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Abstract

We introduce a new unsupervised text embed-
ding method, Meta-Task Prompting with Ex-
plicit One-Word Limitation (MetaEOL), for
generating high-quality sentence embeddings
from Large Language Models (LLMs) with-
out the need for model fine-tuning. Leveraging
meta-task prompting, MetaEOL guides LLMs
to produce embeddings through a series of care-
fully designed prompts that address multiple
representational aspects. Our comprehensive
experiments demonstrate that embeddings aver-
aged from various meta-tasks are versatile em-
beddings that yield competitive performance
on Semantic Textual Similarity (STS) bench-
marks and excel in downstream tasks, surpass-
ing contrastive-trained models. Our findings
suggest a new scaling law, offering a versatile
and resource-efficient approach for embedding
generation across diverse scenarios.1

1 Introduction

The advent of Large Language Models (LLMs)
such as GPT-3 (Brown et al., 2020) and
LLaMA (Touvron et al., 2023a) has marked a sig-
nificant milestone in the field of natural language
processing (NLP), introducing promising unsuper-
vised methods for various NLP tasks by leverag-
ing task-related instructions or prompts (Qin et al.,
2023; Zhong et al., 2023; Zhao et al., 2023). These
tasks also include the generation of sentence em-
beddings, which aims to produce sentence represen-
tations that can be applied across a wide range of
scenarios. They have been applied to intrinsic tasks
like Semantic Textual Similarity (STS) (Agirre
et al., 2012a; Cer et al., 2017b), to downstream
tasks including information retrieval (Mitra et al.,
2017; Izacard et al., 2021), and to sentiment classi-
fication (Ke et al., 2020) and beyond. By employ-

*Corresponding to: Yibin Lei (e-mail: y.lei@uva.nl) and
Chongyang Tao (e-mail: chotao@microsoft.com).

1Our code is publicly available at https://github.com/
Yibin-Lei/MetaEOL.

Figure 1: The highest decoding probabilities are largely
allocated to stop words that carry little useful informa-
tion when conducting a meaning compression prompt-
ing, even if employing a constraint of "in one word"
following Jiang et al. (2023b). Although the general
semantic, movie, is contained, other aspects of this sen-
tence are missing, like sentiments.

ing specific prompts (Jiang et al., 2023b, 2022a),
researchers have begun to explore the potential
of extracting meaningful sentence embeddings di-
rectly from the hidden states of LLMs without the
need for explicit training. These prompt-based ap-
proaches generate embeddings without the need
for any fine-tuning or in-context learning, which
is a substantial improvement over approaches that
require extensive fine-tuning to achieve high per-
formance.

Initial efforts in this domain, as highlighted by
works like (Jiang et al., 2023b, 2022a; Liu et al.,
2023a), have focused on unsupervised techniques
that extract sentence representations directly from
LLMs. These methods typically involve using
fill-in-the-blanks prompts, such as This sentence:
"[TEXT]" means in one word:" (Jiang et al., 2023b),
to embed a sentence into a single token represen-
tation by using the output hidden state of the last
token as the sentence’s embedding. While they
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perform well, these approaches also reveal the in-
herent challenges of this task: embeddings may be
overly simplistic or misaligned with the intended
semantic nuances of the sentences.

In a pilot experiment illustrated in Figure 1,
we demonstrate that a previous prompt-based
method (Jiang et al., 2023b) can struggle to cap-
ture a sentence’s meaning, especially when the us-
age of the sentence is associated with multiple as-
pects. When probing the probability distribution
for the next token during decoding, which reflects
the embedding quality of the last token2, the high-
est probabilities are mostly distributed to frequent
stop words. Although the general movie topic ap-
pears, other meaningful aspects like sentiments are
missing.

A straightforward solution to mitigate this issue
is to provide LLMs with task-specific instructions.
This approach involves instructing the model with
prompts explicitly designed for a particular task,
thereby tailoring the embeddings to better suit the
specific requirements of that task. However, con-
sidering the wide range of distinct tasks that an
embedding may be used for (Mishra et al., 2022;
Wang et al., 2022; Chung et al., 2022), this would
be impractical. Furthermore, while task-specific
embeddings are effective for their corresponding
tasks, they may fail to generalize well across differ-
ent tasks.

Inspired by the principles of the usage-based
theory of language acquisition (Tomasello, 2009),
which asserts that the essence of meaning is rooted
in the practical utilization of language, our ap-
proach aims to generate broad embeddings through
the use of meta-task prompting, inspired by meta-
task prompted training (Sanh et al., 2022) and
hyper-prompt (He et al., 2022) techniques. By
defining a suite of meta-tasks, each tailored to a dis-
tinct application context, MetaEOL prompts LLMs
to consider multiple representational tokens from a
variety of perspectives. This multifaceted approach
enables the extraction of more diverse and nuanced
contextualized token embeddings that collectively
form a comprehensive sentence embedding.

Extensive experiments empirically show that: (i)
Simply averaging embeddings from different meta-
tasks without any training leads to general embed-
dings that are competitive to contrastive-trained
models on STS tasks and can achieve the best av-

2The decoding probabilities are derived by comparing the
similarity between the output hidden state of the last token
and the token embeddings of the whole vocabulary.

erage result on several downstream tasks. (ii) In-
crementally integrating more meta-tasks (ranging
from one to four) yields consistent improvements
across STS tasks, showcasing high generalities, and
highlighting the significant impact of meta-task in-
tegration on overall performance. (iii) The final
layer is not always the most effective for STS tasks
and with a simple proportional layer selection strat-
egy, we achieve the best results with a 70B model,
which points to a potential scaling law.

2 Related Work

Sentence Embeddings. Sentence embeddings
aim to encode the semantic content of sentences
into fixed-sized vector representations. Recent de-
velopments in contrastive learning have proven to
be highly effective for generating sentence embed-
dings, under both unsupervised and supervised set-
tings (Gao et al., 2021; Jiang et al., 2022a; Chuang
et al., 2022; Wu et al., 2022). For instance, Sim-
CSE (Gao et al., 2021) utilizes different dropout
masks as a form of noise to create positive pairs
in an unsupervised fashion, while in a supervised
setting, models like Sentence-BERT (Reimers and
Gurevych, 2019) leverage natural language infer-
ence (NLI) datasets to construct positive and nega-
tive pairs. Additionally, Su et al. (2023) and Asai
et al. (2023) show that training with a large amount
of tasks with annotated instructions can enable the
model to generate embeddings tailored to differ-
ent downstream tasks. In contrast, our approach
MetaEOL demonstrates the potential of utilizing
LLMs directly to generate instruction-followed em-
beddings without the need for any additional train-
ing.

Large Language Models for Text Representa-
tion. Recent studies have explored the use of
LLMs for enhancing text embeddings through
data augmentation techniques (Cheng et al., 2023;
Zhang et al., 2023). Notably, Sentence-T5 (Ni
et al., 2022a) and GTR (Ni et al., 2022b) employ
contrastive learning on models with billions of pa-
rameters. More recently, research has focused on
converting an LLM directly into a text encoder
without any training. Liu et al. (2023b) represents
sentences through the distribution of possible text
continuations, comparing the distributional simi-
larity between sentences. This method, although
effective, necessitates the generation of 20 trajec-
tories, each up to 20 tokens in length, making it
computationally intensive. Jiang et al. (2022a) in-



Figure 2: The workflow of our method (MetaEOL). We use the prompt in Appendix A.1 to prompt ChatGPT-4
to generate templates. Each input sentence will be decorated with multiple task-specific templates, indicating its
various intended usage scenarios. The resulting multiple prompts will be fed to LLMs. Then, multiple task-specific
embeddings will be extracted. The final sentence embedding is obtained by averaging the task-specific embeddings.

corporates in-context learning (Dong et al., 2023)
to enhance sentence embeddings. While proven
effective, it also reveals that the produced embed-
dings are task-specific and struggle with generaliza-
tion across various downstream tasks, in addition
to being highly sensitive to the choice of demon-
strations. Contemporaneous works investigate the
potential of LLMs either by repeating the input
texts (Springer et al., 2024) or enabling bidirec-
tional attention (BehnamGhader et al., 2024) to
address the lack of backward dependency in LLMs.
Additionally, the potential of LLMs under super-
vised training settings has also been studied in re-
cent works (Ma et al., 2023; Li and Li, 2024b,a;
Wang et al., 2024; Li et al., 2024; Lee et al., 2024).

Multitask Prompts. Studies have demonstrated
that models fine-tuned using multi-task prompts
and datasets can serve as general-purpose mod-
els with strong capabilities in generalizing to new
tasks (Sanh et al., 2022; Wei et al., 2022; Chung
et al., 2022; Wang et al., 2022; Mishra et al., 2022).
Our approach MetaEOL aligns with this concept,
showcasing that multi meta-task prompts can sim-
ilarly generate general-purpose embeddings, re-
markably without necessitating any training.

3 Method

In this section, we begin by reviewing two kinds of
previous prompting methods for deriving sentence
representation from masked and causal language
models, respectively (Section 3.1). Subsequently,
we describe our proposed method, i.e., Meta-Task
Prompting with Explicit One-Word Limitation

(MetaEOL) in detail (Section 3.2). Lastly, we
describe meta-tasks involved in this paper (Sec-
tion 3.3).

3.1 Previous Language Model Prompting

3.1.1 Masked Language Model
Masked language models, e.g., BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), use a mask
prediction task to capture contextual information
for a certain token. To align with this point, Prompt-
BERT (Jiang et al., 2022a) formulates the sentence
embedding extraction as a similar task and employs
the following template,

This sentence : “[TEXT]” means [MASK] .

for prompting. Here, [TEXT] and [MASK] indicate
the placeholder for the input sentence and the mask
token. The last layer’s hidden vector of [MASK] to-
ken is directly used as the sentence representation.

Jiang et al. (2022a) empirically show that such a
simple prompting method can achieve decent per-
formance, and equipping it with a contrastive loss
for large-scale continued training leads to further
enhancements for embedding quality. However,
it is worth noting that extra training is resource-
intensive, especially for today’s LLMs. To enhance
clarity, we provide results both with and without
training on BERT and RoBERTa in the following
experiments.

3.1.2 Causal Language Model
Others have investigated directly extracting sen-
tence representation from large Causal Language
Models (CLMs), e.g., OPT (Zhang et al., 2022)



or LLAMA (Touvron et al., 2023a), without addi-
tional training. Inspired by Jiang et al. (2022a),
PromptEOL (Jiang et al., 2023b) employs a similar
prompting template as follows,

This sentence: “ [TEXT] ” means in one word:“

where the last layer’s hidden vector for the last to-
ken ““” is extracted as the sentence representation.
A constraint of “in one word” is applied to avoid
the model’s tendency to generate long sentences
such that the last token fails to capture the overall
information.

However, the obtained embedding highly relies
on the single prompt, which confines the inference
process and can result in non-comprehensive fea-
tures. For example, as shown in Figure 1, for a neg-
ative review of a movie, the resulting embedding
does not capture critical aspects such as sentiment.

3.2 Meta-Task Prompting

To overcome the issues raised above, we propose
Meta-Task Prompting with Explicit One-Word
Limitation (MetaEOL). A meta-task is associated
with a potential broad usage scenario for the cor-
responding sentence representation. As shown in
Figure 2, we directly prompt casual LLMs with the
goals of multiple meta tasks, aiming to obtain the
representations under various broad intents.

Specifically, we produce task-oriented prompts
by decorating the original prompting template used
for causal LLMs (Section 3.1.2) with the corre-
sponding task description. For example, given a
meta-task where representations are extracted for
Text Classification (TC), we extend the template
with task-oriented context to define the behavior
during inference. As shown in the template of Meta
Task-1 in Figure 2, a detailed task description text
is placed at the beginning of the prompt, instructing
the LLM to categorize the excerpt into a broad cat-
egory. Then, an instruction with a constraint of “in
one word” is followed to ensure models aggregate
the information of the whole sentence into the em-
bedding of the last token. The placeholder [TEXT]
will be substituted with the original sentence to
produce the final task-oriented prompt. The re-
sulting task-specific prompt will serve as input to
LLMs. Subsequently, we extract the hidden vector
of the last token ““” as the sentence representation,
following the pattern outlined in Section 3.1.

It is worth noting that given various meta-tasks,
distinct templates will be employed, leading to mul-
tiple different sentence embeddings. Our hypothe-

sis is that each embedding captures a distinct rep-
resentation customized for a specific feature view-
point (meta-task). In this paper, we empirically
show that simply averaging different embedding
derived from multiple meta-tasks can achieve supe-
rior performance for both intrinsic and downstream
evaluation benchmarks.

3.3 Types of Meta-Tasks

In this paper, we conduct experiments on the fol-
lowing four distinct meta-tasks, i.e., Text Classifi-
cation (TC), Sentiment Analysis (SA), Paraphrase
Identification (PI), and Information Extraction (IE),
aiming to capture information from different angles.
For example, intuitively, the TC task primarily em-
phasizes topic-level information, whereas the IE
task concentrates on surface-level signals.

For each meta-task, we straightforwardly lever-
age ChatGPT-4 as a template generator to pro-
duce multiple templates. The instruction we
used to prompt the ChatGPT-4 is provided in Ap-
pendix A.1.

Note that introducing more meta-tasks is trivial,
because it only requires adding more task names
to the generator. Here, we choose the above four
meta-tasks as a testbed to assess scalability. More
specifically, in Section 5.2, we show that incre-
mentally adding more meta-tasks to our workflow
results in consistently better performance.

4 Experiments

4.1 Settings

Dataset. Suggested by prior works (Reimers and
Gurevych, 2019; Gao et al., 2021; Jiang et al.,
2022b) that an important objective of sentence
embeddings is to cluster semantically similar sen-
tences, we evaluate MetaEOL on seven semantic
textual similarity (STS) datasets, utilizing the Sen-
tEval toolkit (Conneau and Kiela, 2018). The STS
datasets consist of STS 2012-2016 (Agirre et al.,
2012b, 2013, 2014, 2015, 2016), STS-B (Cer et al.,
2017a), and SICK-R (Marelli et al., 2014). Each
sentence pair in the STS datasets is annotated with
a score from 0 to 5 indicating the pairwise seman-
tic similarity. The Spearman correlation (scaled
by 100x) between the model-predicted similarity
scores and human-annotated similarity scores is
used as the metric. We employ cosine similarity
to measure the similarity between sentence em-
beddings. The Spearman correlation is computed
under the “all” setting.



Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Unsupervised Contrastive Training
SimCSE-BERT 110M 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SimCSE-RoBERTa 123M 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
PromptBERT 110M 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
PromptRoBERTa 123M 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15
LLM2Vec-LLAMA2 7B 65.39 79.26 72.98 82.72 81.02 78.32 71.77 75.92
LLM2Vec-Mistral 7B 67.65 83.90 76.97 83.80 81.91 80.42 75.55 78.60

Without Contrastive Training
BERT avg. 110M 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
BERT prompt 110M 60.96 73.83 62.18 71.54 68.68 70.60 67.16 67.85
ST5-Enc avg. 4.8B 34.97 60.19 47.59 66.40 70.62 62.83 63.57 58.02
LLAMA2 avg. 7B 35.49 53.15 40.12 55.35 53.26 42.10 49.96 47.06
Mistral avg. 7B 41.13 54.08 43.99 56.94 53.80 42.99 52.32 49.32

Echo-LLAMA2 7B 52.40 72.40 61.24 72.67 73.51 65.73 64.39 66.05
Echo-LLAMA2 13B 59.36 79.01 69.75 79.86 76.75 71.31 70.27 72.33
PromptEOL-LLAMA2 7B 58.81 77.01 66.34 73.22 73.56 71.66 69.64 70.03
PromptEOL-Mistral 7B 63.08 78.58 69.40 77.92 79.01 75.77 69.47 73.32
PromptEOL-LLAMA3 8B 60.88 78.57 68.18 76.75 77.16 72.83 68.94 71.90
PromptEOL-LLAMA2 13B 56.19 76.42 65.42 72.73 75.21 67.96 68.23 68.83

MetaEOL-LLAMA2 (Ours) 7B 64.16 81.61 73.09 81.11 78.94 77.96 74.86 75.96 (+5.93)
MetaEOL-Mistral (Ours) 7B 64.05 82.35 71.57 81.36 79.85 78.29 75.13 76.09 (+2.77)
MetaEOL-LLAMA3 (Ours) 8B 65.10 83.08 73.01 81.87 81.47 80.47 76.46 77.35 (+5.45)
MetaEOL-LLAMA2 (Ours) 13B 61.07 82.53 73.30 80.99 79.14 77.11 74.77 75.56 (+6.73)

Table 1: Results on STS tasks (Spearman correlation scaled by 100x). Values in parentheses, such as “(+5.93)”
in MetaEOL’s results, represent the increase in average score compared to the average score of the same model
utilizing PromptEOL.

Baselines. The baselines we consider can be
categorized into two types – models with con-
trastive training and without contrastive training:
(i) Models with Contrastive Training: We compare
MetaEOL with SOTA unsupervised contrastive-
trained models, namely SimCSE (Gao et al., 2021)
and PromptBERT (Jiang et al., 2022a). The mod-
els are trained on 106 sentences randomly sampled
from Wikipedia. Results based on BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) mod-
els are reported. Contemporaneous LLM-based
approach LLM2Vec (BehnamGhader et al., 2024)
is also included for comparison. LLM2Vec com-
prises three stages: bidirectional attention enabling,
masked next token prediction training, and unsu-
pervised contrastive training (similar to SimCSE)
to transform an LLM into a text encoder. Con-
sidering (ii) Models without Contrastive Training:
We compare MetaEOL with (1) average pooling
methods, where average pooling is applied to the
output hidden states of all tokens in a sentence
to obtain the sentence embedding. We report re-
sults with BERT, the encoder of ST5 (Ni et al.,
2022a), LLAMA2 (Touvron et al., 2023b) and Mis-

tral (Jiang et al., 2023a) models; and (2) Prompt-
based methods, which include BERT Prompt that
employs the same prompt strategy as Prompt-
BERT but does not incorporate contrastive training,
PromptEOL and the contemporaneous Echo em-
beddings (Springer et al., 2024). Echo embeddings
repeat the input once and extract embeddings from
the second occurrence. All methods mentioned
above rely on the output from the final layer to
obtain the sentence embedding.

Implementation Details. We apply MetaEOL
to LLAMA2-7B, LLAMA3-8B, LLAMA2-13B,
and Mistral-7B models, using meta-tasks consist-
ing of Text Classification (TC), Sentiment Analysis
(SA), Paraphrase Identification (PI), and Informa-
tion Extraction (IE). These tasks are distinct and
collectively consider diverse aspects of a sentence.
For each of these meta-tasks, we utilize GPT-4 to
create two unique task prompts, resulting in a to-
tal of eight task prompts.3 MetaEOL rely on the
output from the final layer to obtain the sentence
embedding. We simply average the resulting em-

3The details of these eight task prompts are presented in
Appendix A.3.



Sentence Prompt Top-predicted tokens

Smart and alert, thirteen conversations
about one thing is a small gem.

PromptEOL I one a thing the This The smart It it
Text Classification Culture E Pol \n Bus " Culture educ Te Health
Sentiment Analysis positive pos good ext good very neut negative smart extremely
Paraphrase Identification smart a the intelligent The short clever conc A conversation
Information Extraction gem smart thing alert small conversation Gem thirteen gem a

Table 2: The top-10 tokens predicted by different task prompts with Mistral-7B. PromptEOL creates sentence
embeddings with an emphasis on stop-word tokens. Text Classification focuses embeddings on topic-relevant tokens
like Culture. Sentiment Analysis aligns embeddings with sentiment words. Paraphrase Identification diversifies
embeddings with synonyms, adding richness with terms like intelligent, short, and clever. Information Extraction
steers embeddings toward key factual tokens.

beddings of task prompts from different meta-tasks
to obtain the final embedding.

4.2 Main Results

The results of MetaEOL on STS tasks are shown
in Table 1, with notable performance by MetaEOL
which requires no training. Among models that do
not require training, prompt-based methods exhibit
superior results compared to average pooling meth-
ods, especially with the LLAMA and Mistral mod-
els. Across various models including LLAMA2-
7B/13B, LLAMA3-8B, and Mistral-7B, MetaEOL
demonstrates competitive performance compared
to contrastive-trained models such as SimCSE-
BERT and SimCSE-Roberta, albeit with a slight
lag behind PromptBERT. Furthermore, MetaEOL
significantly outperforms PromptEOL and Echo
embeddings across various test models, demon-
strating a consistent improvement. Notably, the
LLAMA2-13B model using MetaEOL shows an
average improvement of 6.73% over PromptEOL,
underscoring the efficacy of MetaEOL. Compared
to LLM2Vec which requires two-stage training,
MetaEOL is competitive when using LLAMA2-
7B, without the need for any training.

4.3 Qualitative Example

We further show the top-10 tokens predicted by
different task prompts in Table 2. The example
illustrates that PromptEOL creates sentence em-
beddings focusing on stop-word tokens (such as
a, this, the, it), which convey minimal informa-
tion. In contrast, the four meta-tasks of MetaEOL
demonstrably shift the behavior of the embeddings,
leading to the prediction of tokens that are distinct
and imbued with substantive meaning.

Specifically, Text Classification steers the em-
beddings toward tokens that are indicative of spe-
cific topics, such as Culture. Sentiment Analysis is
inclined to produce embeddings close to sentiment-

Method STS Avg.

PromptEOL 70.03
w. 7 paraphrases 62.72

MetaEOL 75.96
TC only 70.92
SA only 67.06
PI only 73.03
IE only 72.06
w. embedding concatenation 74.99
w. max pooling 72.03

Table 3: Ablation study on LLAMA2-7B. STS Avg.
refers to the average score of the seven STS tasks. TC:
Text Classification; SA: Sentiment Analysis; PI: Para-
phrase Identification; IE: Information Extraction.

related words. Paraphrase Identification yields em-
beddings that capture a spectrum of synonyms, en-
riching the sentence with varied linguistic expres-
sions like intelligent, short, and clever. Informa-
tion Extraction modifies the embeddings towards
tokens that represent key facts or elements within
the sentence.

5 Analysis

In this section, we thoroughly analyze MetaEOL
using the LLAMA2-7B model.

5.1 Ablation Study

We evaluate the effectiveness of key components
of MetaEOL in Table 3. First, to ensure the im-
provement observed with MetaEOL is not merely
due to involving more prompts, we create seven
paraphrased versions of the PromptEOL prompt,
resulting in a total of eight prompts.4 We then av-
erage the embeddings from these eight prompts
to form the final sentence embedding. We find
merely duplicating PromptEOL prompts (w. 7
paraphrase) does not improve PromptEOL but re-
sults in a significant decline. Additionally, we im-

4The seven paraphrased prompts are presented in Ap-
pendix A.2



Meta-Tasks STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

TC 58.36 75.57 67.20 77.04 74.51 71.84 71.90 70.92
TC+SA 58.89 75.56 67.35 77.60 74.90 73.58 72.48 71.48
TC+SA+PI 63.08 80.01 71.24 80.38 78.26 77.42 75.00 75.06
TC+SA+PI+IE 64.16 81.61 73.09 81.11 78.94 77.96 74.86 75.96

Table 4: Results on increasing number of tasks with LLAMA2-7B. TC: Text Classification; SA: Sentiment Analysis;
PI: Paraphrase Identification; IE: Information Extraction.

plement MetaEOL exclusively on each meta-task
(TC/SA/PI/IE only). We find that tasks requiring
a detailed comprehension of sentences (PI and IE)
yield superior performance compared to those re-
quiring a broader understanding, even surpassing
PromptEOL. MetaEOL, which combines the em-
beddings from these meta-tasks, outperforms all
individual meta-tasks, confirming the complemen-
tarity of the meta-tasks and the effectiveness of
combining embeddings from diverse meta-tasks.
We finally find that averaging the embeddings from
different meta-tasks yields better results than either
concatenating them or max pooling them across
each dimension.

5.2 Influence of Number of Tasks

We investigate the influence of the number of tasks
as presented in Table 4. We find increasing the
number of tasks leads to a consistent improvement
in performance on average and nearly every indi-
vidual STS task. This further verifies the comple-
mentarity of the meta-tasks and underscores the
importance of utilizing various diverse meta-tasks.

5.3 Influence of Number of Prompts

Here, we investigate the impact of the number of
prompts in Figure 3. We concentrate on Sentiment
Analysis as the meta-task and utilize GPT-4 to gen-
erate three additional Sentiment Analysis prompts
besides the two we used in MetaEOL. This results
in a total of five distinct prompts, specifically tai-
lored for Product Review Rating, Emotion Detec-
tion, Sentiment Polarity Detection, Sentiment In-
tensity and Emotion Detection, and Aspect-Based
Sentiment Analysis, respectively.5 We systemati-
cally computed the average performance across all
combinations of these five prompts, conditioned on
a fixed number of prompts.

As Figure 3 shows, increasing the number of
prompts within a particular task type facilitates
more nuanced embeddings, thereby leading to bet-
ter STS results. We opt for two prompts for each

5The details of these five instructions are in Appendix A.4.

Figure 3: Influence of number of prompts on LLAMA2-
7B. STS Avg. refers to the average score of the seven
STS tasks.

meta-task for MetaEOL to optimize both perfor-
mance and computational efficiency.

5.4 Prompt Sensitivity Analysis
To test the sensitivity of MetaEOL, we specifically
focus on the influence of (i) Tiny perturbations on
the task prompt; and (ii) Variations of the major
prompting instruction in Appendix A.1.

5.4.1 Sensitivity to Tiny Prompt
Perturbations

We apply the synonym replacement operation
in Wei and Zou (2019) to replace 10% of words
in the sentiment analysis task prompt of MetaEOL
with their synonyms. We craft an additional 4 per-
turbed prompts. The synonym replacements are
sourced directly from WordNet without filtering,
which often results in unnatural substitutions, as
shown in the Appendix A.5. To provide context for
the sensitivity, we included results from SimCSE-
BERT-Base with varying random seeds in Jiang
et al. (2022a) as a reference.

Method STS Avg.

MetaEOL-LLAMA2-7B 67.98±0.67
SimCSE-BERT-Base 75.42±0.86

Table 5: Sensitivity to tiny prompt perturbations on
LLAMA2-7B.

The results in Table 5 show that even with un-
natural substitutions, our MetaEOL-LLAMA2-7B
still exhibits a standard deviation of ±0.67 on STS
Avg., which is in line with the variance observed
in SimCSE-BERT-Base (±0.86), suggesting that



our method’s sensitivity to prompt perturbations is
comparable to that of existing approaches to ran-
dom seeds.

5.4.2 Sensitivity to Variations of the Major
Prompting Instruction

We vary the example task prompt in the major
prompting instruction in Appendix A.1 with task
prompts from the four meta-tasks used in our
MetaEOL. As the major prompting instruction
is used to prompt ChatGPT-4 to generate task
prompts, changing it will lead to a completely dif-
ferent set of task prompts.

Method STS Avg.

MetaEOL-LLAMA2-7B 76.17±1.06
SimCSE-BERT-Base 75.42±0.86

Table 6: Sensitivity to variations of the major prompting
instruction on LLAMA2-7B.

Overall the results show MetaEOL with
LLAMA2-7B can beat tuned SimCSE-BERT-Base
on average, and is worse but still comparable to
SimCSE-Bert-Base in terms of standard deviation,
suggesting that MetaEOL’s sensitivity to major
prompting instruction’s variations is also compara-
ble to that of existing approaches to random seeds.

5.5 Influence of Output Layers

We check the impact of output layers for LLAMA2
and Mistral-7B models, using PromptEOL and
MetaEOL. Figure 4 shows that the last layer is
not always the most effective for STS tasks, which
is consistent with the findings in Li and Li (2024b).

It is highlighted that the third-to-last layers (in-
dexed as -3) across all four configurations perform
similarly well, which suggests that this layer can
be considered as a point of convergence in terms of
optimal performance for these models.

MetaEOL outperforms PromptEOL across
all layers and configurations. Interestingly,
PromptEOL tends to show more variability in
performance across different layers compared to
MetaEOL. This suggests that the MetaEOL ap-
proach potentially stabilizes the representational
quality across layers.

5.6 Scaling LLMs

Previous study (Jiang et al., 2023b) show scaling
model sizes does not lead to performance improve-
ment on STS tasks. In this section, we investigate
the impact of model size on the performance of

Figure 4: Influence of output layer index. STS Avg.
refers to the average score of the seven STS tasks.

Model Layer Index STS Avg.

LLAMA2-7B -1 75.35
LLAMA2-13B -1 74.96
LLAMA2-70B -1 75.41

LLAMA2-7B -3 77.00
LLAMA2-13B -4 76.08
LLAMA2-70B -8 78.06

Table 7: Results of MetaEOL on increasing the model
size. All models are loaded with 4-bit precision. We
develop a proportional layer selection strategy, lever-
aging the last 10% of layers to derive sentence embed-
dings (specifically, the third-to-last, fourth-to-last, and
eighth-to-last layers for the 7B, 13B, and 70B models,
respectively), and obtain the best results with the 70B
model.

MetaEOL. For the sake of computational resources,
we load models with 4-bit precision.

Informed by the insights observed from Sec-
tion 5.5, which suggested that for 7B models, the
layer index -3 can be considered optimal, as ev-
idenced by its performance in both PromptEOL
and MetaEOL. We, therefore, propose a simple
proportional layer selection strategy, opting for lay-
ers -3 of 32, -4 of 40, and -8 of 80 as the output
layers for the LLAMA2-7B, LLAMA2-13B, and
LLAMA2-70B models respectively. This approach
aligns with the model sizes, which correlates to
10% from the final layer.

The results in Table 7 show that using the final
layer for sentence embedding generation, which
is indicated by layer index -1, does not yield im-
proved performance with increased model size.
Contrastingly, the application of our proportional
layer strategy reveals a different trend. Specifically,
the LLAMA2-70B model, which utilizes the -8
layer, demonstrates superior performance, suggest-
ing that larger models might benefit more signifi-
cantly from selecting a proportionate layer rather
than the last layer for sentence embedding. This
observation could point to a potential scaling law,
where larger models require a different, non-final
layer to maximize performance effectively.



Method Params MR CR SUBJ MPQA SST TREC MRPC Avg.

Fine-tuning on supervised datasets
SimCSE-RoBERTa 123M 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08
ST5-Enc 4.8B 90.83 94.44 96.33 91.68 94.84 95.40 77.91 91.63

Without fine-tuning
MRPrompt-LLAMA2 7B 91.82 92.88 97.07 91.60 96.54 95.80 74.61 91.47
CRPrompt-LLAMA2 7B 91.17 93.27 96.62 91.75 96.60 95.80 73.22 91.20
SUBJPrompt-LLAMA2 7B 91.88 93.17 96.96 91.09 95.66 96.00 76.41 91.60
MPQAPrompt-LLAMA2 7B 91.10 93.04 96.30 91.82 95.72 96.00 75.42 91.34
SSTPrompt-LLAMA2 7B 91.82 92.88 97.07 91.60 96.54 95.80 74.61 91.47
TRECPrompt-LLAMA2 7B 88.97 92.19 96.23 91.45 94.18 96.80 74.72 90.65
MRPCPrompt-LLAMA2 7B 90.33 93.32 96.36 91.45 94.67 96.00 75.13 91.04

Avg. on task-specific prompting (i.e., diagonal): 91.76

PromptEOL-LLAMA2 7B 90.63 92.87 96.32 91.19 95.00 95.40 75.19 90.94
MetaEOL-LLAMA2 (Ours) 7B 90.93 93.51 96.12 91.95 95.77 97.60 76.81 91.81

Table 8: Results on transfer learning tasks. We design task-specific prompts for each task, denoted as {TASK}Prompt
where {TASK} is a placeholder for the task’s name. The corresponding task performance of each specific prompt
and their average is bold italic. SST and MR share the same prompt. These task-specific prompts can significantly
improve the performance of the corresponding tasks compared to both PromptEOL and ST5-Enc. MetaEOL yields
superior results even without being explicitly customized for these tasks.

5.7 Transfer Learning Tasks

We conclude our analysis by assessing the per-
formance of MetaEOL on transfer learning tasks.
Following prior works (Gao et al., 2021; Ni
et al., 2022a), we utilize the standard transfer
learning tasks provided by SentEval. The tasks
consist of MR (Pang and Lee, 2005), CR (Hu
and Liu, 2004), SUBJ (Pang and Lee, 2004),
MPQA (Wiebe et al., 2005), SST-2 (Socher et al.,
2013), TREC (Voorhees and Tice, 2000), and
MRPC (Dolan and Brockett, 2005). For each task,
logistic regression classifiers are trained using the
created sentence embeddings as input features. The
test accuracy on each task is used as the metric. Ad-
ditionally, we include two supervised contrastive-
trained models (SimCSE and ST5-Enc) for refer-
ence. Notably, ST5-Enc, a model with a 4.8B
parameter count, is extensively trained on natu-
ral language inference (NLI) data and two billion
question-answer pairs.

To investigate the ability of task-specific prompts
to modify embedding behavior, we have crafted
task prompts tailored to each SentEval task.6 As
an example, for the Movie Review (MR) dataset,
we designed a prompt structured as: In this task,
you’re given a movie review, and you need to clas-
sify its sentiment into positive or negative. For
this task, this sentence: "input sentence" means
in one word:", referred to as MRPrompt in Ta-

6The details of the task prompts are in Appendix A.6.

ble 8. These task-specific prompts significantly
improve the corresponding task performance, al-
ways better than PromptEOL and heavily super-
vised contrastive-trained ST5-Enc, verifying that
LLAMA2-7B can follow the prompt to generate
tailored embeddings without any training. This
indicates that carefully designed prompts can ef-
fectively steer the pre-trained embeddings to align
with various NLP tasks, thus providing a more
resource-efficient alternative to the traditional fine-
tuning paradigm.

Moreover, although without being explicitly cus-
tomized for these tasks, MetaEOL achieves the
highest average result, even outperforming heavily
trained ST5-Enc. This suggests that the integration
of the four meta-tasks in MetaEOL can cultivate
generalized embeddings that perform admirably
across different tasks.

6 Conclusion

In this paper, we introduce MetaEOL, a new ap-
proach for deriving high-quality sentence embed-
dings from LLMs without requiring any training.
By leveraging a diverse set of meta-task prompts,
MetaEOL effectively captures multiple representa-
tions of sentences from distinct perspectives. We
show simply averaging these meta-task derived em-
beddings leads to generalized general-purpose em-
beddings, which work remarkably well across STS
datasets and transfer learning tasks.



Limitations

We note two limitations in our work: computational
overhead and restricted evaluation benchmarks. As
MetaEOL requires feeding multiple prompts to
LLMs to generate several embeddings, the com-
putational cost will be higher than that of previ-
ous methods. Our results indicate that increasing
the number of tasks leads to performance improve-
ments, but it also worsens the efficiency issue. If
the number of prompts is increased, the efficiency
of our approach would further decrease. Nonethe-
less, in contexts where sentences are consistently
reused, such as when embeddings are stored for
downstream classification or retrieval tasks, the is-
sue becomes less significant. Our evaluation is cur-
rently confined to sentence-level tasks in English
only. As LLMs continue to advance, exploring the
performance of MetaEOL in multilingual contexts
and its applicability to document retrieval (Zhuang
et al., 2024) presents an intriguing avenue for future
research.
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A Appendix

A.1 Instruction to Prompt ChatGPT4 for Template Generation
We insert a blank line between paragraphs to enhance readability.

Obtaining the representation of sentences is a fundamental task in natural language processing.

The representation can not only be used to compute the semantic similarity between dif-
ferent sentences but also to be directly used for downstream tasks, like Text Categorization,
Sentiment Analysis, Summarization, Style Transfer, Text Simplification, and Sentence Composi-
tion.

A common way to obtain the representation is to use the format "This sentence "input
sentence" means in one word:"" and use the hidden states of the last token as the representation
of the sentence. However, we want a versatile representation that covers various aspects of the
sentence by adding task instructions before the format. For instance: "In this task, you’re given a
review from Amazon. Your task is to generate a rating for the product on a scale of 1-5 based
on the review. The rating means 1: extremely poor, 2: poor, 3: neutral, 4: good, 5: extremely
good. For this task, this sentence : "input sentence" means in one word:"" is used to obtain the
representation of the sentence conditioned on the given task.

Can you help me write task instructions that can cover different aspects of the sentence
such that the representation is versatile to both similarity tasks and downstream tasks?

Please write two instructions for each of the Text Classification, Sentiment Analysis,
Paraphrase Identification, and Information Extraction tasks.

A.2 Paraphrased Prompts of PromptEOL

1. This sentence : "input sentence" can be rephrased to one word:"
2. This sentence : "input sentence" can be expressed as one word:"
3. This sentence : "input sentence" implies in one word:"
4. This sentence : "input sentence" indicates in one word:"
5. The meaning of this sentence : "input sentence" can be conveyed in another word:"
6. This sentence : "input sentence" can be restated as one word:"
7. This sentence : "input sentence" can be reformulated as one word:"



A.3 Prompts of MetaEOL

Text Classification
General Category Identification: In this task, you’re presented with a text excerpt. Your task
is to categorize the excerpt into a broad category such as ’Education’, ’Technology’, ’Health’,
’Business’, ’Environment’, ’Politics’, or ’Culture’. These categories help in organizing content for
better accessibility and targeting. For this task, this sentence : "input sentence" should be classified
under one general category in one word:"
Opinion vs. Fact Discrimination: In this task, you’re given a statement and you need to
determine whether it’s presenting an ’Opinion’ or a ’Fact’. This distinction is vital for information
verification, educational purposes, and content analysis. For this task, this sentence : "input
sentence" discriminates between opinion and fact in one word:"

Sentiment Analysis
Product Review Rating: In this task, you’re given a review from an online platform. Your task
is to generate a rating for the product based on the review on a scale of 1-5, where 1 means
’extremely negative’ and 5 means ’extremely positive’. For this task, this sentence : "input
sentence" reflects the sentiment in one word:"
Emotion Detection: In this task, you’re reading a personal diary entry. Your task is to identify
the predominant emotion expressed, such as joy, sadness, anger, fear, or love. For this task, this
sentence : "input sentence" conveys the emotion in one word:"

Paraphrase Identification
Similarity Check: In this task, you’re presented with two sentences. Your task is to assess whether
the sentences convey the same meaning. Use ’identical’, ’similar’, ’different’, or ’unrelated’ to
describe the relationship. To enhance the performance of this task, this sentence : "input sentence"
means in one word:"
Contextual Synonym Detection: In this task, you’re given a sentence and a phrase. Your task is
to determine if the phrase can be a contextual synonym within the given sentence. Options include
’yes’, ’no’, or ’partially’. To enhance the performance of this task, this sentence : "input sentence"
means in one word:"

Information Extraction
Key Fact Identification: In this task, you’re examining a news article. Your task is to extract the
most critical fact from the article. For this task, this sentence : "input sentence" encapsulates the
key fact in one word:"
Entity and Relation Extraction: In this task, you’re reviewing a scientific abstract. Your task is
to identify the main entities (e.g., proteins, diseases) and their relations (e.g., causes, treats). For
this task, this sentence : "input sentence" highlights the primary entity or relation in one word:"



A.4 Prompts of the Sentiment Analysis Meta-Task

Sentiment Analysis Meta-Task
Product Review Rating: In this task, you’re given a review from an online platform. Your task is
to generate a rating for the product based on the review on a scale of 1-5, where 1 means ’extremely
negative’ and 5 means ’extremely positive’. For this task, this sentence : "input sentence" reflects
the sentiment in one word:"
Emotion Detection: In this task, you’re reading a personal diary entry. Your task is to identify
the predominant emotion expressed, such as joy, sadness, anger, fear, or love. For this task, this
sentence : "input sentence" conveys the emotion in one word:"
Sentiment Polarity Detection: In this task, you’re analyzing customer feedback from various
platforms. Your task is to identify the overall sentiment polarity of the feedback. The sentiment
polarity means: 1 for very negative, 2 for negative, 3 for neutral, 4 for positive, and 5 for very
positive. Based on this guidance, this sentence : "input sentence" represents in one word:"
Sentiment Intensity and Emotion Detection: In this task, your objective is to gauge the intensity
and type of emotion conveyed in a piece of text, such as a social media post or a product review. This
involves not just identifying whether the sentiment is positive or negative, but also understanding
the strength of that sentiment and the specific emotions involved (e.g., joy, anger, sadness, surprise).
For this task, this sentence : "input sentence" conveys an emotion that is best described in one
word as:"
Aspect-based Sentiment Analysis: In this task, you’re given a review of a product or service.
Your task is to assess the sentiment toward specific aspects of the product or service mentioned in
the review. For each mentioned aspect (e.g., quality, price, customer service), classify the sentiment
as: 1 for very negative, 2 for negative, 3 for neutral, 4 for positive, and 5 for very positive. Based
on this instruction, this sentence : "input sentence" signifies in one word:"

A.5 Sentiment Analysis Task Prompts with Tiny Perturbatios

Original
In this task, you’re given a review from an online platform. Your task is to generate a rating for the
product based on the review on a scale of 1-5, where 1 means ’extremely negative’ and 5 means
’extremely positive’. For this task, this sentence : "input sentence" reflects the sentiment in one
word:"

Perturbed
1. In this task, you’re given a reappraisal from an online chopine. Your task is to generate a rating
for the product based on the reappraisal on a scale of 1-5, where 1 think of ’extremely negative’
and 5 think of ’extremely positive’. For this task, this sentence : "input sentence" reflects the
sentiment in one word:"
2. In this task, you’re given a review from an online chopine. Your task is to generate a rating for
the product based on the review on a scale of 1-5, where 1 means ’extremely damaging’ and 5
means ’extremely plus’. For this task, this sentence : "input sentence" reflects the sentiment in one
word:"
3. In this job, you’re given a brush up from an online platform. Your job is to generate a rating for
the product based on the brush up on a scale of 1-5, where 1 means ’highly negative’ and 5 means
’highly positive’. For this task, this sentence : "input sentence" reflects the sentiment in one word:"
4. In this task, you’re reach a refresh from an online platform. Your task is to generate a rating for
the product based on the refresh on a scale of 1-5, where 1 means ’highly negative’ and 5 means
’highly positive’. For this task, this sentence : "input sentence" reflects the sentiment in one word:"



A.6 Task-Specific Prompts on Transfer Tasks

MR/SST
In this task, you’re given a movie review, and you need to classify its sentiment into positive or
negative. For this task, this sentence : "input sentence" means in one word:"

CR
In this task, you’re given a customer review of a product sold online, and you need to classify its
sentiment into positive or negative. For this task, this sentence : "input sentence" means in one
word:"

SUBJ
In this task, you’re analyzing movie reviews to determine their level of subjectivity. A subjective
review is filled with personal opinions, feelings, and preferences of the reviewer, often expressing
likes or dislikes and personal experiences. An objective review, on the other hand, sticks to factual
information, such as plot details or actor performances, without revealing the reviewer’s personal
stance. For this task, this sentence : "input sentence" means in one word:"

MPQA
In this task, you are given a description of a entity or event expressed in data such as blogs,
newswire, and editorials. You need to classify its sentiment into positive or negative. For this task,
this sentence : "input sentence" means in one word:"

TREC
In this task, you are given a question. You need to detect which category better describes the
question. A question belongs to the description category if it asks about description and abstract
concepts. Entity questions are about entities such as animals, colors, sports, etc. Abbreviation
questions ask about abbreviations and expressions abbreviated. Questions regarding human beings,
description of a person, and a group or organization of persons are categorized as Human. Quantity
questions are asking about numeric values and Location questions ask about locations, cities,
and countries. Answer with "Description", "Entity", "Abbreviation", "Person", "Quantity", and
"Location". For this task, this sentence : "input sentence" means in one word:"

MRPC
In this task, you are given two sentences(Sentence1 and Sentence2). Answer "Yes" if these
sentences are a paraphrase of one another, otherwise answer "No". For this task, this sentence :
"input sentence" means in one word:"
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