
Computers and Structures 296 (2024) 107293

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier.com/locate/compstruc

Enhanced damage detection for noisy input signals using improved reptile 

search algorithm and data analytics techniques

Sahar Hassani a, Ulrike Dackermann a,∗, Mohsen Mousavi a, Jianchun Li b,∗

a Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
b School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia

A R T I C L E I N F O A B S T R A C T

Keywords:

Structural health monitoring

Frequency response function

Johansen cointegration

Mutual information

Outlier detection

Data fusion

The sensitivity of structural health monitoring systems to environmental and operational conditions poses a 
significant challenge due to their inherent susceptibility to outliers. This paper proposes an effective model-

updating-based optimization algorithm that can alleviate the impact of outliers associated with field and 
operational fluctuations. The proposed method addresses the influence of uncertainties from sources such as 
white noise, colored noise, and measurement errors, which can introduce outliers in datasets. The approach 
comprises a hybrid procedure in which a Gaussian smoothing technique is first employed to smooth out measured 
data to reduce the impact of irregularities. Next, Johansen cointegration is employed for raw data fusion to 
further enhance the signature of shared patterns. A novel optimization algorithm based on the Reptile Search 
Algorithm (RSA), named Improved RSA (IRSA), is proposed to solve the objective function based on the concept 
of mutual information. This algorithm provides a superior solution with much improved computational speed 
and accuracy compared to RSA. The new hybrid method was validated by several numerical and experimental 
damage detection studies. Furthermore, it was compared to other state-of-the-art methods described in the 
literature. The results clearly demonstrate the superior performance of the newly developed method.
1. Introduction

Structural health monitoring (SHM) involves continuously monitor-

ing structural responses using sensors, data acquisition systems, and 
advanced signal processing techniques in order to evaluate conditions, 
serviceability, and safety of the structures, in which detecting dam-

age/deterioration is a crucial part. Related damage detection techniques 
may suffer from sensor malfunctioning or measurement noise leading to 
erroneous data. Over the past decades, researchers dedicated substantial 
efforts to the development of effective methods for damage identifi-

cation using data contaminated with measurement noise and errors. 
Although advanced signal processing facilitates extracting meaningful 
information from sensor measurements [1], leveraging other techniques 
helps to alleviate the effect of inaccurate data leading to the presence 
of outliers. Such practice, however, requires multidisciplinary knowl-

edge that spans applied mathematics, data analytics, and advanced 
signal processing. The techniques may contribute to robust noise fil-
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tering [2], feature extraction [3], pattern recognition [4], and outlier 
removal [5].

The input signal type plays an important role in SHM. Tradition-

ally, modal data has been used for vibration-based SHM techniques [6]. 
However, when considering the challenges associated with using modal 
data, alternative approaches, such as the Frequency Response Function 
(FRF), prove more advantageous as they offer several benefits address-

ing the limitations and improving the effectiveness of damage detection 
in SHM applications [7]. Firstly, modal data only captures limited in-

formation at resonant frequencies, thereby restricting the amount of 
information that can be extracted from a broadband range of the FRF. In 
contrast, the FRF provides a comprehensive frequency response profile 
across a wide frequency range, enabling a more detailed understanding 
of the structural behavior. This broader coverage allows for a more com-

prehensive structural health assessment, including detecting damage 
or anomalies occurring at frequencies other than resonant frequencies. 
Secondly, modal techniques tend to focus on lower modes, which can 
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limit the sensitivity to prominent damage types that may manifest in 
higher modes, such as smaller local damage. The sensitivity of FRFs to 
higher modes enables the detection of subtle or localized damage that 
may not be readily discernible using modal data alone. Furthermore, 
errors in the modal extraction process can affect the accuracy and re-

liability of modal data, introducing uncertainties into subsequent anal-

ysis or damage detection algorithms. In comparison, FRFs, which are 
directly measured or estimated from input-output measurements, elim-

inate the dependency on modal extraction procedures and minimize 
potential errors. Moreover, FRFs capture the unique response charac-

teristics at different frequencies, overcoming the limitations associated 
with information redundancy and enabling the detection of damage in 
structures with closely-spaced eigenvalues [8,9]. Given these challenges 
related to modal data and the advantages offered by the FRF, it is ev-

ident that utilizing the FRF in SHM methodologies provides a more 
practical approach to damage detection.

However, FRF measurements can be accompanied by several un-

certainties, such as measurement errors and different types of noise 
contamination [10]. This can substantially impact the identification of 
modal parameters and jeopardize the accuracy of damage detection re-

sults.

Several techniques are proposed to tackle the problems arising from 
using FRF for damage detection. Beale et al. [11] presented an adaptive 
wavelet packet denoising algorithm for numerous SHM technologies, 
including acoustics, vibrations, and acoustic emission. In order to en-

hance the performance of real-time SHM measurements, an algorithm 
was built that incorporated non-traditional approaches to noise estima-

tion, threshold selection, and threshold application. The results showed 
that the proposed algorithm enhanced damage detection performance 
by up to 60% in most cases while reducing false detection rates. de Cas-

tro et al. [12] proposed a novel index based on cross-correlation signal 
processing, specifically designed for noisy environments. This index was 
tested in both the frequency domain, using impedance measurements 
directly, and in the time domain, based on the wavelet transform of the 
transducer response signals. This approach to material feature extrac-

tion in noisy environments was demonstrated to be effective with an 
aluminum structure with different noise levels. In [13], a hybrid dam-

age detection technique combining variational mode decomposition 
(VMD) and frequency domain decomposition (FDD) was proposed to 
overcome heavily noise-contaminated environments. Analysis of small-

magnitude damage was performed using Gaussian pulse noise rang-

ing from 0 to 100%. To reduce the amount of sensor data necessary, 
wavelet-based algorithms were used to obtain intrinsic mode functions 
(IMFs) from one sensor’s output. The natural frequencies of the struc-

ture were then determined by using these IMFs in the FDD algorithm. 
Damage identification results with VMD+FDD were satisfactory with 
100% noise contamination, whereas results with EMD+FDD were not 
as accurate when noise levels exceeded 20%. A novel method for de-

noising vibration signals in SHM was introduced by Fan et al. [14]. 
The method utilizes specialized residual convolutional neural networks. 
The proposed approach was evaluated using acceleration data obtained 
from the Guangzhou New TV Tower. The findings demonstrate the ef-

fectiveness of the proposed approach in enhancing acceleration data 
quality across different noise levels and types.

The governing assumption in SHM is that any noise contamination 
follows a stationary Gaussian model (white noise). This is based on the 
assumption that the system dynamics are time-invariant throughout the 
analysis, and hence, it is safe to assume that the properties of noise will 
remain the same. Consequently, the generated noise will likely follow a 
stationary distribution [15].

However, several researchers have investigated the contamina-

tion of FRFs with nonstationary colored noise. According to Hanson 
et al. [16], if FRFs are generated using colored noise excitation, no ref-

erence will be available to correct the regenerated FRFs from in-band 
poles and zeros. This results in FRFs exhibiting an arbitrary slope due 
2

to the effect of out-of-band poles and zeros. In other words, the non-flat 
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power spectral density of the input colored noise can interact with the 
structure’s frequency response characteristics, leading to distortions and 
uncertainties in the measured FRFs. This will result in the loss of rel-

ative scaling between the mode shapes as the slope will vary between 
measurement locations. Consequently, this will introduce colored noise 
contamination to the regenerated FRFs.

It is vital to develop a technique to overcome the uncertainties as-

sociated with the process of FRF regeneration. Adhikari and Kay [17]

proposed converting colored noise into white Gaussian noise. A method 
has also been developed by Luo et al. [18] to identify the natural fre-

quencies of a structure under unknown colored noise excitation using 
the second singular value of the transmissibility matrices. Alamdari 
et al. [19] presented a technique for cleaning FRFs from correlated col-

ored noise using a Gaussian kernel.

This paper proposes a robust method for detecting damage from 
regenerated uncertain FRFs contaminated with low-frequency colored 
noise. The study leverages the concept of cointegration–a technique 
from econometrics that seeks to find common trends among a set of 
non-stationary signals–to mitigate the nonstationary effect of highly 
correlated colored noise. In this context, we elucidate the efficacy of 
cointegration as a powerful technique for addressing uncertainties in 
FRF measurements. The Johansen cointegration test was initially pro-

posed by Søren Johansen [20] and involves estimating a vector au-

toregressive model and conducting tests to determine the presence of 
cointegration. The test provides information about the number of coin-

tegrating vectors (relationships) and the corresponding coefficients. The 
effectiveness of cointegration for SHM has been investigated by Cross 
and Worden [21]. Moreover, a non-stationary effect produced by tem-

perature variations was successfully mitigated for long-term condition 
monitoring of civil infrastructure [22,23]. Using cointegration analysis 
of nonlinear acoustics also successfully removed the unwanted effects 
of applied loads in the damage detection of intelligent composite mate-

rials [24].

Signal smoothing techniques aim at enhancing the quality of signals 
by reducing noise and eliminating outliers. These techniques modify 
the data to minimize noise while preserving essential features of the 
signal. In certain instances, it can be highly advantageous to apply sig-

nal smoothing prior to applying the Johansen cointegration test. By 
reducing the noise, smoothing can enhance the ability of the Johansen 
test to detect the underlying cointegrating relationships. Therefore, the 
proposed procedure entails a sequential application of Johansen coin-

tegration and a smoothing technique to effectively deal with outliers in 
the data. Smoothing techniques like moving average, Gaussian smooth-

ing, or Savitzky-Golay filtering can be applied to achieve the desired 
quality in the studied signal. On the other hand, Johansen cointegra-

tion is a statistical technique used in econometrics to investigate the 
long-term relationship between multiple time series variables. It helps 
determine whether a set of variables share a common stochastic trend 
or are cointegrated Cross et al. [22], Dao and Staszewski [25], Tome 
et al. [26]. Cointegration is an essential concept in time series analysis, 
as it reveals a relationship among a set of signals allowing for meaning-

ful interpretation and modeling.

In addition to mitigating non-stationary effects in FRFs, in this pa-

per, Johansen cointegration is innovatively employed as a data fusion 
algorithm to obtain common trends among a set of FRFs. Typically, 
Johansen cointegration is used to analyze the long-term relationships 
among a set of variables. However, it is also robust to the presence of 
outliers in the dataset. As such, the obtained signal is clear from vari-

ous types of uncertainties, including those stemming from colored noise 
excitation. Data fusion combines information from multiple sources to 
obtain a more comprehensive and accurate representation of the un-

derlying phenomenon [27]. In this context, Johansen cointegration can 
be used by examining the cointegrating relationships among variables 
from different sources. Since the most informative part of FRF signals is 
extracted and used for further analysis, the proposed method can hence 

be considered a data fusion technique.
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Advancements in mathematical and computational technologies 
have driven the development of sophisticated optimization algorithms. 
Optimization algorithms provide a powerful tool for refining and opti-

mizing the performance of SHM systems. These algorithms aim to find 
the optimal values of variables that best satisfy a given objective func-

tion or criteria. Optimization techniques employed in SHM systems can 
be categorized into four categories:

• Biology-based algorithms such as differential evolution (DE), ge-

netic algorithm (GA), and particle swarm optimization (PSO).

• Geography-based algorithms such as the imperialistic competition 
algorithm (ICA) and Tabu search (TS).

• Physics-based algorithms such as simulated annealing (SA), grav-

itational search algorithm (GSA), electromagnetism-like algorithm 
(EMA), particle collision algorithm (PCA), and gravitation field al-

gorithm (GFA).

• Sequential placement algorithms include backward sequential sen-

sor placement (BSSP) and forward sequential sensor placement 
(FSSP).

Combining data analytics methods and optimization algorithms ef-

fectively mitigates the limitations posed by noise and outliers in mea-

sured signals [28]. Data analytics techniques can be employed to pre-

process and denoise the measured signals, reducing the impact of noise 
on subsequent analysis and removing outliers. Optimization algorithms 
can then be utilized to refine the data analytics parameters or optimize 
the selection and configuration of algorithms, leading to improved per-

formance and more accurate results. The synergy between data analyt-

ics and optimization algorithms enables the development of advanced 
SHM systems that are robust, efficient, and capable of dealing with high 
noise levels. These systems have the ability to detect and character-

ize structural damage or anomalies with enhanced accuracy, even in 
challenging environments where the measured signals are corrupted by 
various sources of noise [29–32].

In this paper, a novel optimization algorithm, namely the Improved 
Reptile Search Algorithm (IRSA), is developed to optimize damage pa-

rameters and enhance the quality of the solution. Compared to its 
predecessor, the Reptile Search Algorithm (RSA) [33], the improved 
algorithm exhibits increased computational speed and accuracy. The 
superior performance of the proposed IRSA in finding global optima is 
demonstrated by solving several renowned benchmark problems. Fur-

thermore, we employ the proposed IRSA to update damage parameters 
in numerical and experimental damage detection studies using the con-

structed objective function. The superiority of the proposed method 
over other state-of-the-art methods from the literature is further demon-

strated.

In our proposed methodology, the contribution of each major com-

ponent to the overall damage detection process can be described as 
follows:

1. Johansen cointegration is integral in mitigating non-stationary ef-

fects in FRFs by constructing a robust objective function that seeks 
a stationary common trend among a set of nonstationary FRFs.

2. Gaussian smoothing is implemented for effective noise reduction 
and overall data smoothing by augmenting the signal-to-noise ratio 
within the measured FRFs.

3. IRSA is employed to methodically optimize the parameters or 
weights associated with the objective function, derived from the 
cointegration and smoothing processes. Thereby this algorithm fa-

cilitates the accurate adjustments to our methodology, enabling it 
to adapt more effectively to the unique characteristics of the struc-

tural data under examination. This fine-tuning process holds the 
potential to significantly enhance the accuracy and efficiency of 
3

our damage detection approach.
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To determine the distinct contributions of the individual compo-

nents to the overall methodology, they are systematically analyzed in a 
one-by-one exclusion analysis

The contributions of the proposed method in the SHM field can be 
summarized as follows:

1. We introduce a novel application of Johansen cointegration as a 
data fusion technique, and showcase its ability to effectively handle 
outliers in FRF signals.

2. A Gaussian smoothing is shown effective for handling high-

frequency noise while preserving more information and maintain-

ing functionality.

3. Subsequently, a new metric based on the concepts of Mutual Infor-

mation (MI), Johansen cointegration, and Gaussian smoothing is 
proposed to formulate a new objective function that is insensitive 
to highly correlated colored noise.

4. We further propose a robust objective function based on the pro-

posed damage-sensitive feature (DSF) capable of handling outliers 
originating from non-stationary noise or measurement errors in 
FRF signals. Multiple ways of constructing the proposed objective 
function are investigated, with the most effective one identified.

5. The robustness of the proposed objective function for damage de-

tection in structures with closely spaced eigenvalues is demon-

strated. As mentioned earlier, we had established that this par-

ticular approach can be applied to systems with closely spaced 
eigenvalues. Therefore, we opted to conduct a numerical evalua-

tion using a composite plate as a complex system that exemplifies 
the presence of closely spaced eigenvectors. This deliberate selec-

tion allows us to effectively showcase the capabilities and effective-

ness of our proposed method.

6. We proposed a new and robust optimization algorithm based on the 
concept of the RSA, named IRSA, to optimize the proposed objec-

tive function for damage indices. The superior performance of the 
proposed optimization algorithm is demonstrated by comparing it 
to various optimization algorithms across well-established function 
benchmarks. The accuracy and robustness of the proposed opti-

mization algorithm are also demonstrated through various cases, 
both numerical and experimental, by examining the central pro-

cessing unit (CPU) performance of the optimization algorithm.

7. To evaluate the performance of the proposed method, we apply it to 
a damage detection study for laminated composite plates. We assess 
the impacts of varying boundary conditions and different E1/E2 ra-

tios on the damage detection results for composite laminates. A 
comparative analysis with other state-of-the-art damage identifica-

tion methods demonstrates the superiority of our proposed method.

8. Furthermore, the proposed method is validated through an ex-

perimental damage detection scenario conducted on steel beams, 
confirming its applicability to real-world problems.

In the subsequent sections, we delve into the specifics of the pro-

posed technique, providing comprehensive details, and present the out-

comes derived from both the experimental and numerical models.

2. Proposed methodology

Fig. 1 presents an overview of the damage detection methodology 
employed in this paper. The proposed approach encompasses three 
main steps: (1) simulating or measuring FRF data contaminated with 
an uncertain type of noise by either generating data using a numerical 
model or recording measurements from a real structure; (2) analyz-

ing the input signals with Gaussian smoothing and Johansen integra-

tion to reduce high-frequency/low-frequency noise and remove outliers 
through the fusion of data through Johansen cointegration, and (3) con-

structing a novel objective function based on the concept of mutual in-

formation and optimizing it using the proposed optimization algorithm. 

The following sections provide details on the individual procedures.
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Fig. 1. Overview of the methodology steps of the proposed damage detection approach.
2.1. FRF simulation of damaged structures

Consider an 𝑛-DOF FE model of a system excited at its condensed 
master DOFs by a dynamic force vector 𝐟 . The following differential 
equation can express a damaged model with the assumption that the 
damage only affects the stiffness matrix of the structure:

�̄� ̈̄𝐱 + �̄� ̇̄𝐱 + �̄�d�̄� = 𝐟 (1)

where �̄�, �̄�, and �̄� denote, respectively, the condensed form of the 
stiffness, mass, and damping matrices and,

�̄�d =
𝑛𝑒∑
𝑖=1

𝛼𝑖�̄�𝑖 (2)

is the matrix of stiffness of the damaged structure defined as the param-

eter of damage, assigned to the 𝑖th element, multiplied by the stiffness 
matrix of the element in the global coordinate, shown as �̄�𝑖, summed 
over all the 𝑛𝑒 elements; �̄� is the condensed mass matrix of the struc-
4

ture; �̄� is the Rayleigh damping obtained as [�̄�] = 𝑎[�̄�] + 𝑏[�̄�d], where 
𝑎 and 𝑏 are constants determined by assuming 5% damping ratio for the 
two lowest modes of the structure.

Taking the Fourier transform of Eq. (1) results in:

−𝜔2�̄��̄�+ 𝑗𝜔 �̄��̄�+ �̄�d�̄� = �̄� (3)

As a special case, where the structure is excited by a range of fre-

quencies 𝝎𝑘, �̄� depends on the excitation frequency 𝜔𝑘, while �̄� is the 
function of the vector of damage parameters 𝜶𝑖 as well as the excitation 
frequency 𝜔𝑘. Accordingly, rearrangement of Eq. (3) gives the following 
equation:

�̄�𝑘 =
(
−𝜔2

𝑘
�̄�+ 𝑗𝜔𝑘 �̄�+ �̄�d

)−1 �̄�𝑘 (4)

A more compact version of the expression (4) can be written as follows:

�̄�𝑘 =𝐇𝑘 × 𝐅𝑘 (5)

where( )

𝐇𝑘 = −𝜔2

𝑘
�̄�+ 𝑗𝜔𝑘�̄�+ �̄�d −1

(6)
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Different values of 𝜔𝑘, corresponding to different excitation fre-

quencies, are used in Eq. (6) to simulate the measured 𝑘th FRF of a 
damaged structure, shown as 𝐇𝑘, with rows corresponding to measure-

ment locations and columns corresponding to excitation locations. The 
corresponding rows and columns of the obtained FRFs are chosen to 
find the final FRFs. Then, the obtained FRFs from different values of 𝜔𝑘

are concatenated to obtain one uniform FRF.

2.2. Selection of optimal excitation locations and frequency ranges

The following section outlines the optimization of both the range 
and location of excitation frequencies. In general, it is preferred to use 
frequencies sensitive to structural parameter variations. Based on the 
findings of Pedram et al. [34], selecting excitation frequencies near 
resonances proves advantageous as the structural response to small 
changes in structural parameters is more sensitive to variations in near-

resonance frequency ranges. Moreover, the noise effect diminishes in 
the vicinity of resonances-a phenomenon also described by [19]. It is 
further desirable to diminish damping effects, even though it does not 
directly contribute to Eq. (6). The influence of damping on FRF de-

creases with increasing distance from resonances, thus, suggesting that 
the preferred excitation frequency ranges, from a damping perspective, 
should be further away from resonances. The selection of optimal ex-

citation ranges entails a trade-off between maintaining a distance from 
resonant frequencies and remaining in close proximity to them. There-

fore, this distance must be adjusted for each structure individually.

Obtaining a uniform FRF requires concatenating FRFs obtained from 
different excitations. With each iteration, the damage indices are ad-

justed, resulting in a shift in the computed FRF, 𝐇c. Accordingly, 𝐇c re-

quires adjustment with each iteration through an automated frequency-

range selection program.

The selection of the excitation locations is an essential factor for im-

proving the accuracy of model-updating algorithms [35]. The proposed 
model-updating approach based on FRFs adheres to this principle. Ac-

cording to [36], the following method can be used to obtain such 
optimized excitation locations:

𝚲 =
𝑁∑
𝑗=1

√√√√ 𝑛∑
𝑖=1

(
𝐇𝑖𝑗

)2
(7)

Firstly, the number of excitation locations must be determined. Sub-

sequently, the entries of Λ are sorted in descending order so that the 
DOFs corresponding to the prespecified number of most significant en-

tries of Λ can be determined to be optimal excitation locations. FE 
models of intact structures are used to determine the optimal excitation 
locations. This ensures that they are not updated during the iterations.

2.3. Contaminating input signals with a colored noise

Thus far, we have discussed how FRFs can be numerically simulated 
for damage detection. Next, the columns of the obtained FRFs 𝐇 are 
contaminated with colored noise having the theoretical spectral char-

acteristic |𝑓 |−𝛽 where 𝑓 and 𝛽 correspond to the cyclic frequency and 
a real number between -2 and 2, respectively [37]. The following are 
well-known types of colored noise that can be generated in MATLAB:

1. Brown noise (Brownian process) with 𝛽 = 2;

2. Pink noise or 1
𝑓

noise with 𝛽 = 1;

3. White noise with 𝛽 = 0;

4. Blue noise, also known as azure noise, with 𝛽 = −1 and;

5. Purple noise, also known as violet noise, with 𝛽 = −2.

Fig. 2 displays the Power Spectral Densities (PSDs) of various the-

oretical and MATLAB-generated noise signals. The logarithmic plots 
depicted in the figure demonstrate that the noise energy varies accord-
5

ing to the frequency range. Accordingly, brown noise introduces the 
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most severe case of low-frequency noise, causing the contaminated sig-

nal to be more nonstationary. Therefore, this work focuses on studying 
brown noise for damage detection using simulated FRF signals.

To obtain different levels of signal-to-noise ratio (SNR), the rows 
of the generated FRF matrix (𝐇) are contaminated with colored noise. 
The SNRs are set at 20 and 10 dB in this study, where a value of 10 dB 
corresponds to more severe signal contamination compared to a value 
of 20 dB. To contaminate an FRF signal with colored brown noise, the 
following procedures are implemented:

Firstly, noise power and signal power are calculated as follows:

𝑃𝐇(∶,𝑖) =
1
𝑁

𝑛=𝑁∑
𝑛=1

𝐇(𝑛, 𝑖)2 (8)

𝑃noise =
1
𝑁

𝑛=𝑁∑
𝑛=1

𝝐(𝑛)2 (9)

where 𝐇(∶, 𝑖) and 𝜖 denote the 𝑖th column of the 𝐇 and the simulated 
noise in MATLAB, respectively. To achieve the specified target values 
for the SNR in dB, the simulated noise is normalized by the factor 𝜆 as 
follows:

SNRdb = 10 log10

(
𝑃𝐇(∶,𝑖)

𝜆2 𝑃noise

)
(10)

Accordingly, the 𝑖th FRF noisy column can be obtained in the following 
way:

𝐇noisy(∶, 𝑖) =𝐇(∶, 𝑖) + 𝜆 𝝐
t (11)

where 𝐇noisy(∶, 𝑖) is the 𝑖th column of the noise polluted 𝐇, and super-

script t denotes the transpose operator.

2.4. Using Gaussian smoothing to smooth noisy FRFs

To reduce the intensity of high-frequency noise, it is essential to 
implement an effective smoothing technique prior to signal processing. 
One approach is to employ smoothing techniques to enhance the quality 
of the signals. Various methods for smoothing signals include moving 
average, Gaussian smoothing, Savitzky-Golay filtering, median filtering, 
and Wavelet denoising [39]. By applying a suitable smoothing method, 
the contaminating noise can be significantly attenuated. This will re-

sult in cleaner and more reliable data and enhance the accuracy and 
robustness of the subsequent analysis. However, the selected smoothing 
technique must also be able to preserve as much information as possi-

ble in the data. In this paper, we use Gaussian smoothing as a robust 
smoothing technique over other options for two main reasons: (1) it has 
only one hyperparameter, and (2) it produces satisfactory smoothing re-

sults.

Gaussian smoothing, also known as Gaussian blur, is a widely used 
technique in signal and image processing for reducing the effect of 
noise. It is based on the mathematical concept of convolving a signal 
with a Gaussian kernel that has a bell-shaped distribution. The main 
idea behind Gaussian smoothing is to replace each data point in a sig-

nal with a weighted average of its neighboring points. The Gaussian 
kernel assigns higher weights to the data points closer to the center 
and lower weights to the farther-distanced points, resulting in a smooth 
combination of neighboring values. The Gaussian smoothing formula 
can be written as follows:

�̄�(𝑖) =
∑∞

𝑗=−∞ 𝑆(𝑗).𝐺(𝑖− 𝑗)∑∞
𝑗=−∞𝐺(𝑖− 𝑗)

(12)

where:

• �̄�(𝑖) represents the value of the smoothed signal at index 𝑖.
• 𝑆(𝑗) represents the value of the original signal at index 𝑗
• The sums extend from −∞ to ∞, but in practice, they are calculated 
only within a finite range determined by the kernel size.
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Fig. 2. Log-log plots of the PSD of (a) theoretical and (b) MATLAB-generated noise signals of various colors [38].
Note that Eq, (12) can also be described as the convolution between 
the signal and the Gaussian kernel normalized by the assigned Gaussian 
weights. The Gaussian kernel can be defined as follows:

𝐺(𝑘) = 1√
2𝜋𝜎2

.𝑒
−𝑘2

2𝜎2 (13)

where 𝐺(𝑘) represents the value of the Gaussian kernel at index 𝑘 and 
𝜎 is the standard deviation of the Gaussian distribution. The Gaussian 
kernel is centered around 𝑘 = 0 and has a bell-shaped distribution, the 
value of which decreases exponentially as the distance from the cen-

ter increases. As such, 𝜎 is the only hyperparameter of the Gaussian 
smoothing technique, the larger value of which will impose a stronger 
smoothing effect on the signal. Hence, the algorithm needs to be set 
to optimize the value of 𝜎 along with damage parameters in a way to 
minimize the to-be-proposed objective function.

2.5. Handling of colored noise contamination and outliers with Johansen 
cointegration

Following the preceding description, the columns of the generated 
FRF (Section 2.1) are contaminated with colored noise (Section 2.3). 
To subsequently derive a unique signal free of nonstationary colored 
noise, the columns of the contaminated FRF are cointegrated utilizing 
the equation below:

𝚿 =
𝑗=𝑝∑
𝑗=1

𝑎𝑗 �̄�noisy(∶, 𝑗) (14)

where 𝚿 represents the residuals of the Johansen cointegration for the 
noisy FRF matrix �̄�noisy, termed CIFRF; 𝑝 represents column numbers 
(excitation locations) in �̄�noisy; and 𝑎𝑗 is the cointegration coefficient 
obtained for the 𝑗th row as indicated in Eq. (14).

It is important to note that, from a technical point, the Johansen 
cointegration process can yield more than one vector of 𝑎𝑗 . These vec-

tors are eigenvectors that correspond to the eigenvalue problem of 
Johansen cointegration. Therefore, the first eigenvector, which corre-

sponds to the largest eigenvalue, represents a stationary FRF column 
combination, represented by CIFRF1 in Eq. (14). Accordingly, the sec-

ond eigenvector produces a combination of FRF columns that is less 
stationary, expressed as CIFRF2.1 Hence, in this study, CIFRF1 is se-

lected as a DSF. The superiority of CIFRF1 over CIFRF2 is demonstrated 
in the subsequent section by comparing the results obtained when us-

ing either CIFRF1 or CIFRF2 as the DSF. Throughout the remainder of 

1 Consider that the total number of columns in the FRF matrix is less than the 
6

number of possible cointegration residuals.
this paper, unless stated otherwise, CIFRF1 is referred to as the selected 
DSF for the sake of simplicity.

Furthermore, from a technical perspective, the columns of �̄�noisy

need to be nonstationary and integrated in the same order for the 
Johansen cointegration to operate. For this reason, the Kwiatkowski—

Phillips—Schmidt—Shin (KPSS) test is applied to each column of �̄�noisy

and Δ�̄�noisy to determine whether this property complies. Theoreti-

cally, it is required that all signals introduced in the Johansen cointegra-

tion procedure must be of the same order of non-stationarity. However, 
Cross and Worden [21] suggested that this requirement could be relaxed 
when employing cointegration in the context of SHM applications.

As stated previously, in this study, Johansen cointegration is em-

ployed as a data fusion technique for handling outliers and colored 
noise in FRFs. While the former relates primarily to experimental data, 
the latter applied mainly to numerical simulations. It is noted that the 
term outlier handling is a general term that also incorporates other 
types of noise contamination. In this paper, we use the term outlier 
for experimental measurement errors as no pre-knowledge about the 
type of noise contamination exists. Although one may investigate the 
type of noise by further comparing the measured FRF with the reference 
FRF obtained from a numerical simulation, we simply propose Johansen 
cointegration as an effective tool to deal with any type of error in the 
regenerated FRF. Here, the objective is to leverage the capabilities of 
Johansen cointegration to identify outliers within the input signals and 
fuse data from multiple sources, thereby enhancing the overall quality 
and reliability of the dataset.

Outlier detection plays a critical role in data analysis by identify-

ing observations that deviate from expected patterns. By applying the 
Johansen cointegration method, the objective is to identify the rela-

tionship among a set of FRFs and thereby reduce the effect of outliers 
in one particular variable at a given point in the analysis. Using Jo-

hansen cointegration as a means of data fusion involves integrating 
information from multiple FRFs to obtain a more comprehensive and 
accurate representation of the phenomenon under study. By examining 
the cointegration relationships among FRFs at different locations, this 
study seeks to identify common trends among variables as a data fusion 
approach.

2.6. Proposed damage detection method

This section discusses the construction of the objective function to 
be minimized for damage parameters and the smoothing factor. In the 
following, we define the objective function based on the mutual in-

formation shared between computed and measured metrics at specific 
excited and measured DOFs of the structure. The primary reason for 

adopting the concept of mutual information instead of minimizing the 
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Fig. 3. The maximum value of NMI is equal to 1.
mathematical distance between the obtained metrics is rationalized as 
follows. The utilization of information distance considers the seman-

tic meaning or similarity between vectors, rather than focusing only on 
their mathematical differences. Consequently, it enables a deeper explo-

ration of the underlying information or patterns in the data, leading to 
more meaningful insights regarding similarities or differences in FRFs.

Assume 𝐇 be the FRFs of the intact structure. Subsequently, �̄�noisy

denotes the smoothed version of the noisy FRFs regenerated from the 
damaged structure. The corresponding cointegration vector of each ma-

trix is obtained using Eq. (14) as 𝚿num and 𝚿exp for the intact and 
damaged structures, respectively. The objective is to minimize the dis-

tance between these two matrices as much as possible. The distance 
between two finite FRFs, however, may bring about some errors, such 
as neglecting the effect of higher-order components. Moreover, the di-

rect distance between two FRFs is more sensitive to noise. Therefore, in 
this paper, we propose to maximize the mutual information distance be-

tween 𝚿num and 𝚿exp. As such, the proposed objective function aims to 
maximize the normalized mutual information between 𝚿num and 𝚿exp

as follows:

NMI(𝚿num,𝚿exp) =
I(𝚿num,𝚿exp)

min
(
E(𝚿num),E(𝚿exp)

) (15)

where E(.) and I(.) represent the Shannon entropy and mutual informa-

tion, respectively, and can be obtained through the following equations:

E(𝐗) = −
∑
𝑥∈𝐗

P(𝑥) log P(𝑥) (16)

and

I(𝐗;𝐘) =
∑
𝑦∈𝐘

∑
𝑥∈𝐗

P(𝐗,𝐘)(𝑥, 𝑦) log

(
P(𝐗,𝐘)(𝑥, 𝑦)
P𝐗(𝑥)P𝐘(𝑦)

)
(17)

In the above, P𝐗(𝑥), P𝐘(𝑦), and P(𝐗,𝐘)(𝑥, 𝑦) are the marginal proba-

bility of 𝐗 and 𝐘 and the joint probability of 𝐗 and 𝐘, respectively. The 
procedure presented by [40,41] is followed to obtain the value for the 
above probabilities. The readers are referred to these papers for further 
details. Note that by dividing the numerator of (15) (I) by the minimum 
entropy value in the denominator, the obtained value of NMI is scaled 
to the range of [0, 1]. Here, the denominator is a scaling factor ensuring 
that the NMI value is always less than or equal to 1 (Fig. 3).

Finally, the proposed objective function is obtained by inverting (15)

as follows:

min
𝜶; 𝜎

1
NMI(𝚿num,𝚿exp)

(18)

where the objective is to obtain the optimal value for 𝜶 (vector of dam-

age indices) and 𝜎 (standard deviation of Gaussian smoothing) that 
7

minimizes the inverse of the mutual information between 𝚿num and 
𝚿exp. Note that the possible maximum value for the aforementioned 
objective function is 1.

2.7. New optimization algorithm: Improved Reptile Search Algorithm 
(IRSA)

A recent metaheuristic optimization algorithm, the Reptile Search 
Algorithm (RSA) [33], is based on the hunting behavior of crocodiles. 
RSA belongs to the category of swarm intelligence algorithms that 
leverage competition and cooperation within a group of reptiles. By 
mimicking natural crocodile behaviors that search for food in their nat-

ural habitat, the algorithm attempts to find the global optimum of an 
optimization problem. The main advantages of RSA over other meta-

heuristic algorithms are its simplicity, flexibility, and efficiency. RSA 
has been successfully applied in various domains, such as engineering 
design, power systems, and image processing.

In this paper, we propose an advanced RSA algorithm, named the 
Improved RSA (IRSA) algorithm, that enhances several features of RSA 
and thereby improves its performance across a wide range of bench-

mark functions. Unlike the previous version, which only works well 
on a few specific benchmarks (see Table 1) [33], our proposed op-

timization method (IRSA) demonstrates superior performance across 
broader benchmark functions where the RSA does not perform well. By 
implementing these improvements, we achieve enhanced optimization 
capabilities and expand the applicability of RSA in several domains. To 
demonstrate this, the performance of the proposed IRSA algorithm is 
compared to that of several other algorithms in the following sections.

The following changes have been implemented to improve different 
aspects of the original RSA:

• Initialization phase: Initialization is a critical feature of optimiza-

tion algorithms as it profoundly influences the final solution. The 
initialization process is the first step in setting up an optimization 
algorithm. This step can significantly impact the convergence speed 
of the algorithm and the ultimate optimal outcome. As such, the 
choice of initialization method is critical in ensuring the success 
and efficiency of an optimization algorithm.

RSA makes a uniform distribution assumption for initializing vari-

ables. While this assumption may work in some cases due to assign-

ing unbiased probabilities to the initialization, it somehow contra-

dicts the nature of SHM problems. It is known in SHM that most of 
the damage parameters take the value of zero, and there is usually 
a sparse number of variables whose value is non-zero. Moreover, 
it is known that the variables are bounded between 0 and 1. By 
incorporating this prior knowledge into the initialization process, 
we are able to obtain a more robust initialization for the problem. 

Therefore, a one-sided standard normal distribution is assumed for 
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the variables in the SHM problem discussed in this paper with the 
following probability density function (PDF):

𝑓 (𝑥) = ( 1√
2𝜋

) ∗ 𝑒𝑥𝑝

{
−𝑥2
2

}
; 𝑥 ∈ℝ. (19)

Where the random variable 𝑥 is an independent and identically 
distributed (iid) random variable with a mean of 0 and standard 
deviation of 1.

However, in a general case, where foreknowledge about the distri-

bution of the variables does not exist assuming a random normal 
distribution may benefit the algorithm due to the following rea-

sons:

– Normal distribution: The preference for using normal distribu-

tion over uniform distribution for initialization is application-

dependent. While uniform initialization may yield satisfactory 
results in certain scenarios, there have been several applications 
where initialization based on the normal distribution has been 
favored [42].

– Symmetric and bell-shaped distribution: The symmetric and bell-

shaped configuration of the PDF for the normal distribution al-

lows for generating random numbers that are more likely to be 
closer, rather than farther, to the mean. This property of the 
normal distribution makes it suitable for modeling many natu-

ral phenomena that exhibit a degree of symmetry.

– Central limit theorem: According to the central limit theorem, 
the distribution of the limit sum of a set of iid variables ap-

proaches a normal distribution. This property is, in fact, inde-

pendent of the underlying distribution of the individual random 
variables.

– More flexibility: The function generating normal distribution is 
more versatile compared to that of a uniform distribution. This is 
because it allows for generating random numbers with different 
means and standard deviations by applying appropriate scaling 
and shifting operations.

To achieve initialization following standard normal distribution, 
we use the function “randn” in MATLAB. We also use MATLAB’s 
“rng(‘shuffle’)” function to generate different populations in each 
iteration. “rng(‘shuffle’)” function is called to set the seed for the 
random number generator to the current time, which ensures that 
the random numbers generated by the function “randn” are dif-

ferent in each iteration of the program. The use of this function 
ensures the generation of diverse populations. By increasing the di-

versity of the search space, the quality of the generated solutions is 
improved.

• Dynamic Evolutionary Sense (DES): Evolutionary Sense (ES)–a 
function of the preassigned total number of iterations–is a variable 
that controls generating a random population at the beginning of 
the program. It is defined in RSA as follows:

ES = 2 × 𝑟𝑎𝑛𝑑 ×
(
1 − ( 𝑡

𝑇
)
2
)

(20)

where 𝑇 is the total number of iterations, and 𝑟𝑎𝑛𝑑 is a random 
variable that follows a uniform distribution.

The Dynamic Evolutionary Sense (DES) is defined to be changed at 
each iteration as follows:

DES(𝑡) = 2 × 𝑟𝑎𝑛𝑑(𝑡) ×
(
1 − ( 𝑡

𝑇
)
2
)

(21)

where 𝑇 and 𝑡 are the total number of iterations and the running 
iteration, respectively, and 𝑟𝑎𝑛𝑑(𝑡) is a random variable, selected at 
the 𝑡th iteration, that follows a standard normal distribution. The 
proposed IRSA updates this parameter in each iteration.

• Subdivision of the search space: The RSA algorithm is programmed 
to identify the best solution by searching the entire possible search 
space. Here, in the proposed IRSA, the search space is proposed 
8

to be subdivided based on the concept of finite elements (FE) 
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in mechanical engineering. As such, by leveraging finite element 
analysis, the search space is divided into different finite regions, 
and each region is searched for the best solution individually. 
The overall system performance can be enhanced by considering 
the interactions between neighboring regions of the search space. 
This approach allows for more localized and focused optimization, 
where the design variables within each region are adjusted inde-

pendently.

• Boundary checking: In constraint optimization, RSA checks the 
identified best solutions against acceptable boundaries once at the 
end of iterations. Here, we propose to check the obtained solution 
against the allowed limits in each region (each FE) of the search 
space at each iteration. As a result, out-of-the-range responses will 
be discarded at each iteration automatically.

• Parameter updates: RSA considers a static value for 𝛼, and 𝛽 pa-

rameters. However, we propose to update these parameters at each 
iteration to lead the program to the best solution region. In the pro-

posed IRSA, 𝛼 and 𝛽 are essential factors that control the behavior 
of the optimization process and are proposed to be updated based 
on the following rules:

𝛼(𝑡) = 𝛼1 × 𝑟𝑎𝑛𝑑𝑛 ×
(
1 − ( 𝑡

𝑇
)
2
)
, (22)

and,

𝛽(𝑡) = 𝛽1 × 𝑟𝑎𝑛𝑑𝑛 ×
(
1 − ( 𝑡

𝑇
)
2
)
. (23)

In summary, the proposed IRSA optimization process begins with 
generating a random set of candidate solutions (population). IRSA’s 
search mechanisms explore various positions of the near-optimal so-

lution during the trajectory of repetition. The proposed IRSA process 
replaces each solution’s position with the best-obtained solution. The 
search processes have been divided into two main methods (exploration 
and exploitation) with four strategies to highlight exploration and ex-

ploitation. An exploration method involves high walking and a belly 
walking strategy, and an exploration method involves hunting coordi-

nation and cooperation [33]. A candidate solution attempts to broaden 
the scope of the search when 𝑡 ≤ 𝑇

2 and aims to reach a near-optimal 
solution when 𝑡 > 𝑇

2 . A high-walking movement strategy is used dur-

ing the exploration phase when 𝑡 ≤ 𝑇

4 and a movement strategy of belly 
walking is used when 𝑡 > 𝑇

4 and 𝑡 ≤ 2 𝑇

4 . As part of the exploitation 
phase, a hunting coordination strategy is implemented when 𝑡 > 2 𝑇

4
and 𝑡 ≤ 3 𝑇

4 . Otherwise, a strategy of hunting cooperation is used when 
𝑡 ≤ 𝑇 and 𝑡 > 3 𝑇

4 . The proposed IRSA process is terminated once the 
end criterion has been satisfied. This is when the maximum iteration is 
reached or the difference between two successive values of the objective 
function is less than a threshold. Algorithm 1 provides the pseudo-code 
for the proposed IRSA. Fig. 4 shows the flowchart of the proposed IRSA.

2.7.1. Comparing the proposed IRSA with existing algorithms

Table 2 presents a comparison of the performance between the pro-

posed IRSA and some other meta-heuristic algorithms, including the 
previous version (RSA), grasshopper optimization algorithm (GOA), 
salp swarm algorithm (SSA), whale optimization algorithm (WOA), sine 
cosine algorithm (SCA), dragonfly algorithm (DA), grey wolf optimizer 
(GWO), particle swarm optimization (PSO), ant lion optimizer (ALO), 
marine predators Algorithm (MPA), equilibrium optimizer (EO), and 
covariance matrix adaptation evolution strategy (CMAES). The specifi-

cations for this comparison are consistent with those outlined in [33]

with dimensions of 500 and a total of 500 iterations. As depicted in Ta-

ble 2, most of the previous algorithms encountered challenges in solving 
the benchmark problems [33]. However, from examining the table, it 
is evident that the proposed IRSA outperforms other algorithms by pro-
viding a better average fitness value, demonstrated by its rank, i.e., 1, 
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Fig. 4. Flowchart of the proposed IRSA.

Table 1

Benchmark functions.

Fun Description Type Dimensions Range 𝑓𝑚𝑖𝑛

F1 𝑓 (𝑥) =∑𝑛

𝑖=1
([
𝑥𝑖 + 0.5

])2) Unimodal 30, 100, 500, 1000 [−100, 100] 0

F2 𝑓 (𝑥) =∑𝑛

𝑖=1

(
−𝑥𝑖 sin

(√||𝑥𝑖
||
))

Multimodal 30, 100, 500, 1000 [−500, 500] −418.9829 × 𝑛

F3

𝑓 (𝑥) = 0.1
(
sin2(3𝜋𝑥𝑖) +

∑𝑛

𝑖=1
(
𝑥𝑖 − 1

)2)[
1 + sin2(3𝜋𝑥𝑖 + 1)

]
+ (𝑥𝑛 − 1)2 + sin2(2𝜋𝑥𝑛)

+
∑𝑛

𝑖=1 𝑢(𝑥𝑖,5,100,4)
Multimodal 30, 100, 500, 1000 [−50, 50] 0

F4 𝑓 (𝑥) =∑11
𝑖=1

[
𝑎𝑖 −

𝑥𝑖 (𝑏2𝑖 +𝑏𝑖𝑥2)
𝑏2
𝑖
+𝑏𝑖𝑥3+𝑥4

]2
Fixed-dimension 
multimodal

4 [−5, 5] 0.00030

F5 𝑓 (𝑥) = − ∑5
𝑖=1

[
(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖

]−1
Fixed-dimension 
multimodal

4 [0,1] -10.1532

F6 𝑓 (𝑥) = − ∑7
𝑖=1

[
(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖

]−1
Fixed-dimension 
multimodal

4 [0,1] -10.4028

F7 𝑓 (𝑥) = − ∑10
𝑖=1

[
(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖

]−1
Fixed-dimension 
multimodal

4 [0,1] -10.5363
in most cases. Furthermore, it can be observed that the performance 
of the proposed IRSA is superior compared to other methods at high 
dimensions (500). The results clearly illustrate that our proposed op-

timization algorithm excels in optimizing various benchmark objective 
functions. Our algorithm demonstrates the ability to effectively address 
complex optimization problems and deliver highly accurate solutions 
across a diverse range of benchmark scenarios.

2.8. Damage identification accuracy indicators

To evaluate the accuracy of the obtained results, the following three 
accuracy indicators are used, as described in [43]:

1. Closeness index (CI): It is defined as the difference between actual 
and computed damage index vectors expressed as:

‖𝑃 𝑟 − 𝑃 𝑐‖2

9

CI = 1 − ‖𝑃 𝑟‖2 (24)
where 𝑃 𝑟 and 𝑃 𝑐 are the vectors of synthesized and predicted dam-

age indices, respectively. An ideal match is achieved when CI = 1.

2. Mean square error (MSE): This error is defined as the sum of the 
absolute differences between the predicted and synthesized dam-

age parameters, normalized by the number of damaged elements 
in the synthesized model. MSE is calculated as follows:

MSE = 1
𝑑𝑒

𝑑𝑒∑
𝑒=1

|𝑝𝑟
𝑒
− 𝑝𝑐

𝑒
|, 0 ≤ MSE (25)

where 𝑝𝑟
𝑒

and 𝑝𝑐
𝑒

are the synthesized and predicted damage param-

eters for the 𝑒𝑡ℎ element.

3. Relative error (RE): It can be defined as follows:

RE =
∑𝑛

𝑒=1 |𝑝𝑟𝑒|−∑𝑛

𝑒=1|𝑝𝑐𝑒|∑𝑛

𝑒=1|𝑝𝑐𝑒| , −1 ≤ RE ≤ 1 (26)

where 𝑛 denotes the number of all elements regardless of their 
health condition. A more accurate prediction of damage indices 

will result in smaller MSE and RE values.
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MPA EO CMA-ES IRSA

1.08E+02 1.19E+02 5.00E+02 1.03E+02

1.07E+02 1.18E+02 4.89E+02 1.00E+02

1.06E+02 1.17E+02 4.81E+02 9.80E+01

1.44E+00 9.18E-01 9.39E+00 4.13E+04

3 4 6 1

-5.10E+04 -3.85E+04 -6.06E+04 -1.20E+05

-5.53E+04 -4.26E+04 -6.64E+04 -1.30E+05

-5.96E+04 -4.58E+04 -7.17E+04 -1.40E+05

4.72E+03 3.26E+03 5.66E+03 9.99E+03

6 7 5 1

4.98E+01 4.98E+01 2.15E+02 4.77E+01

4.98E+01 4.96E+01 1.97E+02 3.80E+01

4.98E+01 4.92E+01 1.82E+02 2.90E+01

3.71E-02 2.93E-01 1.39E+01 8.04E+00

4 3 6 1

3.07E-04 3.53E-04 0.00E+00 3.04E-04

3.07E-04 3.21E-04 0.00E+00 3.04E-04

3.07E-04 3.08E-04 0.00E+00 3.04E-04

2.90E-15 1.98E-05 0.00E+00 2.91E-15

3 4 1 2

-1.02E+01 -2.94E-01 -1.02E+01 -1.01E+01

-1.02E+01 -4.66E-01 -1.02E+01 -1.01E+01

-1.02E+01 -7.11E-01 -1.02E+01 -1.01E+01

1.78E-11 1.59E-01 0.00E+00 0.00E+00

2 13 2 1

-1.04E+01 -5.09E+00 -1.04E+01 -1.00E+01

-1.04E+01 -9.34E+00 -1.04E+01 -1.00E+01

-1.04E+01 -1.04E+01 -1.04E+01 -1.00E+01

1.04E-11 2.38E+00 0.00E+00 0.00E+00

2 5 2 1

-7.89E-01 -3.84E+00 -1.05E+01 -1.03E+01

-2.09E+00 -9.20E+00 -1.05E+01 -1.03E+01

-5.13E+00 -1.05E+01 -1.05E+01 -1.03E+01

1.90E+00 3.00E+00 0.00E+00 0.00E+00

8 7 2 1

4 3 2 1
Table 2

IRSA results applying unimodal and multimodal test functions, as well as fixed-dimension multimodal benchmark functions.

Fun Measure RSA GOA SSA WOA SCA DA GWO PSO ALO

F1 Worst 1.25E+02 8.08E+05 1.05E+06 1.04E+02 2.69E+05 3.58E+05 1.63E+02 2.30E+05 1.09E+06

Average 1.24E+02 7.61E+05 9.53E+05 1.01E+02 2.52E+05 3.15E+05 1.45E+02 2.27E+05 1.00E+06

Best 1.24E+02 7.33E+05 8.59E+05 9.86E+01 2.37E+05 2.31E+05 1.20E+02 2.22E+05 8.73E+05

STD 1.97E-01 4.13E+04 9.81E+04 2.62E+00 1.63E+04 7.24E+04 2.24E+01 4.29E+03 1.14E+05

Rank 5 11 12 2 9 10 6 8 12

F2 Worst -7.46E+04 -3.32E+04 -2.67E+04 -1.26E+05 -1.21E+04 -1.50E+04 -1.02E+04 -9.56E+03 -9.03E+04

Average -7.86E+04 -3.70E+04 -3.25E+04 -1.39E+05 -1.33E+04 -1.70E+04 -2.91E+04 -1.19E+04 -9.03E+04

Best -8.10E+04 -3.95E+04 -3.73E+04 -1.50E+05 -1.45E+04 -1.90E+04 -3.63E+04 -1.56E+04 -9.03E+04

STD 2.78E+03 2.69E+03 4.71E+03 9.97E+03 1.04E+03 1.64E+03 1.26E+04 2.85E+03 0.00E+00

Rank 4 8 9 2 12 11 10 12 3

F3 Worst 5.00E+01 7.80E+09 8.62E+09 4.78E+01 1.06E+10 2.76E+09 3.06E+02 2.83E+08 7.83E+09

Average 5.00E+01 7.20E+09 7.83E+09 3.90E+01 8.82E+09 1.59E+09 2.04E+02 2.64E+08 7.23E+09

Best 5.00E+01 6.57E+09 7.27E+09 3.01E+01 6.56E+09 1.12E+09 1.05E+02 2.45E+08 6.63E+09

STD 1.19E+03 6.05E+08 6.34E+08 8.05E+00 1.72E+09 7.84E+08 8.38E+01 1.55E+07 5.79E+08

Rank 5 10 12 2 13 9 7 8 11

F4 Worst 8.39E-04 2.18E-02 2.08E-02 1.52E-03 1.91E-03 2.04E-02 2.04E-02 9.93E-04 2.04E-02

Average 5.76E-04 9.79E-03 4.80E-03 7.74E-04 1.28E-03 5.72E-03 8.45E-03 9.20E-04 4.95E-03

Best 3.64E-04 7.85E-04 7.43E-04 3.13E-04 6.92E-04 1.50E-03 3.08E-04 8.66E-04 7.78E-04

STD 2.24E-04 1.05E-02 8.95E-03 4.56E-04 4.90E-04 8.19E-03 1.09E-02 6.64E-05 8.65E-03

Rank 5 13 9 6 8 11 12 7 10

F5 Worst -5.06E+00 -2.68E+00 -5.06E+00 -5.05E+00 -4.96E-01 -2.63E+00 -1.01E+01 -2.63E+00 -2.68E+00

Average -9.13E+00 -6.15E+00 -6.08E+00 -8.07E+00 -8.94E-01 -6.63E+00 -1.01E+01 -7.15E+00 -4.61E+00

Best -1.02E+01 -1.02E+01 -1.02E+01 -1.01E+01 -2.10E+00 -1.02E+01 -1.02E+01 -1.02E+01 -5.10E+00

STD 2.28E+00 3.78E+00 2.27E+00 2.75E+00 6.93E-01 3.37E+00 2.99E-03 4.11E+00 1.08E+00

Rank 5 9 10 6 12 8 4 7 11

F6 Worst -5.09E+00 -2.75E+00 -3.72E+00 -2.94E-01 -9.06E-01 -2.75E+00 -1.04E+01 -2.75E+00 -3.72E+00

Average -9.25E+00 -7.34E+00 -8.01E+00 -5.56E-01 -1.90E+00 -6.38E+00 -1.04E+01 -6.47E+00 -7.73E+00

Best -1.04E+01 -1.04E+01 -1.04E+01 -8.58E-01 -4.02E+00 -1.03E+01 -1.04E+01 -1.04E+01 -1.04E+01

STD 2.33E+00 4.19E+00 3.31E+00 2.72E-01 1.43E+00 3.54E+00 1.34E-03 3.68E+00 3.66E+00

Rank 6 9 7 13 12 11 2 10 8

F7 Worst -2.87E+00 -1.68E+00 -1.05E+01 -5.10E+00 -2.46E+00 -1.68E+00 -1.05E+01 -1.05E+01 -3.84E+00

Average -6.59E+00 -4.26E+00 -1.05E+01 -9.42E+00 -4.14E+00 -6.52E+00 -1.05E+01 -1.05E+01 -9.20E+00

Best -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -7.27E+00 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01

STD 3.69E+00 3.60E+00 2.10E-11 2.42E+00 1.90E+00 3.74E+00 1.98E-03 1.54E-15 3.00E+00

Rank 8 10 6 5 12 11 3 4 13

Final Ranking 5 10 9 6 12 11 7 8 13
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Algorithm 1 Pseudo-code for the proposed IRSA.

1: Determine Objective Function 𝐹 (𝑥).
2: Initialize parameters 𝛼1 , 𝛽1 , 𝑁 , 𝑇 , 𝐿𝐵, 𝑈𝐵.

3: Initialize the population X with randomly generated solutions.

4: while 𝑡 < 𝑇 do

5: Evaluate the fitness function of each candidate solution 𝐹 (𝑥).
6: Identify the best solution so far.

7: 𝐷𝐸𝑆(𝑡) = 2 × 𝑟𝑎𝑛𝑑𝑛 ×
(
1 − ( 𝑡

𝑇
)2
)

,

8: 𝛼(𝑡) = 𝛼1 × 𝑟𝑎𝑛𝑑𝑛 ×
(
1 − ( 𝑡

𝑇
)2
)

,

9: 𝛽(𝑡) = 𝛽1 × 𝑟𝑎𝑛𝑑𝑛 ×
(
1 − ( 𝑡

𝑇
)2
)

,

10: for 𝑖 = 1 ∶𝑁 do

11: for 𝑗 = 1 ∶ 𝑛 do

12: 𝜂(𝑖, 𝑗) =𝐵𝑒𝑠𝑡𝑗 (𝑡) × 𝑃(𝑖,𝑗) ,

13: 𝑅(𝑖,𝑗) =
𝐵𝑒𝑠𝑡𝑗 (𝑡)−𝑥(𝑟2 ,𝑗)

𝐵𝑒𝑠𝑡𝑗 (𝑡)+𝜖
,

14: 𝑃(𝑖,𝑗) = 𝛼1 × 𝑟𝑎𝑛𝑑𝑛 ×
(
1 − ( 𝑡

𝑇
)2
)
+ 𝑥(𝑖,𝑗)−𝑀(𝑥𝑖 )

𝐵𝑒𝑠𝑡𝑗 (𝑡)×(𝑈𝐵(𝑗)−𝐿𝐵(𝑗))+𝜖

15: if 𝑡 ≤ 𝑇

4
then

16: 𝑥(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗 (𝑡) × −𝜂(𝑖,𝑗)(𝑡) × 𝛽1 × 𝑟𝑎𝑛𝑑𝑛 ×
(
1 − ( 𝑡

𝑇
)2
)
−𝑅(𝑖,𝑗)(𝑡) ×

𝑟𝑎𝑛𝑑𝑛, ⊳ {High walking}
17: 𝑥.𝑈𝐵(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) >𝑈𝐵

18: 𝑥.𝐿𝐵(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) <𝐿𝐵

19: 𝑥(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) × (𝑥.𝑈𝐵 + 𝑥.𝐿𝐵) +𝐿𝐵 × 𝑥.𝐿𝐵 +𝑈𝐵 × 𝑥.𝑈𝐵

20: else if 𝑡 ≤ 2 𝑇

4
𝑎𝑛𝑑 𝑡 > 𝑇

4
then

21: 𝑥(𝑖,𝑗)(𝑡 + 1) =𝐵𝑒𝑠𝑡𝑗 (𝑡) × 𝑥(𝑟1 ,𝑗) ×𝐷𝐸𝑆(𝑡) × 𝑟𝑎𝑛𝑑𝑛, ⊳ {Belly walking}
22: 𝑥.𝑈𝐵(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) >𝑈𝐵

23: 𝑥.𝐿𝐵(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) <𝐿𝐵

24: 𝑥(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) × (𝑥.𝑈𝐵 + 𝑥.𝐿𝐵) +𝐿𝐵 × 𝑥.𝐿𝐵 +𝑈𝐵 × 𝑥.𝑈𝐵

25: else if 𝑡 ≤ 3 𝑇

4
𝑎𝑛𝑑 𝑡 > 2 𝑇

4
then

26: 𝑥(𝑖,𝑗)(𝑡 + 1) =𝐵𝑒𝑠𝑡𝑗 (𝑡) × 𝑃(𝑖,𝑗)(𝑡) × 𝑟𝑎𝑛𝑑𝑛, ⊳ {Hunting coordination}
27: 𝑥.𝑈𝐵(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) >𝑈𝐵

28: 𝑥.𝐿𝐵(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) <𝐿𝐵

29: 𝑥(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) × (𝑥.𝑈𝐵 + 𝑥.𝐿𝐵) +𝐿𝐵 × 𝑥.𝐿𝐵 +𝑈𝐵 × 𝑥.𝑈𝐵

30: else

31: 𝑥(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗 (𝑡) − 𝜂(𝑖,𝑗)(𝑡) × 𝜖 − 𝑅(𝑖,𝑗)(𝑡) ×
𝑟𝑎𝑛𝑑𝑛, ⊳ {Hunting cooperation}

32: 𝑥.𝑈𝐵(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) >𝑈𝐵

33: 𝑥.𝐿𝐵(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) <𝐿𝐵

34: 𝑥(𝑖,𝑗)(𝑡 + 1) = 𝑥(𝑖,𝑗)(𝑡 + 1) × (𝑥.𝑈𝐵 + 𝑥.𝐿𝐵) +𝐿𝐵 × 𝑥.𝐿𝐵 +𝑈𝐵 × 𝑥.𝑈𝐵

35: end if

36: end for

37: end for

38: 𝑡 = 𝑡 + 1,

39: end while

40: Return the best individual found during the evolution 𝐵𝑒𝑠𝑡(𝑋).

3. Numerical and experimental evaluation

To validate the effectiveness of the proposed approach, we con-

ducted verification on both numerical and experimental data in the 
subsequent sections. By performing these verification steps, we aimed to 
assess the accuracy and reliability of the proposed approach in practical 
scenarios. This verification process involved analyzing and evaluating 
the results obtained from applying the proposed approach to the numer-

ical data as well as the data collected through real-world experiments. 
The results show the performance and suitability of the proposed ap-

proach for the different applications.

The damage detection algorithm was implemented using MATLAB 
2023a, a programming environment specifically suited for numerical 
computations and data analysis. The developed computer program uti-

lizes various libraries in MATLAB including Machine learning, econo-

metrics and optimization toolboxes.

3.1. Numerical verification

This section validates our proposed method using numerical exam-

ples of composite laminate plates. In the following, we employ the 
Gaussian smoothing approach to smooth the FRF input signals, and sub-

sequently, we apply Johanson cointegration for data fusion. Finally, we 
construct the proposed objective function and solve it by using the pro-

posed IRSA. Fig. 5 illustrates the flowchart of the proposed methodology 
11

for the numerical problem.
Computers and Structures 296 (2024) 107293

Table 3

Different damage scenarios of the composite laminate plates.

Case 1 Case 2 Case 3 Case 4

Element Ratio Element Ratio Element Ratio Element Ratio

1 0.20 5 0.15 4 0.15 3 0.20

10 0.15 10 0.10 8 0.20 7 0.15

13 0.20 20 0.25 23 0.15 19 0.30

17 0.30 25 0.30 31 0.10 23 0.35

29 0.25 30 0.10 36 0.20 31 0.20

3.1.1. Laminated composite model

In this paper, we use Reddy’s laminated composite plate model [44]

for the numerical validation. This model is a square laminated compos-

ite plate with fully supported edges. Different numbers of layers (NoL) 
and layering angles (LA) are considered in two models of the plate as 
follows:

• NoL = 3 and LA = 0◦∕90◦∕0◦,

• NoL = 6 and LA = (0◦∕45◦∕0◦) × 2.

The model’s geometrical and finite element (FE) configurations are 
given below:

• The plates have a dimension of 100 × 100 × 10 cm with a thickness 
of 10 cm, regardless of the number of layers.

• The plates are composed of 𝑛𝑥 × 𝑛𝑦 square elements resulting in 
a total of (𝑛𝑥 + 1) × (𝑛𝑦 + 1) nodes (see Fig. 6a), where 𝑛𝑥 and 𝑛𝑦
indicate the number of divisions on the 𝑥 and 𝑦 axes (see Fig. 6b).

• The plates consist of 36 shell elements with a total of 245 DoFs 
(𝑛𝑥 = 𝑛𝑦 = 6). Thus, there are 49 nodes in total, 25 of which are 
active. Three translational DOFs exist in each node (𝑤𝑥, 𝑤𝑦, 𝑤𝑧), 
and two rotational DOFs (𝜑𝑥, 𝜑𝑦). We assume that the plate has a 
rigid DoF for in-plane rotation (𝜑𝑧).

• Due to the fixed support on four sides of the plates, there are 125 
active DoFs.

As mentioned before, MATLAB is utilized to simulate all FE models 
of the composite laminate plates, as well as to program the damage de-

tection algorithm. In this study, we use the first-order shear deformation 
theory (FSDT)–an extension of Classical Laminated Plate Theory (CLPT) 
[44]. To reduce the number of measured locations, we employ the con-

densed form of FRFs (CFRFs), as discussed in [38]. In the following, the 
results of the newly proposed method are referred to as CICFRF.

The material properties for the composite consist of Young’s Modu-

lus (𝐸), Poisson ratio (𝜈), and Modulus of Rigidity (𝐺). Specifically, 𝐸1
and 𝐸2 represent Young’s Modulus with values of 40 and 1 N∕m2 re-

spectively. The Poisson ratios, 𝜈12 and 𝜈21, are 0.25 and 0.00625. For 
the Modulus of Rigidity, 𝐺12, 𝐺13, and 𝐺23 are calculated as 0.6𝐸2, 
0.6𝐸2, and 0.5𝐸2 respectively [44]. The same plate models have also 
been investigated by other researchers including [45–50].

This study investigates four damage scenarios considering different 
damage locations, severity, and types as listed in Table 3. The first ten 
natural frequencies of the different damage scenarios are presented in 
Table 4. It can be observed that the natural frequencies of the plates 
decrease as the damage occurs. In addition, it is evident that the fre-

quencies are closely spaced. The authors have extensively studied this 
property of laminated composite plates in their previous work [38,51].

To determine the optimal excitation locations for the plates, Eq. (7)

is applied. According to Table 5, signals are obtained by varying com-

posite plate models (NoL=3 and 6) and optimal excitation locations. 
As indicated in Table 5, the first eight DOFs that correspond to the 
largest entries in the obtained vector Λ represent the optimal locations 
for excitation of each plate model. All DOFs associated with out-of-plane 
translational DOFs (i.e., those along the 𝑧-axis in Fig. 6a) are assumed 

to be measured at the measurement locations.
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Fig. 5. Methodology steps of the proposed method on a numerical example ((a) Performing FE modeling simulations. (b) applying data analytics methods on CFRP, 
and (c) implementing the proposed model updating method.)
After identifying the DOFs that correspond to the optimal excitation 
and measurement locations (see Section 2.2), the FRFs of the plates 
are obtained following the procedure in Section 2.1. Subsequently, the 
synthesized FRFs are contaminated with brown noise, a type of nonsta-

tionary colored noise based on the steps in Section 2.3. In this section, 
our analysis focuses solely on FRFs contaminated with brown noise 
because it is known to be the most correlated type of colored noise. 
However, it is expected that similar results would be obtained with 
other types of noise.

The KPSS test is then applied to determine the presence of unit roots 
in FRFs polluted with brown noise. It is imperative to carefully decide 
the number of lags in the KPSS test to avoid losing the power of the 
test (large lags) or obtaining biased results (short lag). To this end, the 
following equation is employed to obtain the maximum lag for the test:

𝐿max =
[
12 ×

(
𝑁

100

) 1
4
]

(27)

where 𝐿max is the maximum lag length, 𝑁 is the number of excitation 
frequencies, and [.] indicate the integer part of a number.

For Johansen cointegration to operate, the concatenated chunks 
12

of FRFs obtained at different locations must be of the same order of 
nonstationarity–a requirement for fusing FRFs obtained at different lo-

cations. However, Cross and Worden [21] suggested that checking this 
requirement can be overlooked when employing Johansen cointegra-

tion in SHM. Having said that, we still conform to this requirement of 
the Johansen cointegration by checking the order of nonstationarity in 
FRFs contaminated with brown noise. Tables 6, 7, 8, and 9 present 
the results of the KPSS test conducted on FRF signals contaminated 
with brown noise of SNR=10 and 20. As shown in the tables, ℎ can 
either take a value of 1 or 0, indicating whether the signal trend is non-

stationary or stationary. According to Eq. (27), the maximum lag of the 
signals is 18 because they are 601 in length. To verify the validity of 
the tests, three different lags are considered: 16, 17, and 18. A signifi-

cance level of 0.1 is used for the test. Therefore, any P-value less than 
0.1 defies the null hypothesis of signal stationarity. In Tables 6 to 9, 
it is shown that for all DOFs, the P-values are less than 0.05, except 
for DOF 56 (Table 8) and DOF 66 (Table 9), which have slightly larger 
P-values. Setting the significance level to 0.05 implies that the signals 
would be considered stationary. Nonetheless, as suggested by [21], Jo-

hansen cointegration can still be applied in the context of SHM despite 
signals not meeting the same nonstationary assumption. However, the 

results displayed in the table indicate that the FRF signals for all DOFs 



Computers and Structures 296 (2024) 107293S. Hassani, U. Dackermann, M. Mousavi et al.

Fig. 6. (a) Sketch of the composite laminate plate, and (b) element numbering of the composite laminate plate (𝑛𝑥 = 𝑛𝑦 = 6).

Table 4

First ten natural frequencies of the composite laminate plates with different NoL and LA.

Lamination scheme Mode No.

1 2 3 4 5 6 7 8 9 10

Intact
NoL = 3,

LA = (0◦∕90◦∕0◦) 7.40 11.14 14.32 16.23 18.74 21.42 23.32 23.90 25.74 26.29

NoL = 6,

LA = (0◦∕45◦∕0◦∕0◦∕45◦∕0◦) 7.64 11.53 14.74 16.82 19.07 21.99 23.78 24.90 25.78 26.60

Case 1
NoL = 3,

LA = (0◦∕90◦∕0◦) 7.25 10.98 14.06 16.01 18.51 21.06 22.78 23.50 25.29 25.83

NoL = 6,

LA = (0◦∕45◦∕0◦∕0◦∕45◦∕0◦) 7.47 11.35 14.47 16.61 18.81 21.59 23.29 24.45 25.36 26.03

Case 2
NoL = 3,

LA = (0◦∕90◦∕0◦) 7.29 10.97 14.13 15.88 18.55 21.05 22.89 23.54 25.38 25.92

NoL = 6,

LA = (0◦∕45◦∕0◦∕0◦∕45◦∕0◦) 7.54 11.36 14.57 16.44 18.94 21.53 23.40 24.56 25.44 26.34

Case 3
NoL = 3,

LA = (0◦∕90◦∕0◦) 7.34 11.03 14.27 16.10 18.53 21.16 23.16 23.66 25.47 25.94

NoL = 6,

LA = (0◦∕45◦∕0◦∕0◦∕45◦∕0◦) 7.57 11.40 14.66 16.67 18.85 21.74 23.61 24.59 25.54 26.24

Case 4
NoL = 3,

LA = (0◦∕90◦∕0◦) 7.18 10.96 13.96 15.96 18.46 21.01 22.68 23.57 25.14 25.84

NoL = 6,

LA = (0◦∕45◦∕0◦∕0◦∕45◦∕0◦) 7.43 11.31 14.41 16.54 18.71 21.68 23.20 24.43 25.24 26.02

Table 5

The optimal excitation locations obtained for the laminated composite plates.

Plate Λ DOFs

NoL = 3, LA = (0◦∕90◦∕0◦) 25.2310, 23.6311, 22.5224, 20.1986, 17.2411, 17.2200, 17.0378, 16.2453 71, 66, 56, 31, 102, 47, 72, 32

NoL = 6, LA = (0◦∕45◦∕0◦) × 2 34.07, 33.74, 33.2212, 32.0823, 27.2546, 25.6578, 22.5345, 18.2422 21, 66, 31, 41, 107, 117, 122, 51
13



S. Hassani, U. Dackermann, M. Mousavi et al.

Table 6

Results of the KPSS test run on each column of the FRF matrix contam-

inated with brown noise. The significance level of the test is 0.1 with 
SNR=10; NoL = 3 and LA = 0◦∕90◦∕0◦.

FRF Lag P-value h Stationary

1𝑠𝑡 excitation

DOF71 16, 17, 18 0.0315, 0.0365, 0.0420 1, 1, 1 No

Δ DOF71 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

2𝑛𝑑 excitation

DOF66 16, 17, 18 0.0444, 0.0434, 0.0476 1, 1, 1 No

Δ DOF66 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

3𝑟𝑑 excitation

DOF56 16, 17, 18 0.0132, 0.0134, 0.0165 1, 1, 1 No

Δ DOF56 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

4𝑡ℎ excitation

DOF31 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF31 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

5𝑠𝑡 excitation

DOF102 16, 17, 18 0.0100, 0.0100, 0.0114 1, 1, 1 No

Δ DOF102 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

6𝑛𝑑 excitation

DOF47 16, 17, 18 0.0156, 0.0203, 0.0249 1, 1, 1 No

Δ DOF47 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

7𝑟𝑑 excitation

DOF72 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF72 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

8𝑡ℎ excitation

DOF32 16, 17, 18 0.0326, 0.0375, 0.0400 1, 1, 1 No

Δ DOF32 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

are indeed non-stationary. When the difference operator Δ is applied, 
P-values of 0.1 indicate stationary results. Therefore, Johansen cointe-

gration can be applied to all 𝐼(1) signals.

3.1.2. Gaussian smoothing applied to input signals

Fig. 7 presents FRFs of the composite laminated plate contaminated 
with different types of noise. It can be observed that brown noise has the 
most pronounced impact introducing severe outliers to the signals. In 
our numerical analysis, we deliberately utilized signals that are contam-

inated with brown noise to demonstrate the capability of our method.

As demonstrated in Eq. (18), the value of 𝜎 for the Gaussian smooth-

ing algorithm is optimized in the optimization process. To this end, a 
grid of possible values between 0.5 and 3, representing fine smoothing 
and coarse smoothing, respectively, with an increment equal to 0.01, 
was set to be tested in the optimization process. As a result, the best 
smoothing factor (see Table 10) was selected as the optimal value for 
the problem of damage detection in composite plates.

Fig. 8 shows the original noisy signals and the smoothed version of 
the contaminated signals.

3.1.3. Results of Johansen cointegration

An alternative method for combining the columns of the CFRF ma-

trix is to concatenate them into a vector. In this case, we refer to the 
resulting shorter vector obtained from Johansen cointegration as CI-

CFRF and the vector obtained by simply concatenating the columns of 
CFRF as CFRF. Both damage features, i.e., CICFRF and CFRF, are used 
in the proposed objective function (18) to compare the effectiveness of 
Johansen cointegration in fusing the CFRF signals.

Figs. 9 and 10 illustrate the damage detection outcomes using CFRF 
and the proposed CICFRF, respectively. Here, the results of the case con-

taminated with the more severe noise, i.e., SNR=10, are presented for 
illustration. It is evident from the results that incorporating the CICFRF 
14

in the objective function results in superior results.
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Table 7

Results of the KPSS test run on each column of the FRF matrix contam-

inated with brown noise. The significance level for the test is 0.1 and 
SNR=10; NoL = 6 and LA = (0◦∕45◦∕0◦) × 2.

FRF Lag P-value h Stationary

1𝑠𝑡 excitation

DOF21 16, 17, 18 0.0200, 0.0203, 0.0216 1, 1, 1 No

Δ DOF21 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

2𝑛𝑑 excitation

DOF66 16, 17, 18 0.0156, 0.0182, 0.0202 1, 1, 1 No

Δ DOF66 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

3𝑟𝑑 excitation

DOF31 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF31 16,17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

4𝑡ℎ excitation

DOF41 16, 17, 18 0.0100, 0.0100, 0.0102 1, 1, 1 No

Δ DOF41 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

5𝑠𝑡 excitation

DOF107 16, 17, 18 0.0186, 0.0201, 0.0237 1, 1, 1 No

Δ DOF107 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

6𝑛𝑑 excitation

DOF117 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF117 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

7𝑟𝑑 excitation

DOF122 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF122 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

8𝑡ℎ excitation

DOF51 16, 17, 18 0.0232, 0.0222, 0.0245 1, 1, 1 No

Δ DOF51 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

Table 8

Results of the KPSS test run on each column of the FRF matrix contam-

inated with brown noise. The significance level for the test is 0.1 and 
SNR=20; NoL = 3 and LA = 0◦∕90◦∕0◦.

FRF Lag P-value h Stationary

1𝑠𝑡 excitation

DOF71 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF71 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

2𝑛𝑑 excitation

DOF66 16, 17, 18 0.0286, 0.0311, 0.0340 1, 1, 1 No

Δ DOF66 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

3𝑟𝑑 excitation

DOF56 16, 17, 18 0.0645, 0.0682, 0.0799 1, 1, 1 No

Δ DOF56 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

4𝑡ℎ excitation

DOF31 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF31 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

5𝑠𝑡 excitation

DOF102 16, 17, 18 0.0100, 0.0100, 0.0113 1, 1, 1 No

Δ DOF102 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

6𝑛𝑑 excitation

DOF47 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF47 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

7𝑟𝑑 excitation

DOF72 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF72 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

8𝑡ℎ excitation

DOF32 16, 17, 18 0.0346, 0.0450, 0.0302 1, 1, 1 No

Δ DOF 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes
32
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Fig. 7. Examples of noise-free and noise-polluted CFRFs contaminated with different types of colored noise (brown, pink, and purple) with SNR=10. The data is 
obtained from a plate model with NoL = 3, LA = (0◦∕90◦∕0◦) excited and measured at DOF numbers 66 and 32, respectively.

Table 9

Results of the KPSS test run on each column of the FRF matrix contam-

inated with brown noise. The significance level for the test is 0.1 and 
SNR=20; NoL = 6 and LA = (0◦∕45◦∕0◦) × 2.

FRF Lag P-value h Stationary

1𝑠𝑡 excitation

DOF21 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF21 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

2𝑛𝑑 excitation

DOF66 16, 17, 18 0.0501, 0.0610, 0.0660 1, 1, 1 No

Δ DOF66 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

3𝑟𝑑 excitation

DOF31 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF31 16,17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

4𝑡ℎ excitation

DOF41 16, 17, 18 0.0110, 0.0100, 0.0133 1, 1, 1 No

Δ DOF41 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

5𝑠𝑡 excitation

DOF107 16, 17, 18 0.0290, 0.0310, 0.0321 1, 1, 1 No

Δ DOF107 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

6𝑛𝑑 excitation

DOF117 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF117 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

7𝑟𝑑 excitation

DOF122 16, 17, 18 0.0100, 0.0100, 0.0100 1, 1, 1 No

Δ DOF122 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

8𝑡ℎ excitation

DOF51 16, 17, 18 0.0310, 0.0328, 0.0322 1, 1, 1 No

Δ DOF51 16, 17, 18 0.1000, 0.1000, 0.1000 0, 0, 0 Yes

Table 10

The value of 𝜎 for all cases as determined by optimization in 
composite plates.

𝜎

Lamination scheme Case 1 Case 2 Case 3 Case 4

Three-layer (0◦∕90◦∕0◦) 1.05 1.10 1.03 1.12

Six-layer (0◦∕45◦∕0◦) 1.27 1.10 1.04 1.11

Fig. 8. Difference between the noise-free, original noise-polluted, and smoothed 
FRF signals of a composite laminated plate with white noise with SNR=10; 
NoL = 3, LA = (0◦∕90◦∕0◦); (a) whole spectrum and (b) zoomed spectrum.

To further examine the damage identification results, Table 11

presents the accuracy indices CI, MSE, and RE obtained for the various 
laminated composite models using CFRF and CICFRF signals. A pre-

dicted outcome is more accurate when |CI|, |MSE|, and |RE| are close 
to 1, 0, and 0, respectively. The accuracy indices further showcase the 
superiority of the proposed method using CICFRF. Furthermore, the re-

sults obtained by using CFRF indicate significant errors in the location 
and severity prediction of the damage.

Figs. 11 and 12 demonstrate the convergence of the proposed 
method using the proposed IRSA. It is evident from the figures that 
even with a relatively small number of iterations, the robust proposed 
IRSA algorithm is capable of achieving convergence in the proposed 
optimization process.

In optimization algorithms, central processing unit (CPU) time refers 
15
to the amount of time it takes for the algorithm to execute and find an 
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Table 11

Summary of the obtained error indices using the proposed damage detection method for 
all damage cases in the studied composite laminate plates with different SNR.

Case Applied SNR NoL = 3, LA = (0◦∕90◦∕0◦) NoL = 6, LA = (0◦∕45◦∕0◦) × 2

No. method MSE RE CI MSE RE CI

1 CFRF 10 0.0806 -0.9277 -0.2080 0.0907 -1.1536 -0.3164

1 CFRF 20 0.0777 -0.8855 -0.2727 0.0824 -1.0677 -0.3388

1 CICFRF 10 0.00390 -0.1204 0.9460 0.0045 -0.1302 0.9661

1 CICFRF 20 0.0040 -0.1005 0.9477 0.0040 -0.1256 0.9302

2 CFRF 10 0.0708 -0.9506 -0.4988 0.0669 -1.5038 -0.3324

2 CFRF 20 0.0727 -0.8788 -0.5988 0.0678 -0.5545 -0.2565

2 CICFRF 10 0.0040 -0.1188 0.9678 0.0040 -0.0964 0.9758

2 CICFRF 20 0.0039 -0.1027 0.9756 0.0030 -0.0999 0.9769

3 CFRF 10 0.0651 -0.6778 -0.3884 0.0666 -0.6099 -0.3245

3 CFRF 20 0.0656 -0.6978 -0.4199 0.0687 -0.8735 -0.3599

3 CICFRF 10 0.0040 -0.1308 0.9566 0.0056 -0.1644 0.9663

3 CICFRF 20 0.0040 -0.1156 0.9893 0.0044 -0.1561 0.9597

4 CFRF 10 0.0545 -0.5855 -0.3555 0.0933 -0.6065 -0.3798

4 CFRF 20 0.0625 -0.4954 -0.3035 0.0787 -0.6098 -0.3865

4 CICFRF 10 0.0046 -0.1154 0.9763 0.0049 -0.1381 0.9773

4 CICFRF 20 0.0044 -0.1100 0.9720 0.0054 -0.1266 0.9778
Table 12

Comparison of CPU time for different composite plates and dam-

age scenarios.

Time (Sec.)

Lamination scheme Case 1 Case 2 Case 3 Case 4

Three-layer (0◦∕90◦∕0◦) 96 100 90 91

Six-layer (0◦∕45◦∕0◦) 96 100 95 98

optimal solution using a computer’s CPU. CPU time is an important 
metric for evaluating the efficiency and performance of an optimization 
algorithm. In Table 12, the CPU time is shown for all the investigated 
damage scenarios. The table provides a comprehensive overview of the 
computational demands of each composite model, allowing for a better 
understanding of the time required for optimization. The table demon-

strates that our proposed method achieves accurate and efficient detec-

tion of damage quantity in complex structures. The CPU time required 
for this task is notably low, indicating that our method can accurately 
assess the extent of damage in a time-effective manner. This combina-

tion of accuracy and efficiency makes our method highly suitable for 
practical applications where prompt decision-making is crucial for en-

suring structural integrity and maintenance.

Recognizing the significance of addressing outliers in SHM systems, 
we conducted an in-depth analysis of the impact of noise on our pro-

posed method. In the study, additional artificial noise was added to the 
composite dataset to observe how effectively our method copes with 
increasing noise complexities. Specifically, the FRFs of the composite 
three-layer scenario were contaminated with additional noise of SNR 5 
and SNR 0. Subsequently, our proposed approach was applied to detect 
damage for scenario 1. The obtained MSE for SNR 5 was 0.1465, re-

flecting a notable increase compared to the SNR 10 results (0.00390), 
with an increase of 0.1426 in MSE. Further evaluation at SNR 0 re-

vealed a significant increase, with MSE reaching 0.1798. This analysis 
provides valuable insights into our method’s performance under differ-

ent noise levels. In contrast to other approaches, which exhibit notable 
weaknesses in handling outliers, our proposed method demonstrates su-

perior performance even in small SNRs, including SNR 0. However, it 
is crucial to note that the optimum and most reliable SNR for our ap-

proach, ensuring precise predictions with minimal error, is identified as 
16

SNR 10.
3.1.4. Importance of mutual information

In accordance with Section 2.6, we consider the mutual information 
between processed measured and simulated signals. Here, we compare 
the accuracy of the proposed objective function with an alternative that 
replaces the mutual information with the Euclidean norm. Table 14 pro-

vides insights into the CPU time required to execute the optimization 
algorithm on these objective functions. The results demonstrate that 
the proposed objective function yields higher accuracy and requires less 
processing time. The longer execution time of the algorithm can be at-

tributed to the less smooth objective function that makes the algorithm 
trap in local minima. Further, we investigate this hypothesis in more 
detail.

The landscape of an objective function refers to the topography or 
structure of the function being optimized. It represents how the ob-

jective function’s value changes as the decision variables are varied. 
Visualizing the landscape of an objective function can provide insights 
into the complexity, presence of multiple optima, and the search space’s 
characteristics. Since we have more than one variable (damage indices), 
we have chosen different pairs of variables to plot on the two axes. This 
will allow us to visualize the relationship between different variables 
and how they affect the objective function. Fig. 13 shows the landscape 
of the two objective functions. The figure clearly shows that the pro-

posed objective function with NMI is smoother than the one defined 
based on the Euclidean norm. This will expedite the convergence speed 
of the algorithm, allowing it to reach a solution more quickly.

The error indices obtained from 50 runs of the algorithm, each with 
different randomly generated noise, are presented in Table 13. These 
results further confirm the superior accuracy of the proposed method 
using the novel objective function. The significantly less accurate re-

sults obtained from the Euclidean norm-based objective function can 
be attributed to the rough landscape of the search space. This feature 
makes the algorithm trap in a local minimum and not converge to the 
exact solution.

3.1.5. Comparing the results of using different CI residuals

More than one cointegration vector can be obtained for the signals 
introduced to the Johansen cointegration process. The vector of coef-

ficients in Eq. (14) corresponds to the cointegration vectors obtained 
from the eigenvalue problem of the Johansen cointegration procedure. 
It is known that the eigenvector corresponding to the first eigenvalue 
of the Johansen characteristic function results in the most stationary 
residual. As such, higher-order cointegration vectors can induce less sta-

tionary properties into the fused signals. To demonstrate the strength of 

the proposed algorithm, we also analyze the second cointegration resid-



S. Hassani, U. Dackermann, M. Mousavi et al.

Fig. 9. The computed damage indices obtained of CICFRF; brown noise, 
SNR=10; NoL = 3, LA = (0◦∕90◦∕0◦).

ual of the CFRF matrix, termed CICFRF2, to solve the damage detection 
problem. The CICFRF1 and CICFRF2 vectors calculated from Eq. (14)

are shown in Fig. 14. The accuracy indices obtained from both CICFRF1
and CICFRF2 are presented in Table 15. It is evident that the proposed 
algorithm achieves superior results when using CICFRF1 compared to 
CICFRF2. Consequently, it can be concluded that the improved perfor-

mance of CICFRF1 is due to its enhanced stationary properties.

3.1.6. Comparative analysis of composite plates with different E1/E2 ratios

To evaluate the effectiveness of the proposed method, several pa-

rameters of the plate models have been examined in the sections above. 
17

These parameters include the number and orientation of the ply. How-
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Fig. 10. The computed damage indices obtained of CICFRF; brown noise, 
SNR=10; NoL = 6, LA = (0◦∕45◦∕0◦).

ever, it is necessary to also explore the proposed method’s capability 
to detect damage in plates with different E1/E2 ratios. So far, all plate 
models had an E1/E2 ratio of 40. Thus, in this section, we extend our in-

vestigation to also include smaller values of E1/E2, namely 20 and 30. 
In Table 16, the natural frequencies for different E1/E2 values of the 
plate models are shown. As can be seen from the table, smaller E1/E2
ratios result in smaller natural frequencies. Table 18 shows the value 
of 𝜎 for all cases as determined by optimization with different values 
of the E1/E2 ratio. The accuracy indices for each case of three differ-

ent damage scenarios are listed in Table 17. It is evident that for all 
examined E1/E2 ratios, accuracy indices are very similar. This confirms 
the robustness of the proposed method to different values of the E1/E2

ratio.
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Fig. 11. Convergence of the proposed IRSA for damage scenarios 1-4 in three-layer (0◦∕90◦∕0◦) composite laminate plate (brown noise with SNR=10).

Fig. 12. Convergence of the proposed IRSA for damage scenarios 1-4 in six-layer (0◦∕45◦∕0◦) composite laminate plate (brown noise with SNR=10).
18
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Fig. 13. Landscape of our proposed objective function compared with an objective function based on the Euclidean norm. All variables are kept constant, except (a) 
𝑥1 and 𝑥2 and (b) 𝑥3 and 𝑥4 , are kept constant.

Fig. 14. Logarithmic plots of the PSD of CI1 and CI2, when the CFRF signals are contaminated with colored noise of SNR=10 for a laminated plate with NoL = 3
and LA = (0◦∕90◦∕0◦).
3.1.7. Comparative analysis of composite plates with different boundary 
conditions

The boundary conditions (BCs) can significantly impact the analy-

sis and detection of damage in composite plates. Different types of BCs, 
such as simply supported, clamped, or free edges, can introduce vari-

ations in the structural response, including natural frequencies, mode 
shapes, and strain distribution. The identified changes serve as crucial 
indicators that must be taken into consideration when detecting the 
presence and determining the extent of damage in composite plates. 
These changes provide valuable insights and information that are in-

strumental in accurately assessing the damage in the plates. BCs affect 
how a structure responds to external forces and loads. They determine 
the constraints and limitations placed on the structure, which can al-

ter its natural frequencies, mode shapes, and dynamic characteristics. 
Changes in boundary conditions can lead to variations in the structural 
19

response, affecting the accuracy of SHM measurements and analysis. 
Also, BCs can influence the localization of structural modes. Different 
boundary conditions can result in different mode shapes and mode fre-

quencies. If the boundary conditions are altered, it can lead to a shift in 
the localization of modes, affecting the identification and interpretation 
of damage-induced changes in mode shapes or frequencies.

In order to test the capability of the proposed method in handling 
different BCs, here we investigate composite plates with varying BCs. 
The following four BCs are studied:

• Type I: West: Free, East: Free, South: Simply supported, North: Sim-

ply supported,

• Type II: West: Clamped, East: Clamped, South: Simply Supported, 
North: Simply supported,

• Type III: West: Free, East: Free, South: Clamped, North: Clamped, 

and
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Table 13

Summary of the obtained error indices 
for the studied composite laminate plate 
for Euclidean norm and NMI (Three-

layer (0◦∕90◦∕0◦) and SNR=10).

Euclidean norm

Case MSE RE CI

1 0.0876 -3.3098 -0.8003

2 0.0768 -4.4567 -0.6521

3 0.0823 -4.3498 -0.7763

4 0.0815 -6.3780 -0.9513

NMI

Case MSE RE CI

1 0.00390 -0.1204 0.9460

2 0.0040 -0.1188 0.9678

3 0.0040 -0.1308 0.9566

4 0.0046 -0.1154 0.9763

Table 14

Comparison of CPU 
time (Three-layer 
(0◦∕90◦∕0◦) and 
SNR=10).

Euclidean norm

Case Time (Sec.)

1 504

2 550

3 547

4 530

NMI

Case Time (Sec.)

1 96

2 100

3 90

4 91

• Type IV: West: Simply supported, East: Simply supported, South: 
Simply supported, North: Simply supported.

Fig. 15 illustrates the mode shapes corresponding to the first four 
frequencies of the plates with various BCs. It is evident that the fre-

quencies and mode shapes of these plates are different due to their 
altered active degrees of freedom. Table 20 presents the damage de-

tection results obtained for each BC scenario. The convergence of the 
objective function, achieved by optimizing the goal function with the 
proposed IRSA, is shown in Fig. 16. The presented figure demonstrates 
the convergence specifically for the first damage case. It is apparent 
from the figure that all types of BCs exhibit favorable convergence, indi-

cating that our methods are not significantly influenced by the selection 
of BCs. Additionally, the remaining damage cases also exhibit satisfac-

tory convergence, although corresponding plots were omitted from the 
paper to manage its length effectively. Through the systematic exam-

ination of these outcomes, the influence of BCs on the accuracy and 
reliability of our method was studied identifying the strengths and lim-

itations of our technique under different boundary conditions. It was 
found that our method performed consistently well across various BCs, 
demonstrating its robustness and effectiveness in detecting damage in 
composite plates. It was further observed that the optimized value for 
𝜎 (smoothing parameter) was insensitive to the type of BCs and was 
selected based on Table 19 in all cases. By recognizing the signifi-

cance of BCs, we can ensure the applicability and generalizability of 
our technique to real-world scenarios where boundary conditions can 
20

vary significantly. These findings reinforce the validity of our method, 
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further solidifying its practical utility in structural health monitoring 
and damage assessment.

3.1.8. Component exclusion analysis

The major components contributing to the enhancements of the pro-

posed methodology are Johanson cointegration, Gaussian smoothing, 
and IRSA. To ascertain the distinct contributions of these components 
to the overall methodology, a systematic one-by-one exclusion study 
was conducted. This analysis was performed on the three-layer com-

posite with damage scenario 1 and an SNR of 10. The MSE results from 
each exclusion analysis are outlined below (see Fig. 17):

• Johansen Cointegration Exclusion: First, the methodology’s perfor-

mance was assessed by deliberately excluding the Johansen cointe-

gration component. The exclusion resulted in noteworthy changes 
in outputs, with an observed MSE of 0.0806. In comparison to 
the methodology incorporating Johansen cointegration (MSE of 
0.00390), this represented a substantial increase (0.0767) in MSE, 
indicating a deviation from reliable results.

• Gaussian Smoothing Exclusion: Next, the impact of excluding Gaus-

sian smoothing from the methodology was examined. The omission 
of Gaussian smoothing significantly disrupted the signal-to-noise 
ratio in the measured FRFs, leading to heightened noise levels and 
diminished data smoothing. The associated MSE of 0.0521, when 
compared to the methodology with Gaussian smoothing (MSE of 
0.00390), demonstrated an increase (0.0482) in MSE, underscor-

ing the adverse effect on result reliability.

• IRSA Exclusion: As last, the methodology’s performance was scru-

tinized upon excluding the IRSA and subsequently optimizing with 
a standard RSA. The resulting MSE of 0.1104, in contrast to the 
methodology incorporating IRSA (MSE of 0.00390), showed a con-

siderable increase (0.1065) in MSE. This elevation in MSE suggests 
a departure from reliable results when IRSA is excluded from the 
optimization process.

The results affirm the importance of each element within the 
proposed methodology, including Johansen cointegration, Gaussian 
smoothing, and IRSA. These components collectively contribute to en-

hancing the accuracy and reliability of the damage detection results.

3.1.9. Comparison with other techniques

A comparison of the proposed method with two other state-of-the-

art techniques to assess laminated composite plates is presented in the 
following section. These methods were published by Vo-Duy et al. [45]

and Fallah et al. [46]. Both methods have been published in recent 
years and are based on optimization algorithms in composite plates. In 
Vo-Duy et al. [45], first, a model strain energy-based method is used to 
identify the probable defective elements. By minimizing a mode shape 
error function, an improved differential evolution algorithm is used to 
quantify the extent of damage in the identified defective elements. In 
Fallah et al. [46], CMRVBI, a condensed modal residual vector-based 
indicator, is proposed for identifying defective elements. A salp swarm 
algorithm is then applied to minimize an objective function based on 
changes in structural modal flexibility to update damage indices corre-

sponding to the identified defective elements.

All three methods were employed to analyze the data of the lami-

nated composite plates with varying damage scenarios and the accuracy 
indices were obtained as shown in Table 21. The results clearly demon-

strate the superiority of the proposed method over the other methods. 
In Figs. 18, the damage detection results are presented for composite 
laminate plates with NoL = 3 and LA = (0◦∕90◦∕0◦). As illustrated in 
the figures, it is evident again that the proposed method outperforms 
the other methods. This superiority stems from various capabilities 
of the proposed method such as the effective objective function and 
optimization algorithm. The proposed methods of Vo-Duy et al. [45]
and Fallah et al. [46] are unable to deal with outliers stemming from 
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Fig. 15. Mode shapes of the first four frequencies of the four types of BC.
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Table 15

Summary of the obtained error indices for all damage cases of the studied composite lami-

nate plate using different CICFRFs.

Case Applied SNR NoL = 3, LA = (0◦∕90◦∕0◦) NoL = 6, LA = (0◦∕45◦∕0◦) × 2

No. method MSE RE CI MSE RE CI

1 CICFRF2 10 0.0998 -5.2583 -0.7585 0.0802 -5.5757 -0.6031

1 CICFRF2 20 0.0998 -4.0255 -0.6556 0.0978 -6.4502 -0.6025

1 CICFRF1 10 0.00390 -0.1204 0.9460 0.0045 -0.1302 0.9661

1 CICFRF1 20 0.0040 -0.1005 0.9477 0.0040 -0.1256 0.9302

2 CICFRF2 10 0.0997 -4.0025 -0.6354 0.0908 -4.2580 -0.5680

2 CICFRF2 20 0.0935 -3.1025 -0.4261 0.0925 -4.3259 -0.4411

2 CICFRF1 10 0.0040 -0.1188 0.9678 0.0040 -0.0964 0.9758

2 CICFRF1 20 0.0039 -0.1027 0.9756 0.0030 -0.0999 0.9769

3 CICFRF2 10 0.0958 -3.9685 -0.7458 0.0945 -4.3647 -0.4125

3 CICFRF2 20 0.0983 -4.1258 -0.6254 0.0968 -3.3247 -0.4369

3 CICFRF1 10 0.0040 -0.1308 0.9566 0.0056 -0.1644 0.9663

3 CICFRF1 20 0.0040 -0.1156 0.9893 0.0044 -0.1561 0.9597

4 CICFRF2 10 0.0954 -2.3607 -0.6998 0.0969 -6.5057 -0.3653

4 CICFRF2 20 0.0973 -3.4576 -0.7406 0.0993 -4.5269 -0.4205

4 CICFRF1 10 0.0046 -0.1154 0.9763 0.0049 -0.1381 0.9773

4 CICFRF1 20 0.0044 -0.1100 0.9720 0.0054 -0.1266 0.9778

Table 16

First ten natural frequencies of the simulated composite plates with different E1/E2 ratios.

Lamination scheme Mode No.

1 2 3 4 5 6 7 8 9 10

Intact, E1/E2 = 20
NoL = 3,

LA = (0◦∕90◦∕0◦) 6.74 10.13 13.60 15.33 17.52 20.34 22.64 23.14 25.46 25.72

NoL = 6,

LA = (0◦∕45◦∕0◦) × 2 6.89 10.59 13.87 15.85 18.06 20.95 21.14 22.96 23.98 25.76

Intact, E1/E2 = 30
NoL = 3,

LA = (0◦∕90◦∕0◦) 7.14 10.70 14.04 15.85 18.21 20.96 23.07 23.60 25.73 25.94

NoL = 6,

LA = (0◦∕45◦∕0◦) × 2 7.34 11.14 14.40 16.41 18.64 21.56 23.48 24.04 24.55 25.77

Case 4, E1/E2 = 20
NoL = 3,

LA = (0◦∕90◦∕0◦) 6.55 9.98 13.24 15.07 17.27 19.96 22.01 22.81 24.99 25.13

NoL = 6,

LA = (0◦∕45◦∕0◦) × 2 6.70 10.41 13.53 15.58 17.74 20.66 20.68 22.39 23.58 25.67

Case 4, E1/E2 = 30
NoL = 3,

LA = (0◦∕90◦∕0◦) 6.94 10.54 13.68 15.58 17.95 20.56 22.43 23.27 25.12 25.50

NoL = 6,

LA = (0◦∕45◦∕0◦) × 2 7.14 10.96 14.07 16.15 18.30 21.26 22.89 23.52 24.09 25.22

Table 17

Accuracy indicators of the simulated composite plates with different E1/E2
ratios.

Case E1/E2 NoL = 3, LA = 0◦∕90◦∕0◦ NoL = 6, LA = (0◦∕45◦∕0◦) × 2

No. MSE RE CI MSE RE CI

1 40 0.0044 -0.0850 0.9861 0.0042 -0.0936 0.9699

1 30 0.0040 -0.0958 0.9749 0.0040 -0.1002 0.9655

1 20 0.0039 -0.0987 0.9701 0.0040 -0.1007 0.9761

2 40 0.0038 -0.1094 0.9805 0.0038 -0.0858 0.9812

2 30 0.0037 -0.1205 0.9739 0.0040 -0.1172 0.9833

2 20 0.0040 -0.1332 0.9701 0.0042 -0.1277 0.9814

3 40 0.0041 -0.1203 0.9832 0.0049 -0.1304 0.9863

3 30 0.0041 -0.1105 0.9749 0.0048 -0.1122 0.9761

3 20 0.0042 -0.1135 0.9701 0.0048 -0.1017 0.9651

4 40 0.0039 -0.1186 0.9817 0.0031 -0.0935 0.9753

4 30 0.0039 -0.1034 0.9549 0.0040 -0.1172 0.9735

4 20 0.0038 -0.1025 0.9721 0.0041 -0.1107 0.9815

Table 18

The value of 𝜎 for all cases as determined by opti-

mization for composite plates with different E1/E2
ratios.

𝜎

E1/E2 ratios Case 1 Case 2 Case 3 Case 4

20 1.44 1.34 1.02 1.38

30 1.32 1.12 1.25 1.37

Table 19

The value of 𝜎 for all cases as determined by opti-

mization for composite plates with different BCs.

𝜎

BCs Case 1 Case 2 Case 3 Case 4

Type I 1.04 1.12 1.32 1.30

Type II 1.30 1.25 1.30 1.11
Type III 1.45 1.23 1.13 1.54

Type IV 1.33 1.10 1.20 1.36
22
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Fig. 16. Convergence of the proposed optimization algorithm for the first damage scenario of the composite plates with different BCs.

Fig. 17. Impact of exclusion on methodology performance.
non-stationary noise contamination, thus performing poorly in damage 
detection.

3.1.10. Comparing the authors’ previous method ([52]) with the proposed 
approach

To further demonstrate our proposed method’s superiority and ac-

curacy, we compare it with an earlier method proposed by the authors 
[52]. In this preceding method, the Variational Mode Decomposition 
of FRFs was used based on the Sum of Unwrapped Instantaneous 
Hilbert Phases (SUIHP). This method, which is referred to as the SUIHP 
method, was designed specifically to detect damage in structures con-

taminated with severe noise and was validated particularly for white 
noise contamination. Generally, white noise contamination is easier to 
handle than colored noise. To showcase the capabilities of the proposed 
23

method, a direct comparison of these two methods is significant. In 
this paper, both methods were applied to address the damage detec-

tion problem in composite plates. Fig. 19 shows the results obtained 
from the proposed method and the preceding algorithm (SUIHP) us-

ing the composite laminate plates with the specifications NoL = 3 and 
LA = (0◦∕90◦∕0◦) and damage case 3. Based on the figure, the su-

periority of the newly proposed method is clearly demonstrated. As 
mentioned earlier, the new method is able to successfully remove the 
non-stationary effects of colored noise while preserving stationary dam-

age characteristics. In contrast, the prior SUIHP method proposed by 
Hassani et al. [52] yields inferior results.

3.2. Experimental verification

In this section, our proposed method was further validated by solv-
ing an experimental problem of a steel beam structure. Fig. 20 illustrates 
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Table 20

Accuracy indicators obtained for the simulated composite plates with dif-

ferent BC.

Case BC NoL = 3, LA = 0◦∕90◦∕0◦ NoL = 6, LA = (0◦∕45◦∕0◦) × 2

No. MSE RE CI MSE RE CI

1 I 0.0040 -0.0845 0.9543 0.0039 -0.0936 0.9555

1 II 0.0040 -0.0958 0.9749 0.0039 -0.1002 0.9657

1 III 0.0039 -0.0957 0.9721 0.0038 -0.1023 0.9654

1 IV 0.0039 -0.0985 0.9561 0.0041 -0.1007 0.9456

2 I 0.0036 -0.1345 0.9843 0.0038 -0.0858 0.9612

2 II 0.0034 -0.1223 0.9711 0.0041 -0.1186 0.9633

2 III 0.0039 -0.1122 0.9601 0.0038 -0.1281 0.9614

2 IV 0.0038 -0.1222 0.9600 0.0039 -0.1290 0.9614

3 I 0.0040 -0.1203 0.9832 0.0044 -0.1314 0.9863

3 II 0.0040 -0.1105 0.9749 0.0045 -0.1134 0.9771

3 III 0.0041 -0.1135 0.9701 0.0046 -0.1022 0.9661

3 IV 0.0038 -0.1135 0.9701 0.0043 -0.1021 0.9666

4 I 0.0037 -0.1186 0.9797 0.0038 -0.0925 0.9653

4 II 0.0037 -0.1034 0.969 0.0040 -0.1162 0.9455

4 III 0.0040 -0.1025 0.9666 0.0040 -0.1117 0.9725

4 IV 0.0041 -0.1025 0.9621 0.0040 -0.1117 0.9525

the flowchart of the proposed method adjusted to the steel beam study. 
The figure demonstrates the step-by-step procedure of constructing the 
proposed objective function, which involves smoothing the identified 
FRFs and fusing them with the Johanson cointegration approach. The 
resulting objective function was then minimized using the proposed 
IRSA algorithm to obtain the best possible values for the smoothing 
factor (𝜎) and the damage parameters (𝛼).

The experimental study involves a simply supported steel beam in-

flicted with damage at different locations and of various intensities 
[53–55] (see Fig. 21). Four identical beams were experimentally tested 
to study individual damage cases at four different locations. The dimen-

sions of the beams were 12 × 32 × 2, 400 mm3. The material properties 
were as follows: modulus of elasticity 200 GPa, Poisson’s ratio 0.3, and 
density 7850 kg/m3. The beams were attached to concrete supports by 
using a specially engineered support system, to provide well-defined 
boundary conditions as close as possible to a pin-pin connection.

A comprehensive analysis was undertaken, investigating 16 single 
damage cases in the form of notches. These notches were strategically 
placed at four different locations (‘4’, ‘5’, ‘6’, and ‘7’) and subjected to 
four distinct severity levels (‘XL’, ‘L’, ‘M’, ‘S’). Each notch had a stan-

dardized width of 1 mm, while their lengths varied at 1 mm, 4 mm, 8 
mm, and 12 mm. The severity of damage was quantified by measuring 
the cross-sectional losses of the second moment of area (I), expressed 
as percentages—9.09%, 33.01%, 57.81%, and 75.59%. To induce dam-

age, a saw cut was applied progressively from the soffit of the beams. 
For a visual representation of the four severity levels, refer to Fig. 22. 
This systematic approach allowed for a comprehensive exploration of 
the impact of different notch locations and severity levels on the struc-

tural integrity of the beams.

Modal testing and experimental modal analysis were performed on 
the steel beams to determine their dynamic properties. Fig. 24 presents 
the utilized testing equipment and a diagram of the modal testing and 
experimental modal analysis setup is shown in Fig. 23. A modally tuned 
impact hammer was used in the testing to stimulate the beams at a par-

ticular reference point and nine accelerometers were used to measure 
the beam’s responses.

The main data acquisition equipment consisted of a Hewlett Packard 
dynamic analyzer (model E1432A) Vxi system that was equipped with 
an HP Vxi 16 channel 51.2 kHz digitizer with anti-aliasing filters. The 
experiment modal analysis software package, LMS CADA-X, was used 
to record the data from the data acquisition system and post-process it 
on a personal computer.

For each test, the sampling rate was set to 10,000 Hz with 16,384 
24

time domain data points being recorded. In the frequency domain, this 
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Fig. 18. Damage indices obtained from one time running of CIFRF, [46], and 
[45]; brown noise, SNR=10; NoL = 3, LA = (0◦∕90◦∕0◦).

corresponds to a frequency range of 5,000 Hz with 8,192 FRF data 
points, thus giving a frequency resolution of 0.61 Hz per data point. 
The acquired impact and response time history signals (amplitude ver-

sus time) were then converted into frequency spectra (amplitude versus 
frequency) using the Fourier transform. By dividing the Fourier trans-

form signals of the accelerometers (output) by the Fourier transform 
signal of the hammer impact (input), the FRFs were obtained. For each 
state of the beam (undamaged state and each damaged state), five aver-

aged FRFs (from 15 different hammer hits) were recorded. Thereby 25 
test measurements were obtained from each steel beam and 100 mea-

surements from the entire test series.

A list of the natural frequencies of the first seven modes of Beams 
1 to 4 can be found in Table 22. Fig. 25 presents FRFs of the experi-
mental steel beams in the intact state and various damaged states for 
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Table 21

Accuracy indicators obtained comparing the proposed method with two comparative methods (Fal-

lah et al. [46], and Vo-Duy et al. [45]).

Case Applied SNR NoL = 3, LA = (0◦∕90◦∕0◦) NoL = 6, LA = (0◦∕45◦∕0◦) × 2

No. method MSE RE CI MSE RE CI

1 Fallah et al. [46] 10 0.0976 -4.7865 -0.9000 0.0987 -4.4390 -0.9098

1 Fallah et al. [46] 20 0.0967 -4.0576 -0.8565 0.0943 -3.4123 -0.8975

1 Vo-Duy et al. [45] 10 0.0758 -6.8842 -0.8829 0.0825 -4.0326 -0.8863

1 Vo-Duy et al. [45] 20 0.0788 -6.9280 -0.8775 0.0976 -6.0548 -0.9432

1 Proposed method 10 0.00390 -0.1204 0.9460 0.0045 -0.1302 0.9661

1 Proposed method 20 0.0040 -0.1005 0.9477 0.0040 -0.1256 0.9302

2 Fallah et al. [46] 10 0.0954 -5.0076 -0.8458 0.0890 -5.4345 -0.8883

2 Fallah et al. [46] 20 0.0990 -5.8076 -0.7543 0.0865 -5.5556 -0.7775

2 Vo-Duy et al. [45] 10 0.0762 -5.8088 -0.7999 0.0799 -6.3088 -0.8979

2 Vo-Duy et al. [45] 20 0.0750 -3.9986 -0.5446 0.0983 -4.7672 -0.7546

2 Proposed method 10 0.0040 -0.1188 0.9678 0.0040 -0.0964 0.9758

2 Proposed method 20 0.0039 -0.1027 0.9756 0.0030 -0.0999 0.9769

3 Fallah et al. [46] 10 0.0792 -4.0980 -0.8887 0.0888 -6.8459 -0.9771

3 Fallah et al. [46] 20 0.0876 -5.3654 -0.7879 0.0909 -5.7456 -0.8882

3 Vo-Duy et al. [45] 10 0.0976 -4.9088 -0.8464 0.0958 -6.2589 -0.9635

3 Vo-Duy et al. [45] 20 0.0678 -7.1000 -0.8345 0.0803 -5.7896 -0.5672

3 Proposed method 10 0.0040 -0.1308 0.9566 0.0056 -0.1644 0.9663

3 Proposed method 20 0.0040 -0.1156 0.9893 0.0044 -0.1561 0.9597

4 Fallah et al. [46] 10 0.0772 -5.0030 -0.7896 0.0888 -5.8669 -0.8871

4 Fallah et al. [46] 20 0.0888 -5.3885 -0.5670 0.0876 -6.5555 -0.7882

4 Vo-Duy et al. [45] 10 0.0678 -4.8600 -0.8672 0.0654 -7.2589 -0.4561

4 Vo-Duy et al. [45] 20 0.0765 -6.6000 -0.6750 0.0703 -6.6786 -0.7832

4 Proposed method 10 0.0046 -0.1154 0.9763 0.0049 -0.1381 0.9773

4 Proposed method 20 0.0044 -0.1100 0.9720 0.0054 -0.1266 0.9778

Fig. 19. Damage indices obtained comparing CIFRF and SUIHP, brown noise, SNR=10; NoL = 3, LA = (0◦∕90◦∕0◦) and damage case 3.
Beam 4. The FRF summation functions from different beams in the un-

damaged state at reference points H1, H2, H3, H4, and H5 are shown 
in Fig. 26. Fig. 25 shows the effect of different damage severity and 
Fig. 26 illustrates the impact of various damage locations on the FRF 
summation function. As mentioned before, in our proposed method, the 
smoothed FRFs corresponding to various excitations and scenarios can 
be combined using Johansen Cointegration. Fused smoothed FRFs are 
then used as inputs for the proposed objective function.

A matching numerical model of the tested steel beams was cre-

ated in MATLAB. The numerical model simulated the beams with 24 
elements. The damage was inflicted at the nodes, and the damage 
extent was simulated as a reduction in the EI of the beam cross-

section at the corresponding node. The model was set to be opti-

mized through the proposed procedure to identify the damage loca-

tion and severity. To this end, first, the proposed objective function 
25

was constructed and then, the proposed IRSA algorithm was employed 
to optimize the objective function to obtain optimal values for the 𝜎
and 𝛼.

As shown in Fig. 27, different values of 𝜎 have different effects on 
smoothing. For large 𝜎, the signal is over-smoothed, whereas a small 
𝜎 introduces little smoothing to the FRF signals. Based on the results 
of optimizing the objective function, the results of the last column 
of Table 23 were identified as the optimal value for smoothing FRFs 
which also led to the optimal damage indices. Upon examining the 
non-smoothed FRFs depicted in Figs. 25 and 26, it is evident that there 
are significant error measurements and a considerable amount of noise 
present. However, we can effectively address these issues by applying a 
Gaussian smoothing technique.

The results presented in Table 24 showcase the effectiveness of the 
proposed methods in accurately predicting the severity of damages and 
identifying their respective locations with the comparison of the actual 

damage. The results show that our proposed method is capable of de-
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Fig. 20. Methodology of the proposed method applied to the experimental and numerical steel beam study ((a) conduct modal testing; (b) simulate a steel beam 
26

using Finite Element (FE) analysis; (c) apply data analytic methods to the obtained results; (d) implement the proposed approach or methodology).
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Fig. 21. (a) Experimental test set up, and (b) numerical steel beam model [55,56].

Fig. 22. Experimental damage severity (a) 1 mm, (b) 4 mm, (c) 8 mm, and (d) 12 mm cut [55,56].
tecting damage in the exact location, and the severity predicted is close 
to the actual severity. The achieved accuracy and robustness highlight 
the reliability of the approach even after 200 iterations of the proposed 
IRSA. This demonstrates the capability of the proposed method to pre-

cisely determine damage locations and estimate their severity, which is 
crucial in various practical applications.

Figs. 28, 29, 30, and 31 visually represent the predicted damage lo-

cations and severity for different cases. These figures provide concrete 
evidence of the proposed method’s ability to update and adapt to ex-

perimental problems. In these figures, the accuracy of the predicted 
damage locations and severity further validates the applicability of the 
proposed approach in practical scenarios.

To further scrutinize the outcomes of the damage identification 
process, Table 23 is provided, which displays the accuracy indices 
CI, MSE, and RE for different laminated composite models. As men-

tioned before, a predicted outcome is considered more accurate when 
the values of |CI|, |MSE|, and |RE| are closer to 1, 0, and 0, re-

spectively. The values of |CI|, |MSE|, and |RE| for this method in-

dicate a higher level of accuracy, approaching the desired ideal val-
27

ues. This suggests that the damage identification results obtained us-
ing a combination of proposed optimization and processed FRFs are 
more precise and reliable, showcasing the effectiveness of the proposed 
approach.

The convergence of the proposed optimization algorithm is visually 
represented in Figs. 32, 33, 34, and 35 for all beams with different types 
of damage over 200 iterations. These figures provide clear evidence of 
the optimization process, reinforcing the reliability and precision of the 
proposed algorithm. Upon closer examination of the figures, it is evi-

dent that the objective function is optimized perfectly. The optimization 
process reaches a state where the objective function is minimized or 
maximized, depending on the nature of the problem. This achievement 
is crucial in demonstrating the effectiveness of the proposed optimiza-

tion algorithm. The convergence observed in the figures signifies the 
successful optimization of the objective function, implying that the pro-

posed algorithm has effectively found the optimal solution within the 
given constraints. This convergence further reinforces the accuracy and 
robustness of the proposed optimization algorithms, as well as the effec-

tiveness of the proposed objective functions. As a result, the optimiza-

tion process is well-optimized, showcasing the accuracy and robustness 

of the proposed optimization algorithm and objective functions. These 
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Table 22

First seven natural frequencies of the experimental steel beam.

Type Mode No.

1 2 3 4 5 6 7

Intact Beam 1 21.60 40.07 129.37 221.49 310.39 448.69 614.30

4XL Beam 1 21.62 40.09 129.27 221.64 310.78 448.97 615.41

4L Beam 1 21.49 40.12 129.43 222.06 310.15 449.24 613.78

4M Beam 1 21.44 40.07 128.03 221.33 307.18 448.65 610.25

4S Beam 1 21.37 40.05 126.50 220.68 305.34 448.62 601.10

Intact Beam 2 20.27 40.71 125.02 215.96 302.79 477.86 616.27

5XL Beam 2 20.23 40.64 125.24 216.01 302.89 478.99 617.39

5L Beam 2 20.18 40.69 125.40 215.78 300.58 480.03 616.65

5M Beam 2 20.30 40.36 125.70 213.47 299.06 477.59 612.14

5S Beam 2 20.29 40.31 126.05 212.24 289.52 476.78 604.19

Intact Beam 3 21.09 40.21 127.86 218.05 307.09 483.94 616.62

6XL Beam 3 20.97 40.04 128.31 218.39 305.22 470.56 616.08

6L Beam 3 21.04 40.15 128.04 218.91 305.12 478.01 615.37

6M Beam 3 21.04 39.98 127.64 218.24 304.85 480.37 613.17

6S Beam 3 20.93 39.54 126.64 218.34 304.54 479.66 607.02

Intact Beam 4 21.01 39.56 124.41 209.65 300.44 476.46 606.48

7XL Beam 4 20.94 39.41 123.94 205.22 299.19 469.37 609.10

7L Beam 4 20.77 39.58 123.91 208.80 298.54 476.57 607.12

7M Beam 4 20.77 39.50 123.59 207.33 297.83 472.93 605.13

7S Beam 4 20.77 39.16 123.20 206.50 292.96 471.89 604.05
results validate the effectiveness of the proposed approach in achieving 
the desired optimization goals.

In addition, the computational efficiency of the proposed method 
is evaluated and summarized in the last column of Table 24, which 
presents the central processing unit (CPU) times for all the studied 
cases. CPU time, also known as process time, refers to the duration dur-

ing which a CPU time is actively engaged in executing instructions for a 
computer program or operating system. It is distinct from elapsed time, 
which encompasses various activities such as waiting for input/out-

put (I/O) operations or entering low-power mode. These results play 
a vital role in assessing the feasibility of implementing the proposed 
approach in practical applications. The obtained CPU times indicate 
that the proposed method delivers results within reasonable computa-

tional limits. The computational times remain low, implying that the 
method can be effectively utilized for damage detection in real systems. 
This is a crucial advantage as it allows for high-accuracy damage iden-

tification without excessively consuming computational resources. The 
convergence of the objective function with a high level of accuracy, as 
observed in the optimization results, further affirms the effectiveness of 
the proposed method. The optimization process successfully achieved 
the desired optimization goals, showcasing the reliability and precision 
of the approach. By saving computation time, the proposed approach 
becomes more practical and applicable in real-world scenarios where 
time constraints are crucial.

4. Conclusions

Based on the findings and results presented in this study, the pro-

posed method can significantly contribute to the field of SHM by over-

coming the challenge introduced by the presence of outliers in the 
detected dataset. The novel usage of Johansen cointegration as a data 
fusion technique has proven to be effective in handling outliers in FRF 
signals, enhancing the robustness of the proposed approach. It is note-

worthy to mention that Johansen cointegration is more capable of han-

dling low-frequency outliers in a set of datasets. Therefore, to overcome 
the challenge introduced by high-frequency noise contamination, it has 
been further integrated with Gaussian smoothing. Such a novel hybrid 
approach was shown to be efficient in managing both high-frequency 
and low-frequency outliers while enabling the preservation of crucial 
28

information in the dataset for use in SHM.
Table 23

Accuracy indices of the obtained results.

Beam Damage MSE RE CI 𝜎

Beam 1 4XL 0.0048 -0.1104 0.9260 2.01

Beam 1 4L 0.0044 -0.1050 0.9333 2.06

Beam 1 4M 0.0044 -0.1042 0.9433 2.07

Beam 1 4S 0.0043 -0.1022 0.9533 2.15

Beam 2 5XL 0.0048 -0.1234 0.9091 2.21

Beam 2 5L 0.0048 -0.1222 0.9131 2.22

Beam 2 5M 0.0046 -0.1141 0.9344 2.16

Beam 2 5S 0.0044 -0.1122 0.9433 2.11

Beam 3 6XL 0.0050 -0.1345 0.9062 2.10

Beam 3 6L 0.0048 -0.1322 0.9231 2.29

Beam 3 6M 0.0047 -0.1241 0.9353 2.28

Beam 3 6S 0.0046 -0.1041 0.9400 2.01

Beam 4 7XL 0.0049 -0.1435 0.9143 2.15

Beam 4 7L 0.0047 -0.1333 0.9225 2.13

Beam 4 7M 0.0047 -0.1200 0.9352 2.17

Beam 4 7S 0.0046 -0.1030 0.9407 2.23

Moreover, the introduction of a new objective function incorporat-

ing concepts of mutual information has shown promise in creating a 
smoother search space for optimizing damage indices. The proposed 
DSF has also demonstrated its efficacy in managing outliers stemming 
from non-stationary noise or measurement errors in FRF signals. Fur-

thermore, to enhance the detectability of damage, some improvements 
to the RSA optimization algorithm have been introduced. Through rig-

orous evaluation and numerical analysis of the proposed optimization 
algorithm, the Improved RSA (IRSA) demonstrated its superior perfor-

mance by comparison with various established benchmarks, showcasing 
its accuracy and robustness.

The effectiveness of the proposed method was numerically validated 
on composite plates, providing valuable insights into the impacts of 
different parameters in damage detection. Furthermore, successful val-

idation through an experimental damage detection scenario on steel 
beams has underscored the real-world applicability and reliability of 
our proposed method. Comparative analyses with other state-of-the-art 
methods have consistently highlighted the superiority of the proposed 
method, indicating its potential for widespread practical application. 
Collectively, these findings emphasize the significance and potential im-
pact of the proposed method in advancing the field of SHM.
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Fig. 23. Test equipment: (a) modal hammer model HP 086C05, (b) accelerometer model PCB 356A08, (c) accelerometer model PCB 337A26, (d) battery-powered 
signal conditioner, (e) multi-channel signal conditioner, and (f) data acquisition system [56].

Fig. 24. Schematic diagram of MT& EMA [55,56].

Table 24

Damage severity predictions using the proposed IRSA after 200 iterations.

Beam Damage Actual Actual Predicted Predicted CPU

type damage location (m) damage severity damage location (m) damage severity Time (sec)

Beam 1 4XL 1.2 0.0909 1.2 0.09487 160

Beam 1 4L 1.2 0.3301 1.2 0.3243 158

Beam 1 4M 1.2 0.5781 1.2 0.5770 163

Beam 1 4S 1.2 0.7559 1.2 0.7459 159

Beam 2 5XL 1.5 0.0909 1.5 0.0873 156

Beam 2 5L 1.5 0.3301 1.5 0.3211 164

Beam 2 5M 1.5 0.5781 1.5 0.5962 166

Beam 2 5S 1.5 0.7559 1.5 0.7301 169

Beam 3 6XL 1.8 0.0909 1.8 0.0953 173

Beam 3 6L 1.8 0.3301 1.8 0.3112 165

Beam 3 6M 1.8 0.5781 1.8 0.5700 160

Beam 3 6S 1.8 0.7559 1.8 0.7411 162

Beam 4 7XL 2.1 0.0909 2.1 0.0801 150

Beam 4 7L 2.1 0.3301 2.1 0.3421 172

Beam 4 7M 2.1 0.5781 2.1 0.5651 168

Beam 4 7S 2.1 0.7559 2.1 0.7532 163
29
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Fig. 25. Effects of different damage severity on FRF data. Displayed are FRF 
summation functions from Beam 4 in the undamaged state and damaged states 
with defects at location ‘3’ of severity extra-light (XL), light (L), medium (M), 
and severe (S).

The authors acknowledge the importance of assessing the generaliz-

ability of the proposed method amidst severe environmental conditions. 
Therefore, future work should be devoted to investigating the efficacy 
of the proposed method in detecting structural damage under varying 
severe environmental conditions.

Replication of results
30

No results are presented.
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Fig. 26. FRF summation functions of impact points H1, H2, H3, H4, and H5.
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Fig. 27. FRF smoothing of beam 2 with severe damage (S) using different values of 𝜎; (a) whole spectrum and (b) zoomed spectrum.

Fig. 28. Identified damage severity using processed FRF data from Beam 1.
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Fig. 29. Identified damage severity using processed FRF data from Beam 2.

Fig. 30. Identified damage severity using processed FRF data from Beam 3.
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Fig. 31. Identified damage severity using processed FRF data from Beam 4.

Fig. 32. Convergence of the proposed optimization algorithm for damage scenarios 1-4 in steel beam 1.
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Fig. 33. Convergence of the proposed optimization algorithm for damage scenarios 1-4 in steel beam 2.

Fig. 34. Convergence of the proposed optimization algorithm for damage scenarios 1-4 in steel beam 3.
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Fig. 35. Convergence of the proposed optimization algorithm for damage scenarios 1-4 in steel beam 4.
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