 2.082
TN:12 6.656 5.585 1.651 6.732 10.155 11.395 8.787
TN:13 8.313 11.634 11.877 7.237 3.521 7.631 10.730
TN:14 8.289 12.689 12.212 7.934 3.788 7.267 10.722
TN:15 5.497 5.123 8.791 10.859 10.461 7.152 1.576
TN:16 5.763 7.588 10.446 10.110 7.333 3.128 2.893
TN:17 9.214 5.647 10.665 11.431 13.615 10.646 4.797
TN:18 4.433 3.189 3.210 6.389 8.727 9.235 6.786
TN:19 9.235 12.861 10.865 6.101 6.581 9.899 12.438
TN:20 6.469 9.756 5.989 1.545 7.457 10.121 10.479

Target node (TN), virtual anchor node (VAN), anchor node (AN).

Table 3 lists the strategic parameters for each algorithm, including FA, PSO, BBO,
HPSO, NMRA, WOA, and WONMRA. Each moveable target node will employ the FA,
PSO, BBO, HPSO, NMRA, WOA, and WONMRA optimization strategies to discover on its
own within the suggested framework.

The test is administered utilizing a mobility-based environment. The mean of the
localizing error specified in Equation (8) is referred to as a fitness function.

Figures 7–13 display the results of localization using a variety of optimization ap-
proaches, including FA, PSO, BBO, HPSO, NMRA, WOA, and WONMRA. Table 4 displays
network parameters established in the network and the results of localization using a
variety of optimization approaches. It shows the accuracy achieved with each optimization
algorithm by calculating the mean localization error and number of target nodes local-
ized in the network. As depicted in Figures 7–13, the optimization techniques were run
for five different movements following a given period. The process is repeated for each
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interval. Compared to various meta-heuristics, WONMRA has the lowest localization
error; followed by HPSO; then PSO, BBO, NMRA, WO; and lastly, FA has the highest
localization error.

Table 3. Parameters selection for optimization algorithms.

Algorithm Parameters Values

FA M = 20; D = 2; Imax = 50; α = 0.2; γ = 0.96
PSO M = 20; D = 2; Imax = 50; w = 0.729; c1, c2 = 2
BBO M = 20; D = 2; Imax = 50; pm = 0.05
HPSO M = 20; D = 2; Imax = 50; c1, c2, c3 = 1.494; w = 0.729; η = 0.1
NMRA M= 20; D = 2; Imax = 50; bp = 0.05; λ = rand [0, 1]
WOA M = 20; D = 2; Imax = 50;
WONMRA M = 20; D = 2; Imax = 50; bp = 0.05; λ = simulated annealing mutation operator (adaptive)

Here, D denotes the problem dimensions, M refers to the population size, Imax is the number of iterations.

Table 4. Comparative analysis of meta-heuristic algorithms in determining error in localization.

Algorithm
Used

No. of
Movements

Localized
Target Nodes

Transmission
Range

Maximum
Localization Error

Minimum
Localization Error

Average
Error

PSO 1 20 10 1.8913 0.1523 0.6845
2 20 10 3.7321 0.2287 1.1323
3 20 10 2.8756 0.1310 0.8276
4 20 10 1.9012 0.2210 0.5943
5 20 10 1.3534 0.1589 0.7512

HPSO 1 20 10 0.7934 0.1145 0.2267
2 20 10 0.9932 0.0971 0.3376
3 20 10 0.5745 0.0421 0.3398
4 20 10 0.6912 0.2110 0.3462
5 20 10 0.5423 0.2165 0.2234

BBO 1 20 10 1.4456 0.0276 0.3890
2 20 10 1.4765 0.0913 0.8213
3 20 10 1.4745 0.0308 0.6915
4 20 10 1.4623 0.0321 0.7947
5 20 10 1.5512 0.0543 0.9387

FA 1 20 10 4.6073 0.3834 2.3534
2 20 10 5.7834 0.5813 3.0586
3 20 10 4.7565 0.0292 2.5695
4 20 10 5.1610 0.2402 3.1367
5 20 10 4.5801 0.1990 2.5648

NMRA 1 20 10 1.5467 0.8789 1.4577
2 20 10 3.6785 0.9134 1.6754
3 20 10 2.5643 0.5642 1.8061
4 20 10 2.8976 0.4536 1.4532
5 20 10 3.4321 0.1254 0.9832

WOA 1 20 10 5.4563 0.0781 0.7861
2 20 10 4.8976 0.5671 0.3425
3 20 10 3.2341 0.4561 1.8976
4 20 10 2.6759 0.8796 1.0432
5 20 10 1.5672 0.8690 1.0562

WONMRA 1 20 10 0.5518 0.0943 0.2284
2 20 10 0.6254 0.0687 0.3207
3 20 10 0.5945 0.0289 0.2946
4 20 10 0.6198 0.1897 0.2862
5 20 10 0.4876 0.1789 0.1999
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Figure 7. Node localization using FA.
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Figure 8. Node localization using PSO.
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Figure 10. Node localization using HPSO.
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Figure 12. Node localization using WOA.
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The best anticipated localized node position is indicated in the fifth run for each
optimization approach by a “+” sign in Figures 7–13.

7. Conclusions

Localization is one of the most urgent issues with WSNs. It is important to trace the
occurrence of a particular event with the help of sensor nodes deployed in the 2D as well
as 3D Wireless Sensor Networks. For this reason, we need anchor nodes that have GPS
installed in them. However, all the nodes cannot have GPS installed in them because that
will increase the cost of the network. One thing that can be performed is the minimization
of the count of anchor nodes in the network and the use of these anchor nodes as a reference
for the calculation of co-ordinates of other nodes in the network. In many research papers,
2–3 anchor nodes are used to identify the location of unknown target nodes. But this work is
carrying out localization utilizing a single anchor node and its projection using WONMRA
at six different orientations within the circle. Two virtual anchor nodes are chosen together
with an anchor node when a target node enters the anchor node’s span because, at the
minimum, three nodes are needed to locate the target node’s 2D parameter values. Then,
the error in localizing the nodes is computed by employing the meta-heuristic techniques
FA, BBO, HPSO, PSO, NMRA, WOA, and WONMRA, and the results showed that the
WONMRA excels with respect to mean localization error when compared to competing
approaches. It has a minimum mean localization error of 0.1999, and the error computed
by HPSO is 0.2234, which is in close proximity to WONMRA but is not the least value.
Applications for this algorithm include tracking animals, logistics, and locating people in
coal mines. For better accuracy and faster convergence, a different meta-heuristic technique
can be used in the future.
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