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Abstract

Addressing inconsistency issues, i.e. underesti-
mation of uncertainty, is crucial for the per-
formance of Extended Kalman Filter (EKF)
based Simultaneous Localization and Mapping
(SLAM). By using the first estimate Jacobians,
this paper designs a consistent EKF for the
point feature-based multi-robot SLAM. First,
the standard EKF (Std-EKF) for the consid-
ered problems is presented. Then, through the
observability analysis, we prove that Std-EKF
has an observable subspace of dimension higher
than the underlying system, leading to the in-
consistency issue. Accordingly, we propose the
first estimate Jacobian EKF (FEJ-EKF), which
shares the same dimension of observable sub-
space with the underlying system, alleviating
the inconsistency issue. Finally, the effective-
ness of the proposed method is validated by
simulations and a practical dataset. By mak-
ing the MATLAB code for this research avail-
able online1, we hope to facilitate collaboration
and allow others to build upon and improve the
methodology.

1 Introduction

Simultaneous localization and mapping (SLAM) algo-
rithms typically use sensor data to estimate the pose of
a robot and the environment structure in real time. As
a single robot is not enough to complete more challeng-
ing, complex, and major tasks, such as large-scale emer-
gency search and rescue missions, multi-robot collabora-
tion has become a trend for performing SLAM in a large
environment that requires high precision and speed. For
instance, an online multi-robot SLAM system for 3D Li-
DARs is researched by [Dubé et al., 2017] to permit rapid

1The MATLAB code is available at
https://github.com/Ranxisama/First-Estimate-Jacobian-
EKF-for-Multi-robot-SLAM.git

exploration and higher redundancy than a single robot.
[Thrun and Liu, 2005] presents a tree-based multi-robot
SLAM algorithm and conducts an experiment based on a
real-world dataset. An optimal map-merging algorithm
for different robots is presented in [Zhou and Roumelio-
tis, 2006].

There is nonlinearity in robotic systems, which means
that the relationship between the state change and the
input of the robot during movement, perception, and
control is not a simple linear relationship. The nonlinear-
ity in robotic systems originates from several specific at-
tributes related to dynamics, sensor characteristics, en-
vironmental interactions, control inputs, and inter-robot
interactions in multi-robot systems. In the context of
robot motion and observation models, filter consistency
generally refers to the ability of a filter (e.g., Kalman
Filter, Extended Kalman Filter, Particle Filter) to accu-
rately represent the true uncertainty of the system state.
Filter consistency ensures that the estimation remains
reliable over time without gradually diverging from the
actual state, which is essential for accurate and robust
state estimation in mobile robots. This concept is critical
in tasks such as localization, navigation, and mapping.

For the state estimations of nonlinear robotic systems,
the EKF algorithms are one of the most popular ap-
proaches for decades. However, the conventional EKF
algorithm (Std-EKF) typically suffers from the incon-
sistency issue, where they generate overconfident covari-
ance about actual uncertainty, ultimately leading to poor
performance. The inconsistency issue of EKF SLAM
is first discovered by [Julier and Uhlmann, 2001]. By
further investigating the fundamental reason for the is-
sue [Huang and Dissanayake, 2007; Huang et al., 2009;
Huang et al., 2010], it is concluded that a consistent EKF
should share the same dimension of observability with
the underlying system. To address this issue of Std-EKF,
various consistent EKF algorithms such as first estimate
Jacobian (FEJ)-EKF [Huang et al., 2009], observability-
constrained (OC)-EKF [Huang et al., 2010], and right in-
variant error (RI)-EKF [Zhang et al., 2017] have been de-

https://github.com/Ranxisama/First-Estimate-Jacobian-EKF-for-Multi-robot-SLAM.git
https://github.com/Ranxisama/First-Estimate-Jacobian-EKF-for-Multi-robot-SLAM.git


veloped for the point feature-based (single-robot) SLAM.

In this paper, we consider the point feature-based
multi-robot SLAM problems. Through observability
analysis, the corresponding Std-EKF still has the incon-
sistency issue for the considered problems. To address
such issue, we apply the first estimate Jacobians to the
multi-robot EKF SLAM. Finally, the experiments illus-
trate the effectiveness of the proposed algorithm. The
multi-robot pose estimation algorithm proposed in this
paper have great potential in various fields. Improved
pose estimation accuracy can enable better task coordi-
nation, precise navigation, and efficient obstacle avoid-
ance, which are essential for automation, search and res-
cue, and complex collaborative tasks in dynamic envi-
ronments. In smart cities and autonomous driving fleets,
these algorithms will facilitate synchronized navigation
and reduce congestion, while in agriculture and indus-
try, they can achieve efficient area coverage and pre-
cise object handling. In addition, optimized pose esti-
mation promotes innovations in sensor fusion and un-
certainty management, laying the foundation for more
autonomous and intelligent multi-robot systems that
can adapt to changing conditions and complete complex
tasks. These developments will accelerate the deploy-
ment of multi-robot systems and improve productivity,
safety, and efficiency in different industries.

2 Methodology

2.1 Problem Definition

In the considered 2D multi-robot SLAM problems, mul-
tiple robots navigate in a 2D environment by observ-
ing point features. At each step, robots will obtain the
relative positions of surrounding point features as their
observations. Without loss of generality, in Figure 1,
we just assume that there are only two robots 1R and
2R, and two features f1 and f2 in the environment for
simplifications. Both robots move one step. And these
features have been observed by both 1R and 2R.

1R0
1R1

2R0
2R1

f1 f2

Robot 1 Pose

Robot 2 Pose

Feature Position

Odometry

Observation

Figure 1: A simplifed 2D multi-robot SLAM scenario:
iRk represents robot i at time-step k, and fj represents
feature j.

At step 0, the pose of 1R0 can be regarded to be an-
chored in the global frame, whereas the pose of 2R0 is
unknown. Thus, the Gauss-Newton method is imple-
mented to obtain the optimal estimates for the pose of
2R0 and the positions of shared features with the corre-
sponding covariance matrix.

2.2 Multi-robot EKF SLAM

In our considered problems, the state vector comprises
the poses of two robots and the positions of two features
in the global frame, which at time step k is given by

xk =
[
xT
rk
,xT

fk

]T
, (1)

where xrk =
[
1xT

rk
,2xT

rk

]T
, xfk =

[
1x

T
fk
,2x

T
fk

]T
. ixrk =[

ixT
pk
,iϕk

]T
(i = 1, 2) denotes the true robot pose (po-

sition and orientation) of Ri, and jxfk (j = 1, 2) is
the true feature position of fj . An EKF is based on
a discrete-time process and measurement model, evolv-
ing recursively in two steps: propagation and update. In
the following, we add two steps (step-0 optimization and
feature initialization) to clearly describe the presented
algorithm, starting with the Std-EKF.

In the following formulations, the components of a
state vector without any script denote true values, with
“ˆ” as estimated values. While x̃ = x − x̂ is the error
in this estimate. The subscript i|j refers to the estimate
of a quantity at time-step i after all measurements up to
time-step j have been processed. 0m×n denotes m × n
zero matrix, while In is the n× n identity matrix.

EKF Propagation

In this step, we process the robot’s odometry measure-
ments between two consecutive time steps, obtain an
estimate of the pose transition and then employ it in
the EKF to propagate the robot state estimate. In this
case, the underlying nonlinear propagation equations for
Ri (from time-step k to k + 1) are given by

ix̂rk+1|k =

[
ix̂pk+1|k
iϕ̂k+1|k

]
=

[
ix̂pk|k +C(iϕ̂k|k)

iuk
iϕ̂k|k +ivk

]
=fi(

ix̂rk|k ,
iuk,

ivk), (2)

jx̂fk+1|k =jx̂fk|k , (3)

where C(ϕ) is the 2 × 2 rotation matrix of the angle
ϕ. iuk is the odometry-based position estimate, which
is corrupted by process noise iυk,

iυk ∼ N (0,iQ). ivk

is the odometry-based heading estimate, which is cor-
rupted by process noise iνk,

iνk ∼ N (0,iΩ). The lin-
earized error-state propagation equation for the whole



state is given by:

x̃k+1|k =

[
Φrk 06×4

04×6 I4

] x̃rk|k

1x̃fk|k

2x̃fk|k

+

[
Grk

04×6

] [
1wk
2wk

]
=Φkx̃k|k +Gkwk, (4)

where iwk =
[

iυk
iνk

]
is the process noise, Φrk =[ 1Φrk

03×3

03×3
2Φrk

]
and Grk =

[ 1Grk
03×3

03×3
2Grk

]
. iΦrk and iGrk

are obtained from the state propagation equations ((2)
and (3)):

iΦrk =

[
I2 JC(iϕ̂k|k)

iuk

01×2 1

]
=

[
I2 J(ix̂pk+1|k −i x̂pk|k)

01×2 1

]
, (5)

iGrk =

[
C(iϕ̂k|k) 02×1

01×2 1

]
, (6)

where J =
[
0 −1
1 0

]
.

EKF Update

In the considered SLAM problems, the robots observe
the relative position of the point feature with respect to
the robots. Thus, the observation equation at step k is
given by:

i
jzk+1 =C(iϕk+1)

T (jxfk+1
−ixpk+1

) + i
jek+1

=hi,j(
ixk+1) +

i
jek+1, (7)

where i
jzk+1 is the observation of fj from Ri and

i
jek+1 is

the corresponding observation noise, i
jek+1 ∼ N (0,ijR).

The linearized measurement-error equation is given by:

z̃k+1 ≈
[
Hrk+1

Hfk+1

] [x̃rk+1|k

x̃fk+1|k

]
+ ek+1

=Hk+1x̃k+1|k + ek+1, (8)

where

Hrk+1
=


1
1Hrk+1

02×3

1
2Hrk+1

02×3

02×3
2
1Hrk+1

02×3
2
2Hrk+1

 ,Hfk+1
=


1Hfk+1

02×2

02×2
1Hfk+1

2Hfk+1
02×2

02×2
2Hfk+1

 ,

(9)

are the Jacobians of h = (h1,1,h1,2,h2,1,h2,2)
T with re-

spect to the robot poses and the shared feature positions,
respectively, evaluated at the state estimate x̂k+1|k,

iHfk+1
=CT (iϕ̂k+1|k), (10)

i
jHrk+1

=iHfk+1

[
−I2 −J(jx̂fk+1|k −i x̂pk+1|k)

]
. (11)

Initialization

As described in Section 2.1, we have an unknown pose
estimate of 2R, and both robots observe f1 and f2. In
other words, we have the unknown state vector x̂s =[
2x̂T

r0 ,1x̂
T
f0
,2x̂

T
f0

]T
. To find the optimal x̂s, this can be

solved as a nonlinear least squares problem [Huang et al.,
2024] by implementing Gauss-Newton method at step 0
to minimize the Cost Function:

2∑
i=1

2∑
j=1

||ijzs −C(iϕ̂0)
T (jx̂f0 −i x̂p0

)||2i
jR

, (12)

where i
jzs is the observation of fj from Ri,

i
jR is the

covariance matrix of observation noise i
jes for i

jzs,
i
jes ∼

N (0,ijR). In the simulation, the initial values of 2x̂r0

and jx̂f is are random.
When the Gauss-Newton method converges, we get

the optimized state estimate x̂s and its covariance matrix

Ps. The shared state at step 0 is x̂0 =
[
1xT

r0 , x̂
T
s

]T
, with

1xr0 = [0, 0, 0]
T
. And the covariance matrix of x̂0 is

P0 = Diag(03×3,Ps).

3 Observability Analysis

For single-robot SLAM, the observability property has
been analysed in [Huang et al., 2010] that the nonlin-
ear SLAM system for a single robot is unobservable,
with three unobservable degrees of freedom (DoF) cor-
responding to the global position and orientation of the
initial robot pose. Later, the observability properties
of the EKF linearized error-state system are examined
and analysed in [Huang et al., 2009]. Further inconsis-
tency analysis of unobservable subspace is conducted in
[Huang et al., 2010]. Similarly, we can show that our two
robots’ nonlinear SLAM system has three unobservable
DoF. In this section, we analyze the observability prop-
erties of three EKF algorithms, ideal-EKF, Std-EKF and
FEJ-EKF.
Since the EKF model is time-varying ((4) and (8)),

we employ the local observability matrix to perform the
observability analysis. In this paper, the local observ-
ability matrix for the time interval between time steps k
and k +m is:

M =


Hk

Hk+1Φk

...
Hk+mΦk+m−1 · · ·Φk



=


Hrk Hfk

Hrk+1
Φrk Hfk+1

...
...

Hrk+m
Φrk+m−1

· · ·Φrk Hfk+m

 . (13)



In the following sections, the matrices (such as M) with-
out any script are Std-EKF based, with “˘” are ideal-
EKF based, with “¯” are FEJ-EKF based.

3.1 Standard EKF

We now study the observability properties of the Std-
EKF for the considered multi-robot SLAM in (13), in
which the Jacobians are evaluated at the estimated state.
Starting by noting that,

iΦrk+t−1

iΦrk+t−2
· · · iΦrk = (14)[

I2 J(ix̂pk+t|k+t−1
− ix̂pk|k −

∑k+t−1
d=k+1 ∆

ixpd
)

01×2 1

]
,

where ∆ixpt
= ix̂pt|t − ix̂pt|t−1

is the correction in the
robot position due to the update at time-step t when
t = 1, ...,m. Therefore,

i
jHrk+t

iΦrk+t−1
· · · iΦrk = iHfk+t

×
[
−I2

i
jΨk+t

]
,

(15)

i
jΨk+t = −J(jx̂fk+t|k+t−1

− ix̂pk|k +

k+t−1∑
d=k+1

∆ixpd
),

(16)

where
∑k+t−1

d=k+1 ∆
ixpd

= 0 when t = 0, 1. Using this
result,

M =Diag(H
′

fk
, · · · ,H

′

fk+m
)︸ ︷︷ ︸

D

(17)

×



−I2
1
1Ψk 02×2 02×1 I2 02×2

−I2
1
2Ψk 02×2 02×1 02×2 I2

02×2 02×1 −I2
2
1Ψk I2 02×2

02×2 02×1 −I2
2
2Ψk 02×2 I2

...
...

...
...

...
...

−I2
1
1Ψk+m 02×2 02×1 I2 02×2

−I2
1
2Ψk+m 02×2 02×1 02×2 I2

02×2 02×1 −I2
2
1Ψk+m I2 02×2

02×2 02×1 −I2
2
2Ψk+m 02×2 I2


︸ ︷︷ ︸

N

where

H
′

fk+t
= Diag(1Hfk+t

,1Hfk+t
,2Hfk+t

,2Hfk+t
). (18)

Lemma 1. The rank of the observability matrix of the
system model of the Std-EKF, M, is equal to 8.

Proof. We start by analysing the rank of N defined in
(17). Since the estimates of any given state variable
at different time instants are generally different in the
standard EKF SLAM, ∀i, j, t, k, l (t ̸= l):

ix̂pk+t|k+t−1
̸=ix̂pk+t|k+t

, (19)

jx̂fk+t|k+t−1
̸=jx̂fk+l|k+l−1

. (20)

With (16) and (17), it implies that i
jΨk+t in the third

and the sixth columns of N are vectors with unequal
elements, thus rank(N) = 8. We can easily prove that
D is invertible, thus rank(M) = rank(N) = 8. The
dimension of the unobservable subspace for the Std-EKF
linearized model is 2.

3.2 Ideal-EKF

In the linearizations in ideal-EKF, the state estimates
are replaced with the ground truth when evaluating the
Jacobians of the filter. In other words, the inequality
signs in (19) and (20) become equal signs. We start by
noting that ((10) and (16)):

iH̆fk =CT (iϕk), (21)

i
jΨ̆k+t =− J(jxfk

− ixpk
). (22)

Similarly, we can get M̆ = D̆ × N̆ in the ideal-EKF
((17) and (18)). However, given i and j, as i

jΨ̆k+t in the

third and the sixth columns of N̆ are vectors with equal
elements, rank(M̆) = 7. Thus, the dimension of the
unobservable subspace for the underlying system should
be 3. As the unobservable subspace of the Std-EKF
linearized model has 2 dimensions, it implies that the
Std-EKF gains “spurious information” along the unob-
servable directions of the underlying nonlinear SLAM
system, which is the main cause of the inconsistency be-
tween the physical (nonlinear) and the linearized model
[Huang et al., 2009].

3.3 First Estimate Jacobian EKF

In the linearized FEJ-EKF SLAM, the state estimates
are replaced with the first estimates when evaluating the
Jacobians of the filter. We start by noting that ((10) and
(16)):

iH̄fk =CT (iϕ̂k|k−1), (23)
i
jΨ̄k+t =− J(jx̂fτ|τ

− ix̂pk|k−1
), (24)

where ix̂pk|k−1
is the position estimate of Ri prior to up-

dating, and jx̂fτ|τ
is the first estimated position of fj at

time-step τ . Then, we can get M̄ = D̄× N̄ in the FEJ-
EKF. Similar to the ideal-EKF, given i and j, as i

jΨ̄k+t

in the third and the sixth columns of N̄ are vectors with
equal elements, rank(M̄) = 7. Thus, the dimension of
the unobservable subspace for the linearized FEJ-EKF
SLAM system is 3, which is the same with the under-
lying system. This indicates that, unlike Std-EKF, the
proposed FEJ-EKF satisfies the observability constraint
for the considered problems.

4 Experiments

In this section, a series of Monte Carlo simulation tests
and an experiment on the real-world Victoria Park



(a) Environment 1 with 20 features (b) Environment 1 with 60 features (c) Environment 1 with 100 features

Figure 2: Simulation environment 1 with 20, 60 and 100 features

(a) Environment 2 with 20 features (b) Environment 2 with 60 features (c) Environment 2 with 100 features

Figure 3: Simulation environment 2 with 20, 60 and 100 features

dataset [Guivant and Nebot, 2001] are conducted to
demonstrate the effectiveness of the proposed FEJ-EKF
for the considered multi-robot SLAM problems.

We use the metrics of the root mean square error
(RMSE) and the average normalized (state) estimation
error squared (NEES) to evaluate the accuracy and con-
sistency, respectively. Specifically, the NEES indicator
is defined by [Song et al., 2022; Zhang et al., 2023]

NEES =
1

m× d

m∑
i=1

e⊤i P
−1
i ei, (25)

where m is the number of Monte Carlo runs, and ei is
a d dimensional error sample vector with estimated co-
variance matrix Pi. NEES should approximately equal
to 1 for large m, if the estimator is consistent [Song et
al., 2022].

4.1 Simulations

To compare the accuracy and consistency of Std-EKF,
ideal-EKF and the proposed FEJ-EKF, we conduct 100
Monte Carlo experiments on 2 major categories of sim-
ulated environments for the considered problems. Each
category of simulated environment has 3 feature configu-
rations. During each run, 1R and 2R execute 5 loops on

the trajectories with 20 (Figure 2(a) and 3(a)), 60 (Fig-
ure 2(b) and 3(b)) and 100 features (Figure 2(c) and
3(c)), respectively, shown in Figure 2 and Figure 3. To
provide enough observation information for the pose ini-
tialization of 2R, 1R and 2R are set up to observe at
least 2 shared features at step 0 in the simulation.

In Figure 2 and Figure 3, the circles (◦) and the arrows
are respectively the true positions and headings of 1R,
the squares (□) and the dash-dotted arrows are the true
positions and headings of 2R, the triangles (△) are the
true positions of the features.

The standard deviations of the noise level for the sim-
ulations in the environment 1 and 2 are respectively set
as: (i) (iσυ,

i σν) = (0.3m, 2◦) and (iσυ,
i σν) = (0.2m, 3◦)

for the position and heading process noises of the ith
robot; (ii) 1σe = 0.5m and 2σe = 0.6m for the observa-
tion noises; 1R and 2R observe features’ position within
their sensing range of 15 m.

The RMSE and NEES for each step of the correspond-
ing Monte Carlo simulations with 20, 60 and 100 features
for environment 1 are presented in Figure 4. Specifically,
for the simulation environment with (i) 20 features, Fig-
ure 4(a) - 4(c) describe the pose NEES, position RMSE
and heading RMSE of 1R, respectively, with Figure 4(d)



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 4: The RMSE and NEES results from the Monte Carlo simulations for environment 1 with different numbers
of features: the upper six figures are for the 20 features, the middle six figures are for the 60 features, the lower six
figures are for the 100 features

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 5: The RMSE and NEES results from the Monte Carlo simulations for environment 2 with different numbers
of features: the upper six figures are for the 20 features, the middle six figures are for the 60 features, the lower six
figures are for the 100 features



EKF

Metric Robot 1 Robot 2 Feature
Pose
NEES

Position
RMSE

Heading
RMSE

Pose
NEES

Position
RMSE

Heading
RMSE

Position
NEES

Position
RMSE

20
features

Standard 2.1436 1.7601 0.0739 2.0672 1.5915 0.0775 3.6847 1.6984
Ideal 0.9919 1.2915 0.0567 0.9992 1.1831 0.0594 0.9735 1.0658
FEJ 1.0399 1.3085 0.0574 1.0370 1.1941 0.0603 1.0276 1.0767

60
features

Standard 3.8475 1.2282 0.0459 3.4688 0.9802 0.0484 6.4923 1.1229
Ideal 1.0830 0.5786 0.0252 1.0827 0.4942 0.0265 1.0867 0.4312
FEJ 1.1143 0.5794 0.0255 1.1235 0.4913 0.0269 1.0872 0.4297

100
features

Standard 2.4322 0.8085 0.0305 2.3029 0.6501 0.0325 3.6766 0.6975
Ideal 1.0830 0.4762 0.0204 1.0660 0.3985 0.0213 1.0958 0.3513
FEJ 1.1297 0.4904 0.0210 1.1178 0.4046 0.0218 1.1097 0.3534

Red and Blue for RMSE (the smaller the better) generally indicate the best and second best results, respectively.

Bold for NEES generally indicates the smallest and second smallest values (NEES values are incomparable if they are around 1).

Table 1: Performance of different EKF algorithms for three feature configuration of environment 1

EKF

Metric Robot 1 Robot 2 Feature
Pose
NEES

Position
RMSE

Heading
RMSE

Pose
NEES

Position
RMSE

Heading
RMSE

Position
NEES

Position
RMSE

20
features

Standard 2.6083 3.0072 0.0819 2.2871 2.3172 0.0724 4.2160 2.2272
Ideal 1.0729 1.8633 0.0663 1.0070 1.4300 0.0565 1.0183 1.0575
FEJ 1.2683 1.9153 0.0702 1.0967 1.4349 0.0583 1.0853 1.0642

60
features

Standard 1.3032 1.4797 0.0432 1.2585 1.1988 0.0389 1.6542 1.1069
Ideal 0.9814 1.2093 0.0394 0.9621 0.9849 0.0351 0.9440 0.7802
FEJ 1.0552 1.2359 0.0406 0.9902 0.9905 0.0358 0.9358 0.7889

100
features

Standard 1.2834 1.2466 0.0344 1.2879 1.0441 0.0323 1.6020 0.9713
Ideal 0.9704 1.0349 0.0310 0.9918 0.8766 0.0289 0.9658 0.7386
FEJ 1.0374 1.0444 0.0317 1.0246 0.8792 0.0293 0.9965 0.7363

Red and Blue for RMSE (the smaller the better) generally indicate the best and second best results, respectively.

Bold for NEES generally indicates the smallest and second smallest values (NEES values are incomparable if they are around 1).

Table 2: Performance of different EKF algorithms for three feature configuration of environment 2

- 4(f) showing the corresponding results of 2R; (ii) 60
features, Figure 4(g) - 4(i) describe the pose NEES, posi-
tion RMSE and heading RMSE of 1R, respectively, with
Figure 4(j) - 4(l) showing the corresponding results of
2R; (iii) 100 features, Figure 4(m) - 4(o) describe the
pose NEES, position RMSE and heading RMSE of 1R,
respectively, with Figure 4(p) - 4(r) showing the corre-
sponding results of 2R. The vertical dash line in Figure 4
denotes the step for the first loop closure. Similarly, Fig-
ure 5 shows the Monte Carlo results for the simulation
environment 2 (Figure 3) with different numbers of fea-
tures. In addition, Table 1 and Table 2 also presents
the comparative results of corresponding Monte Carlo
simulations.

In summary, by comparing the RMSE and NEES in
all the figures and the corresponding average ones in all
the tables, it can be generally revealed that for both 1R
and 2R, FEJ-EKF has a better performance in terms of
accuracy and consistency than Std-EKF.

4.2 Real-world Experiment

The Victoria Park dataset is used to test and validate
the experimental performance of the FEJ-EKF. In the
dataset [Guivant and Nebot, 2001], a single robot runs
6897 steps and observes tree trunks as features. As the
dataset is collected by a single robot, we tend to find
a suitable step to split the trajectory into two parts for
two robots 1R and 2R. And we assume that these two
part of corresponding data are collected separately by
such two robots. Eventually, we select the following two
parts of trajectory: the part of 1R starts from the 719th
step and ends at the 3264th step; the part of 2R starts
from the 3265th step and ends at the 5810th step. We
chose these parts because, from the Gauss-Newton opti-
mization results, the poses of robot at the 719th step and
the 3265th step are relatively similar. Besides, 1R at the
719th step and 2R at the 3265th step have more than 8
shared features. We used the Gauss-Newton method to
optimize the robot pose at the 719th step as the initial



(a) Gauss-Newton method (b) Std-EKF (c) FEJ-EKF

Figure 6: The estimated robot trajectories and estimated feature positions for Victoria Park Dataset

pose 0 of 1R.
In this experiment, as the ground truth for the poses

of the robots and the positions of the features are un-
known, the ideal-EKF is not available. We only show
the estimates of (i) Gauss-Newton method, (ii) Std-EKF
and (iii) FEJ-EKF in Figure 6(a) - 6(c), respectively. In
these figures, the solid lines are the trajectories of 1R;
the dashed lines are the trajectories of 2R; the triangles
(△) are the positions of the features.

As implied in Figure 6, both Std-EKF and FEJ-EKF
have good performances on the Victoria Park dataset
as compared with the results from full non-linear least
squares by Gauss-Newton method. The reason why Std-
EKF and FEJ-EKF perform similarly is probably due
to the small process and sensor noises involved in this
practical dataset.

5 Conclusions and Future Works

In this paper, the first estimate Jacobian (FEJ)-EKF
is applied to the point feature-based multi-robot SLAM
problems. Based on the observability analysis, the pro-
posed method maintains the correct observability prop-
erty, addressing the issue appeared in the standard
(Std)-EKF. The simulation results demonstrate that our
proposed FEJ-EKF outperforms Std-EKF in terms of
both accuracy and consistency, validating the effective-
ness of our method. In the future, we will focus on de-
veloping consistent EKFs to the 3D cases. Also, the
proposed algorithms will be applied to more real-world
datasets.
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