
Querying Structural Diversity in Streaming Graphs
Kaiyu Chen

The University of New South Wales

Australia

kaiyu.chen1@unsw.edu.au

Dong Wen

The University of New South Wales

Australia

dong.wen@unsw.edu.au

Wenjie Zhang

The University of New South Wales

Australia

wenjie.zhang@unsw.edu.au

Ying Zhang
∗

Zhejiang Gongshang University

China

ying.zhang@zjgsu.edu.cn

Xiaoyang Wang

The University of New South Wales

Australia

xiaoyang.wang1@unsw.edu.au

Xuemin Lin

Shanghai Jiao Tong University

China

xuemin.lin@sjtu.edu.cn

ABSTRACT
Structural diversity of a vertex refers to the diversity of connections

within its neighborhood and has been applied in various fields such

as viral marketing and user engagement. The paper studies query-

ing the structural diversity of a vertex for any query time windows

in streaming graphs. Existing studies are limited to static graphs

which fail to capture vertices’ structural diversities in snapshots

evolving over time. We design an elegant index structure to signifi-

cantly reduce the index size compared to the basic approach. We

propose an optimized incremental algorithm to update the index

for continuous edge arrivals. Extensive experiments on real-world

streaming graphs demonstrate the effectiveness of our framework.
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1 INTRODUCTION
In graph analysis, structural diversity [21] of a vertex is the num-

ber of connected components with sizes exceeding a predefined

threshold in the induced subgraph of its neighbors. The connected

components in a graph refer to subsets of vertices where each vertex

is connected to other vertices in the subset, while vertices in differ-

ent subsets are not connected. In social contagion, an individual’s

engagement with a phenomenon strongly correlates to the struc-

tural diversity of the individual’s contact neighborhood. Individuals

with diverse connections within their networks are more likely to

engage with a particular idea or behavior. Previous studies have

applied the concept of structural diversity to analyze the growth of

Facebook users and predict the social contagion process [21].
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Applications. Structural diversity has been applied in various

fields, such as user recruitment, user engagement, and viral mar-

keting. We present several instances as follows.

- User Engagement. User engagement is a crucial metric for social

networks. In a previous work [4], researchers utilized structural

diversity to predict potential new paying customers, which can

effectively advertise against potential customers and increase the

conversion rate. In addition, structural diversity can be applied to

recommendation systems [13, 18], as well as to analyze the strength

of connections in social networks [19], and also to select trending

topics [31]. By leveraging structural diversity, these applications

enhance user engagement and promote active user participation.

- Virality Prediction. Virality in social networks is often character-

ized by a significant increase in spread. Previous research has shown

that structural diversity can be used to effectively differentiate be-

tween viral and non-viral cascades, demonstrating its potential for

understanding and predicting information propagation [6, 7]. In ad-

dition, structural diversity finds utility in predicting the popularity

of content [1]. By leveraging structural diversity, these applications

enable better prediction and management of viral phenomena.

Existing Studies. Existing techniques for structural diversity are

most limited to static graphs. They study top-𝑘 structural diversity

search, aiming to identify the 𝑘 vertices with the highest structural

diversity [2, 11, 12]. Building upon this line of research, [32] ex-

plores top-𝑘 edge structural diversity search, aiming to identify

the 𝑘 edges with the highest structural diversity. In addition to

the top-𝑘 search, various structural diversity models have been

proposed, such as the truss-based structural diversity model [8] to

enhance the decomposability for analyzing large-scale networks

and the parameter-free structural diversity model [9, 10] to address

the model sensitivity problem associated with the size threshold.

Real graphs often exhibit dynamic behaviors and are presented

as data streams that undergo continuous changes. Streaming graphs

provide a way to represent and analyze the evolving nature of com-

plex systems, making them well-suited for modeling and analyzing

real-world phenomena, enabling the identification of interaction

patterns, changemonitoring, and real-time analysis [22, 23, 27]. Typ-

ical application scenarios of streaming graphs include co-authorship

in collaboration networks, emails in communication networks, user

messages in social networks, etc.

Our Problem. To the best of our knowledge, the problem of query-

ing structural diversity in streaming graphs has not been studied.

Given a streaming graph, we study the problem of computing the
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structural diversity of a query vertex in the snapshot of an arbitrary

query window, a.k.a. historical queries [25, 26, 30]. The snapshot

is the induced graph of all edges arriving in the query time win-

dow. The application of querying structural diversity in streaming

graphs is a natural extension of its application in static graphs.

For instance, by analyzing streaming data in real-time, we can pre-

dict the popularity of content without delay and adjust marketing

strategies accordingly. Furthermore, streaming graph processing

techniques can be extended to accelerate offline analysis. Given

the continuous edge insertions in streaming graphs, it is infeasible

to create a new index from scratch each time to support historical

queries. Therefore, we aim to incrementally maintain an index for

efficient update and query processing. Note that our techniques can

be also extended to handle the sliding window model [3, 5, 16, 17],

which is widely studied in streaming graphs. The sliding window

model only studies queries for the latest window with a fixed win-

dow size. Our experiments demonstrate that our approach for the

sliding window model is more efficient than a reasonable baseline.

Straightforward Solutions and Challenges. Existing works ob-

serve that structural diversity computation is closely related to

triangle enumeration [2, 11, 12]. A straightforward online method

is to collect the neighbors of the query vertex in the snapshot and

then compute the vertex structural diversity by listing and process-

ing all its triangles. The computation of its triangles requires its

two-hop neighbors and takes 𝑂 (𝑑2) time, where 𝑑 is the average

vertex degree. However, the vertex degree in real-world graphs can

be very large, and users may investigate the structural diversity of

numerous vertices in downstream applications. The inefficiency of

the online solution motivates us to develop an index-based solution.

A basic index is to incrementally maintain all vertex structural di-

versities for all possible query windows. To reduce the index space,

an optimization is to assign a total order for all time windows and

only record the changed structural diversity values compared with

the previous ones in the order. To handle new incoming edges, we

compute structural diversities for all new windows. Given the large

volume of edges and possible time windows, the basic solution may

take huge space and computational costs for handling new edges.

For the huge index space, the pruning effectiveness of the basic

solution is limited because of non-monotonicity and unbounded

updates of structural diversity. Considering adding a set of edges

to a snapshot, the structural diversity of a vertex may increase or

decrease. Therefore, the number of changed structural diversity of a

vertex in an order of continuous time windows cannot be bounded.

The high computational cost by new edges is for computing all

triangles and the structural diversities for all new windows.

Our Approach. To tackle the above challenges, we present a new

framework comprising an elegant index structure and an optimized

incremental update algorithm. Our framework groups all time win-

dows by their ending time. To reduce the index space, we observe

that structural diversity can be effectively derived from an arith-

metic combination of two monotonic properties of each vertex,

called neighborhood cohesion and size-bounded neighborhood co-

hesion. The monotonicity means the value never decreases when

arbitrary edges are inserted into the snapshot. Given a specific

ending time, the monotonicity enables us to bound the number of

different (size-bounded) neighborhood cohesion for windows of all

start times by the vertex degree.

To handle new arriving edges, we update the index group for the

previous end time to that for the new end time. Updating structural

diversity is equivalent to updating all triangles. To improve the up-

date efficiency, we losslessly compress triangles for all possible start

times into a set of triangles with time labels on each triangle edge,

called temporal triangles. To update the index, we directly update

the temporal triangles by considering their active times, instead

of updating triangles for windows of every start time. Leverag-

ing the temporal triangles, we develop an optimized algorithm for

incrementally updating the index when a set of new edges arrives.

Contributions. We summarize the main contributions as follows.

- A framework for historical structural diversity queries. We formu-

late the problem of querying structural diversity for an arbitrary

window in streaming graphs. As far as we know, the problem has

never been studied. The solution can also be extended for the sliding

window model in streaming graphs.

- An elegant index structure. We introduce a new concept, named

conditional neighborhood cohesion, from which structural diver-

sity can be derived. By exploiting the monotonic properties of the

concept, we design a novel index structure, called PNC-Index. The

index size is bounded by𝑂 (𝑚1.5 +𝑚 · 𝑡), where𝑚 is the number of

edges and 𝑡 is a small value in practice.

- An optimized incremental update algorithm.Wepropose a new con-

cept called the temporal triangle to compress triangles for different

time windows. By utilizing temporal triangles, we develop an opti-

mized algorithm to incrementally update the index when new edges

arrive. The algorithm running time is bounded by 𝑂 (△+ · log𝑑),
where △+ represents the state-of-the-art time complexity to incre-

mentally enumerate triangles and 𝑑 is the average vertex degree.

- Extensive performance studies.We conduct extensive experiments

on 14 real-world streaming graphs. The results verify the effective-

ness of our index and the efficiency of our update algorithm.

2 PRELIMINARIES
We study an undirected streaming graph G(V, E) where V is

a set of vertices and E is a set of edges. Each edge 𝑒 ∈ E is a

triplet (𝑢, 𝑣, 𝑡) where 𝑢 and 𝑣 are two terminal vertices and 𝑡 is the

arrival time. We use 𝑛 and𝑚 to denote |V| and |E |, respectively.
We assume that multiple edges may arrive at the same time and

are labeled with the same timestamp consequently. We use 𝑡𝑚𝑎𝑥

to denote the latest edge arrival time at a certain time point. The

snapshot (or the projected graph) 𝐺 (𝑉 , 𝐸) over a time window

[𝑡𝑠 , 𝑡𝑒 ] is a simple graph induced by all edges arriving in [𝑡𝑠 , 𝑡𝑒 ],
i.e., 𝐸 = {(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡) ∈ E, 𝑡 ∈ [𝑡𝑠 , 𝑡𝑒 ]},𝑉 = {𝑢 |∃(𝑢, 𝑣) ∈ 𝐸}.

We use 𝑁 (𝑢) to denote the neighbors of 𝑢. In the context of

streaming graphs, 𝑁 (𝑢) is a set of pairs where each pair includes

a neighbor ID and an arrival time of the edge. In the context of a

snapshot (a simple graph), 𝑁 (𝑢) is a set of vertices. We use 𝐺 [𝑆]
to denote the induced subgraph of a vertex set 𝑆 in a snapshot 𝐺

and use 𝑉 (𝐸) to denote all vertices in an edge set 𝐸. The neighbor-

hood induced subgraph of a vertex 𝑢 in a snapshot 𝐺 , denoted by

𝐺 [𝑁 (𝑢)], is the subgraph of 𝐺 induced by all neighbors of 𝑢.

Definition 1. (Structural Diversity [21]) Given a snapshot

𝐺 and a size threshold 𝜏 ≥ 1, the structural diversity of a vertex 𝑢,

denoted by 𝑆𝐷 (𝑢), is the number of connected components in𝐺 [𝑁 (𝑢)]
whose size, measured by the number of vertices, is not smaller than 𝜏 .
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Figure 1: Representing an edge stream as a labeled graph.
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Figure 2: The snapshot of G over the time window [3, 7] and
the neighborhood induced subgraph of 𝑣6.

Example 1. Figure 1 shows a labeled graph view of an edge stream

G. Given the snapshot of G for [3, 7] shown in Figure 2, The connected
components in 𝐺 [𝑁 (𝑣6)] are {𝑣1, 𝑣2, 𝑣5}, {𝑣8, 𝑣9} and {𝑣10}. If the
size threshold 𝜏 is set to 2, then 𝑆𝐷 (𝑣6) = 2.

Problem Statement.We aim to incrementally maintain an index to

efficiently query vertex structural diversity for an arbitrary window

[𝑡𝑖 , 𝑡 𝑗 ] with 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑡𝑚𝑎𝑥 in a streaming graph.

We will mainly study techniques for arbitrary window queries in

this paper. Our techniques can be extended for the sliding window

queries, which is commonly used in many streaming graphs studies.

Sliding Window Query. Given a predefined fixed time duration

(window size) 𝜃 , the sliding window query aims to incrementally

maintain an index to efficiently query vertex structural diversity

in [𝑡𝑚𝑎𝑥 − 𝜃, 𝑡𝑚𝑎𝑥 ]. We will show how to extend our techniques

for sliding window queries in Section 6. Our solution achieves

higher efficiency compared with the reasonable baseline. For ease of

presentation, we assume the timestamp starts from 1 and increases

by 1 each time. As a result, we have 𝑡𝑚𝑎𝑥 distinct timestamps when

the latest edges arrive at 𝑡𝑚𝑎𝑥 .

3 STRAIGHTFORWARD METHODS
3.1 The Online Algorithm
Existing methods observe that computing structural diversities is

closely related to enumerating triangles [2, 11, 12]. Specifically,

given a triangle ⟨𝑢, 𝑣,𝑤⟩, we identify that 𝑣 and𝑤 are connected in

the neighborhood induced subgraph of𝑢. With all triangles of𝑢, we

can identify all edges and all connected components in 𝐺 [𝑁 (𝑢)].
To maintain the number of connected components, a disjoint-set

data structure [20] is often adopted to merge connected neighbors

[2, 11, 12]. Given a set of items, the disjoint-set data structure

provides two operations, find() and union(). find() returns the
identifier of the set containing the input item, and union() merges

the sets of two input items. Each set is implemented as a tree

Algorithm 1: SD-Online
Input: a graph 𝐺 , a threshold 𝜏 , a vertex 𝑢
Output: structural diversity of 𝑢

1 if 𝜏 > 1 then 𝑆𝐷 (𝑢) = 0;

2 else 𝑆𝐷 (𝑢) = 𝑑𝑒𝑔(𝑢);
3 initialize a disjoint-set for 𝑁 (𝑢);
4 foreach 𝑣 ∈ 𝑁 (𝑢) do
5 mark 𝑣 as visited;

6 foreach 𝑣 ∈ 𝑁 (𝑢) do
7 foreach𝑤 ∈ 𝑁 (𝑣) : 𝑣 ≺ 𝑤 do
8 if 𝑤 is visited then UpdateSD(𝑢, 𝑁 (𝑢), 𝑣,𝑤);

9 Procedure UpdateSD(𝑢, 𝑆, 𝑣,𝑤)
10 𝑟𝑣 ← 𝑆.find(𝑣);
11 𝑟𝑤 ← 𝑆.find(𝑤);
12 if 𝑟𝑣 = 𝑟𝑤 then return;
13 if 𝑟𝑣 .𝑠𝑖𝑧𝑒 ≥ 𝜏 then 𝑆𝐷 (𝑢) ← 𝑆𝐷 (𝑢) − 1;
14 if 𝑟𝑤 .𝑠𝑖𝑧𝑒 ≥ 𝜏 then 𝑆𝐷 (𝑢) ← 𝑆𝐷 (𝑢) − 1;
15 𝑟 ← 𝑆.union(𝑣,𝑤);
16 if 𝑟 .𝑠𝑖𝑧𝑒 ≥ 𝜏 then 𝑆𝐷 (𝑢) ← 𝑆𝐷 (𝑢) + 1;

structure for find() and union(). Based on the optimizations of path

compression and union by size/rank, both of the operations can be

completed in𝑂 (𝛼 (𝑛)) amortized time [20], where 𝛼 () is the inverse
Ackermann function and𝑛 is the number of items.𝛼 (𝑛) is less than 5
in practice. In Algorithm 1, we present the pseudocode of computing

the structural diversity of a query vertex 𝑢 in a simple graph 𝐺 ,

which is self-explanatory. It computes triangles of 𝑢 and adopts

the disjoint-set structure to incrementally compute the number of

connected components for 𝑢.

Lemma 1. The time complexity of Algorithm 1 is 𝑂 (𝑑2) where 𝑑
is the average degree.

Note that computing structural diversities of all vertices can

be achieved in 𝑂 (𝑚1.5), where 𝑂 (𝑚1.5) is the time complexity to

enumerate all triangles [14, 15, 28].

Solving Our Problem. To compute structural diversity for a query

window, we can store neighbors and corresponding timestamps of

each vertex in chronological order. New coming edges are naturally

appended to the end of neighbor lists. We still use 𝑑 to represent the

average number of edges connecting to a vertex. It takes 𝑂 (log𝑑)
time to locate the first neighbor of a vertex in the snapshot. Comput-

ing triangles of 𝑢 requires two-hop neighbors of 𝑢 in the snapshot.

Therefore, the online algorithm to compute the structural diversity

of a vertex takes 𝑂 (𝑑 · log𝑑 + 𝑑2), which can be reorganized as

𝑂 (𝑑2). The degree of a vertex in real graphs can be very large, and

users may investigate the structural diversity of multiple vertices.

The efficiency of the online method is not satisfactory.

3.2 A Straightforward Index
A straightforward idea is to incrementally maintain structural di-

versities of all vertices for all time windows. Assume the next

edges arrive at 𝑡𝑛𝑒𝑤 . We update the index by computing vertex

structural diversities of all additional windows, i.e., [𝑡𝑠 , 𝑡𝑛𝑒𝑤] for
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Algorithm 2: Base-Update
Input: 𝑡𝑛𝑒𝑤 and 𝐸𝑛𝑒𝑤
Output: the updated structural diversities for all start times

1 foreach possible start time 𝑡𝑠 in decreasing order do
2 if 𝑡𝑠 = 𝑡𝑛𝑒𝑤 then
3 foreach 𝑢 ∈ V do
4 initialize a disjoint-set for 𝑁 [𝑡𝑛𝑒𝑤 ,𝑡𝑛𝑒𝑤 ] (𝑢);
5 𝑇 ← compute all triangles in G[𝑡𝑛𝑒𝑤 , 𝑡𝑛𝑒𝑤];
6 else
7 foreach (𝑢, 𝑣) ∈ 𝐸𝑡𝑠 do
8 𝑁 [𝑡𝑠 ,𝑡𝑛𝑒𝑤 ] (𝑢) ← 𝑁 [𝑡𝑠+1,𝑡𝑛𝑒𝑤 ] (𝑢) ∪ {𝑣};
9 𝑁 [𝑡𝑠 ,𝑡𝑛𝑒𝑤 ] (𝑣) ← 𝑁 [𝑡𝑠+1,𝑡𝑛𝑒𝑤 ] (𝑣) ∪ {𝑢};

10 𝑇 ← compute new triangles by adding edges 𝐸𝑡𝑠 to

the snapshot G[𝑡𝑠 + 1, 𝑡𝑛𝑒𝑤];
11 foreach ⟨𝑢, 𝑣,𝑤⟩ ∈ 𝑇 do
12 UpdateSD(𝑢, 𝑁 [𝑡𝑠 ,𝑡𝑛𝑒𝑤 ] (𝑢), 𝑣,𝑤);
13 UpdateSD(𝑣, 𝑁 [𝑡𝑠 ,𝑡𝑛𝑒𝑤 ] (𝑣), 𝑢,𝑤);
14 UpdateSD(𝑤, 𝑁 [𝑡𝑠 ,𝑡𝑛𝑒𝑤 ] (𝑤), 𝑢, 𝑣);

all 1 ≤ 𝑡𝑠 ≤ 𝑡𝑛𝑒𝑤 . Specifically, the approach computes trian-

gles for all snapshots ending at 𝑡𝑛𝑒𝑤 (i.e., considering all possi-

ble start times) and derives structural diversities accordingly. In-

stead of enumerating triangles for each window from scratch,

we dynamically compute new triangles for each [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ] from
[𝑡𝑠 + 1, 𝑡𝑚𝑎𝑥 ]. The pseudocode for the incremental index update

procedure is presented in Algorithm 2. In line 8, 𝑁 [𝑡𝑠 ,𝑡𝑛𝑒𝑤 ] (𝑢)
represents the neighbors of 𝑢 in the snapshot of [𝑡𝑠 , 𝑡𝑛𝑒𝑤], i.e.,
𝑁 [𝑡𝑠 ,𝑡𝑛𝑒𝑤 ] (𝑢) = {𝑣 | (𝑢, 𝑣, 𝑡) ∈ E, 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑛𝑒𝑤}. In line 10, 𝐸𝑡𝑠
denotes the edges arrived at 𝑡𝑠 . For each new time 𝑡𝑛𝑒𝑤 , we pro-

cess each possible start time 𝑡𝑠 in decreasing order from 𝑡𝑛𝑒𝑤 (line

1). When 𝑡𝑠 = 𝑡𝑛𝑒𝑤 , we initialize a disjoint-set structure for each

vertex in lines 3–4 and compute all triangles in the snapshot of

[𝑡𝑛𝑒𝑤 , 𝑡𝑛𝑒𝑤] (line 5). For subsequent start times, we update the

neighbors of each vertex in lines 8–9 and compute new triangles

for the snapshot (line 10). Lines 11–14 incrementally update the

disjoint-set structure for each vertex, and the structural diversity

value is also updated as a result.

Lemma 2. Given a set of new/expired edges 𝐸𝑛𝑒𝑤 , updating tri-

angles can be done in 𝑂 (∑⟨𝑢,𝑣⟩∈𝐸𝑛𝑒𝑤 min(𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣)) +𝑚𝑖𝑛𝑓 )
time, where𝑚𝑖𝑛𝑓 is the number of edges in the influenced graph, i.e.,

𝑚𝑖𝑛𝑓 = |∑𝑢∈𝑉 (𝐸𝑛𝑒𝑤 ) 𝑑𝑒𝑔(𝑢) | [29].
Note that 𝑑𝑒𝑔(𝑢) in the lemma refers to the degree of 𝑢 in the

new graph. The time complexity in Lemma 2 also holds for the case

of computing all triangles in the induced subgraph of 𝐸𝑛𝑒𝑤 (line

5). For simplicity, we use △+ to denote the above time complexity

of updating triangles. More technical details on updating triangles

will be covered in Section 5.

Lemma 3. The time complexity of Algorithm 2 is 𝑂 (△+ · 𝑡𝑚𝑎𝑥 ),
where 𝑡𝑚𝑎𝑥 is the number of all possible start times.

Given a streaming graph with 𝑡𝑚𝑎𝑥 distinct timestamps, we

perform Algorithm 2 for each arriving time for index construction.

Therefore, the total index construction time is 𝑂 (△+ · 𝑡2𝑚𝑎𝑥 ).

Pruning the Index Space. Let 𝑡𝑚𝑎𝑥 be the number of different

timestamps at a certain time point. It is easy to see that the basic

index space reaches𝑂 (𝑛𝑡2𝑚𝑎𝑥 ), which is extremely large. To reduce

the index space, an optimization is to assign a total order for all

time windows. For each vertex, the structural diversity for a win-

dow would not be indexed if it is the same as that for the previous

window in the order. We follow the order of windows processed

in Algorithm 2. Given the new time 𝑡𝑛𝑒𝑤 , the algorithm first pro-

cesses [𝑡𝑛𝑒𝑤 , 𝑡𝑛𝑒𝑤] and decreases the starting time to 1. Given two

windows [𝑡𝑠 , 𝑡𝑒 ] and [𝑡 ′𝑠 , 𝑡 ′𝑒 ] in the order, we have [𝑡𝑠 , 𝑡𝑒 ] ≺ [𝑡 ′𝑠 , 𝑡 ′𝑒 ]
if 1) 𝑡𝑒 < 𝑡 ′𝑒 or 2) 𝑡𝑒 = 𝑡 ′𝑒 ∧ 𝑡𝑠 > 𝑡 ′𝑠 . For each new window (at the end

of each iteration of line 1), we check if the structural diversity of a

vertex is the same as that in the previous window. If so, the value is

pruned. This optimized index structure is referred to as Base-Index.

We only record the changed structural diversity value and the cor-

responding window. Consequently, the index size is reduced to

𝑂 (𝑛 · 𝑡𝑏𝑎𝑠𝑒 ), where 𝑡𝑏𝑎𝑠𝑒 is the average number of values stored for

each vertex and 𝑡𝑏𝑎𝑠𝑒 < 𝑡2𝑚𝑎𝑥 . Given a vertex and a window, it takes

𝑂 (log 𝑡𝑏𝑎𝑠𝑒 ) time to query the structural diversity of the vertex

via binary search. The value of 𝑡𝑏𝑎𝑠𝑒 depends on the update fre-

quency of structural diversity values across consecutive windows.

We report 𝑡𝑏𝑎𝑠𝑒 for real-world datasets in our experiments.

4 OUR APPROACH
4.1 Drawbacks of the Baseline
Considering the index method in Section 3.2, one of the drawbacks

lies in the extremely large space usage. The structural diversity of

a vertex may frequently change when varying the window. That

degrades the effectiveness of the pruning rule. The reasons for

frequent structural diversity updates are twofold. The first one is the

non-monotonicity of the structural diversity. Given a simple graph

𝐺 and a set of new edges, the structural diversity of an arbitrary

vertex 𝑢 in 𝐺 can either increase or decrease. The second reason

is unbounded updates of the structural diversity. The structural

diversity value of a vertex is bounded by its degree in a simple graph.

However, the structural diversity of a vertex 𝑢 is computed via two-

hop neighbors, and the structural diversitymay change even though

𝑢 does not have any new neighbors. Because of these two reasons,

the structural diversity of each vertexmay changemany timeswhen

varying the window. Given a streaming graph G and a vertex 𝑢, the

number of different structural diversity values of 𝑢 for all windows

ending at 𝑡𝑚𝑎𝑥 can reach 𝑂 (𝑑𝑒𝑔(𝑢)2) where 𝑑𝑒𝑔(𝑢) is the number

of edges connecting 𝑢 in G. Considering all vertices and all possible
end times, the total space will be 𝑂 (𝑛 · 𝑡𝑚𝑎𝑥 · 𝑑2) where 𝑑 is the

average degree. Although the baseline method optimizes the index

structure by only maintaining the changing structural diversity

values and their corresponding timestamps, the worst-case space

is still large according to the above analysis. The other drawback

of the basic index is the inefficiency of incremental updates. The

algorithm updates triangles for 𝑡𝑚𝑎𝑥 times of edge insertions. It is

costly when edges continuously arrive and 𝑡𝑚𝑎𝑥 increases.

4.2 A Novel Index via Monotonic Properties
The New Framework.We propose a new framework to address

the above challenges. Our idea breaks down the problem into two

sub-problems. The first is to index structural diversities of each
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Figure 3: The NC and SNC hierarchies of 𝑣6 for 𝑡𝑒 = 9 (𝜏 = 2)
in the streaming graph G of Figure 1.

vertex for all windows ending at a time 𝑡𝑚𝑎𝑥 . We have observed

several properties to reduce the index size to a reasonably small

value with a theoretical guarantee. The second sub-problem is to

design an algorithm to update the index when new edges arrive

and 𝑡𝑚𝑎𝑥 increases to 𝑡𝑚𝑎𝑥 + 1. For each vertex, the index for the

new ending time is pruned if it is the same as the last one. In the

rest, we mainly discuss how to address the two sub-problems.

Index for One End Time. To index structural diversities effec-

tively, we propose a novel index method based on the discovery of

two monotonic vertex properties. Let 𝑆𝐷𝑐𝑜𝑛𝑑 (𝑢) denote the num-

ber of connected components with sizes satisfying the condition

𝑐𝑜𝑛𝑑 . For instance, 𝑆𝐷≥𝜏 (𝑢) = 𝑆𝐷 (𝑢) and 𝑆𝐷<𝜏 (𝑢) represents the
number of connected components with size smaller than 𝜏 in the

neighborhood induced subgraph of𝑢. We define a newmetric called

conditional neighborhood cohesion as follows.

Definition 2. (Conditional Neighborhood Cohesion) Given
a graph snapshot 𝐺 , a condition 𝑐𝑜𝑛𝑑 and a vertex 𝑢, the conditional

neighborhood cohesion of 𝑢, denoted by 𝑁𝐶𝑐𝑜𝑛𝑑 (𝑢), is defined as

𝑁𝐶𝑐𝑜𝑛𝑑 (𝑢) = 𝑑𝑒𝑔(𝑢) − 𝑆𝐷𝑐𝑜𝑛𝑑 (𝑢).

Based on Definition 2, we pick two special conditions, 𝑁𝐶>0 (𝑢)
and 𝑁𝐶<𝜏 (𝑢). When it is clear from the context in the rest, we call

them neighborhood cohesion (NC) and size-bounded neighborhood

cohesion (SNC), respectively. We represent 𝑁𝐶>0 (𝑢) and 𝑁𝐶<𝜏 (𝑢)
as 𝑁𝐶 (𝑢) and 𝑆𝑁𝐶 (𝑢) for simplicity, respectively. The structural di-

versity of a vertex can be represented by the neighborhood cohesion

and size-bounded neighborhood cohesion as follows:

𝑆𝐷 (𝑢) = 𝑆𝑁𝐶 (𝑢) − 𝑁𝐶 (𝑢) (1)

Example 2. Given the snapshot of G for [3, 7] and 𝜏 = 2, we

have 𝑁𝐶 (𝑣6) = 𝑑𝑒𝑔(𝑣6) − 𝑆𝐷>0 (𝑣6) = 3 and 𝑆𝑁𝐶 (𝑣6) = 𝑑𝑒𝑔(𝑣6) −
𝑆𝐷<𝜏 (𝑣6) = 5. Thus, 𝑆𝐷 (𝑣6) = 𝑆𝑁𝐶 (𝑣6) − 𝑁𝐶 (𝑣6) = 2.

Representing structural diversity by NC and SNC is motivated

by their monotonicity, which is shown as follows.

Lemma 4. Given a graph snapshot𝐺 and a vertex 𝑢, 𝑁𝐶 (𝑢) never
decreases when inserting new edges to 𝐺 .

Lemma 5. Given a graph snapshot𝐺 and a vertex𝑢, 𝑆𝑁𝐶 (𝑢) never
decreases when inserting new edges to 𝐺 .

Definition 3. (NC-Time and SNC-Time) Given a vertex 𝑢 in

a streaming graph G, an end time 𝑡𝑒 and an integer 𝑘 , the NC (resp.

SNC) time of 𝑢 for 𝑘 is the largest timestamp 𝑡𝑠 such that 𝑁𝐶 (𝑢) = 𝑘

(resp. 𝑆𝑁𝐶 (𝑢) = 𝑘) in the snapshot of [𝑡𝑠 , 𝑡𝑒 ].

To handle all start times, our idea is to maintain the NC time

and the SNC time for all possible NC values and SNC values of

each vertex, respectively. This allows us to derive the NC and SNC

values for an arbitrary start time based on Lemma 4 and Lemma 5.

We take NC as an example. Given an end time 𝑡𝑒 , when increasing

the window size (i.e., decreasing the start time 𝑡𝑠 from 𝑡𝑒 ), we keep

track of each changed value of 𝑁𝐶 (𝑢) for each vertex 𝑢, and the

corresponding timestamp 𝑡𝑠 is the NC-time for NC (u). When 𝑡𝑠
reaches the earliest timestamp in the streaming graph, we derive the

NC-times for all possible NC values of 𝑢, and we call it a hierarchy

structure of NC values for 𝑡𝑒 . We apply the same strategy for SNC.

Example 3. Figure 3 shows the NC and SNC hierarchies of 𝑣6 for

an end time 𝑡𝑒 = 9. When 𝑁𝐶 (𝑣6) = 2, the corresponding NC time

is 5. When 𝑆𝑁𝐶 (𝑣6) = 4, the corresponding SNC time is also 5. Note

that the NC time is omitted for the case 𝑁𝐶 (𝑣6) = 0, and similarly

for the case 𝑆𝑁𝐶 (𝑣6) = 0.

Lemma 6. Given a streaming graph G and an arbitrary vertex 𝑢,

the number of NC values and corresponding NC time of 𝑢 in the NC

hierarchy is bounded by 𝑑𝑒𝑔(𝑢).

Lemma 7. Given a streaming graph G and an arbitrary vertex 𝑢,

the number of SNC values and corresponding SNC time of 𝑢 in the

SNC hierarchy is bounded by 𝑑𝑒𝑔(𝑢).

Supported by the above lemmas, given the NC and SNC hierar-

chies for an end time 𝑡𝑒 , the structural diversity of a vertex for any

arbitrary window ending at 𝑡𝑒 can be computed by a total of two

binary searches on the hierarchies, respectively.

Handling Different End Times. The index of NC and SNC hi-

erarchies corresponds to a specific end time. When a set of new

edges arrive, the number of affected vertices may be limited. As

a result, when comparing the hierarchy for two consecutive end

times, the neighborhood cohesion hierarchy of many vertices may

remain consistent. Motivated by this observation, for each vertex

𝑢, we avoid indexing the NC or SNC hierarchies of 𝑢 for an end

time if it remains the same as that of the previous end time. This

pruning technique enables us to create a condensed version of the

complete index, which we refer to as PNC-Index (Pruned Neigh-

borhood Cohesion). The pruned index minimizes storage usage by

only maintaining the necessary information to effectively support

historical queries. We use 𝑡 to denote the average number of stored

NC and SNC hierarchies for each vertex. The 𝑡 values have been

reported in Table 2 for all real datasets evaluated in experiments.

Theorem 1. The query time complexity for a vertex 𝑢 based on

PNC-Index is 𝑂 (log𝑑𝑒𝑔(𝑢) + log 𝑡).

5 INCREMENTAL COMPUTATION
5.1 Maintaining Temporal Triangles
To efficiently update NC (and SNC) hierarchy for the new time

𝑡𝑛𝑒𝑤 , our idea is to locate all affected vertices by the new triangles

and update them accordingly, which is similar as Algorithm 2. For

all affected vertices, we calculate the new NC (and SNC) hierarchy.

Similar to computing the structural diversity, NC and SNC can be

computed by considering all triangles of the vertex. A straight-

forward approach is to maintain a disjoint-set structure for each

vertex and each window ending at 𝑡𝑚𝑎𝑥 . However, the space cost is

prohibitively expensive. To overcome this challenge, we maintain

triangles for all possible start times in a compact structure and the

disjoint-set data structure is built on the fly based on the updated
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Figure 4: The temporal triangle structure of 𝑣6.

triangles. Instead of maintaining triangles of a simple graph, we

consider triangles formed by edges arriving at different times. For

clearance, we call them temporal triangles.

Definition 4. (Active Time) Given a triangle ⟨𝑢, 𝑣,𝑤⟩ formed

by (𝑢, 𝑣, 𝑡1), (𝑢,𝑤, 𝑡2), and (𝑣,𝑤, 𝑡3), the active time of the triangle is

defined as min(𝑡1, 𝑡2, 𝑡3).
Lemma 8. Given the latest time 𝑡𝑚𝑎𝑥 in a streaming graph G and

a triangle ⟨𝑢, 𝑣,𝑤⟩ with the active time 𝑡 , ⟨𝑢, 𝑣,𝑤⟩ is a triangle in the

snapshot of [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ] if 𝑡𝑠 ≤ 𝑡 .

Based on Definition 4 and Lemma 8, we can identify all triangles

in the snapshot of any starting time if we have all triangles formed

by edges in the streaming graph and their corresponding active

time. It is easy to observe that triangles belonging to the snapshot

of [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ] must also belong to [𝑡 ′𝑠 , 𝑡𝑚𝑎𝑥 ] if 𝑡 ′𝑠 ≤ 𝑡𝑠 . This obser-

vation motivates us to index all temporal triangles of each vertex

in decreasing order of their active time. Given a vertex 𝑢 and an

arbitrary start time 𝑡𝑠 , we can derive all triangles of 𝑢 in the snap-

shot of [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ] by sequentially scanning the indexed temporal

triangles and terminating once we find a temporal triangle with an

active time smaller than 𝑡𝑠 . In addition to NC and SNC, our new

PNC-Index maintains temporal triangles for each vertex.

Example 4. The temporal triangle structure of 𝑣6 is presented in

Figure 4. We record each temporal triangle using the opposite edge of

𝑣6, and the temporal triangles are grouped by their active times.

Handling Duplicate Edges. In the context of streaming graphs,

it is common to encounter multiple edges with the same pair of

terminals but at different times. This leads to the presence of dupli-

cate edges in the graph. One particular issue arising from duplicate

edges is the occurrence of duplicate temporal triangles that share

the same active time. Fortunately, thanks to the disjoint-set data

structure, the correctness of our approach is not affected by these

duplicate triangles. To handle the problem of triangle duplication,

our techniques can effectively avoid duplicate temporal triangles

with the same active time, without incurring any additional theo-

retical complexity. During the process of scanning each neighbor,

we naturally keep track of the arrival time of each neighbor. Lever-

aging this temporal information, we can check if the active time of

newly formed triangles is the same as before by using the previous

arrival time of each edge in the triangle. Furthermore, according

to Lemma 8, we only need to store the latest active time for each

temporal triangle, thereby simplifying the storage space.

Theorem 2. The space complexity of PNC-Index is𝑂 (𝑚1.5 +𝑚 · 𝑡),
where 𝑚 is the number of edges in the complete snapshot of the

streaming graph and 𝑡 ≪ 𝑡𝑚𝑎𝑥 in practice.

Proof. Storing all temporal triangles requires 𝑂 (𝑚1.5) space,
while maintaining the NC and SNC hierarchies requires 𝑂 (𝑚 · 𝑡)
space, as discussed in Section 4.2. □

Algorithm 3: UpdateTriangles(𝑡𝑛𝑒𝑤 , 𝐸𝑛𝑒𝑤)
/* add new neighbors for each vertex */

1 foreach ⟨𝑢, 𝑣⟩ ∈ 𝐸𝑛𝑒𝑤 do
2 𝑁 [𝑢] .𝑝𝑢𝑠ℎ(⟨𝑣, 𝑡𝑛𝑒𝑤⟩);
3 𝑁 [𝑣] .𝑝𝑢𝑠ℎ(⟨𝑢, 𝑡𝑛𝑒𝑤⟩);
4 A ← ∅;
/* initialization for computing new triangles */

5 foreach 𝑢 ∈ 𝑉 (𝐸𝑛𝑒𝑤) do
6 𝑁𝑒𝑤+ ← ∅;
7 foreach ⟨𝑣, 𝑡⟩ ∈ 𝑁 [𝑢] do
8 if 𝑡 = 𝑡𝑛𝑒𝑤 then
9 if 𝑢 ≺ 𝑣 then 𝑁𝑒𝑤+ ← 𝑁𝑒𝑤+ ∪ {𝑣};

10 continue;

11 if 𝑢 ≺ 𝑣 then 𝑂𝑙𝑑+ [𝑣] ← 𝑡 ;

12 else 𝑂𝑙𝑑− [𝑣] ← 𝑡 ;

/* compute new triangles */

13 foreach 𝑣 ∈ 𝑁𝑒𝑤+ do
14 foreach ⟨𝑤, 𝑡⟩ ∈ 𝑁 [𝑣] do

/* Case 3 */

15 if 𝑡 = 𝑡𝑛𝑒𝑤 ∧ 𝑣 ≺ 𝑤 ∧𝑤 ∈ 𝑁𝑒𝑤+ then
16 AddTriangle(𝑢, 𝑣,𝑤, 𝑡,A);

/* Case 2.2 */

17 else if 𝑡 = 𝑡𝑛𝑒𝑤 ∧𝑂𝑙𝑑+ [𝑤] is defined then
18 AddTriangle(𝑢, 𝑣,𝑤,𝑂𝑙𝑑+ [𝑤],A);

/* Case 2.1 */

19 else if 𝑣 ≺ 𝑤 ∧𝑤 ∈ 𝑁𝑒𝑤+ then
20 AddTriangle(𝑢, 𝑣,𝑤, 𝑡,A);

/* Case 1 */

21 else if 𝑂𝑙𝑑+ [𝑤] is defined then
22 AddTriangle(𝑢, 𝑣,𝑤,min(𝑡,𝑂𝑙𝑑+ [𝑤]),A);
23 else if 𝑂𝑙𝑑− [𝑤] is defined then
24 AddTriangle(𝑢, 𝑣,𝑤,min(𝑡,𝑂𝑙𝑑− [𝑤]),A);

25 return A
26 Procedure AddTriangle(𝑢, 𝑣,𝑤, 𝑡,A)
27 𝑇𝑟𝑖 [𝑢] [𝑡] .𝑝𝑢𝑠ℎ(⟨𝑣,𝑤⟩);
28 𝑇𝑟𝑖 [𝑣] [𝑡] .𝑝𝑢𝑠ℎ(⟨𝑢,𝑤⟩);
29 𝑇𝑟𝑖 [𝑤] [𝑡] .𝑝𝑢𝑠ℎ(⟨𝑢, 𝑣⟩);
30 A ← A ∪ {𝑢, 𝑣,𝑤};

5.2 Updating Temporal Triangles.
Instead of using the state-of-the-art triangle updating procedure

as a black box in Algorithm 2, we extend the algorithm [29] to

compute all new temporal triangles in streaming graphs and then

update the temporal triangle order for each vertex. The algorithm

categorizes new triangles into four cases as shown in Figure 5. The

red line represents a pivot edge, the solid line represents an existing

edge, and the dotted line represents a newly arrived edge.

- Case 1: If there is only a new edge in the triangle, the starting

vertex of the new edge is chosen as the pivot vertex, and the new

edge is chosen as the pivot edge. As shown in Case 1 of Figure 5,

𝑢 is the pivot vertex and (𝑢, 𝑣) is the pivot edge.
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Figure 5: An illustration for dynamic triangle enumeration.

Algorithm 4: PNC-Update
Input: 𝑡𝑛𝑒𝑤 and 𝐸𝑛𝑒𝑤
Output: the updated 𝑃𝑁𝐶-𝐼𝑛𝑑𝑒𝑥
/* compute and store all new triangles for each

vertex */

1 A ← UpdateTriangles(𝑡𝑛𝑒𝑤 , 𝐸𝑛𝑒𝑤);
2 foreach 𝑢 ∈ A do

/* update 𝑁𝐶𝐻 for 𝑡𝑛𝑒𝑤 */

3 NCH-Update(𝑢,𝑇𝑟𝑖, 𝑁𝐶𝐻 [𝑡𝑛𝑒𝑤]);
/* update 𝑆𝑁𝐶𝐻 for 𝑡𝑛𝑒𝑤 */

4 SNCH-Update(𝑢,𝑇𝑟𝑖, 𝑆𝑁𝐶𝐻 [𝑡𝑛𝑒𝑤]);

- Case 2: If there are two new edges, the vertex with two outgoing

new edges or the vertex with one outgoing new edge and an

outgoing original edge is chosen as the pivot vertex. This is

illustrated in both Case 2.1 and Case 2.2 of Figure 5. In Case 2.1,

the original edge (𝑢, 𝑣) is chosen as the pivot edge. In Case 2.2,

(𝑢, 𝑣) is also chosen as the pivot edge because𝑢 is the pivot vertex

and 𝑣 has an outgoing original edge.

- Case 3: If all edges in the triangle newly arrive, the vertex with

two outgoing new edges is chosen as the pivot vertex. This is

shown in Case 3 of Figure 5, where 𝑢 is the pivot vertex. As 𝑢

is the pivot vertex and 𝑣 has an incoming edge and an outgoing

edge, (𝑢, 𝑣) is chosen as the pivot edge.

Our algorithm is shown in Algorithm 3. Given a vertex 𝑢, 𝑁 (𝑢)
in Algorithm 3 represents all neighbors connecting to 𝑢 in the

streaming graph, with each neighbor associated with an arrival

timestamp. Note that the same neighbor may exist at different times.

Given the new edge set 𝐸𝑛𝑒𝑤 and the new time 𝑡𝑛𝑒𝑤 , we update

the neighbors of each vertex in lines 1–3. A will be the set of all

vertices contained in new triangles when the algorithm terminates.

Lines 5–24 compute all new triangles. 𝑉 (𝐸𝑛𝑒𝑤) represents the set
of all vertices appearing in the new edge set 𝐸𝑛𝑒𝑤 . For each ver-

tex 𝑢 in line 5, 𝑁𝑒𝑤+ maintains all new out neighbors of 𝑢, while

𝑂𝑙𝑑+ and 𝑂𝑙𝑑− are arrays that store the timestamp of the corre-

sponding out neighbors and in neighbors before inserting 𝐸𝑛𝑒𝑤 ,

respectively. The cases in lines 14–24 correspond to the cases in

Figure 5. Each new triangle is indexed for each vertex using the

procedure AddTriangle(). As mentioned earlier, the triangles of

each vertex are arranged in non-increasing order of their active

time. To achieve this, a binary search tree is used for each vertex

𝑢. The key of each item in the search tree is an active time 𝑡 , and

the value is a list of vertex pairs ⟨𝑣,𝑤⟩, indicating the existence of

a triangle ⟨𝑢, 𝑣,𝑤⟩ exists with an active time 𝑡 .

Algorithm 5: NCH-Update(𝑢,𝑇𝑟𝑖, 𝑁𝐶𝐻 )
1 initialize a disjoint-set for all vertices in 𝑁 [𝑢];
2 𝑛𝑐 ← 0;

3 𝑁𝐶𝐻 [𝑢] ← an empty array;

4 foreach 𝑡 in decreasing order of 𝑇𝑟𝑖 [𝑢] do
5 𝑢𝑝𝑑𝑎𝑡𝑒 ← false;
6 foreach ⟨𝑣,𝑤⟩ ∈ 𝑇𝑟𝑖 [𝑢] [𝑡] do
7 if find(𝑣) = find(𝑤) then continue;
8 𝑢𝑝𝑑𝑎𝑡𝑒 ← true;
9 union(𝑣,𝑤);

10 𝑛𝑐 ← 𝑛𝑐 + 1;
11 if 𝑢𝑝𝑑𝑎𝑡𝑒 then 𝑁𝐶𝐻 [𝑢] .𝑝𝑢𝑠ℎ(⟨𝑡, 𝑛𝑐⟩);

Algorithm 6: SNCH-Update(𝑢,𝑇𝑟𝑖, 𝑆𝑁𝐶𝐻 )
1 initialize a disjoint-set for all vertices in 𝑁 [𝑢];
2 𝑛𝑐 ← 0;

3 𝑆𝑁𝐶𝐻 [𝑢] ← an empty array;

4 foreach 𝑡 in decreasing order of 𝑇𝑟𝑖 [𝑢] do
5 𝑢𝑝𝑑𝑎𝑡𝑒 ← false;
6 foreach ⟨𝑣,𝑤⟩ ∈ 𝑇𝑟𝑖 [𝑢] [𝑡] do
7 𝑟𝑣 ← find(𝑣), 𝑟𝑤 ← find(𝑤);
8 if 𝑟𝑣 = 𝑟𝑤 then continue;
9 𝑢𝑝𝑑𝑎𝑡𝑒 ← true;

10 if 𝑠𝑖𝑧𝑒 (𝑟𝑣) < 𝜏 then 𝑛𝑐 ← 𝑛𝑐 + 1;
11 if 𝑠𝑖𝑧𝑒 (𝑟𝑤) < 𝜏 then 𝑛𝑐 ← 𝑛𝑐 + 1;
12 𝑟 ← union(𝑣,𝑤);
13 if 𝑠𝑖𝑧𝑒 (𝑟 ) < 𝜏 then 𝑛𝑐 ← 𝑛𝑐 − 1;
14 if 𝑢𝑝𝑑𝑎𝑡𝑒 then 𝑆𝑁𝐶𝐻 [𝑢] .𝑝𝑢𝑠ℎ(⟨𝑡, 𝑛𝑐⟩);

5.3 The algorithm
Our overall updating framework is in Algorithm 4. When a set

of new edges arrives at 𝑡𝑛𝑒𝑤 , we update the PNC-Index from the

previous latest time 𝑡𝑚𝑎𝑥 to the new latest time 𝑡𝑛𝑒𝑤 . Given the

affected vertices derived in line 1, we update the NC hierarchy and

the SNC hierarchy for 𝑡𝑛𝑒𝑤 in line 3 and line 4, respectively. We

first discuss how to compute the NC hierarchy of affected vertices.

The definition of NC implies the following lemma.

Lemma 9. Given a vertex 𝑢 in a simple graph and a set of new

edges, the neighborhood cohesion of 𝑢 changes only if there is a new

triangle containing 𝑢.

The pseudocode is presented in Algorithm 5. Based on Lemma 9,

we only consider the active time of all triangles. Recall that a trian-

gle of 𝑢 with an active time 𝑡 means the triangle does not exist in

the snapshot of [𝑡 + 1, 𝑡𝑚𝑎𝑥 ] but exists in the snapshot of [𝑡, 𝑡𝑚𝑎𝑥 ]
where 𝑡𝑚𝑎𝑥 is the latest arrival time of edges. Once two connected

components are merged (line 9), we increase the NC value of 𝑢 by

1. At the end of each iteration (line 11), 𝑛𝑐 is 𝑁𝐶 (𝑢) for the snap-
shot of [𝑡, 𝑡𝑛𝑒𝑤]. Computing SNCH is similar to computing NCH

but additionally considers the size of connected components. The

pseudocode is presented in Algorithm 6. When merging connected
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Table 1: Comparison of different solutions for historical
queries. 𝑛 is the number of vertices,𝑚 is the number of edges,
𝑑 is the average degree, 𝑡𝑚𝑎𝑥 is the number of unique time
labels, 𝑡𝑏𝑎𝑠𝑒 is the average number of values stored for each
vertex in Base-Index, 𝑡 is a pruning factor in PNC-Index,
𝑑𝑒𝑔(𝑢) is the degree of the query vertex 𝑢, △𝑢 is the number
of triangles containing 𝑢, and △+ is the state-of-the-art time
complexity to incrementally enumerate triangles.

Query Time Index Space Update Time

Online 𝑂 (𝑑2) ⊘ ⊘
Baseline 𝑂 (log 𝑡𝑏𝑎𝑠𝑒 ) 𝑂 (𝑛 · 𝑡𝑏𝑎𝑠𝑒 ) 𝑂 (△+ · 𝑡𝑚𝑎𝑥 )
NHCC 𝑂 (𝑑𝑒𝑔(𝑢)) 𝑂 (𝑚1.5) ×
HT 𝑂 (△𝑢 ) 𝑂 (𝑚1.5 · 𝑡) 𝑂 (△+)
Ours 𝑂 (log𝑑𝑒𝑔(𝑢) + log 𝑡) 𝑂 (𝑚1.5 +𝑚 · 𝑡) 𝑂 (△+ · log𝑑)

components, 𝑛𝑐 is increased by one for each original small-size

(< 𝜏) connected component (lines 10–11) and is decreased by one

if the newly connected component is still small (line 13). Once the

size-bounded neighborhood cohesion value changes, we add it to

the hierarchy (line 14).

Theorem 3. The time complexity of Algorithm 4 is 𝑂 (△+ · log𝑑)
where △+ is the state-of-the-art time complexity to incrementally

enumerate triangles and 𝑑 is the average degree.

5.4 Comparing with Other Potential Solutions
We provide Table 1 to summarize the theoretical complexity of our

approach compared with other solutions for historical structural

diversity queries. We additionally discuss two methods below.

Historical Connected Components. An index-based solution

has been studied for querying historical connected components

[26]. Based on the definition of structural diversity, another baseline

solution is to construct an index for historical connected compo-

nents for the neighborhood induced subgraph of each vertex. For

query processing of a vertex, we derive all connected components

in its neighborhood induced subgraph and calculate the structural

diversity. We refer to the method as NHCC (Neighborhood Histor-

ical Connected Components). An immediate drawback of NHCC
lies in the lack of support for incremental updates. It is only for

static temporal graphs where all edges with different arriving times

are given. The index construction time and index space in [26]

are 𝑂 (𝑚 · 𝑡𝑚𝑎𝑥 ) and 𝑂 (𝑚), respectively. To index the connected

components in the neighborhood induced subgraph of a vertex 𝑢,

the number of edges in its subgraph is bounded by the number of

triangles containing 𝑢. Therefore, the index construction time and

index space of NHCC are 𝑂 (𝑚1.5 · 𝑡𝑚𝑎𝑥 ) and 𝑂 (𝑚1.5) respectively,
where 𝑂 (𝑚1.5) represents the number of all triangles in the graph.

Even only considering a static temporal graph, we can run Algo-

rithm 4 for all edges chronologically, and our time complexity is

much smaller than that ofNHCC. Querying all historical connected
components in [26] is bounded by 𝑂 (𝑛). Therefore, querying the
structural diversity of a vertex𝑢 inNHCC is bounded by𝑂 (𝑑𝑒𝑔(𝑢)),
while our query time complexity is much smaller.

Historical Triangles. Based on the techniques of maintaining

temporal triangles (Section 5.1), another potential solution, referred

Algorithm 7: SW-Base-Update

Input: 𝐸𝑛𝑒𝑤 and 𝐸𝑜𝑙𝑑
Output: the updated structural diversity

1 A ← ∅;
2 foreach ⟨𝑢, 𝑣⟩ ∈ 𝐸𝑛𝑒𝑤 do
3 update 𝑁 (𝑢) and 𝑁 (𝑣);
4 A ← A ∪ {𝑢, 𝑣};
5 foreach𝑤 ∈ 𝑁 (𝑢) ∪ 𝑁 (𝑣) do A ← A ∪ {𝑤};
6 repeat lines 2–5 by replacing 𝐸𝑛𝑒𝑤 with 𝐸𝑜𝑙𝑑 ;

7 update triangles based on 𝐸𝑛𝑒𝑤 and 𝐸𝑜𝑙𝑑 ;

8 foreach 𝑢 ∈ A do
/* recompute structural diversity */

9 initialize a disjoint-set for 𝑁 (𝑢);
10 𝑆𝐷 (𝑢) ← 0;

11 foreach triangle ⟨𝑢, 𝑣,𝑤⟩ of 𝑢 do
12 UpdateSD(𝑢, 𝑁 (𝑢), 𝑣,𝑤);

to as HT (Historical Triangles), is to just maintain temporal trian-

gles for different end times. Specifically, given a vertex 𝑢 and its

temporal triangles for the end time 𝑡𝑒 , we store the triangles in the

index only if they are not the same as those for the end time 𝑡𝑒 − 1.
Therefore, the overall index space complexity of HT is 𝑂 (𝑚1.5 · 𝑡).
To compute the structural diversity of a vertex 𝑢 for a query win-

dow [𝑡𝑠 , 𝑡𝑒 ] based on HT, we start by performing a binary search

to find the temporal triangles for the end time 𝑡𝑒 and then another

binary search to locate all triangles between 𝑡𝑠 and 𝑡𝑒 . Both searches

are bounded by 𝑂 (log△𝑢 ) time, where △𝑢 is the number of trian-

gles containing 𝑢. The structural diversity can then be derived by

scanning the triangles (i.e., the edges in the neighborhood induced

subgraph). Therefore, the overall query time complexity of HT is

𝑂 (△𝑢 ). Similar to Algorithm 4, each update requires 𝑂 (△+) time,

resulting in a total construction time of 𝑂 (△+ · 𝑡𝑚𝑎𝑥 ).

6 VARIATIONS
6.1 Sliding Window Queries
In this section, we study the sliding window query processing. To

our best knowledge, there is no study on maintaining structural

diversity in streaming graphs. Given a sliding window, a naive way

is to store the structural diversity for each vertex in the snapshot,

resulting in a space complexity of 𝑂 (𝑛). The sliding window query

can be answered in constant time, but the update process is costly.

After computing new triangles for new edges, the structural diver-

sity of each vertex in the new triangles may be updated, and we

need to recompute the structural diversities for all affected vertices

from scratch. The same process will be performed for expired edges.

The Baseline. To avoid the recomputation, a potential baseline is

to store all triangles in the snapshot and dynamically update the

triangles as edges change. Additionally, we update the structural

diversity values of the affected vertices based on the updated trian-

gles, as shown in Algorithm 7. Given the new edge set 𝐸𝑛𝑒𝑤 and

the old edge set 𝐸𝑜𝑙𝑑 , we first update the neighbors of each vertex

and record the affected vertices in lines 1–6. Subsequently, line 7

handles the updates of the triangles within the window. Finally, in
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lines 8-12, we compute the structural diversity for each affected

vertex using the updated triangles. The time complexity of Algo-

rithm 7 is 𝑂 (△+) where △+ is the state-of-the-art time complexity

to incrementally enumerate triangles. In addition to the space re-

quired for storing structural diversity values, an additional𝑂 (𝑚1.5)
space is needed to store the triangles within the window, where𝑚

represents the number of edges in the snapshot of the window.

Our Approach. Our solution is to maintain the NC (and SNC) hier-

archy of each vertex for the latest time. In other words, we maintain

an index that covers all possible windows from an arbitrary start

time to the latest time. An immediate benefit is to avoid the pro-

cess of expired edges in the sliding window model. We can simply

discard the indexed values for expired start times. For new edges,

the process is the same as Algorithm 4. The theoretical update time

is the same as the baseline. However, the practical performance of

our method is much better, as verified in Section 7.

6.2 Handling Various Size Thresholds
Our approach can be extended to support various size thresholds

for structural diversity. To this end, we can maintain |𝜏 | SNC hierar-

chies, where |𝜏 | represents the number of possible size thresholds.

Each SNC hierarchy is associated with a specific size threshold,

enabling us to adapt our approach accordingly. Note that the NC

hierarchy is independent of the size threshold, it is sufficient to

maintain only one instance for various size thresholds. Additionally,

we retain the temporal triangles as they are. Indexes for different

size thresholds can share and leverage the information contained in

the temporal triangles to effectively update their respective indexes.

7 PERFORMANCE STUDIES
All algorithms in experiments are implemented in C++ and com-

piled with the g++ compiler at the -O3 optimization level. All the

experiments are conducted on a Linux machine with dual Intel

Xeon Gold 6342 2.8GHz CPUs and 512GB RAM. In the experiments,

the size threshold 𝜏 is set to 2, which is commonly adopted in prior

studies [2, 11, 12]. We evaluate the approaches on 14 publicly avail-

able real-world streaming graphs. Detailed statistics of the graphs

are given in Table 2. Except for the CollegeMsg dataset, which is

from SNAP
1
, the other 13 datasets are from the KONECT

2
project.

7.1 Incremental Update
In this experiment, we evaluate the efficiency of different incre-

mental update algorithms, including Base-Update,NHCC,HT, and
our final solution PNC-Update. We evaluate the algorithms by per-

forming incremental updates for each time label of each dataset

until all updates are completed and record the cumulative running

time. Note that NHCC does not support incremental updates, we

record its running time by directly giving all edges with different

time labels. Figure 6 reports the cumulative running time of the

algorithms. The running time of Base-Update and NHCC for sev-

eral datasets is not reported since they cannot be completed in 12

hours. For HT, it runs out of memory for several datasets. We can

see that for all datasets, PNC-Update is several orders of magnitude

faster than Base-Update and NHCC, thanks to our new concept of

1
https://snap.stanford.edu/

2
http://konect.cc/
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Figure 6: Cumulative incremental update time.

temporal triangles. For the smallest dataset CM, PNC-Update takes
less than 1s, while Base-Update and NHCC take about 50s and 35s,

respectively. For the large datasets WT and YT, PNC-Update com-

pletes in about 8min and 1min, respectively, while Base-Update
takes about 100min and 45min to complete, respectively. We also

notice that HT is slightly faster than PNC-Update because it saves
time in updating the SNC/NC hierarchies. However, this comes at

the cost of much slower query time and a much larger index size.

Table 3 reports the percentage of running time on updating tempo-

ral triangles and SNC/NC hierarchies in PNC-Update. The majority

of time in most datasets is on updating the temporal triangles.

7.2 Index Size
In this experiment, we compare the size of different index struc-

tures. We record the index size after all updates are completed.

Figure 7 reports the size of the index structures. The size of mul-

tiple index structures for several datasets is not reported due to

timeout or insufficient memory. We can see that our PNC-Index is

about 1 order of magnitude smaller than the Base-Index and HT
on average. For example, for the SU dataset, our PNC-Index takes

about 2.5GB, while the Base-Index and HT require about 17.8GB

and 22.2GB, respectively. Although NHCC is smaller in size than

our PNC-Index, it comes at the cost of extremely slow query effi-

ciency, extremely inefficient index construction, and no support for

incremental updates.

Pruning Effect. The final PNC-Index includes two kinds of im-

provements in Section 4.2, i.e., the pruning rule for one end time and

the pruning rule for different end times. We examine the effect of

two pruning rules by reporting the NC-Index size in Figure 7. Com-

pared with PNC-Index, the NC-Index only adopts the first pruning

rule, which directly stores the indexes of all end times. We can

see that the pruning rule for different end times is more effective.

For example, for the SL dataset, NC-Index is about 3 times smaller

than Base-Index, while PNC-Index is about 12 times smaller than

NC-Index. Furthermore, we can observe that the overall pruning

effect depends on the practical graph structure.

PNC-Index Breakdown. Table 4 reports the percentage of space
used to store temporal triangles and SNC/NC hierarchies in our

PNC-Index. We can see that the percentages vary considerably

across different datasets.

7.3 Query Processing
In this experiment, we compare the efficiency of different query

processing algorithms, including SD-Online, the straightforward
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Table 2: Statistics of datasets. 𝑛 is the number of vertices,𝑚 is the number of edges,𝑚∗ is the number of edges with unique
terminals, 𝑑 is the average degree, 𝑡𝑚𝑎𝑥 is the number of unique time labels, 𝑡𝑏𝑎𝑠𝑒 is the average number of values stored for
each vertex in Base-Index, and 𝑡 is a pruning factor in PNC-Index.

𝑛 𝑚 𝑚∗ 𝑑 Type 𝑡𝑚𝑎𝑥 𝑡𝑏𝑎𝑠𝑒 𝑡

CollegeMsg (CM) 1,899 59,835 13,838 63.02 Communication 3320 7914.36 13.23

Slashdot (SL) 51,083 140,778 116,573 5.51 Communication 384 429.92 0.52

Topology (TO) 34,761 171,403 107,720 9.86 Computer 556 800.37 3.49

FacebookWall (FW) 46,952 876,993 183,412 37.36 Communication 1473 1882.45 7.82

AskUbuntu (AU) 159,316 964,437 455,691 12.11 Online Contact 2059 2160.56 1.06

Enron (En) 87,273 1,148,072 297,456 26.31 Communication 1235 1391.92 5.96

SuperUser (SU) 194,085 1,443,339 714,570 14.87 Online Contact 2629 2808.22 1.96

DiggFriends (DF) 279,630 1,731,653 1,548,126 12.39 Online Social 1434 1636.07 5.57

arXivHepPh (AH) 22,908 4,596,803 3,148,447 401.33 Citation 2337 N/A 121.72

ProsperLoans (PL) 89,269 3,394,979 3,330,022 76.06 Interaction 1259 2361.19 6.15

WikiTalk (WT) 1,140,149 7,833,140 2,787,967 13.74 Communication 2166 2271.16 2.73

YouTube (YT) 3,223,589 9,375,374 9,375,374 5.82 Online Social 203 236.87 1.19

Flickr (FL) 2,302,925 33,140,017 22,838,276 28.78 Online Social 134 N/A 4.38

Wikipedia (WI) 1,870,709 39,953,145 36,532,531 42.71 Hyperlink 2198 N/A 27.86

Table 3: PNC-Update time breakdown.

PNC-Update CM SL TO FW AU EN SU DF AH PL WT YT FL WI

Temporal Triangle 2.87% 9.64% 17.81% 3.53% 1.72% 7.43% 1.59% 13.22% 82.29% 4.76% 3.30% 23.19% 83.44% 3.76%

SNC/NC Hierarchy 97.13% 90.36% 82.19% 96.47% 98.28% 92.57% 98.41% 86.78% 17.71% 95.24% 96.70% 76.81% 16.56% 96.24%

Table 4: PNC-Index size breakdown.

PNC-Index CM SL TO FW AU EN SU DF AH PL WT YT FL WI

Temporal Triangle 35.90% 52.21% 12.32% 40.47% 5.25% 18.23% 4.02% 10.72% 5.03% 37.49% 8.93% 42.44% 29.75% 7.40%

SNC/NC Hierarchy 64.10% 47.79% 87.68% 59.53% 94.75% 81.77% 95.98% 89.28% 94.97% 62.51% 91.07% 57.56% 70.25% 92.60%
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Figure 7: Index size of all datasets.

index-based Base-Query, NHCC, HT, and our final PNC-Query. For
the index-based algorithms, we perform queries after the index

structures are completely updated. Based on different datasets, we

vary the query window size from 5% to 80% of 𝑡𝑚𝑎𝑥 for each dataset,

and the default is set to 60% of 𝑡𝑚𝑎𝑥 . We perform 1,000 queries, each

using a random vertex and a random query window with the given

window size, and record the average running time of each query.

Overall Query Efficiency.We evaluate the overall query efficiency

with the default window size (60% of 𝑡𝑚𝑎𝑥 ) for each dataset. SD-
Online is 5–7 orders of magnitude slower than PNC-Query and is

not reported for clearance. Figure 8 reports the average running

time of the other query algorithms with the default query window

size, except for the case of unsuccessful index construction. We can
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Figure 8: Average query time.

see that for all datasets, NHCC is the least efficient, being at least 3

orders of magnitude slower than PNC-Query, and HT is also signif-

icantly slower than PNC-Query. For example, for the DF dataset,

PNC-Query takes an average of 17ns per query, while NHCC and

HT take an average of 9.7 ∗ 106ns and 3.6 ∗ 103ns per query, re-
spectively. This is mainly because PNC-Query only requires a few

binary searches of the PNC-Index, whereas NHCC and TH require

more complex processing. Also note that since both PNC-Query

and Base-Query are index-based query algorithms based on binary

searches, they have the same level of query efficiency.

Varying QueryWindow Size.We evaluate the query efficiency of

Base-Query and PNC-Query by varying the query window size to

5%, 10%, 20%, 40%, 60%, and 80% of 𝑡𝑚𝑎𝑥 for each dataset. Figure 9

reports the average querying time. We report the results of two

large representative datasets, WT and YT, and the results of other
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Figure 9: Average query time by varying window size.
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Figure 10: PNC-Index size of all datasets by varying 𝜏 .
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Figure 11: Average PNC-Query time by varying 𝜏 .

datasets show similar trends. As in the previous experiments, the

efficiency of PNC-Query and Base-Query remains at the same level.

7.4 Varying 𝜏
We study the impact of 𝜏 on index size and query efficiency of

historical structural diversity queries. We vary the size threshold

from 𝜏 = 2 to 𝜏 = 5.

Index Size. Figure 10 reports the size of PNC-Index under different
size thresholds 𝜏 . We can see that the size threshold variation has

no practical impact on the PNC-Index size.

Query Efficiency. Figure 11 reports the average time of PNC-

Query by varying 𝜏 . We can see that the average PNC-Query time

is stable and almost unaffected by size threshold changes.

7.5 Sliding Window Queries
In this section, we study the performance of the proposed methods

for sliding window queries. Similarly, the default sliding window

size is set to 60% of 𝑡𝑚𝑎𝑥 for each dataset.
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Figure 12: Index update time for sliding window queries.
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Figure 13: Index size for sliding window queries.

Incremental Update. In this experiment, we evaluate the effi-

ciency of different incremental update algorithms, including the

baseline method, referred to as Base, and our optimized method,

denoted as Ours. We first initialize the two methods with edges

within the first window. We then evaluate both methods by per-

forming incremental updates for each time label of each dataset

until all updates are completed and record the average running time

of each update. Figure 12 reports the average incremental update

time of our method in comparison to the baseline method. We can

see that our method is several times faster than the baseline method

for most datasets, thanks to the avoidance of processing expired

edges. While for the FW dataset, our method is slightly slower than

the baseline method because the dataset is right-skewed (i.e., the

temporal distribution is uneven, with almost all edges arriving in

the second half of 𝑡𝑚𝑎𝑥 ) and so has almost no expired edges when

sliding, our method becomes slow due to the small overhead of

maintaining temporal triangles.

Index Size. In this experiment, we compare the size of different in-

dex structures, including the baseline index, referred to as Base, and

our index, denoted as Ours. We record the size of both index struc-

tures after all updates are completed (i.e., the last sliding window),

and the snapshot size is the size of the corresponding snapshot in

adjacency list format. Figure 13 reports the size of the two index

structures with the snapshot size as a reference. We can verify that

our index and the baseline index have the same level of space usage.

The reason why our index is slightly larger than the baseline index

is that our index stores additional temporal information to avoid

processing expired edges. Furthermore, we can observe that the

index size is close to the snapshot size for most datasets, as we only

keep the information within the sliding window.
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Figure 14: Index update time for sliding window queries by
varying window size.
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Figure 15: Index size for sliding window queries by varying
window size.

Varying Sliding Window Size. To further evaluate the efficiency

of the two incremental update algorithms and the size of the two

index structures, we vary the sliding window size to 5%, 10%, 20%,

40%, 60%, and 80% of 𝑡𝑚𝑎𝑥 for each dataset. Figure 14 reports the

average incremental time of the two algorithms by varying sliding

window sizes. Figure 15 shows the size of the two index structures

with the snapshot size (the size of the corresponding snapshot in

adjacency list format) as a reference. Similarly, we report the results

of two large representative datasets, WT and YT, and the results

of other datasets show similar trends. We can see that the average

incremental update time, the index size, and the snapshot size all

show a similar upward trend as the sliding window size increases.

This is because as the sliding window size increases, there are more

edges within the sliding window, which results in larger snapshot

sizes and more triangles, which leads to an increase in the average

incremental update time and index size.

Query Efficiency. As shown in Figure 8, the query efficiency of the

online algorithm is unacceptably slow. For the index-based methods

that directly store the structural diversity of all vertices, sliding

window queries can be answered in 𝑂 (1) constant time, almost

the same as shown in Figure 9, regardless of the sliding window

size. We have omitted the experimental figures for sliding window

queries due to the high consistency in query efficiency comparisons

with the previous ones and due to space constraints.

8 RELATEDWORKS
The concept of structural diversity was initially introduced by Ugan-

der et al. [21], who examined its application in the context of social

contagion processes. Subsequently, several variants of the struc-

tural diversity model have been proposed. For instance, Zhang et al.

[32] proposed an edge-based structural diversity model that focuses

on measuring the diversity exhibited by each edge rather than each

vertex. Other variations include the k-truss-based model [8] and

the k-core-based model [12, 24]. Additionally, to address the model

sensitivity associated with the size parameter, Huang et al. [9, 10]

proposed a parameter-free structural diversity model. However,

these models are tailored to specific requirements, whereas our

paper focuses on the classical structural diversity model proposed

by Ugander et al. [21], which is more general. Prior research on

structural diversity primarily revolves around the top-𝑘 structural

diversity search, which aims to identify the 𝑘 objects with the high-

est level of structural diversity. In [11, 12], a Union-Find-Isolate data

structure was devised to maintain the known structural informa-

tion of each vertex, and an effective upper bound was established

for pruning purposes. However, a significant limitation of this ap-

proach is that it requires enumerating each triangle up to three

times. Moreover, the computation time associated with each enu-

merated triangle is not amortized constant, rendering it unsuitable

for scalability in larger graphs. To address these issues, Chang et

al. [2] optimized the algorithm by ensuring that each triangle is

enumerated at most once, and they developed efficient techniques

to achieve amortized constant computation time per triangle. Nev-

ertheless, both methods are specifically designed for static graphs

and cannot be readily extended to streaming graphs.

9 CONCLUSION
In this paper, we study querying historical structural diversity in

streaming graphs. We propose a new framework with an elegant

index structure and an optimized incremental update algorithm. We

also extend our techniques to support sliding window queries. Ex-

perimental results demonstrate the effectiveness of our framework.

Several potential research directions remain open. For example,

two-hop or multi-hop neighbors may be considered for structural

diversity models instead of one-hop neighbors of each vertex. A

possible approach is to compress and treat them as direct neighbors

and then use our framework as usual. The challenge lies in how

to update the compressed neighbors efficiently and needs to be

addressed in future works. There are also several works studying

structural diversity models based on k-core and k-brace instead of

connected components. We could extend them for historical queries

in future works. In addition, a parallel implementation of our algo-

rithm may be studied to further improve the update efficiency.
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