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A B S T R A C T

With the development of various generative models, misinformation in news media becomes more deceptive
and easier to create, posing a significant problem. However, existing datasets for misinformation study
often have limited modalities, constrained sources, and a narrow range of topics. These limitations make it
difficult to train models that can effectively combat real-world misinformation. To address this, we propose
a comprehensive, large-scale Multimodal Misinformation dataset for Media Authenticity Analysis (𝑀3𝐴),
featuring broad sources and fine-grained annotations for topics and sentiments. To curate 𝑀3𝐴, we collect
genuine news content from 60 renowned news outlets worldwide and generate fake samples using multiple
techniques. These include altering named entities in texts, swapping modalities between samples, creating new
modalities, and misrepresenting movie content as news. 𝑀3𝐴 contains 708K genuine news samples and over
6M fake news samples, spanning text, images, audio, and video. 𝑀3𝐴 provides detailed multi-class labels,
crucial for various misinformation detection tasks, including out-of-context detection and deepfake detection.
For each task, we offer extensive benchmarks using state-of-the-art models, aiming to enhance the development
of robust misinformation detection systems.
. Introduction

In light of recent advancements in generative technologies (Brown
t al., 2020; Wang et al., 2021, 2022; Sauer et al., 2023; Ghosal et al.,
023; Khachatryan et al., 2023; Wu et al., 2024) and foundation mod-
ls (Radford et al., 2021; Li et al., 2022; Girdhar et al., 2023; Zhu et al.,
024), one can easily generate high-fidelity fake news that misleads
he public and causes significant societal trust issues (Abdelnabi et al.,
022a).

Existing misinformation detection methods are generally trained
ased on artificially synthesized misinformation datasets, such as mul-
imodal misinformation datasets (Jaiswal et al., 2017; Sabir et al.,
018; Tan et al., 2020; Müller-Budack et al., 2020; Shivangi Aneja and
ießner, 2023; Luo et al., 2021; Rui Shao and Liu, 2023) and deepfake
atasets (Yang et al., 2019; Dolhansky et al., 2019; Rossler et al., 2019;
i et al., 2020; Jiang et al., 2020; Huang et al., 2021). However, all
hese datasets are limited to at most two modalities, lacking variety
n data sources, and topics. As a result, detection models trained on
hem are insufficiently prepared to tackle the complexities of real-
orld misinformation challenges. There is an urgent need for a more

omprehensive and diverse misinformation dataset.

∗ Corresponding author.
E-mail address: xin.yu@uq.edu.au (X. Yu).

This paper proposes 𝑀3𝐴, a comprehensive large-scale multimodal
misinformation dataset. 𝑀3𝐴 enables a variety of misinformation de-
tection tasks, as detailed in Fig. 1. This dataset includes authentic news
content from 60 prominent news outlets worldwide, featuring texts,
images, audio, and videos. The outlets are carefully selected for their
reputation and trustworthiness, ensuring they are widely recognized as
credible sources of information. 𝑀3𝐴 covers a broad range of topics
such as politics, technology, and entertainment, reflecting the diversity
of contemporary news. By incorporating varying text lengths, image
resolutions, speech lengths, and video durations, 𝑀3𝐴 enhances its
complexity, making it an invaluable resource for training advanced mis-
information detection models. This extensive dataset equips researchers
with the necessary data to develop models capable of tackling the
multifaceted challenges of misinformation in today’s media landscape.

We create fabricated news content through multiple strategies,
i.e., (1) Named Entity Manipulation (NEM), which involves replacing
named entities such as person, location, and organization names in
the text; (2) Multimodality Mismatching (MM), where we replace
the text, image, audio, or video of a sample with another from a
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Table 1
Comparison of existing multimodality misinformation datasets. In this table, ‘‘OOC’’ refers to out-of-context issue detection, ‘‘DF det.’’ refers to deepfake detection, and ‘‘OOD’’
efers to out-of-distribution testing.

Dataset Source (# News outlets) Size Data modality Associated tasks

Text Image Audio Video OOC DF det. Fact check OOD

MAIM (Jaiswal et al., 2017) Flickr 239k ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗

MEIR (Sabir et al., 2018) Flickr 57k ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗

NeuralNews (Tan et al., 2020) GoodNews (1) 128k ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗

TamperedNews (Müller-Budack et al., 2020) BreakingNews (4) 776k ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗

COSMOS (Shivangi Aneja and Nießner, 2023) 18 News outlets 453k ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗

NewsCLIPpings (Luo et al., 2021) VisualNews (4) 988k ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓

𝐷 𝐺 𝑀4 (Rui Shao and Liu, 2023) VisualNews (4) 239k ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗

𝑀3𝐴(Ours) 60 News outlets 7m ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Fig. 1. Demonstration of 𝑀3𝐴 Application. 𝑀3𝐴 contains data generated in various
methods, facilitating multiple misinformation detection tasks such as OOC detection,
deepfake detection, fact-checking, OOD testing and so on.

different news sample based on modality similarity; (3) Text-driven
ultimodality Generation (TMG), using pre-trained large language
odels to generate images, videos, and audio based on the text; (4)
ultimodality-driven Text Generation (MTG), using GPT-like APIs to

enerate text based on images, audio, and videos; and (5) Movie to
ews (M2N), pairing movie stills, sounds, or clips with real news con-

ent and model-generated texts to create misinformation. As illustrated
n Fig. 2, these methods enhance the diversity of 𝑀3𝐴.

Each sample in our dataset is enriched with detailed annotations,
enabling us to set benchmarks for different misinformation detection
tasks, as outlined in Fig. 1. These tasks include (1) Out-of-context
OOC) detection, checking whether any two modalities of the input
re consistent; (2) Deepfake identification, determining if any input
odality is model-generated; (3) Fact-checking, verifying the accuracy

f each modality against the true information database of 𝑀3𝐴; and
4) Out-of-distribution (OOD) testing, assessing model robustness on
ifferent data. We deploy state-of-the-art models for these benchmarks
nd report their performance using corresponding evaluation metrics.
he experimental results reveal the complexity and diversity of 𝑀3𝐴,
ighlighting its inherent challenges. The major contributions of this
esearch are summarized as follows:

• We present 𝑀3𝐴, the first comprehensive large-scale multimodal
misinformation dataset with news samples in text, image, audio,
and video formats from reputable news outlets, addressing lim-
itations in misinformation generation, data modality, scale, and
topic diversity.

• 𝑀3𝐴 includes multi-class annotations essential for various misin-
formation detection tasks, such as out-of-context detection, deep-
fake identification, and fact-checking.

• We propose benchmarks for 𝑀3𝐴 tailored to various misinforma-
tion detection tasks, utilizing state-of-the-art models and out-of-
distribution testing to support further research in misinformation
detection.
2

2. Related works

2.1. Multimodal misinformation dataset

As shown in Table 1, current multimodal misinformation datasets
re primarily limited to text and image modalities. For instance, Jaiswal

et al. (2017) creates misinformation through simple caption swaps.
Sabir et al. (2018) increases complexity by randomly altering named
entities and adding GPS details. Tan et al. (2020) focuses on news
rticles, combining images with articles and captions but replacing real
lements with fabricated ones. Müller-Budack et al. (2020) manipulates

named entities based on the comprehensive content of the articles. Luo
et al. (2021) leverages advanced language and vision models to auto-
matically generate mismatched image-caption pairs. FACTIFY (Mishra
et al., 2022) provides extra supporting documents and images, fo-
cusing specifically on fine-grained fact-checking. Shivangi Aneja and
Nießner (2023) collects numerous image-caption pairs without annota-
tions and uses a self-supervised technique to match different captions
escribing the same images. 𝐷 𝐺 𝑀4 (Rui Shao and Liu, 2023) in-
roduces modifications to both text and images. Papadopoulos et al.

(2023) conducts a comparative study on challenges such as out-of-
context image-caption pairs, cross-modal named entity inconsistency,
and their hybrids, highlighting the issues posed by unimodal biases;

hile VERITE (Papadopoulos et al., 2024) addresses the unimodal
biases by sourcing from reputable fact-checking platforms. Additional
datasets (Boididou et al., 2015, 2016; Jin et al., 2017; Wang et al.,
2018; Nakamura et al., 2019; Khattar et al., 2019; Shu et al., 2020;
Biamby et al., 2022; Nielsen and McConville, 2022; Dufour et al., 2024)
have expanded their scope to include real-world content from social
media, moving beyond traditional news outlets.

All the aforementioned multimodal datasets contain only text and
mage modalities. With the rise of short video platforms, news in
hort video format is becoming increasingly important. However, these
atasets lack audio and video modality misinformation. The data
ources for these datasets are also quite limited. For example, Visu-
lNews (Liu et al., 2021) includes only four news outlets from the

UK and USA (The Guardian, BBC, USA TODAY, and The Washington
Post), neglecting news from other regions of the world. Additionally,
these datasets contain only general news and lack more granular
annotations such as news topics. Moreover, datasets such as Twitter-
COMMs (Biamby et al., 2022) and Mumin (Nielsen and McConville,
2022) focus on broader social media content, such as tweets. As this
content is user-generated, it requires careful verification before it can
e utilized. Compared to formal news sources, social media posts

generally have lower credibility, leading to misinformation generated
from them being less influential and deceptive.

𝑀3𝐴 overcomes these limitations by collecting news from news
utlets worldwide, including Europe, America, Asia, and so on. It

features text, image, audio, and video modalities, covering a diverse
range of news topics. Furthermore, it provides comprehensive annota-
tions, offering a more realistic and varied dataset for misinformation
detection research.
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Fig. 2. Illustration of misinformation generation methods in 𝑀3𝐴. (a) Named Entity Manipulation (NEM), (b) Multimodality Mismatching (MM), (c) Text-driven Multimodality
Generation (TMG), (d) Multimodality-driven Text Generation (MTG), and (e) Movie to News (M2N), together with four types of data (Pristine, Factual Error, OOC Issue, and
Modal-generated).
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2.2. Deepfake dataset

Existing deepfake datasets primarily focus on a single modality,
such as image or video. For example, UADFV (Yang et al., 2019)
onsists of 49 real videos paired with 49 deepfake videos, created
o highlight inconsistencies in head poses for detecting deepfakes.
aceForensics++ (Rossler et al., 2019) expands on these efforts by

offering a large dataset of over 1000 real videos and their manipulated
counterparts, created using various face manipulation techniques such
as FaceSwap (Chen et al., 2020; Gao et al., 2021), Face2Face (Thies
et al., 2016), and NeuralTextures (Thies et al., 2019).

The DeepFake Detection Challenge (Dolhansky et al., 2019) ad-
ances deepfake detection technologies by providing over 100,000

labelled videos through a competitive format, utilizing multiple syn-
thesis algorithms to create diverse deepfake videos. CelebDF (Li et al.,
2020) includes 590 real videos of celebrities sourced from YouTube,
alongside 5639 deepfake videos generated using an improved deepfake
synthesis algorithm that addresses issues like low resolution and colour

ismatch. DeeperForensics-1.0 (Jiang et al., 2020) includes 60,000
ideos of 100 actors, each manipulated to various extents using gener-
tive adversarial networks (GAN) (Goodfellow et al., 2014) to simulate

real-world scenarios. Face Forensics in the Wild (Zhou et al., 2021)
ccounts for domain-adversarial factors during the generation of sam-
les. DeepFake MNIST+ (Huang et al., 2021) takes a different approach

by using videos from the VoxCeleb dataset (Nagrani et al., 2020),
transforming them with deepfake techniques to explore detection in a
ontrolled environment focused on facial animations.

All the above datasets mainly feature talking heads of celebri-
ies or actors instead of realistic news formats, and they lack di-

versity in both scenarios and content. These datasets often use con-
trolled environments and do not encompass the complexity of real-
world news, which involves multiple modalities and more dynamic,
unscripted interactions.

𝑀3𝐴 addresses these limitations by using authentic news mate-
ials that include talking heads, group scenes, and videos without
eople. This dataset includes dynamic live reports, interviews, diverse
3

environments, and different reporting styles, such as breaking news
and in-depth reports, enhancing the complexity and applicability of
misinformation detection research.

3. The 𝑴𝟑𝑨 dataset

Current multimodal misinformation datasets typically focus on text
nd image modalities, limited in their diversity of news sources and

topics. To overcome these limitations, we present the 𝑀3𝐴 dataset, con-
isting of a substantial collection of annotated news content spanning
ext–image pairs and text–image–audio–video pairs.

3.1. Data source

Unlike existing datasets that often have a limited range of data
sources, we have significantly expanded the diversity of our dataset by
ourcing from 60 prominent media outlets. Inspired by the previous
ork (Xu et al., 2024), we carefully select these outlets for their

reputation and trustworthiness, ensuring they are widely recognized as
reliable sources of information. This diverse selection includes interna-
tional news-focused outlets like ABC News and BBC News, as well as
regional sources such as Al Jazeera in the Middle East, The Straits Times
and The Times of India in South Asia. Additionally, we include outlets
pecializing in economic news (e.g., Bloomberg Business), political
ews (e.g., Politico), entertainment news (e.g., The Sun), and so on.
o compile this extensive dataset, we use Instaloader1 to scrape news

posts from these 60 media accounts. Low-quality samples are filtered
y removing overly short samples, videos without audio, samples with
ow inter-modality similarity, and manually removing of low-quality
ontent. In the end, we gather 708,425 original news samples, com-
rising 526,223 text–image pairs and 182,202 text–image–audio–video
airs. Each news sample is uniquely identified by its ID, formatted as

‘Publication News Outlet + Publication Time’’.

1 https://github.com/instaloader/instaloader

https://github.com/instaloader/instaloader
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Fig. 3. Methods and models used in 𝑀3𝐴. We utilize various methods and corre-
ponding models to generate fabricated news samples in different modalities. These

methods can be summarized as the five types of generation techniques, Named Entity
Manipulation (NEM), Multimodality Mismatching (MM), Text-driven Multimodality
Generation (TMG), Multimodality-driven Text Generation (MTG), and Movie to News
(M2N), as mentioned in Fig. 2.

3.2. Data pre-processing

Although platforms like Instagram are lightweight and fragmented,
he length of each text varies according to the writing style of each
ews outlet. Media outlets such as the Daily Mail and ABC News tend to
refer shorter texts, often with fewer than 20 words. Conversely, outlets

like AP News and PBS NewsHour generally share longer texts, many
exceeding 300 words. In our experiments, we utilize large language

odels like CLIP (Radford et al., 2021) and BLIP (Li et al., 2022),
which have limitations on input length. For example, CLIP can handle
exts up to 77 tokens, which is insufficient for our longest texts. BLIP
an manage longer inputs up to 512 tokens, but it is primarily pre-
rained on short sentences with fewer than 40 tokens, so directly
nputting long sentences may not yield optimal results. By examining
he collected data, we observe that not every sentence in a text has a
trong connection with the corresponding image. For instance, in texts
rom The Washington Post, the last sentence often does not closely
elate to the news content and typically reads ‘‘click this link for
ore/full story/updates’’. Therefore, we use BART (Lewis et al., 2020)

o overcome the input length limitations. BART summarizes texts by
electing key sentences based on relevance and context, combining
hem with logical coherence without significantly altering the words,
nsuring complete and concise summaries.

We then extract audio from video files using MoviePy.2 For text–
image samples, we employ BLIP-2 (Li et al., 2023) to obtain text
nd image embeddings. For text–image–audio–video samples, we use
mageBind (Girdhar et al., 2023) and Languagebind (Zhu et al., 2024)
o obtain corresponding embeddings of text, image, audio, and video.

2 https://github.com/Zulko/moviepy
4

3.3. Misinformation generation

As shown in Figs. 2 and 3, we employ five approaches to gener-
ate misinformation: Named Entity Manipulation (NEM), Multimodal-
ity Mismatching (MM), Text-driven Multimodality Generation (TMG),
Multimodality-driven Text Generation (MTG), and Movie to News
(M2N). All samples have been meticulously annotated.

Named Entity Manipulation (NEM). This misinformation genera-
tion method involves replacing named entities (persons, locations,
organizations) within texts as depicted in Fig. 2(a).

To ensure the named entity alteration has a substantial impact on
the text meaning, we utilize two named entity recognition models,
BERT (Devlin et al., 2019) and spaCy (Honnibal et al., 2020) to build
a pool of named entities. Only the intersection of their results for each
text will be incorporated into the pool. From the pool, we specifically
choose those that occur more than 42 times as viable candidates for
replacement, forming the final significant named entities pool.

For each text summary, if it contains a named entity, we replace
it with a different one from the significant named entities pool. For
the original a text–image sample (𝑇0, 𝐼0) or text–image–audio–video
ample (𝑇0, 𝐼0, 𝐴0, 𝑉0), if 𝑇0 includes a location name 𝑙0, we randomly

select a distinct location name 𝑙1 from the significant named entities
pool. Then replace all instances of 𝑙0 throughout the entire text with 𝑙1,
resulting in a synthetic text 𝑇1. 𝑇1 is then paired with the original image
𝐼0, or potentially with audio 𝐴0 and video 𝑉0, to produce ‘‘location’’
manipulated sample (𝑇1, 𝐼0) or (𝑇1, 𝐼0, 𝐴0, 𝑉0).

Correspondingly, we generate ‘‘person’’ and ‘‘organization’’ manip-
ulated samples. We also create ‘‘complete’’ manipulated samples, in
which all named entities in 𝑇0 are modified.

Multimodality Mismatching (MM). This method generates misin-
ormation by re-paring modalities between samples as presented in

Fig. 2(b).
For a text–image–audio–video sample (𝑇0, 𝐼0, 𝐴0, 𝑉0), we apply

modality mismatching based on text–text, image–image, audio–audio,
and video–video similarity. For instance, to assess image–image sim-
ilarity, we calculate the cosine similarity between the embedding of
image 𝐼0 and all other image embeddings, selecting the image 𝐼1 with
he highest similarity score. We ensure a minimum time gap of 30 days
etween 𝐼0 and 𝐼1 to avoid selecting reports from different news posts
overing the same event, ensuring that our image swap can effectively
reate misinformation. We then replace 𝐼0 with 𝐼1 to create a falsified
maged-changed sample (𝑇0, 𝐼1, 𝐴0, 𝑉0).

Similarly, we generate text-changed (𝑇1, 𝐼0, 𝐴0, 𝑉0), audio-changed
(𝑇0, 𝐼0, 𝐴1, 𝑉0), and video-changed (𝑇0, 𝐼0, 𝐴0, 𝑉1). For a text–image sam-
ple (𝑇0, 𝐼0), in a similar way, we create text-changed (𝑇1, 𝐼0) and
imaged-changed sample (𝑇0, 𝐼1).
Text-driven Multimodality Generation (TMG). Our data source has
a broader range and is not limited to portraits, creating manipulated
images by face-swapping is not suitable for 𝑀3𝐴. Thanks to the great
advance of generative models, we can adopt pre-trained models to
generate falsified images/audio/videos based on texts as detailed in
Fig. 2(c).

It is important to note that some of the current generative mod-
els, like DALL-E 3,3 are restricted by content policies, which prevent
generating images based on prompts involving celebrities. Therefore,
when constructing 𝑀3𝐴, we choose models without such restrictions
to generate falsified content.

For image modality, we first explore various text-to-image models,
including Glide (Nichol et al., 2021), Kandinsky (Razzhigaev et al.,
2023), and SD-Turbo (Sauer et al., 2023). For text 𝑇0, several images
are created. The most convincing fabricated image 𝐼1 with the highest

3 https://openai.com/index/dall-e-3/

https://github.com/Zulko/moviepy
https://openai.com/index/dall-e-3/
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Fig. 4. Illustration of method generation plus rumour. For methods TMG and MTG,
in addition to the simple model-generated samples, we also create samples with rumour
by swapping named entities in the prompt or altering the prompt to have opposite
meanings.

BLIP cosine similarity to 𝑇0 is then selected to create falsified sample
(𝑇0, 𝐼1) or (𝑇0, 𝐼1, 𝐴0, 𝑉0).

For audio generation, we utilize text-to-audio models, TANGO
(Ghosal et al., 2023) and AudioLDM (Liu et al., 2023) as well as text-
to-speech models, FastSpeech 2 (Chien et al., 2021) and VITS (Kim
et al., 2021a). For video generation, we employ models Text2Video-
Zero (Khachatryan et al., 2023) and Text-to-video-synthesis (Wang
et al., 2023). Falsified samples (𝑇0, 𝐼0, 𝐴1, 𝑉0) and (𝑇0, 𝐼0, 𝐴0, 𝑉1) are then
generated.

Multimodality-driven Text Generation (MTG). For this category,
we generate fake texts based on images, potentially with audio and
ideos as illustrated in Fig. 2(d). For an original sample (𝑇0, 𝐼0) or

(𝑇0, 𝐼0, 𝐴0, 𝑉0), we produce fabricated samples using GPT-like APIs, in-
cluding Llama 2 (Touvron et al., 2023), GPT-J (Wang and Komatsuzaki,
2021), GPT-3.5 Turbo and GPT-4 (Brown et al., 2020).

To create a prompt, we extract the image caption from 𝐼0 using
LIP (Li et al., 2022). For (𝑇0, 𝐼0, 𝐴0, 𝑉0), we also extract audio captions

using CLAP (Elizalde et al., 2023a,b) and audio speech text using
hisper (Radford et al., 2023) from audio files. By dividing each video

nto four equal segments, we extracted captions from the first frame of
ach segment using BLIP and combined them to form the video frame

captions. We also record the token number, publication news outlier
and publication time of 𝑇0.

Based on image caption or (image caption, audio caption, audio
speech text, and video frame captions), use GPT-like APIs to generate
alsified texts irrelevant to 𝐼0 with the same token number, publication
ews outlier and publication time. Similar to method TMG, only the
ost convincing fabricated text 𝑇1 with the highest BLIP cosine simi-

arity to 𝐼0 or (𝐼0, 𝐴0, 𝑉0) is selected. 𝑇0 in the original sample is then
eplaced by 𝑇1 to create a misinformed sample (𝑇1, 𝐼0) or (𝑇1, 𝐼0, 𝐴0, 𝑉0).

Generation plus Rumour. In methods TMG and MTG, the generation
of new modalities is still based on the existing content of a news sample
without adding false information. To make our database more diverse
and challenging as well as better simulate the real-world distributions,
we deliberately adjust the prompts to generate samples containing
rumours.

As shown in Fig. 4, for the TMG plus rumour method, instead of
using the original text 𝑇0 as the prompt, we use the corresponding text
𝑇1 from the NEM method (randomly selected from each type). This
generates falsified modalities 𝐼1, 𝐴1, and 𝑉1, which are then combined
with 𝑇0 to create misinformed samples. For the MTG plus rumour
method, instead of prompting GPT-like APIs to generate irrelevant text,
we ask them to produce text with opposite meanings while keeping the

original named entities intact.

5

Table 2
Data distribution in 𝑀3𝐴. (𝑇 , 𝐼) stands for text–image pairs and (𝑇 , 𝐼 , 𝐴, 𝑉 ) stands
for text–image–audio–video pairs.

Method Type (𝑇 , 𝐼) (𝑇 , 𝐼 , 𝐴, 𝑉 ) Total

Pristine 526,223 182,202 708,425

NEM

Person 235,657 71,604 307,261
Location 239,545 81,027 320,572
Organization 164,195 45,664 209,859
Complete 423,475 137,561 561,036

MM

Text-changed 526,223 182,202 708,425
Image-changed 526,223 182,202 708,425
Audio-changed – 182,202 182,202
Video-changed – 182,202 182,202

TMG Model-generated 526,223 182,202 708,425
with rumour 526,223 182,202 708,425

MTG Model-generated 526,223 182,202 708,425
with rumour 526,223 182,202 708,425

M2N Pair with real news 191,116 85,236 199,116
Model-generated text 191,116 85,236 199,116

Total 5,128,665 2,146,146 7,274,811

Movie to News (M2N). This method fabricates misinformation by
presenting movie content as news, as shown in Fig. 2(e).

We observe that many movies contain high-precision scene depic-
ions, such as portrayals of floods and storms in disaster films. These
inematic works often undergo multiple rounds of meticulous review

to ensure authenticity, making them ideal candidate sources of fake
content. Based on this idea, we collect images from the dataset Movie
Stills 2000–2020 Images4 dataset and YouTube5 videos made from
movie clips. We apply the same process described in methods MM and
MTG. We consider these movie stills, sounds, and clips as 𝐼1, 𝐴1, and
𝑉1, respectively. These are then combined with a real news text 𝑇1,
selected for its high similarity from 𝑀3𝐴, or a text 𝑇1 generated using
GPT-like APIs. In this way, we create new misinformed samples (𝐼1, 𝑇1)
and (𝐼1, 𝑇1, 𝐴1, 𝑉1).

3.4. Dataset statistics

As illustrated in Table 2, 𝑀3𝐴 contains 5,128,665 text–image pairs,
including 526,223 pristine samples and 4,602,442 falsified samples.
𝑀3𝐴 also includes 2,146,146 text–image–audio–video pairs, including
182,202 pristine samples and 1,963,944 falsified samples.

Fig. 5 provides an extensive overview of the data statistics for 𝑀3𝐴,
overing (a) the distribution of data based on different misinformation

generation techniques, (b) the allocation of different modalities, (c) the
categorization of data according to distinct misinformation detection
tasks, and (d) the geographical distribution of the news sources uti-
ized. The figure highlights the dataset’s diversity, including a range

of generation techniques. Additionally, it shows the distribution of
different media types (text, image, audio, video) in 𝑀3𝐴, categorizes
the data based on misinformation detection tasks, including out-of-
context detection corresponding to methods MM and M2N, deepfake
detection linked to methods TMG, MTG, and M2N, and fact-checking
associated with method NEM. The figure also highlights the geographi-
cal representation of news outlets, showing that USA news outlets hold
a dominant position of over 50% in our dataset.

We also conduct a detailed analysis of the news texts, focusing on
hree aspects: (a) the token count distribution in both the original texts
nd their summaries generated by BART (Lewis et al., 2020); (b) senti-

ment analysis using the Twitter-roBERTa-base model (Loureiro et al.,

4 https://www.kaggle.com/datasets/thevox/movie-stills-20002020-images
5 https://www.youtube.com/

https://www.kaggle.com/datasets/thevox/movie-stills-20002020-images
https://www.youtube.com/
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Fig. 5. Data statistics of 𝑀3𝐴. In this figure, ‘‘(𝑇 , 𝐼)’’ stands for text–image pairs,
‘‘(𝑇 , 𝐼 , 𝐴, 𝑉 )’’ stands for text–image–audio–video pairs, and ‘‘det’’. stands for detection.
(a) Data distribution based on different misinformation generation methods; (b) Distri-
bution of different modalities; (c) Data distribution based on various misinformation
detection tasks; (d) Geography distribution of selected news outlets.

Fig. 6. Data statistics of news content in 𝑀3𝐴. (a) Token length distribution of news
contents and their corresponding summaries; (b) Sentiment analysis of news contents;
(c) Frequency of news content topics.

2022); and (c) topic distribution using the bart-large model (Lewis
et al., 2020). Fig. 6 reveal that: (1) the original texts have a wide range
of token counts, while the BART-generated summaries typically contain
fewer than 77 tokens, indicating minimal impact on CLIP performance
in experiments; (2) the majority of news articles are neutral in tone,
with negative articles outnumbering positive ones; and (3) opinion,
politics, and environmental topics are the most frequently covered
among the 13 categories analysed.

As shown in Fig. 5, 𝑀3𝐴 includes a broad array of misinforma-
tion. However, it is important to note that 𝑀3𝐴 does not encompass
every possible form of misinformation. Specifically, we have intention-
ally excluded content that might be offensive, such as discriminatory,
pornographic, or violent material. This decision is made because our
data sources are reputable news outlets, which do not typically publish

3
such content. As a result, while 𝑀 𝐴 encompasses a broad spectrum of

6

misinformation tactics, it remains within the limits of content deemed
acceptable in public discourse. This restriction is crucial for main-
taining the dataset’s ethical standards and relevance to its intended
use.

Additionally, swapping modalities between reports on the same
event across different media can generate additional positive samples.
Some existing detection tools (Abdelnabi et al., 2022b) based on Google
Vision AI often return different URLs, which makes it challenging to
identify these positive samples. As part of our future work, we plan
to implement an automated process for reviewing and creating such
samples to make 𝑀3𝐴 more challenging.

4. Experiments

The proposed rich and diverse dataset 𝑀3𝐴 enables training various
models for different tasks. We propose several potential tasks, test var-
ious state-of-the-art baseline models, and document the corresponding
benchmark results.

For falsified text–image sample detection, we use BLIP (Li et al.,
2022), CLIP (Radford et al., 2021), ViLT (Kim et al., 2021b), and Visual-

ERT (Li et al., 2019) for classification. We evaluate their performances
based on classification accuracy.

• BLIP focuses on unified vision–language understanding and gen-
eration, employing a multi-task learning approach for image–text
matching and language modelling (Li et al., 2022).

• CLIP maps images and text into a shared embedding space
and aligns visual and textual representations. This model excels
in zero-shot learning and has robust generalization capabili-
ties (Radford et al., 2021).

• ViLT integrates visual and textual information through a
lightweight transformer architecture. It is designed for tasks that
require fine-grained alignment between image and text (Kim
et al., 2021b).

• VisualBERT extends BERT to handle visual inputs by integrat-
ing visual and textual data within a unified transformer frame-
work. It is suitable for vision–language tasks like VQA and image
captioning (Li et al., 2019).

For falsified text–image–audio–video sample detection, we use Im-
ageBind (Girdhar et al., 2023) and LanguageBind (Zhu et al., 2024).

he metrics used are accuracy (Acc), area under the curve (AUC), and
average precision (AP).

• ImageBind unifies different modalities into a single representa-
tion, enabling the model to handle multimodal inputs effectively.
It aligns audio, visual, and textual data to create a comprehensive
multimodal understanding (Girdhar et al., 2023).

• LanguageBind focuses on integrating language with visual and
auditory inputs. It enhances the multimodal representation by
binding textual descriptions with corresponding audio and visual
data, improving the model’s ability to process and understand
complex multimodal information (Zhu et al., 2024).

4.1. Falsified text-image pairs detection

Zero-shot Misinformation Detection. We first evaluate the perfor-
ance of BLIP and CLIP models in detecting fabricated news content

without fine-tuning on 𝑀3𝐴. Specifically, we compare the similarity
scores for each pair, and if the real pair yields a higher score, it
is considered a correct prediction. This approach tests the models’
generalization capabilities on 𝑀3𝐴.

From the results listed in Table 3(a), CLIP outperforms BLIP in
most scenarios, indicating a more robust visual–textual alignment. For
instance, CLIP achieves its highest accuracy of 0.697 for detecting
misinformation type movie+MM.
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Table 3
Performance of misinformed text–image sample detection for different models. (a) Zero-shot prediction performance. (b) Performance after training. The metric used in this
able is accuracy. MM results are based on features extracted using BLIP-2.
(a) Zero-shot prediction (b) Multimodal misinformation detection

Method Type BLIP CLIP Method Type BLIP CLIP ViLT VisualBERT

NEM

Person 0.488 0.637

NEM

Person 0.625±0.010 0.657±0.009 0.509±0.009 0.533±0.023
Location 0.517 0.626 Location 0.604±0.015 0.657±0.024 0.517±0.037 0.535±0.014
Organization 0.500 0.611 Organization 0.619±0.008 0.662±0.012 0.516±0.012 0.497±0.005
Complete 0.593 0.604 Complete 0.618±0.008 0.650±0.001 0.517±0.002 0.564±0.010

MM Text-changed 0.515 0.693 MM Text-changed 0.787±0.012 0.797±0.016 0.499±0.002 0.502±0.000
Image-changed 0.520 0.661 Image-changed 0.761±0.016 0.821±0.012 0.500±0.003 0.499±0.001

TMG model-generated 0.402 0.551 TMG model-generated 0.980±0.002 0.984±0.001 0.797±0.013 0.994±0.001
with rumour 0.417 0.563 with rumour 0.978±0.003 0.980±0.002 0.798±0.009 0.993±0.003

MTG model-generated 0.360 0.328 MTG model-generated 0.709±0.013 0.796±0.029 0.956±0.012 0.894±0.016
with rumour 0.395 0.398 with rumour 0.705±0.016 0.801±0.015 0.951±0.016 0.891±0.008

M2N movie+MM 0.533 0.697 M2N movie stills+MM 0.833±0.009 0.846±0.008 0.521±0.004 0.531±0.005
movie+MTG 0.421 0.434 movie stills+MTG 0.712±0.007 0.813±0.018 0.960±0.011 0.902±0.010
f
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However, the highest accuracies achieved by both models are still
moderate, which is expected given the challenging nature of our
dataset. The lowest accuracy for both models occurs with MTG. BLIP
scores 0.360 for model-generated content, while CLIP scores 0.328. In
the zero-shot context, deepfake-generated data, which has not been
specifically trained on the models, tends to deceive these models more
easily.

In summary, while CLIP generally performs better than BLIP, the
moderate accuracies across all types indicate that detecting fabricated
ontent remains challenging in zero-shot situations. This demonstrates
he complexity of 𝑀3𝐴 and its ability to pose a significant challenge
or state-of-the-art models.

Multimodal Misinformation Detection. In multimodal misinforma-
ion detection experiments, we extract embeddings separately for each
odality using BLIP, CLIP, ViLT, and VisualBERT. For instance, BLIP

utputs image and text embeddings, both initially in R768, which are
concatenated into R1536. Similarly, CLIP generates embeddings in R512,
which are concatenated into R1024. VisualBERT, on the other hand,
produces fused embeddings directly. After concatenation, the com-
bined embeddings are passed through several intermediate layers, re-
ducing the dimensionality to R512, followed by ReLU activation and
Layer Normalization. Finally, the embeddings are transformed into a
one-dimensional output in R1, serving as the classification output.

For each subtype of the dataset, corresponding to different research
uestions, we balance the data with a 1:1 ratio of positive (real) and
egative (fake) samples. After balancing, the data is split into training,
alidation, and test sets in a 6:2:2 ratio. The model is trained with
 dropout rate of 0.2, runs for 50 epochs with a batch size of 32, a
earning rate of 0.001, and uses Binary Cross-Entropy Loss. Early stop-
ing is set to 5 epochs to prevent overfitting, and the model with the
owest validation loss is selected to determine the final test accuracy.
his experiment evaluates the model’s ability to detect misinformation
fter fine-tuning.

The results in Table 3(b) indicate that each model has strengths
in handling different types of fabricated content, yet the challenging
nature of our dataset is evident from the varying performance across
methods. CLIP generally outperforms other models. For instance, in the
NEM category, CLIP achieves the highest accuracies, such as 0.657 for
person-manipulated samples and 0.662 for organization-manipulated
samples. For the ‘‘NEM-complete’’ subset, the high accuracy is primarily
due to the extensive modifications made to named entities, which result
in significant divergence from the original text.

In the MM category, CLIP demonstrates strong performance, partic-
larly in detecting image-altered samples generated by BLIP-2, achiev-
ng an accuracy of 0.821. The similar results between the MM and
2N (movie + MM) methods, as well as the MTG and M2N (movie +
TG) methods, are due to their shared approach. The slightly higher

erformance for M2N suggests that movie content follows a more
 e

7

consistent structure compared to the diverse nature of news content,
making it easier for models to capture distinct features.

For TMG and MTG, both models achieve significantly higher ac-
curacies compared to their zero-shot results. CLIP scores 0.984 and
BLIP 0.980 for TMG, while ViLT shows surprising strength in MTG,
achieving 0.956 for model-generated content and 0.951 for generated
samples with rumours. VisualBERT achieves the highest accuracy in
TMG, scoring 0.994 for model-generated content. The higher detection
results in TMG and MTG, compared to their low zero-shot results,
can be largely attributed to the unique textures and patterns that are
inherently produced by the generation models used to create these
datasets. These textures allow models to achieve high accuracy rates
simply by identifying them, rather than understanding the underlying
content or context.

The varying performances across different categories and models
indicate that our dataset presents a significant challenge, requiring
robust and versatile models to effectively detect all types of fabricated
content. This underscores the complexity and challenge of 𝑀3𝐴.

4.2. Falsified text–image–audio–video detection

In the misinformed text–image–audio–video sample detection ex-
periments, we use ImageBind and LanguageBind as baselines for these
multimodal inputs. Consistent with the training strategy outlined in
Section 4.1, we evaluate the models using accuracy, AUC, and AP.

As detailed in Table 4, for NEM, which involves minor textual
changes to named entities, 𝑀3𝐴 effectively challenges both Imagebind
and Languagebind. Imagebind achieves higher accuracies (e.g., 0.829
or the ‘‘NEM-complete’’ type) due to its robust multimodal embedding
apabilities that handle textual changes well. In contrast, Language-
ind, which relies more on word embeddings, struggles with these
asks, showing accuracies around 0.500. This highlights that 𝑀3𝐴’s
ntity manipulations are sufficiently complex to expose Languagebind’s
imitations in handling minor textual changes.

For MM, which involves swapping the most similar modalities
etween samples to create OOC samples, our dataset reveals distinct
trengths and weaknesses of chosen models. Both models fail to accu-
ately detect audio-changed samples, with accuracies around 0.590 for
magebind and 0.582 for Languagebind. Imagebind, focusing on visual
nformation, performs well with text-changed samples (Acc: 0.620)
ut struggles with visual changes (Acc: 0.498 for both image and
ideo). This difficulty arises because detecting visual mismatches in

its own generated embeddings is challenging. Similarly, Languagebind,
which emphasizes word embeddings, excels in visual mismatch tasks
Acc: 0.676 for image-changed, 0.689 for video-changed) but struggles
ith text-changed tasks (Acc: 0.500), indicating it is challenging for
anguagebind to detect mismatches using its own generated word

mbeddings. It is worth noting that, unlike the results obtained using
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Table 4
Performance of misinformed text–image–audio–video sample detection for different models. Metrics include accuracy (Acc), area under
the curve (AUC), and average precision (AP). MM results are based on features extracted using Imagebind and Languagebind.

Method Type Imagebind Languagebind

Acc AUC AP Acc AUC AP

NEM

Person 0.709±0.005 0.789±0.004 0.778±0.004 0.501±0.002 0.498±0.000 0.497±0.001
Location 0.737±0.004 0.812±0.004 0.791±0.006 0.500±0.003 0.498±0.001 0.497±0.000
Organization 0.654±0.004 0.719±0.005 0.703±0.004 0.497±0.000 0.498±0.001 0.497±0.000
Complete 0.829±0.001 0.912±0.001 0.909±0.001 0.500±0.001 0.500±0.000 0.500±0.000

MM

Text-changed 0.620±0.003 0.662±0.006 0.652±0.007 0.500±0.001 0.500±0.000 0.499±0.000
Image-changed 0.498±0.001 0.497±0.000 0.497±0.001 0.676±0.006 0.739±0.008 0.710±0.012
Audio-changed 0.590±0.002 0.627±0.003 0.613±0.004 0.582±0.005 0.631±0.000 0.632±0.001
Video-changed 0.498±0.001 0.498±0.001 0.497±0.002 0.689±0.007 0.723±0.007 0.702±0.006

TMG model-generated 0.992±0.004 1.000±0.000 1.000±0.000 0.996±0.000 1.000±0.000 1.000±0.000
with rumour 0.994±0.002 1.000±0.000 1.000±0.000 0.997±0.000 1.000±0.000 1.000±0.000

MTG model-generated 0.810±0.022 0.899±0.011 0.896±0.014 0.500±0.006 0.500±0.000 0.506±0.000
with rumour 0.834±0.013 0.920±0.001 0.936±0.001 0.506±0.000 0.500±0.000 0.506±0.000

M2N movie+MM 0.625±0.004 0.665±0.004 0.654±0.006 0.501±0.001 0.500±0.001 0.501±0.001
movie+MTG 0.841±0.012 0.911±0.015 0.902±0.016 0.504±0.004 0.501±0.001 0.508±0.004
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BLIP-2 in Table 3(b), the MM results in Table 4 are based on features
extracted using Imagebind and Languagebind for mismatching. The
consistently lower performance of MM in Table 4 further indicates
hat misinformation generated using MM based on Imagebind and
anguagebind presents a greater challenge.

In TMG, both models exhibit nearly perfect performance with accu-
acies approaching 1. However, as shown in Table 3(a), their zero-shot

performance remains low. This suggests that the models have primarily
learned to detect specific characteristics of model-generated content,
caused by the inherent drawbacks of current generation models, rather
than truly understanding the relationships between modalities.

For MTG, Imagebind significantly outperforms Languagebind,
achieving accuracies around 0.834, while Languagebind is around
0.500. This highlights that 𝑀3𝐴’s multimodality-driven text generation
is challenging for models relying on word embeddings.

For M2N, both models perform similarly to their results in MM and
TG. ImageBind outperforms LanguageBind in detecting manipulated

multimedia content, particularly in the ‘‘movie+MM’’ type (Acc: 0.625
vs. 0.501), though the performance gap narrows in the ‘‘movie+MTG’’
type. Similar to MM, the detection accuracy for the ‘‘movie+MM’’ type
is significantly lower compared to the results in Table 3(b). This further
upports the conclusion that samples generated by mismatching based

on ImageBind and LanguageBind are highly challenging.
Overall, 𝑀3𝐴 effectively exposes the strengths and weaknesses of

multimodal models like Imagebind and Languagebind. 𝑀3𝐴’s complex-
ity and diversity ensure that even advanced models struggle with cer-
tain types of misinformation, highlighting areas for future improvement
in multimodal misinformation detection.

4.3. Out-of-distribution (OOD) tests

We perform three types of OOD tests to investigate various factors
affecting news content detection.

First, we consider geographical location. As shown in Fig. 5(d), we
intentionally select news sources from various regions worldwide. To
evaluate the impact of geographical location, we train models on data
from 35 North American outlets and evaluate it using data from 6 Asian
outlets.

We also examine the impact of themes on classifier performance,
since each news article has its own theme (Fig. 6(c)). For text–image
pairs, we use news related to the economy as the source and news
related to international topics as the target. For text–image–audio–
video pairs, we use news related to politics as the source and news
concerning the environment as the target.

We then explore the effect of sentiment, as each news article carries
its own sentiment (Fig. 6(b)). We conduct sentiment OOD tests for text–
image–audio–video pairs by selecting news with negative sentiment as
the source and news with positive sentiment as the target.
8

Additionally, considering the token length restrictions of models like
LIP (77 tokens max) and BLIP (predominantly fewer than 40 tokens),

we examine the variability in token lengths within 𝑀3𝐴 as mentioned
in Fig. 6(a). We set a threshold at 40 tokens, using sources with fewer
han 40 tokens and targets with more than 40 tokens, to evaluate the
odel’s adaptability to different content lengths.

We shuffle the source data, splitting it into training and validation
sets in a 3:1 ratio, and record the highest validation accuracy. The

odel achieving this peak validation accuracy is then tested on the
arget data to observe the test accuracy.

Based on the OOD test results for method NEM with fake text–image
ample detection (see Table 5), we can derive that ViLT and VisualBERT

perform poorly across all tests, so the analysis focuses on other models
as shown below:

• For the geography OOD test, both CLIP and BLIP experience
a performance drop when transferring from North American to
Asian news outlets, with accuracy dropping from 0.650 to 0.613
for detecting person-manipulated samples. This indicates that
geographical variability could impact the performances of chosen
models.

• For the theme OOD test, changing the theme from economy
to international news leads to a significant drop, with accuracy
decreasing from 0.679 to about 0.553 for person-manipulated
sample detection. This suggests that thematic changes pose a
significant challenge to these models.

• For the text token number OOD test, results are mixed. In detect-
ing text–image samples generated by method NEM, variations in
token number did not significantly affect the performance of CLIP
and BLIP.

For fake text–image–audio–video sample detection according to
method MM (see Table 6), the impact of geography, theme, and text
token number showed some differences.

For the geography OOD test, 𝑀3𝐴 reveals distinct differences be-
tween source and target. When shifting from North American to Asian
news outlets, Imagebind shows a slight decrease in accuracy and AUC
or text-changed tasks (e.g., Acc: 0.619 to 0.611, AUC: 0.663 to 0.639).

Languagebind struggles more with visual information, as seen in the
drop in accuracy from 0.682 to 0.636 and AUC from 0.751 to 0.689 in
image-changed tasks. This suggests a challenge in adapting to regional
variations in textual data and indicates that our geographical manipu-
lations effectively test the models’ ability to generalize across different
regions.

In sentiment OOD tests, the shift from content with negative mo-
tion (source) to content with positive (target) motion significantly
impacts performance. For Imagebind, text-changed tasks show a no-
table drop in accuracy from 0.619 to 0.509 and AUC from 0.663 to
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Table 5
OOD analysis of method NEM for falsified text–image sample detection. We report the performance on news outlet geography (source: North America
— 35 news outlets, target: Asian — 6 news outlets), news theme (source: Economy, target: International), and text token number (source: <40 tokens,
target: >40 tokens). The metric used in this table is accuracy.
Domain Type CLIP BLIP ViLT VisualBERT

Source Target Source Target Source Target Source Target

Geography

Person 0.650±0.020 0.613±0.056 0.566±0.023 0.542±0.025 0.500±0.031 0.497±0.022 0.534±0.014 0.538±0.018
Location 0.625±0.016 0.611±0.022 0.557±0.030 0.534±0.005 0.513±0.009 0.488±0.014 0.510±0.007 0.519±0.004
Organization 0.662±0.006 0.648±0.003 0.595±0.007 0.566±0.011 0.516±0.004 0.512±0.005 0.526±0.037 0.523±0.033
Complete 0.652±0.004 0.649±0.008 0.609±0.003 0.577±0.003 0.512±0.008 0.504±0.001 0.566±0.008 0.536±0.010

Theme

Person 0.679±0.058 0.553±0.010 0.558±0.041 0.520±0.014 0.521±0.015 0.506±0.004 0.531±0.024 0.510±0.007
Location 0.616±0.131 0.560±0.007 0.573±0.037 0.538±0.009 0.540±0.066 0.492±0.003 0.501±0.020 0.512±0.007
Organization 0.625±0.016 0.580±0.011 0.551±0.020 0.522±0.009 0.518±0.029 0.502±0.003 0.506±0.001 0.507±0.005
Complete 0.611±0.025 0.608±0.004 0.584±0.015 0.542±0.004 0.489±0.008 0.504±0.002 0.537±0.027 0.529±0.021

Length

Person 0.530±0.017 0.564±0.016 0.526±0.023 0.531±0.025 0.507±0.011 0.504±0.003 0.517±0.011 0.510±0.006
Location 0.546±0.017 0.557±0.017 0.513±0.002 0.533±0.019 0.470±0.018 0.500±0.000 0.493±0.006 0.510±0.007
Organization 0.597±0.030 0.645±0.004 0.538±0.026 0.552±0.025 0.501±0.015 0.504±0.005 0.532±0.024 0.530±0.021
Complete 0.653±0.006 0.635±0.002 0.631±0.013 0.584±0.002 0.513±0.005 0.503±0.004 0.575±0.011 0.552±0.006
Table 6
OOD analysis of method MM for falsified text–image–audio–video sample detection. We report the performance on news outlet geography (source: North America — 35 news
outlets, target: Asian — 6 news outlets), news sentiment (source: Negative, target: Positive), news theme (source: Politics, target: Environment), and text token number (source:

40 tokens, target: >40 tokens).
Domain Type Imagebind Languagebind

Acc AUC AP Acc AUC AP

Source Target Source Target Source Target Source Target Source Target Source Target

Geography

Text-changed 0.619±0.004 0.611±0.002 0.663±0.006 0.639±0.002 0.654±0.004 0.633±0.001 0.497±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.503±0.000 0.500±0.000
Image-changed 0.499±0.001 0.500±0.000 0.499±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.682±0.015 0.636±0.009 0.751±0.019 0.689±0.001 0.728±0.022 0.663±0.014
Audio-changed 0.582±0.004 0.602±0.001 0.618±0.004 0.647±0.001 0.612±0.004 0.637±0.001 0.571±0.003 0.563±0.003 0.616±0.006 0.601±0.006 0.616±0.005 0.594±0.006
Video-changed 0.499±0.001 0.500±0.000 0.499±0.001 0.500±0.000 0.500±0.000 0.500±0.000 0.646±0.002 0.646±0.002 0.754±0.002 0.706±0.002 0.737±0.003 0.690±0.005

Sentiment

Text-changed 0.619±0.008 0.509±0.002 0.663±0.001 0.498±0.003 0.653±0.008 0.518±0.003 0.501±0.000 0.500±0.000 0.498±0.001 0.500±0.000 0.497±0.000 0.500±0.000
Image-changed 0.498±0.003 0.500±0.000 0.496±0.002 0.500±0.000 0.493±0.001 0.500±0.000 0.638±0.005 0.650±0.005 0.690±0.006 0.709±0.005 0.658±0.008 0.684±0.005
Audio-changed 0.566±0.004 0.586±0.001 0.597±0.002 0.623±0.001 0.591±0.002 0.615±0.001 0.571±0.003 0.573±0.001 0.612±0.002 0.617±0.002 0.612±0.003 0.623±0.000
Video-changed 0.496±0.003 0.500±0.000 0.495±0.002 0.500±0.000 0.499±0.001 0.500±0.000 0.611±0.006 0.619±0.004 0.663±0.003 0.578±0.001 0.642±0.004 0.663±0.003

Theme

Text-changed 0.597±0.002 0.557±0.008 0.629±0.004 0.576±0.008 0.624±0.004 0.587±0.007 0.498±0.001 0.500±0.000 0.497±0.001 0.500±0.000 0.500±0.000 0.500±0.000
Image-changed 0.495±0.003 0.500±0.000 0.493±0.004 0.500±0.000 0.494±0.002 0.500±0.000 0.628±0.004 0.606±0.002 0.677±0.005 0.656±0.003 0.644±0.007 0.638±0.003
Audio-changed 0.552±0.006 0.572±0.000 0.570±0.012 0.600±0.001 0.566±0.011 0.591±0.003 0.526±0.003 0.555±0.006 0.542±0.001 0.592±0.006 0.540±0.002 0.600±0.007
Video-changed 0.494±0.001 0.500±0.000 0.487±0.003 0.500±0.000 0.489±0.005 0.500±0.000 0.604±0.012 0.585±0.003 0.643±0.014 0.628±0.003 0.613±0.012 0.613±0.000

Length

Text-changed 0.626±0.003 0.509±0.005 0.672±0.005 0.476±0.011 0.659±0.006 0.526±0.008 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000
Image-changed 0.499±0.001 0.500±0.000 0.499±0.001 0.500±0.000 0.500±0.000 0.500±0.000 0.679±0.015 0.684±0.013 0.747±0.018 0.751±0.013 0.719±0.002 0.730±0.012
Audio-changed 0.592±0.002 0.615±0.003 0.634±0.005 0.664±0.004 0.626±0.002 0.651±0.002 0.575±0.003 0.600±0.003 0.624±0.002 0.666±0.003 0.623±0.001 0.669±0.002
Video-changed 0.500±0.001 0.500±0.000 0.498±0.001 0.500±0.000 0.498±0.000 0.500±0.000 0.678±0.008 0.689±0.001 0.746±0.010 0.761±0.012 0.728±0.001 0.748±0.013
f
X
k

f
r
t

0.498. This indicates that Imagebind models trained on one sentiment
perform poorly when tested on another, highlighting generalization
issues.

In theme OOD tests, transitioning from ‘‘politics’’ (source) to ‘‘en-
vironment’’ (target) impacts model performance. Imagebind’s accuracy
for text-changed tasks drops from 0.597 to 0.557, with AUC decreasing
from 0.629 to 0.576. Similarly, Languagebind shows a decline in audio-
changed tasks, where accuracy falls from 0.555 to 0.526 and AUC
from 0.592 to 0.542. These results underscore the difficulty in adapting
to different thematic content, highlighting the challenge posed by
thematic shifts.

In token OOD tests, token length presents a significant challenge for
magebind when texts lengthen from short (source) to long (target).
or text-changed tasks, accuracy decreases from 0.626 to 0.509 and
UC from 0.672 to 0.476, indicating difficulty with increased content
omplexity. Conversely, Languagebind does not show a significant
hange, showing a stable performance regardless of text length.

Overall, while the models show some generalization, factors such
as geographical location, sentiment shifts, token length, and thematic
changes pose challenges. This highlights the need for robust training
strategies that accommodate diverse sources, themes, content lengths,
and sentiments to enhance real-world model generalization.
 a

9

4.4. Unimodality detection

In Tables 3(a) and (3b), we present the classification performance
on misinformation generated by methods TMG and MTG. The results
show that models exhibit low accuracy in zero-shot scenarios but
achieve high accuracy after training. This raises the question of whether
the models genuinely rely on the relationships between modalities for
classification or if they merely learn to recognize the specific patterns
in the pre-trained model outputs. To investigate this, we conduct
additional unimodality detection experiments.

Table 7 assesses the performance of single-modal (image) misin-
ormation detection. Image features are extracted using Resnet-152,
ception, EfficientNet-B1, and ViT. Resnet-152 (He et al., 2016) is
nown for its deep residual learning capabilities, Xception (Chollet,

2017) uses depthwise separable convolutions to improve performance,
EfficientNet-B1 (Tan and Le, 2019) optimizes accuracy and efficiency,
and ViT (Dosovitskiy et al., 2021) leverages transformer architecture
or image recognition. These models are well-established for image
ecognition, each with unique architectures enhancing feature extrac-
ion and classification.

The accuracy in Table 7 is consistently high, especially for Xception
nd ViT, which achieve over 90% accuracy. Considering the results
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Table 7
Performance of unimodal (image) misinformation detection. This table
shows the accuracy of different models in detecting images generated by
the TMG method. ‘‘Combined choose’’ refers to selected outputs from results
generated by all three models with the highest similarity to the original text.
The metric used in this table is accuracy.

Method Resnet-152 Xception EfficientNet-B1 ViT

Glide 0.892 0.989 0.861 0.989
Kandinsky 0.849 0.973 0.846 0.977
SD-Turbo 0.771 0.942 0.812 0.975
Combined choose 0.765 0.941 0.812 0.975

Table 8
Performance of cross-type misinformed text–image–audio–video sample detection.
Metrics include accuracy (Acc), area under the curve (AUC), and average precision (AP).
The models train on outputs generated by the SD-Turbo type in method TMG and are
tested on outputs from both SD-Turbo and Kandinsky types. The training and testing
sets do not overlap.

Type Imagebind Languagebind

Acc AUC AP Acc AUC AP

SD-Turbo 1.000 1.000 1.000 1.000 1.000 1.000
Kandinsky 0.551 0.832 0.755 0.538 0.765 0.682

Table 9
Performance of misinformed text–image–audio–video sample detection for ‘‘com-
plete’’ samples and ‘‘fixed complete’’ samples. Metrics include accuracy (Acc), area
under the curve (AUC), and average precision (AP).

Type Imagebind Languagebind

Acc AUC AP Acc AUC AP

Complete 0.829 0.912 0.909 0.500 0.500 0.500
Fixed complete 0.753 0.832 0.828 0.500 0.498 0.498

from Tables 3(a) and (3b), we can conclude that the substantial im-
provement in model performance after fine-tuning stems from model’s
ability to learn nuanced features within each modality.

4.5. Cross-type detection

Tables 3(b) and 4 show that fine-tuned models on TMG samples
achieve near-perfect accuracy, close to 100%, indicating that models
effectively capture the characteristics of these generated samples. To
assess whether these characteristics improve model generalization, we
perform cross-type detection on text–image–audio–video samples.

Table 8 shows that models trained on TMG-SD-Turbo samples,
chieve near-perfect accuracy on SD-Turbo outputs. However, perfor-
ance drops significantly when tested on a different type, such as
andinsky. This scenario is common in real-world applications, as it is
nrealistic to know the generation methods and train a detection model
ased on the data from the specific generation method in advance.

The low cross-type performance demonstrates that models trained
on one TMG type struggle to generalize across other generative meth-
ods, highlighting the need to enhance model robustness in detecting
iverse types of misinformation.

4.6. Unimodal bias test

As noted by VERITE (Papadopoulos et al., 2024), unimodal bias
rises when named entity replacements introduce factual errors, mak-
ng misinformation easier to detect. For example, replacing ‘‘Former
erman Chancellor Angela Merkel’’ with ‘‘Former German Chancellor
avid Cameron’’ leads to a clear factual mistake (see Fig. 4). To further
xplore the impact of these biases, we conduct additional tests.

We focus on the ‘‘NEM-complete’’ category, as text–image–audio–
video samples from this type have high detection accuracy and are
10
Table 10
Performance of rumour detection. Binary classification performance on the test set
etween ‘‘model-generated’’ and ‘‘with rumour’’ text–image pairs for methods TMG and
TG. The metric used in this table is accuracy.
Method BLIP CLIP ViLT VisualBERT

TMG 0.498 0.498 0.499 0.500
MTG 0.501 0.501 0.502 0.499

most likely to exhibit unimodal biases. To address this, we use the
ame APIs as in the MTG method to refine the text after named entity
eplacements. This ensures that the text remains logically consistent
nd free from obvious errors. Additionally, we provide the original

text as a negative sample to ensure the generated output differs from
the original, preserving the falsified nature of the content. The most
convincing fabricated text, with the highest BLIP cosine similarity to
the other modalities in the sample, is selected. The resulting samples
re categorized as ‘‘fixed complete’’ and undergo the same tests as the
‘complete’’ samples.

The results in Table 9 show that the ‘‘fixed complete’’ samples,
where logical inconsistencies are corrected, have lower accuracy, AUC,
and AP compared to the untreated ‘‘complete’’ samples from NEM. This
suggests that addressing unimodal biases makes misinformation more
difficult to detect, underscoring the need to minimize these biases when
generating misinformation. These corrected samples are included as an
additional component of 𝑀3𝐴, similar to an appendix, to enrich and
extend the dataset without replacing the original samples.

4.7. Rumour detection

The TMG and MTG methods were originally designed for model-
generated content detection, but we introduced variations to better
reflect real-world distributions. As shown in Fig. 4, by adding rumours
into the prompts, TMG and MTG now include both simple generated
ontent and misleading content. In Tables 3(a) and (3b), detection

results for ‘model-generated’ and ‘with rumour’ are similar, showing
low accuracy in zero-shot scenarios but significant improvement after
training. To explore this further, we conducted experiments to directly
differentiate between these two types using the same models.

In Table 10, the binary classification performance on the test set be-
tween ‘‘model-generated’’ and ‘‘with rumour’’ text–image pairs for TMG
and MTG methods hovers around 0.500 across all models. This near-
random performance indicates that the models struggle to distinguish
between samples with or without rumours even after training.

The results support our hypothesis that models rely on the dis-
tinctive patterns in model-generated data rather than the consistency
across different modalities. This underscores that 𝑀3𝐴 presents a real
challenge for models, requiring them to go beyond simple pattern
ecognition.

4.8. Failure case analysis

Fig. 2 introduces the four data types in 𝑀3𝐴: Pristine, Factual Error,
OC Issue, and Model-generated. To further illustrate the challenges,
e include Fig. 7, which shows examples of detection failures for each

data type.
In Case 1, the original text mentions a firefighter, but the name

is replaced with Arnold Schwarzenegger in this sample. People in the
image wear masks due to the pandemic, which makes it harder for
the model to detect the named entity replacement. In Case 2, the
ext and image come from different events in 2020 and 2021. Rome’s
olosseum closes and reopens multiple times, so the model needs extra

nformation to distinguish between these events. In Case 3, the image is
odel-generated. Despite the model’s strong performance, some high-

quality outputs still evade detection. In Case 4, specific textures in
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Fig. 7. Examples of failure cases from 𝑀3𝐴. This figure illustrates model detection
ailures across four data types in 𝑀3𝐴: Factual Error (Case 1), OOC Issue (Case 2),

Model-generated (Case 3), and Pristine (Case 4).

pristine samples confuse the model, leading to misidentification as
model-generated.

In conclusion, while the model performs well, there is room for im-
provement. For example, adding more external evidence might further
improve detection accuracy.

4.9. Human performance

𝑀3𝐴 maintains a high level of deception in the falsified informa-
ion. To validate this, we reference the work of NewsCLIPpings (Luo
t al., 2021) and conduct a human performance evaluation step.

The experiment proceeds as follows. We randomly select 300 text–
image–audio–video pairs from the outputs of methods NEM and MM,
otalling 600 pairs. These consist of 150 authentic and 150 falsified
xamples for each method. We recruit ten volunteers from the Univer-
ity of Queensland. For each pair, five volunteers answer the following
hree questions without using search engines or large language models.
1: Do the modalities in this pair match? (1 — yes or 0 — no) Q2: Are
ou confident in your answer? (1 — yes or 0 — no) Q3: Would you be
ore confident in your answer if you could use a search engine? (1 —

es or 0 — no).
Based on the results presented in Table 11, the key insights from

he database evaluation are as follows: (1) The average accuracy over
ll samples is 0.697 for NEM and 0.579 for MM. This clearly shows

that detecting misinformation in 𝑀3𝐴 is challenging for humans, as
the accuracy is relatively low. (2) Humans are better at identifying
pristine samples than falsified ones, with accuracy of 0.787 and 0.607
in NEM, and 0.723 and 0.436 in MM. This indicates that participants
re frequently misled by falsified content, underscoring the database’s
hallenge in creating deceptive and convincing samples. (3) The op-
imistic accuracy for falsified samples is 0.813 for NEM and 0.713 for

M. This shows that while the task is challenging, a significant portion

11
Table 11
Human performance result. Metrics include accuracy, optimistic accuracy (at least
ne participant gives the right answer), mean Q2 value and mean Q3 value. ‘‘Correct’’
nd ‘‘Wrong’’ stand for correctly predicted samples and incorrectly predicted samples.

NEM MM

Overall Pristine Falsified Overall Pristine Falsified

Accuracy ↓ 0.697 0.787 0.607 0.579 0.723 0.436
Optimistic accuracy ↓ 0.877 0.940 0.813 0.820 0.927 0.713

Overall Correct Wrong Overall Correct Wrong

Mean Q2 value ↓ 0.639 0.679 0.547 0.614 0.670 0.537
Mean Q3 value ↑ 0.681 0.651 0.750 0.684 0.674 0.697

of the falsified samples can still be correctly identified when consider-
ng the best-case scenario where at least one participant provides the
orrect answer. This reflects the inherent complexity and the need for

advanced knowledge to navigate the falsified content accurately. (4)
Participants show higher confidence in correct predictions, with Q2
scores of 0.679 for NEM and 0.670 for MM, compared to 0.547 and
0.537 for wrong predictions. (5) The mean Q3 scores are higher for
incorrect predictions (0.750 for NEM, 0.697 for MM) than for correct
ones (0.651 for NEM, 0.674 for MM), suggesting that participants
believe additional information would help when they are uncertain or
ncorrect, highlighting the complexity of 𝑀3𝐴 and the potential value
f supplementary resources in achieving better results.

The dataset evaluation demonstrates its effectiveness in generat-
ing challenging scenarios for misinformation detection. Participants
consistently perform worse when identifying falsified content. 𝑀3𝐴
successfully captures the complexity of real-world misinformation and
contributes to developing more robust detection methods.

5. Conclusion

In this paper, we introduce the Multimedia Misinformation Dataset
for Media Authenticity Analysis (𝑀3𝐴), a comprehensive large-scale
dataset designed to address the limitations of existing misinformation
detection datasets. By compiling genuine content from 60 prominent
news outlets worldwide and generating false content through various
techniques, 𝑀3𝐴 offers a diverse and extensive collection of over 7
million samples spanning text, images, audio, and video.

Our analysis demonstrates that existing detection models struggle
to generalize without specific training, highlighting the complexity and
robustness of our dataset. The poor performance of models in zero-shot
scenarios and their significant improvement post-training indicate that
𝑀3𝐴 effectively challenges models.

By providing multi-class annotations and establishing benchmarks
for various misinformation detection tasks, 𝑀3𝐴 equips researchers
with the tools needed to develop advanced detection models capa-
ble of addressing the multifaceted challenges of misinformation. This
dataset serves as a valuable resource for advancing research in out-
of-context detection, deepfake identification, fact-checking, and out-of-
distribution testing, thereby contributing to the development of more
obust and generalizable misinformation detection systems.
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