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A B S T R A C T

Renewable energy development is a critical issue in Australia, and identifying suitable regions for constructing 
renewable energy plants is an essential step towards achieving sustainable energy goals. This work presents 
insights and techniques aimed at identifying optimal locations for renewable energy stations in rural areas across 
Australia as a whole. Following the above-mentioned idea, the study uses clustering algorithms to explore the 
optimization of renewable energy site selection. The research focuses on applying these algorithms to analyze 
spatial data and identify optimal geographic clusters for potential development based on technical parameters 
like solar irradiance and wind speed. Various clustering algorithms were employed in line with our methodology, 
namely K-Means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Hierarchical clustering, 
and K-Medoids. Each algorithm generated clusters, facilitating the identification of appropriate regions based on 
a range of data attributes. A genetic algorithm was integrated into an iterative process to identify the most 
appropriate clustering method. Additionally, The HOMER Pro software was used to process the generated cluster 
centers and estimate the solar and wind energy potential for each location. The analysis revealed that solar 
panels consistently outperform wind turbines in energy generation across various clusters and algorithms. While 
the genetic K-Means algorithm performed best based on clustering evaluation metrics, the genetic K-Medoids 
algorithm produced the highest energy output. However, the latter incurred the highest financial costs, high-
lighting a trade-off between energy production and economic feasibility. This study provides valuable insights 
into the application of clustering techniques for renewable energy site selection and identifies challenges and 
limitations that require further investigation.

1. Introduction

As the global economy progresses, developed countries have placed 
substantial importance on fulfilling their renewable energy obligations. 
Major renewable energy sources include biomass, hydropower, 
geothermal, wind, and solar energy. In contrast, fossil fuels have limited 
availability and are linked to detrimental outcomes that contribute to 
unfavorable alterations, whereas the adoption of renewable energy 
contributes to decelerating the pace of global warming. Renewable en-
ergy sources are vital and can be viewed as feasible replacements, pri-
marily due to their beneficial environmental impacts. As a result, they 
have the capacity to replace fossil fuel sources [1]. Nowadays, many 
countries have adopted renewable energy sources, and it is predicted 

that the expansion of these sustainable energy industries will continue to 
thrive and progress in the future [2–4]. Solar and wind energies, the 
crucial renewable energy sources, offer substantial long-term advan-
tages that enhance sustainability and diminish pollution [5–8].

It has been proven that solar energy could be considered as a reliable 
source for generating hot water through solar photovoltaic (PV) systems, 
which have demonstrated their efficiency and effectiveness worldwide 
in recent years [9,10]. Additionally, solar thermal systems suggests the 
capability to harness thermal energy from the sun and are commonly 
employed in commercial applications [11]. It is critical to emphasize 
that solar panels are dependent on weather conditions, which means the 
energy output of photovoltaic systems depends on sunlight. Therefore, 
the efficiency of harnessing solar energy can be remarkably diminished 
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during rain or cloud cover [12]. Furthermore, the benefits of wind en-
ergy are significant, given its lack of greenhouse gas (GHG) emissions 
and associated global warming influences. It has the potential to 
generate electricity without contributing to carbon dioxide emissions 
[13]. While many research efforts have investigated possible locations 
for renewable energy ventures across Australia (e.g., [14–18]), this 
particular study stands out for its exclusive concentration on the distinct 
rural scenery of the nation. Our methodology introduces a fresh 
perspective on integrating renewable energy, paving the way for a 
transformative journey toward achieving sustainable energy self- 
sufficiency within these rural communities.

This study’s primary contribution is identifying suitable zones for 
constructing energy plants in rural parts of Australia. To achieve this 
goal, various clustering algorithms were employed, and a genetic algo-
rithm was used to optimize these algorithm’s parameters. Through the 
integration of a genetic algorithm (GA) into clustering algorithms, effi-
cient exploration of complex parameter spaces is enabled, ensuring the 
identification of optimal clustering configurations across multiple al-
gorithms. This enhances the robustness and adaptability of the approach 
to diverse data characteristics. Moreover, several evaluation metrics 
were used to compare the performance of these algorithms. Subse-
quently, the clustering outcomes were employed to estimate different 
locations’ solar and wind energy potential.

While numerous studies have explored renewable energy systems 
and site selection using clustering algorithms, there is a lack of 
comprehensive research that integrates multiple methods including 
clustering algorithms, optimization techniques, and energy simulation 
tools to evaluate site selection. Numerous previous studies, like [2], 
concentrate on particular geographical areas or a small number of ap-
proaches, frequently ignoring the relative effectiveness of clustering 
algorithms across different datasets and assessment criteria. Further-
more, from the literature, the majority of research does not discuss 
clustering parameter optimization or how it affects evaluations of 
renewable energy potential. The need for a more comprehensive, 
methodical approach to renewable energy site selection that takes into 
account a variety of approaches, real-world applications, and compar-
ative performance evaluation is highlighted by this gap in the literature.

This paper addresses the above-mentioned gaps by providing a new 
framework that combines four clustering methods (K-Means, DBSCAN, 
Hierarchical, and K-Medoids) with a GA to optimize parameter selection 
and evaluate clustering performance. The study is further strengthened 
by the incorporation of HOMER Pro software1 for energy potential 
simulation, which allows a direct comparison of solar and wind energy 
outputs across several methodologies. By using this thorough method-
ology in rural Australia, this study not only finds the best locations for 
hybrid renewable energy systems but also offers insightful information 
about the energy output and cost-effectiveness of various clustering 
strategies, which could be interesting for decision makers. These results 
provide a scalable methodology for maximizing renewable energy pro-
jects across many geographies, which is important for policymakers, 
researchers, and industry practitioners.

The remaining sections of this paper are organized as follows. Sec-
tion 2 provides an overview of the literature review. In Section 3, we 
outline the motivation behind this study. Section 4 shows the research 
methodology employed. Sections 5 to 7 detail the process of data 
exploration, demonstrate the results and delve into discussions, 
respectively. Finally, Section 8 offers the conclusion of the study.

2. Literature review

Various domains have been identified for implementing renewable 
energy techniques, encompassing solar power, wind, rainfall, tidal en-
ergy, wave power, and geothermal warmth [3,10,19]. In the present 

day, a multitude of nations globally utilize renewable energy, with the 
anticipation that the expanding markets for such energy sources will 
persist and enhance robustly in the forthcoming year [4,20]. Australia is 
known as a developed country, which possesses the high capacity for 
utilizing renewable energy sources; in addition, solar power is 
acknowledged as a dependable renewable energy source in Australia 
[14,21]. Systems such as solar photovoltaic (PV) can efficiently provide 
hot water when using sun energy. These systems have been performing 
well, and in recent years, their efficacy has been recognized on a global 
scale [9,10,22]. Moreover, solar thermal heating and cooling systems, 
which capture thermal energy from the sun during daylight hours, are 
utilized in various commercial applications [12,23]. Regarding solar 
energy, however, the efficiency of solar panels is highly dependent on 
circumstances; which means that the availability of sunshine is a pre-
requisite for producing energy through photovoltaics.

Furthermore, wind energy has the least negative environmental ef-
fect when compared to other energy sources like fossil fuels [24]. While 
Australia still uses fossil sources, renewable sources such as solar and 
wind power significantly are utilized in energy and electricity genera-
tion. This is mainly because these forms of energy have numerous 
environmental benefits compared to their fossil fuel counterparts 
[25,26]. On the other side, using wind energy comes with several 
drawbacks; for instance, obtaining precise weather data such as wind 
speed and load specifications for a specific location is critical, presenting 
a challenge in using wind energy. Also, appropriate weather data is a 
prerequisite for assessing the efficiency of an existing system [27].

Moreover, due to their weather dependency, a significant disad-
vantage of relying solely on renewable energy sources is their inability 
to provide a constant energy supply. Therefore, combining these energy 
sources is suggested to boost the overall energy yield. Consequently, it is 
important to employ a suitable optimization system to determine the 
optimal mix of solar panels and wind turbines. An additional advantage 
of such a hybrid system is that combining solar and wind energy can 
minimize the need for battery banks and diesel. As a result, the hybrid 
renewable solution is ideally suited to reduce energy demands. Hybrid 
renewable energy systems (HRESs) commonly combine various types of 
renewable energy sources to improve overall system efficiency and 
ensure a reliable and consistent energy supply [28,29]. Identifying the 
optimal sites for deploying a distributed HRES poses a significant chal-
lenge, and data mining-based strategies are renowned for effectively 
solving this issue. Several studies employ data mining methods in this 
field, for instance, approaches that utilize a geographical information 
system (GIS) for spatial data mining [30], a data mining-based optimal 
demand response program [31], and other approaches [32–34].

Regarding strategizing for hybrid renewable installations, a rich and 
deep research in the area can be found in [35]. For example, in a study 
by Kazak et al., [36], a decision support system was designed to aid 
decision-makers in identifying suitable locations for both single-source 
and HRES installations to fulfill energy production needs. In a sepa-
rate research, Kanata et al. [37] proposed an ideal setup and conducted a 
techno-economic evaluation of an HRES located on Sebesi Island within 
the South Lampung Regency of Indonesia. The task of identifying 
optimal locations for the deployment of a decentralized HRES presents a 
complex challenge, and the utilization of data mining-driven approaches 
is recognized as a potent strategy for addressing this issue [38–40]. 
Additional studies encompass various approaches, including a spatial 
data mining method based on geographical information systems (GIS) 
proposed by Kaundinya et al. [30], a data mining-based optimal demand 
response program by Babaei et al. [31], heuristic algorithms as pre-
sented by [41], and the integration of metaheuristics and clustering 
algorithms by [42,43]. Other noteworthy methods involve the work of 
[32,34].

Regarding the strategic development of hybrid renewable in-
stallations, there is an wealth of literature available on this topic 
[35,44,45]. In the study conducted by Kazak et al. [36], the authors 
introduced a decision support system designed to aid decision-makers in 1 A free version liscence.
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identifying suitable sites for both individual renewable energy sources 
and hybrid systems. This system aims to fulfill energy production re-
quirements. In a different research effort, Kanata et al. [37] proposed an 
optimal configuration and carried out a techno-economic evaluation of 
an HRES implemented on Sebesi Island, located within the South 
Lampung Regency of Indonesia. This study introduced a holistic hybrid 
system design, taking into account technological, economic, and envi-
ronmental considerations.

Marocco et al. [46] deliberated on the optimal configuration of off- 
grid HRESs, considering both the levelized energy cost (LCOE) and 
CO2 emissions as simultaneous factors. Various elements, including 
photovoltaic panels, wind turbines, batteries, hydrogen, and diesel 
generators, were explored to create diverse HRES setups, leading to 
Pareto fronts that showcase the trade-offs between costs and emissions 
for different configurations. Di Grazia and Tina [47] introduced a 
methodology that combines GIS and Multi-Criteria Decision Analysis 
(MCDA) for identifying ideal Fixed Photovoltaic (FPV) sites. In the 
aforementioned study, the authors illustrated this approach by selecting 
the San Giovanni Dam in Sicily from seven watersheds. This example 
highlighted the advantages of the proposed method, particularly for 
regions with high-temperature conditions. Wei et al. [48] conducted a 
comprehensive review that delves into the trends, models, and chal-
lenges within the realm of hybrid renewable energy research, encom-
passing the years 2000 to 2022. Their review involved synthesizing 
various energy systems, making comparisons between methodologies, 
tackling issues of uncertainty, and offering insights into potential di-
rections for future advancements.

Addressing energy issues in rural and isolated locations has centered 
on optimizing renewable energy systems. Holloway et al. [2] recently 
utilized data mining, specifically the K-Means and K-Medoids clustering 
algorithms, to pinpoint optimal locations for deploying HRESs in rural 
Western Australia. While K-Medoids showed higher solar and wind en-
ergy potential in some locations, K-Means performed better overall, 
considering data clustering and energy requirements within clusters. 
The study mentioned above solely focused on one Australian state as a 
case study and applied two clustering algorithms. Kumar and Channi 
[49] delved into the feasibility of an HRES that combined PV and 
biomass energy sources to fulfill the energy requirements of a rural 
village in India.

Alavi et al. [50] showed the economic and environmental advan-
tages of hybrid wind and hydrogen systems, by using using the ELECTRE 
approach, reducing CO2 emissions by 97 % when compared to con-
ventional diesel-based systems. Similar to this study [51], used the 
TOPSIS technique to evaluate solar water pumping systems, ranking 
locations according to factors like regional demand, solar irradiation, 
and proximity to infrastructure. The significance of site-specific opti-
mization strategies for guaranteeing energy sustainability and cost- 
effectiveness is highlighted by these studies.

The integration of hybrid energy systems into a variety of applica-
tions, including water desalination and biomass-based power plants, has 
demonstrated considerable capacity. Multi-Criteria Decision-Making 
(MCDM) techniques were used by [52] to determine the best locations 
for biomass plants, with a focus on regional resource usage for greatest 
impact. The environmental benefits of combining solar, wind, and 
biomass technologies were also investigated by Sadeghi et al. [53], who 
showed notable emission reductions. Furthermore, [54] improved the 
performance of hybrid systems that power reverse osmosis facilities by 
combining Portfolio Theory and Particle Swarm Optimization (PSO), 
which decreased costs and increased system reliability.

Seyed Alavi et al. [55] employed MCDM methods (TOPSIS, ELEC-
TRE, SAW) to optimize wind farm site selection in Iran, emphasizing 
geographical and infrastructural factors like distance to power lines and 
annual wind speed. [53] optimized a hybrid solar-wind-biomass-battery 
energy system for rural electrification in Iran using HOMER software, 
achieving significant CO2 emission reductions and economic benefits. 
[56] proposed enhancements to particle swarm optimization (PSO) 

algorithms for sizing hybrid photovoltaic-diesel-battery systems in 
remote areas, achieving cost-effective and reliable energy supply solu-
tions. [57] explored the optimal operation of grid-connected fuel cell- 
based combined heat and power systems, demonstrating the economic 
and environmental viability of PSO-optimized energy systems for resi-
dential use.

One creative way to democratize and decentralize energy systems is 
through Renewable Energy Communities (RECs). [58] presented a so-
lution for REC planning and operation optimization according to GA 
approach that decreased solar energy surplus, maximized self- 
consumption, and shortened payback periods. Similar to the above- 
mentioned study, [59] created an investment optimization model to 
aid in REC decision-making, emphasizing operational electricity sharing 
and renewable energy production. Both studies presented RECs appli-
cation in local energy production, usage, and financial gains.

In off-grid applications where cost and dependability are crucial, the 
importance of sophisticated optimization techniques in hybrid RES is 
clear. The performance of hybrid pumped hydro and battery storage 
systems was investigated by [60], who showed that they could reduce 
energy curtailment while maintaining a 100 % power supply. These 
systems were able to reach cost-effective configurations while main-
taining sustainability by utilizing sophisticated algorithms such as PSO. 
In conclusion, these results highlight the significance of site-specific 
strategies, hybrid arrangements, and computational techniques in 
accelerating the shift to a decentralized and sustainable energy future.

While several studies have employed clustering algorithms for 
renewable energy site selection, including those focusing on specific 
regions this study offers a more comprehensive framework that com-
bines a genetic algorithm for parameter optimization with several 
clustering techniques (K-Means, DBSCAN, Hierarchical, and K- 
Medoids). The current study provides a comparative examination of 
clustering approaches utilizing a comprehensive dataset covering all 
rural regions of Australia, in contrast to previous research that 
frequently concentrate on a single algorithm or small datasets. Addi-
tionally, this study is one of the first to assess the solar and wind energy 
potential for cluster centers that have been discovered using HOMER Pro 
software, allowing for a thorough comparison of energy outputs and 
financial expenses across the country.

Additionally, this work addresses a critical gap in the literature by 
optimizing clustering algorithm parameters to improve site selection 
accuracy and efficiency. By integrating technical attributes, such as solar 
irradiance and wind speed, and conducting a multi-dimensional evalu-
ation of energy production and cost-effectiveness, this research provides 
a scalable methodology applicable to diverse geographies. These con-
tributions not only advance renewable energy site selection techniques 
but also offer actionable insights for policymakers and stakeholders 
aiming to enhance energy sustainability in rural Australia.

3. Motivation

Australia’s energy dilemma has been worsened in recent years by the 
frequency of catastrophic weather, including two more populous states, 
New South Wales and Victoria—projected to experience insufficient 
power supply. In March 2022, significant flooding in New South Wales 
and Queensland caused two coal mines to reduce production. Another 
cause of electricity outages is the cold snap. Since the cold snap hit in 
June, Australia has quickly transitioned into winter, the temperature has 
exceeded records, and there is a considerable rise in demand for electric 
heating. On Australia’s east coast, a fifth of the coal-fired power facilities 
is either being repaired, shut down, or not in operation due to break-
downs, creating a 4,000 megawatt gap. Energy deprivation in rural areas 
of Australia is only going to be worse compared to cities. With increasing 
energy demand due to the growing population and reliance on fossil 
fuels, the use of fossil fuels increases the risks of climate change.

Rural regions in Australia are identified into three groups: large rural 
centers (with a population ranging from 25,000 to 99,999), small rural 
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centers (with a population between 10,000 and 24,999), and other rural 
areas (with a population below 10,000). As a result, all rural areas in the 
country share the common feature of having a population of less than 
100,000 individuals. About 28 % of Australia’s total population resides 
in these rural towns, amounting to a collective rural population of 
7,210,516 people. This computation is derived from Australia’s overall 
population, which was reported as 25,750,200 as of September 2021 
(Statistics 2020).

While rural towns in Australia possess sufficient energy connectivity 
and transmission infrastructure, the electricity supplied to these areas 
predominantly comes from non-renewable sources, particularly fossil 
fuels. Fossil fuels contribute to the generation of approximately 76 % of 
the provided electricity, with coal accounting for 54 %, gas for 20 %, and 
oil for 2 %.2 Between 2019 and 2020, a mere 7 % of Australia’s elec-
tricity generation came from renewable sources, underscoring the need 
for progress in this sector. In light of this, the primary aim of this study is 
to identify the best locations for hybrid renewable energy installations 
utilizing both solar photovoltaic and wind resources across rural 
Australia. The overarching objective is to maximize the utilization of 
renewable energy potential. Regarding the significant gap between the 
energy generated by solar and wind installations across Australia and 
the country’s energy consumption, urbanized areas have been inten-
tionally excluded from the scope of this research.

Although Australia’s energy supply does include a portion derived 
from fossil fuels, the incorporation of clean energy sources such as solar 
and wind power carries significant significance in the country’s energy 
and electricity production (Figs. 1 and 2). Previous research endeavors 
have placed considerable emphasis on evaluating appropriate locations 
for deploying renewable energy systems (RESs) in the rural regions of 
Australia. This study seeks to make a substantial contribution by 
addressing a notable research gap concerning optimizing HRESs. The 
primary objective of this study is to pinpoint prospective locations for 
implementing decentralized hybrid renewable energy generation sys-
tems in rural regions throughout Australia. While prior studies have 
delved into potential sites for renewable energy systems in various rural 
areas of Australia [2,61–66], the present research aims to offer a more 
thorough and detailed examination of this subject.

To the best of our knowledge, this research marks the inaugural 
dedicated endeavor concentrated solely on rural regions spanning the 
entire nation of Australia. Our research aims to underscore not only the 
technical viability and energy generation potential of HRESs but also 
their potential to bring about favorable effects on local communities, 
economies, and the environment. By scrutinizing locations character-
ized by abundant solar radiation and strong wind speeds to optimize 
energy generation, our intent is twofold: to contribute to the seamless 
integration of renewable energy and to illuminate the considerable 
benefits that these systems bring. These advantages encompass dimin-
ished electricity expenses, reduced upkeep expenditures, and curbing 
greenhouse gas emissions. Our concentration on rural Australia is 
motivated by the aspiration to bridge this gap in existing literature. Our 
objective is to furnish a thorough examination that encompasses not 
only the technical intricacies but also the socio-economic dimensions of 
integrating renewable energy.

Rural regions generally exhibit lower energy requirements compared 
to suburban areas, creating a viable scenario for meeting the energy 
needs of rural communities solely through renewable sources. Consis-
tent with this goal, our objective was to pinpoint the most appropriate 
locations—those characterized by steady solar irradiation and intense 
wind speeds—to install hybrid renewable energy facilities that integrate 
both solar photovoltaic and wind energy sources. In particular, we 

focused on select rural zones within Australia. Leveraging the HOMER 
software3 (LLC, n.d.) and employing various clustering methodologies, 
we conducted an analysis to pinpoint areas with the potential to sustain 
HRESs capable of providing ample power to the surrounding vicinity. 
The present study encompasses the following inquiries: 

• Which regions in rural Australia encounter substantial solar 
irradiation?

• Which areas in rural Australia have elevated wind speeds and 
frequent wind occurrences?

• How does the application of diverse clustering methods influence the 
arrangement of clusters?

• What is the expected energy production (measured in kWh/yr) from 
HRESs in each cluster?

• Which locations within Australia are best suited for the installation 
of HRESs?

To summarize, this study aims to fill a knowledge void within rural 
Australia by offering valuable perspectives on the feasibility of incor-
porating renewable energy sources. This endeavor contributes to sus-
tainable progress and self-reliance in terms of energy for rural 
communities in the area.

4. Research methodology

To achieve the research objectives, the method we will undertake to 
answer the research problem will include: analysis and filtration of the 
Australian Towns Dataset, Transform data into format readable by 
clustering algorithms, implementation of clustering algorithms, opti-
mization algorithm using GA, comparing the algorithms using metrics, 
input centroids locations into HOMER PRO software for processing, 
evaluate and analyze results. In accordance with this methodology, we 
will collect data from and analyze the data presented from the Austra-
lian towns dataset, which contains necessary data about Australian 
towns. Given the unique traits of our data and research objectives, 
integrating these techniques was deemed the most effective approach. 
We incorporated a GA in an iterative process to identify the most suit-
able clustering method. This approach, we believe, was the most fitting 
given the high-dimensional and potentially noisy nature of our data.

As the desired solution does not require a modelling technique, 
clustering algorithms will be implemented for the solution presented. 
The chosen clustering algorithms include: K-Means, DBSCAN, Hierar-
chical clustering, and K-Medoids. Each algorithm will construct a total of 
10 clusters (K = 10), as a uniform test for each algorithm. As a further 
form of analysis, each algorithm will be optimized as a GA. The purpose 
of implementing GA in the clustering algorithms is to further optimize 
the algorithms themselves to produce a more suitable result. GAs opti-
mize a solution by searching for the highest score-producing solution 
based on its fitness function, operating on a number of generations. 
Within each generation, the algorithm obtains the best solution and 
alters its parameters randomly to find its next best solution. Finally, each 
algorithm will be evaluated using three unsupervised machine learning 
evaluation metrics, namely: Silhouette [67], Davies Bouldin (DB) [68], 
and Calinski Harabasz’s scores [69] (Fig. 3).

The method we will undertake to answer the research problem is as 
follows: Analyzing and filtering the Australian Towns Dataset, Trans-
forming data into a format readable by clustering algorithms, imple-
menting clustering algorithms, optimizing algorithm output using GA, 
comparing the algorithms using metrics, inputting centroid locations 
into HOMER PRO software for processing, evaluating and analyzing 
results. Each genetic algorithm clustering technique’s resulting cluster 
centres output will form the input into the HOMER Pro software. The 
HOMER Pro software will generate the cluster centres’ potential solar 2 Australian Government: Department of Industry, Science, Energy and Re-

sources. (2020). States and territories. https://www.energy.gov.au/data/state 
s-and-territories.

3 Free trial version (3.15.3_x64).
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and wind energy [2]. The resulting energy output will be compared for 
each algorithm according to its efficacy as a solution to the problem.

4.1. Clustering algorithms

The employed clustering methods in this study are defined as 
follows: 

• K-means clustering: In the implementation, the scikit-learn library’s 
implementation of K-means is utilized and employed methods such 
as the elbow method or silhouette analysis to determine the optimal 
value of ’k’. The appeal of K-means lies in its simplicity and effi-
ciency. It neatly partitions datasets into ’k’ clusters. It performs best 
when the clusters are spherical and evenly sized, and when the 
dataset is devoid of outliers. Therefore, careful consideration must be 
given to the selection of ’k’ and the initial centroids.

• DBSCAN: This technique excels in handling spatial clusters of various 
shapes and sizes and effectively managing noise and outliers. Given 
the heterogeneous density within our dataset, DBSCAN was chosen 
for its adaptability in forming clusters. The algorithm’s parameters, 
such as epsilon (eps) and the minimum number of samples (min_-
samples), are tuned based on domain knowledge and visual inspec-
tion of the data.

• Hierarchical clustering: This algorithm offers a distinct advantage as 
it does not mandate the specification of the number of clusters 
upfront. It begins by treating each data point as an individual cluster, 
and then sequentially merges these based on similarity, resulting in a 
dendrogram of clusters. However, a caveat of hierarchical clustering 
is its irreversibility − once two clusters are combined, the decision 
cannot be undone, which might lead to less-than-optimal results. The 
agglomerative hierarchical clustering algorithm from the sci-kit- 
learn library is employed, and dendrograms are used to visualize 

Fig. 1. Average daily solar exposure (http://www.bom.gov.au/climate/maps/averages/solar-exposure).

Fig. 2. Average wind velocity (http://www.bom.gov.au/climate/maps/averages/wind-velocity).
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the hierarchical clustering process and determine the appropriate 
number of clusters.

• K-medoids clustering: K-medoids were chosen for their robustness in 
scenarios where dataset stability is crucial. This technique suggests 
as a robust alternative to K-means. It shines when the dataset con-
tains outliers or non-normal distributions, thanks to its use of actual 
data points rather than means as cluster centers. Despite being 
computationally more intensive, its robustness makes it an excellent 
choice when dataset sturdiness is paramount.

The clustering process in this study was conducted using Python 
programming, with clustering algorithms implemented through li-
braries such as Scikit-learn and Scikit-learn-extra. Python programming 
was used to implement the clustering procedure in this study, and Scikit- 
learn and Scikit-learn-extra libraries were used to conduct the clustering 
methods. The K-Means, DBSCAN, Hierarchical, and K-Medoids algo-
rithms were executed more easily on spatial data from the Australian 
Towns Dataset thanks to these technologies. Latitude and longitude 
coordinates were the main spatial inputs for clustering, which were 
supplemented by other characteristics like population and land area to 
fine-tune cluster allocations. Raster data inputs, including solar radia-
tion and wind speed obtained from NASA’s Prediction of Worldwide 
Energy Resources, were preprocessed and aligned with the spatial point 
data format. Python tools such as Matplotlib and Folium were used to 
visualize the clusters produced by these algorithms. The centroids of the 
resultant clusters were then fed into the HOMER Pro software to assess 
the potential for renewable energy and improve site selection.

Table 1 provides a comprehensive overview of the parameters uti-
lized in both the GA and the clustering algorithms. It outlines key aspects 
such as the number of clusters (k), the number of generations, the se-
lection type, crossover type, crossover probability, mutation type, mu-
tation replacement, mutation rate, and other relevant parameters. This 
concise summary enhances the transparency of the methodology, aiding 
readers in understanding the approach and facilitating an assessment of 
its robustness.

4.2. Evaluation metrics

In the realm of clustering, gauging the efficacy of a particular method 
is a complex task. Hence, we adopted a quartet of distinct evaluation 
metrics to compare and contrast the effectiveness of each hybrid algo-
rithmic approach. These metrics provide invaluable insights into the 
various aspects of the clustering output. They help us to assess the 
compactness of our clusters, the degree of separation between them, and 
the appropriateness of the number of clusters formed. Here’s a snapshot 
of the metrics employed:

4.2.1. Silhouette score
Cluster evaluations rely on the silhouette score, which assesses the 

degree of similarity between an object and its own cluster relative to 
other clusters. The silhouette score falls within a spectrum from − 1 to 1, 
where higher values signify superior clustering outcomes.

4.2.2. Davies Bouldin score
Much like the Silhouette Score, the DB Score serves as a metric for 

evaluating clustering quality. It assesses clustering quality by consid-
ering both cluster separation and cluster compactness. Lower values of 
the DB Score indicate superior clustering results, indicating improved 
cluster separation and compactness.

4.2.3. Calinski Harabasz score
The Calinski-Harabasz (CH) score quantifies the accuracy of clus-

tering outcomes. Elevated CH scores denote superior clustering results, 
and they are computed based on the ratio of within-cluster variance to 
between-cluster variance.

Fig. 3. Flow Chart of the Research Methodology.
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4.2.4. Differences
The Silhouette Score places importance on both intra-cluster simi-

larities and inter-cluster dissimilarities. In contrast, the Davies-Bouldin 
score focuses on cluster separation and compactness. Meanwhile, the 
CH score highlights the ratio of variance within clusters to variance 
between clusters. Each of these methods has its own set of advantages 
and disadvantages, and the choice of which method to use depends on 
the specific problem. It is important to note that these evaluation metrics 
have their unique strengths and limitations, and their effectiveness 
hinges on the specifics of the data and the study’s requirements. In the 
subsequent sections of this work, we will dig deeper into these metrics’ 
underpinnings, shedding light on how they have guided our quest to-
ward the most appropriate clustering technique for this study.

4.3. HOMER Pro software

HOMER is widely recognized and used in both academic and pro-
fessional settings for hybrid renewable energy systems. Its extensive use 
across various studies in both academia and industry provides a solid 
foundation for comparability and validation against established bench-
marks in renewable energy research [35,70]. The software offers 
comprehensive tools for simulating various energy sources and their 
interactions, which are crucial for analyzing hybrid systems. Moreover, 
HOMER Pro’s ability to model different configurations and sensitivity 
scenarios allows us to explore a range of potential outcomes and identify 
robust strategies for rural energy deployment [71–73].

The current study suggested a combination of wind turbines and 
solar PV panels as its main energy sources, with battery storage for peak 
load control and energy dependability. Through the use of an inverter, 
the solar PV panels transform sunlight into direct current (DC) power, 
which is subsequently converted into alternating current (AC) for grid 
compatibility. Direct AC power generation from wind turbines is either 
used right away or transformed into DC for lithium-ion battery storage.

The battery storage system makes up for energy losses during times 
of low wind or solar irradiance, ensuring a steady supply of power. The 
system’s operational longevity is also increased by a charge controller, 
which controls the battery charging process to avoid overcharging or 
discharging beyond safe limits.

To maximize power distribution among energy generation, storage, 
and load demand, the system uses an energy management controller. 
While preserving grid stability, this controller gives priority to the uti-
lization of renewable energy. The excess electricity is either exported to 
the grid or stored in the batteries when the output of renewable energy 
surpasses the use. On the other hand, the energy stored in the batteries is 
used to meet load requirements during times of high demand or 
decreased generation. By ensuring a balanced and effective energy flow, 
this integrated strategy reduces reliance on non-renewable resources 
and improves the sustainability of the system.

4.4. Numerical analysis domains

The numerical analysis domains in this study focus on evaluating 
clustering algorithms and hybrid renewable energy system performance. 
Clustering techniques (e.g., K-Means, DBSCAN) using latitude, longi-
tude, sun irradiance, and wind speed are used in spatial data analysis to 
categorize regions, which are then displayed through geographic map-
ping for regional suitability across the country. Moreover, Energy Pro-
duction Analysis simulates solar and wind energy outputs using HOMER 
Pro. Average wind speeds are used to gauge wind turbine efficiency, 
while Global Horizontal Irradiance (GHI) is used to gauge solar panel 
performance. In order to assess viability, economic feasibility takes into 
account indicators such as operational costs, Net Present Cost (NPC), 
and Levelized Cost of Energy (LCOE). In order to optimize site selection, 
Algorithmic Performance assesses the compactness and separation of 
clusters using metrics such the CH Score, Davies-Bouldin Index, and 
Silhouette Score.

Table 1 
Algorithm Parameters Summary.

Algorithms 
Parameters

GA − Kmeans 
Clustering

GA − DBSCAN Clustering GA − Hierarchical Clustering GA − K − Medoids Clustering

Clustering Algorithm 
Library in Python

sklearn.cluster. 
KMeans

sklearn.cluster.DBSCAN sklearn.cluster. 
AgglomerativeClustering

sklearn_extra.cluster.KMedoids

Genetic Algorithm 
Library

pygad pygad Custom genetic algorithm 
implementation

pygad

Number of clusters (k) 10 Not applicable (DBSCAN is a density- 
based clustering algorithm)

10 10

Number of 
generations

1000 100 10 100

Number of parents 
mating

5 5 50 (implicit, calculated as half of the 
population size)

10

Solutions per 
population

50 50 100 50

Number of genes k * X.shape[1] 2 (eps, min_samples) Not applicable Not applicable(KMedoids doesn’t use genes; it 
directly selects cluster centers, known as Medoids, 
from the dataset.)

Gene type float float (for eps) 
int (for min_samples)

Not applicable Not applicable

Gene value range − 45 to 160 eps: Randomly selected from 0.1 to 1; 
min_samples: Randomly selected from 
2 to 10

Not applicable Not applicable

Selection type steady state 
selection

steady state selection implicit selection based on fitness 
value silhouette_score

steady state selection

Crossover type single_point Not applicable (crossover operation not 
explicitly defined for GA-DBSCAN)

Not applicable Not applicable

Crossover probability 0.25 Not applicable Not applicable Not applicable
Mutation type random random Not applicable None (Mutation is disabled in this type)
Mutation replacement True True Not applicable Not applicable
Mutation value range − 45 to 160 eps: Mutated by adding a random value 

between − 0.05 and 0.05; 
min_samples: Mutated by adding a 
random integer between − 1 and 1

Not applicable Not applicable

Mutation rate 10 % 10 % Not applicable Not applicable
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5. Data exploration

The dataset used for analysis and clustering in this work is the 
Australian Towns List4. Regarding the data source, the Australian Towns 
dataset from the Ready-to-use List of Australian Towns has been utilized, 
sourced from the website https://www.australiantownslist.com/. This 
dataset encompasses detailed information on all 15,323 cities, towns, 
villages, and suburbs in Australia, including state, postcode, latitude- 
longitude, local government, region, population, and more. The data 
is collected from the Australian Bureau of Statistics, Geoscience 
Australia, and the latest census releases, with updates made on April 22, 
2023. The website pledges a comprehensive update of the data every 
quarter, subjected to regression testing and quality assurance checks 
before release, and offers real-time online search for data testing. 
Moreover, the website has been operational since 2012, serving hun-
dreds of Australian or international businesses, allowing them to freely 
utilize the data for commercial purposes. We opted for this dataset 
because it provides the most comprehensive, accurate, timely, and 
commercially usable information on Australian towns, meeting the re-
quirements of our research. Table 2 provides an overview of the data 
layers utilized in this study, including their spatial resolution, sources, 
and types. This summary clarifies the structure and attributes of the 
datasets, facilitating a better understanding of the methodology applied.

In order to gain access to the more extensive dataset, as it includes 
geographic details such as place name, urban area, state code, state, 
postcode, latitude, longitude, population, median income, elevation, 
area (km2), local government area, region, time zone, and type. While 
not all the attributes are required for use in the discovery stage, the data 
is relevant for use in the exploration stage and are defined as follows:

5.1. Data attributes

The most relevant data attributes used for both exploration and 
implementation are the attributes pertaining to a location: Name, State, 
Latitude, Longitude, Population, Area (km2), Region and Type.

Name: Indicates the location’s official name as a text string of a 
maximum of 37 characters. Each name follows a strict naming 
convention as specified by the dataset creators.

State: Presents the full name of the Australian State, can only be a 
single value, formatted as a string, i.e., New South Wales or Victoria, etc.

Latitude and Longitude: The WGS83 Latitude and Longitude co-
ordinate value for the location’s center point. Takes a float value of 5 
decimal place precision.

Population: Integer value of the number of people who reside in the 
location record as found in the 2021 census.

Area: Floating point value of the Area of a location represented in 
km2. Uses 3 decimal place precision.

Region: A string value represents the ABS Level 4 Statistical Area 
under which the location is classified.

Type: A string value indicating the category of location can be one of 
the following options: “Rural locality,” “Urban locality,” “Major urban 
locality” (with a population exceeding 20,000), or “Suburb.”

5.2. Preprocessing

The preprocessing process starts with filtering out unnecessary data 
for use in the implementation. Specifically, locations not classified as 
“Rural locality” under the attribute type are omitted. A further search of 
the data found that there were locations with 0 population or greater 
than 10,000; these locations were omitted since they were deemed 
irrelevant as those with 0 population would not require energy re-
sources, and those with 10,000 people or greater are not considered in 
the constraints of this work. Another interesting finding was the 

inclusion of Norfolk Island, Christmas Island and Lord Howe Island. In 
the dataset, these locations are off the mainland of Australia and would 
not necessarily benefit from the energy sites developed in the solution. 
Moreover, they may affect the clustering algorithm, which would use its 
outlying longitude and latitude attributes to develop its clusters. Finally, 
two towns with a recorded 0 km2 area were omitted. This process was 
aided by Microsoft Excel, of which each preprocessing step occurred in a 
new sheet (Supplementary file).

The purpose of this filtration of data is due to the constraints of the 
research problem as well as the practicality of the energy station 
installation. The constraints outline that these sites are to be in rural 
areas with low populations and enough space to install solar panels and 
wind turbine sites.

Following the exclusion of non-rural locations and towns with pop-
ulations exceeding 10,000, the dataset retained a total of 9,625 towns. 
Among these, the majority of suitable towns, numbering 2,774, are 
situated in New South Wales, with Queensland (2,094) and Victoria 
(2,006) following closely. Additionally, Western Australia and South 
Australia each have 1,033 and 1,044 towns, respectively, meeting the 
stipulated criteria, while Tasmania accounts for 525 towns that fit the 
conditions (Fig. 4).

Regarding population size, a substantial portion of regions, specif-
ically 6,705 regions, have populations ranging from 0 to 150 in-
dividuals. These regions satisfy the fundamental criteria for the 
installation of a power plant. Most of the towns in the dataset consist of 
this attribute, making the data suitable for the study implementation 
(Fig. 5). Other notable data points include: 

• Highest Latitude: Ugar Island, Queensland (− 9.51)
• Lowest Latitude: Recherche, Tasmania (− 43.54)
• Highest Longitude: Broken Head, New South Wales (153.59)
• Lowest Longitude: Dirk Hartog Island, Western Australia (113.05)
• Highest Elevation: Charlotte Pass, New South Wales (1837)
• Lowest Elevation: The Percy Group, Queensland (− 19)
• Largest Population: Kialla, Victoria (8,667)
• Largest Area: Telfer, Western Australia (178,407 km2)

6. Results

In order to visualize the algorithm’s output practically, we utilized a 
combination of Matplotlib and folium. Map libraries. Additionally, we 
used the geoJSON map data from GitHub for Australian states and ter-
ritories; this data is used alongside the folium. Map library as a map 
background that can display the longitude and latitude data of each 
town site, additionally showing the centre point of each cluster5.

6.1. HOMER PRO

The HOMER software is used to compare the clustering centers ob-
tained by different algorithms. Enter a coordinate into HOMERPRO and 
download solar and wind resource information for that coordinate from 
“NASA Prediction of Worldwide Energy Resources”, we will be able to 
predict how much renewable energy we can get from local solar panels 
and wind turbines.

For example, we choose (− 38.86365047,146.8174897) this coordi-
nate, and we can obtain this information below (Figs. 6-8). We will 
introduce more information in the Finding Section.

Below are the specified settings for the configuration. 

• Wind Turbine: Generic 3 kW
• Solar Panel: Generic Flat Plate PV
• Battery: Generic 1-kWh Lithium-Ion Battery

4 australiantownslist.com. 5 <https://github.com/rowanhogan/australian-states>.
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We intentionally chose specific parameters, such as the Generic 3 kW 
Wind Turbine, Generic Flat Plate PV solar panel, and Generic 1-kWh 
Lithium-Ion Battery, in order to strike a balance between representing 
commonly used technologies and conducting a feasibility assessment 
within the scope of our study. While there is the prospect of a design 
process geared towards maximizing renewable sources in identified 
clusters, it is crucial to recognize our research’s practical constraints and 

objectives. Our main focus was evaluating the potential energy output 
and feasibility of hybrid renewable energy systems in specific rural areas 
of Australia. By employing standard values for the wind turbine, solar 
panel, and battery, we aimed to provide an initial analysis of energy 
potential rather than exhaustively optimizing each component.

Table 2 
Overview of Data Used.

Layer Spatial Resolution Source Layer Type Description

Town Locations Point Data Australian Towns Dataset Vector (Point) Latitude and longitude coordinates of towns in Australia.
Population Data Administrative 

Level
Australian Bureau of Statistics Attribute Table Population data from the 2021 census for each town.

Geographic 
Boundaries

1:100,000 Australian Towns Dataset Vector 
(Polygon)

Boundaries of Australian states and territories.

Solar Radiation Global NASA Prediction of Worldwide Energy 
Resources

Raster Global Horizontal Irradiance (GHI) data for solar energy potential 
assessment.

Wind Speed Global NASA Prediction of Worldwide Energy 
Resources

Raster Average wind speed data for renewable energy evaluation.

Land Area Administrative 
Level

Australian Bureau of Statistics Attribute Table Area in km2 for each town or locality.

Fig. 4. The Distribution of townsites in different Australian States.

Fig. 5. The Population Distribution in Twnsites.
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6.2. Visualize the clustering results

In alignment with our chosen approach, we intend to collect and 
evaluate data from the Australian Towns Dataset, which provides 
fundamental details about towns in Australia. Given the unique attri-
butes of our data and our research objectives, we have opted for a 
strategy involving diverse methods. Specifically, a GA has been incor-
porated into a repetitive procedure to determine the most optimal 
clustering technique. We hold the view that this method is the most 

fitting one, considering the intricate and possibly turbulent character-
istics of our data, which is characterized by a high number of 
dimensions.

As our desired solution does not require a specific modelling tech-
nique, we will implement clustering algorithms for the proposed solu-
tion. The chosen clustering algorithms include K-Means, Hierarchical 
clustering, DBSCAN, and K-Medoids. For consistent evaluation, each of 
these algorithms namely, K-Means, Hierarchical clustering, and K- 
Medoids will generate ten clusters (K = 10) while DBSCAN 

Fig. 6. Solar GHI Resource of location (− 38.86365047,146.8174897).

Fig. 7. Wind Resource of location (− 38.86365047,146.8174897).
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automatically determines clusters based on data density. To further 
enhance their performance, we will optimize each algorithm using a GA 
from the Scikit-learn library as an additional analytical step. Genetic 
Algorithms aim to improve solutions by searching for the highest- 
scoring solution based on their fitness function over multiple genera-
tions. The algorithm identifies the best solution in each generation and 
introduces random parameter adjustments to find the next best one. 
Ultimately, we will assess the performance of each algorithm using three 
evaluation metrics: Silhouette, DB, and CH scores.

Our approach to addressing the research problem will involve 
several steps: 

• Analyzing and filtering the Australian Towns Dataset.
• Transforming the data into a format compatible with clustering 

algorithms.
• Implementing clustering algorithms.
• Optimizing algorithm outputs using GA.
• Comparing the algorithms using metrics.
• Feeding centroid locations into HOMER PRO software for further 

processing.
• Evaluating and analyzing the results.

The cluster centers produced by each GA clustering technique will be 
used as input data for the HOMER Pro software. HOMER Pro software 

will compute these cluster centres’ potential solar and wind energy. The 
resulting energy outputs will be compared among the algorithms to 
evaluate their efficacy as potential solutions to the problem, and these 
findings will be presented in Figs. 9-12. The GA is integrated with four 
distinct clustering algorithms: K-Means, DBSCAN, Hierarchical, and K- 
Medoids.

The difference in the number of clusters generated by the GA- 
DBSCAN method compared to other proposed clustering methods in 
this study arises from the inherent characteristics of DBSCAN as a 
density-based clustering algorithm. In DBSCAN algorithm, factors such 
as the neighborhood radius and the minimum number of points are used 
to create a cluster to determine clusters based on density, as opposed to 
K-Means or K-Medoids, which generate a predetermined number of 
clusters. Based on the spatial data properties, the GA-DBSCAN algorithm 
in our study maximized these parameters to produce the most relevant 
grouping. Only two clusters (0 and 1) were formed in the final analysis 
due to the input data’s spatial dispersion and density. This shows that 
other areas were classified as noise or outliers, but only two dense re-
gions met the clustering requirements. Because clusters with fewer 
points may have less potential for resource-sharing or optimization, this 
result has a direct impact on cost-related metrics, such as operational 
expenses and LCOE. It is crucial to remember that DBSCAN’s adapt-
ability in identifying organic clusters, independent of predetermined 
cluster numbers, offers special insights into the density-based properties 

Fig. 8. Optimization Results of Installing Solar Panel and Wind Turbine in this location.

Fig. 9. Results of the GA – Kmeans method.

I. Rahimi et al.                                                                                                                                                                                                                                  



Energy Conversion and Management: X 25 (2025) 100855

12

of the spatial data. Details of the clusters (Latitude and Longitude) have 
been shown in Tables 3-6.

7. Discussion

The following subsections present our findings and initiate discus-
sions. First, we conduct a comparative analysis of the algorithms using 
evaluation metrics. Subsequently, we compare energy production based 

on the results. Additionally, we provide an overview of costs, and finally, 
we summarize our findings.

7.1. Comparison study

The following subsections offer a comparative study covering eval-
uation metrics, energy production, and costs.

Fig. 10. Results of the GA – DBSCAN method.

Fig. 11. Results of the GA – Hierarchical method.
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7.1.1. Evaluation metrics comparison
The results generated from the GA implementations were altered 

slightly using the updated dataset and adjustments to the implementa-
tion of the evaluation metrics. The updated results are displayed in 
Figs. 13-14 below. Based on the initial evaluation metrics, the algorithm 
that performed most effectively by both DB and CH scores was GA- 
Kmeans.

In order to evaluate the results of each algorithm mentioned, the 
algorithms were compared using the Friedman and Post-Hoc Nemenyi 
test. The Freidman test uses a nonparametric method that evaluates the 
similarity of algorithms by first analyzing the significance of the dif-
ference in the performance of the algorithms to be evaluated. The output 
is the test statistic of the null hypothesis test, which determines if the 
algorithms are consistent. The Post-Hoc Nemenyi test evaluates the 
effectiveness of the algorithms using the p-value of the Friedman test, 
which is 0.978 (test statistic 0.200), which is statistically significant; this 
means that the post hoc test can determine which groups of results are 
different from each other. It can be observed from the implementation, 
the test returns the p-values of a pairwise comparison of the means of the 
data. The two groups with statistically significant different means from 
the matrix generated are 0 and 2 (Table 7).

Fig. 12. Results of the GA − K – Medoids method.

Table 3 
Cluster details for GA-Kmeans.

Cluster Latitude Longitude

Cluster 0 –32.25 116.49
Cluster 1 − 31.51 151.27
Cluster 2 –33.62 133.94
Cluster 3 − 38.01 145.34
Cluster 4 − 18.05 145.86
Cluster 5 − 27.17 152.36
Cluster 6 − 34.72 139.21
Cluster 7 − 16.8 135.82
Cluster 8 − 24.24 149.46
Cluster 9 − 34.98 149.07

Table 4 
Cluster details for GA-DBSCAN.

Cluster Latitude Longitude

Cluster 0 –32.12 146.82
Cluster 1 − 31.52 116.96

Table 5 
Cluster details for GA-Hierarchical.

Cluster Latitude Longitude

Cluster 0 − 38.86 146.82
Cluster 1 − 31.51 116.99
Cluster 2 − 17.15 130.73
Cluster 3 –23.17 148.35
Cluster 4 − 34.02 138.42
Cluster 5 − 30.62 152.21
Cluster 6 − 34.02 149.11
Cluster 7 − 37.03 143.19
Cluster 8 − 17.59 144.42
Cluster 9 − 27.08 151.79

Table 6 
Cluster details for GA-KMedoids.

Cluster Latitude Longitude

Cluster 0 − 38.95 146.36
Cluster 1 –32.02 116.81
Cluster 2 − 28.23 152.56
Cluster 3 − 25.46 151.31
Cluster 4 − 18.12 145.91
Cluster 5 − 34.42 138.7
Cluster 6 − 15.3 131.57
Cluster 7 − 35.02 148.84
Cluster 8 − 37.03 143.68
Cluster 9 –32.28 151.11

I. Rahimi et al.                                                                                                                                                                                                                                  



Energy Conversion and Management: X 25 (2025) 100855

14

7.1.2. Energy production comparison
Furthermore, we need to put the centroids in each algorithm into the 

HOMERPRO and see the results. These are the settings for our simulated 
HOMERPRO sustainable energy system: 

• Solar Panel: Generic Flat Plate PV
• Wind Turbine: Generic 3 kW
• Battery: Generic Generic 1 kWh Li-Ion Battery

The energy production results from both the solar panel and wind 
turbine are depicted in Figs. 15-19. Evidently, as illustrated in these 
figures, the solar panel consistently outperforms the wind turbine in 
generating energy across various clusters and algorithms.

The quality of the clustering findings in terms of compactness and 
separation was evaluated using the Davies-Bouldin and CH evaluation 
metrics. In particular, the CH score assisted in assessing cluster disper-
sion, with higher scores signifying more distinct grouping, while the 
Davies-Bouldin index sought to reduce intra-cluster similarity while 
optimizing inter-cluster separation. By using these criteria, it was made 
sure that the clusters that were created were distinct and appropriate for 
additional examination. Also, based on the resource information at the 
centers of each algorithm, we compared the average energy produced by 
solar panels and wind turbines in 4 algorithms. The evaluation metrics 
provided a geometric validation of the clustering results, while the 
average energy production determined which clustering method would 
perform best for practical implementation in renewable energy opti-
mization. the GA− K-Medoids have the best average energy produced by 
Wind Turbines; also, the average energy produced by solar panels is 
relatively high. Therefore, the GA-K-Medoids solution was ultimately 
chosen based on its superior average energy production.

7.1.3. Cost comparison
The HOMER PRO integration with our optimal locations based on 

Fig. 13. Comparing Silhouette and Davies Bouldin Score Gained.

Fig. 14. Comparing Calinski Harabsz Score Gained.

Table 7 
Results of Post-Hoc Nemenyi test.

 0 1 2
0 1.000 0.334 0.012
1 0.334 1.000 0.334
2 0.012 0.334 1.000
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Fig. 15. GA – Kmeans: Energy Produced by Solar Panel and Wind Turbine.

Fig. 16. GA – DBSCAN: Energy Produced by Solar Panel and Wind Turbine.

Fig. 17. GA – K – Hierarchical: Energy Produced by Solar Panel and Wind Turbine.
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collected centroids gave us numerical costs generated by our simulated 
sustainable energy system (Figs. 20-22). We assessed the costs based on 
net present cost, levelized cost of energy and operation costs. These 
metrics are used to illustrate the most optimal costs for implementing a 
sustainable energy system. These fields are defined further below:

7.1.3.1. Net present cost (NPC). Net Present Costs (NPC) refer to the 
current value of all expenses incurred by the system throughout its 
lifespan subtracted from the current value of all the income generated 
during that same period. These costs involve: 

• Capital costs
• Replacement costs
• Operation and Maintenance costs
• Fuel Costs
• Emission Penalties
• The cost associated with purchasing electricity from the utility grid.

Revenues involve: 

• Salvage value
• Grid sales

7.1.3.2. Levelized cost of energy (LCOE). The concept of LCOE, or Lev-
elized Cost of Energy, can be described as a metric obtained by dividing 
the total lifetime costs of a project by the amount of energy it generates. 
Comparing LCOE enables the assessment of value across the entire 
project lifespan, making it a valuable tool for making informed decisions 
about pursuing projects based on economic considerations rather than 
just utility rates.

7.1.3.3. Operation costs. The operation cost is the value of all costs and 
revenues, excluding initial capital costs generated annually.

7.1.3.4. Comparison results. A comprehensive analysis of the overall 
cost metrics shows that while GA K-medoids exhibit the highest energy 
production (as depicted in Figs. 20-22), they also incur the most sub-
stantial financial expenses. It is important to mention that GA-DBSCAN 
presents challenges in cost comparison due to its fewer centroids. 
Nevertheless, upon close examination of the figures, it appears that GA- 
Hierarchical clustering offers the most optimal and cost-effective solu-
tion when contrasted with GA-K-means and GA-K-medoids.

Fig. 18. GA – K – Medoids: Energy Produced by Solar Panel and Wind Turbine.

Fig. 19. Average Energy Produced Graph.
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7.2. Comparison with existing research studies

In comparison to the studies by [2] and [74], this research offers 
several unique advantages and contributions in the field of renewable 
energy site selection. While Holloway and his team focused on selecting 
optimal locations for renewable energy systems in rural regions of 
Western Australia using K-Means and K-Medoids clustering algorithms, 
and Khamis et al. [74] targeted remote electrification in Sarawak, 
Malaysia, through image segmentation and regional techniques, this 
study provides distinct features and advancements.

Unlike the study by Holloway et al. [2], which primarily utilized K- 
Means and K-Medoids clustering algorithms, and Khamis et al. [74] who 
employed image segmentation techniques, our research employs a 
comprehensive approach integrating various clustering algorithms, 
including K-Means, DBSCAN, Hierarchical clustering, and K-Medoids. 
This multi-algorithmic approach allows for a more robust and compre-
hensive analysis, ensuring the selection of optimal locations for renew-
able energy stations in rural areas across Australia. Moreover, our study 
incorporates a genetic algorithm into the clustering process to identify 

the most appropriate clustering method dynamically. This iterative 
process enhances the efficiency and effectiveness of our site selection 
methodology by adapting to the characteristics of the dataset and 
optimizing the clustering results.

While the previous two studies focused on specific regions, this study 
provides insights and techniques applicable to rural areas across 
Australia as a whole. This is because a more extensive and reliable 
dataset covering all Australian towns has been found. This broader scope 
enhances the universality and applicability of our research findings, 
making them relevant to a wider range of stakeholders involved in 
promoting renewable energy development in Australia.

This research integrates HOMER Pro software to estimate the solar 
and wind energy potential for each identified location. This integration 
of energy output data enhances the accuracy and reliability of our site 
selection process, providing valuable insights for evaluating the efficacy 
of different clustering algorithms.

Overall, this study contributes to the field of renewable energy site 
selection by presenting a comprehensive methodology, leveraging 
multiple clustering algorithms, integrating a genetic algorithm for 

Fig. 20. Net Present Cost Comparison for these four algorithms.

Fig. 21. Levelized Cost of Energy Comparison for these four algorithms.

I. Rahimi et al.                                                                                                                                                                                                                                  



Energy Conversion and Management: X 25 (2025) 100855

18

dynamic optimization, and providing insights applicable to rural areas 
across Australia. These advancements offer significant value for 
informing future research and policy decisions aimed at promoting 
renewable energy development in Australia.

Based on the gained results from this study, there exist some di-
rections for improvement of the current study. For example, in future 
research, it would be valuable to explore the integration of economic 
feasibility studies with clustering methodologies to assess the cost- 
effectiveness of renewable energy projects comprehensively. The 
decision-making process may also be improved by utilizing cutting-edge 
technology like machine learning for real-time data analysis and pre-
dictive analytics. Moreover, a comprehensive viewpoint for sustainable 
implementation would be suggested by assessing the socioeconomic 
effects, taking into account the advantages and involvement of the local 
population. Furthermore, planning for resilience could be strengthened 
by examining how hybrid renewable energy systems operate in a variety 
of climatic circumstances, including extreme weather events.

7.3. Limitations

Homer Pro is a recognized tool in the field of renewable energy 
analysis, widely used for its robust simulation capabilities. It enables 
detailed modeling of different energy sources by considering varying 
inputs like weather data, system configurations, and operational stra-
tegies. The choice of Homer Pro was guided by its extensive use in 
preliminary assessments of renewable projects, where direct measure-
ment data may not be readily available. However, it is recognized that 
solely relying on simulation data can introduce uncertainties. Although 
Homer Pro has a detailed economic calculation, the detailed calculation 
(mathematical modeling) is not revealed, and it acts as a black box with 
limited flexibility in changing the input data. This limitation can be 
considered as future work.

Furthermore, this research aims to address the challenges of site 
selection for renewable energy sites through a technical and data-driven 
approach to minimize adverse environmental impacts. However, it is 
recognized that establishing these sites in rural areas may indeed impact 
local ecosystems and biodiversity. Therefore, it is encouraged as future 
research and practice to conduct comprehensive environmental assess-
ments and implement protective measures when siting renewable en-
ergy projects to minimize adverse effects on ecosystems and actively 
promote sustainable development.

8. Conclusion

This research highlights the efficacy of clustering algorithms com-
bined with genetic optimization in identifying optimal locations for 
HRESs in rural Australia. The study effectively identified appropriate 
regions using the K-Means, DBSCAN, Hierarchical, and K-Medoids al-
gorithms; clustering efficiency was further improved by genetic algo-
rithms. A thorough assessment of the solar and wind energy potential at 
cluster centers was made possible by integration with HOMER Pro 
software. Based on metrics such as the Silhouette score, the genetic K- 
Means method was found to be the most computationally cost-effective 
approach, while the GA K-Medoids algorithm produced the highest 
average energy output of 33.18 kWh/year, outperforming other 
methods.This information is useful for the development of renewable 
energy.

Also, it is worthy to mention that the study includes limitations that 
offer potential for further investigation despite its contributions. Inter-
estingly, the analysis concentrated on finding resource-rich areas rather 
than taking into consideration the whole cost of building renewable 
energy installations. Although HOMER software is useful for energy 
simulation, however its closed-system design and restricted input flex-
ibility leads to some difficulties. In order to take into account wider 
economic and environmental factors, future study might minimize 
installation and operating costs, include thorough cost evaluations, and 
improve techniques.

Moreover, for the aim of increasing, future developments could 
investigate different distance metrics, including the Haversine formula. 
Adding more characteristics, such area and elevation, could provide 
more detailed information about how geographic characteristics affect 
the design of energy systems. By improving hybrid renewable systems’ 
scalability and application, these initiatives hope to result in sustainable 
energy development.
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Tokarczyk-Dorociak K, et al. A decision support system for the planning of hybrid 
renewable energy technologies. IOP Conf Ser: Earth Environ Sci 2021;701(1): 
12012.

[37] Kanata S, Baqaruzi S, Muhtar A, Prasetyawan P, Winata T. Optimal planning of 
hybrid renewable energy system using Homer in Sebesi Island, Indonesia. Int J 
Renew Energ Res (IJRER) 2021;11(4):1507–16.

[38] Jbaihi O, Ouchani F, Merrouni AA, Cherkaoui M, Ghennioui A, Maaroufi M. An 
AHP-GIS based site suitability analysis for integrating large-scale hybrid CSP+ PV 
plants in Morocco: an approach to address the intermittency of solar energy. 
J Clean Prod 2022;369:133250.

[39] Masoomi B, Sahebi IG, Fathi M, Yldrm F, Ghorbani S. Strategic supplier selection 
for renewable energy supply chain under green capabilities (fuzzy BWM-WASPAS- 
COPRAS approach). Energ Strat Rev 2022;40:100815.

[40] Narayanamoorthy S, Parthasarathy TN, Pragathi S, Shanmugam P, Baleanu D, 
Ahmadian A, et al. The novel augmented Fermatean MCDM perspectives for 
identifying the optimal renewable energy power plant location. Sustain Energy 
Technol Assess 2022;53:102488.

[41] Demolli H, Dokuz AS, Ecemis A, Gokcek M. Location-based optimal sizing of hybrid 
renewable energy systems using deterministic and heuristic algorithms. Int J 
Energy Res 2021;45(11):16155–75.

[42] de Barros Franco DG, Steiner MTA. Clustering of solar energy facilities using a 
hybrid fuzzy c-means algorithm initialized by metaheuristics. J Clean Prod 2018; 
191:445–57.

[43] Wang Q, Yang X. Investigating the sustainability of renewable energy–an empirical 
analysis of European Union countries using a hybrid of projection pursuit fuzzy 
clustering model and accelerated genetic algorithm based on real coding. J Clean 
Prod 2020;268:121940.

[44] Biboum AC, Yilanci A, Mouangue R. Comparative analysis of hybrid renewable 
energy systems based on concentrating solar and biomass technologies for Faro- 
Poli. Cameroon Environmental Progress & Sustainable Energy 2023;42(1):e13933.

[45] Menesy AS, Sultan HM, Habiballah IO, Masrur H, Khan KR, Khalid M. Optimal 
configuration of a hybrid photovoltaic/wind turbine/biomass/hydro-pumped 
storage-based energy system using a heap-based optimization algorithm. Energies 
2023;16(9):3648.

[46] Marocco P, Ferrero D, Lanzini A, Santarelli M. The role of hydrogen in the optimal 
design of off-grid hybrid renewable energy systems. J Storage Mater 2022;46: 
103893.

[47] Di Grazia S, Tina GM. Optimal site selection for floating photovoltaic systems based 
on Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis 
(MCDA): a case study. Int J Sustain Energ 2023:1–23.

[48] Wei P, Bamisile O, Adun H, Cai D, Obiora S, Li J, et al. Bibliographical progress in 
hybrid renewable energy systems’ integration, modelling, optimization, and 
artificial intelligence applications: a critical review and future research 
perspective. Energy Sources Part A 2023;45(1):2058–88.

[49] Kumar R, Channi HK. A PV-Biomass off-grid hybrid renewable energy system 
(HRES) for rural electrification: Design, optimization and techno-economic- 
environmental analysis. J Cleaner Prod 2022;349:131347.

[50] Alavi SMS, Maleki A, Noroozian A, Khaleghi A. Simultaneous optimal site selection 
and sizing of a grid-independent hybrid wind/hydrogen system using a hybrid 

I. Rahimi et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.ecmx.2024.100855
https://doi.org/10.1016/j.ecmx.2024.100855
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0005
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0005
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0005
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0010
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0010
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0010
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0015
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0015
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0025
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0025
https://doi.org/10.1016/j.energy.2014.06.097
https://doi.org/10.1002/pip.2841
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0040
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0040
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0045
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0045
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0045
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0050
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0050
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0050
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0060
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0060
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0065
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0065
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0065
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0070
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0070
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0075
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0075
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0080
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0080
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0080
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0085
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0085
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0085
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0090
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0090
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0095
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0095
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0095
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0100
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0100
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0105
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0105
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0110
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0110
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0110
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0115
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0115
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0115
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0120
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0120
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0130
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0130
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0135
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0135
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0140
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0140
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0140
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0145
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0145
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0145
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0150
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0150
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0150
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0150
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0155
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0155
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0155
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0160
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0160
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0160
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0170
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0170
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0170
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0175
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0175
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0175
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0180
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0180
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0180
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0180
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0185
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0185
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0185
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0190
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0190
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0190
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0190
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0195
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0195
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0195
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0200
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0200
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0200
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0200
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0205
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0205
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0205
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0210
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0210
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0210
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0215
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0215
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0215
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0215
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0220
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0220
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0220
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0225
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0225
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0225
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0225
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0230
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0230
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0230
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0235
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0235
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0235
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0240
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0240
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0240
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0240
http://refhub.elsevier.com/S2590-1745(24)00333-7/opttNCs9Ue9VM
http://refhub.elsevier.com/S2590-1745(24)00333-7/opttNCs9Ue9VM
http://refhub.elsevier.com/S2590-1745(24)00333-7/opttNCs9Ue9VM
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0245
http://refhub.elsevier.com/S2590-1745(24)00333-7/h0245


Energy Conversion and Management: X 25 (2025) 100855

20

optimization method based on ELECTRE: a case study in Iran. Int J Hydrogen 
Energy 2024;55:970–83.

[51] Heydari F, Maleki A, Jabari Moghadam A, Haghighat S. Emplacement of the 
photovoltaic water pumping system in remote areas by a multi-criteria decision- 
making method: a case study. Front Energy Res 2021;9:770981.

[52] Shahraki Shahdabadi R, Maleki A, Haghighat S, Ghalandari M. Using multi-criteria 
decision-making methods to select the best location for the construction of a 
biomass power plant in Iran. J Therm Anal Calorim 2021;145:2105–22.

[53] Sadeghi A, Maleki A, Haghighat S. Techno-economic analysis and optimization of a 
hybrid solar-wind-biomass-battery framework for the electrification of a remote 
area: a case study. Energy Convers Manage: X 2024;24:100732.

[54] Batista NE, Carvalho PCM, Fernández-Ramirez LM, Braga APS. Optimizing 
methodologies of hybrid renewable energy systems powered reverse osmosis 
plants. Renew Sustain Energy Rev 2023;182:113377.

[55] Seyed Alavi SM, Maleki A, Khaleghi A. Optimal site selection for wind power plant 
using multi-criteria decision-making methods: a case study in eastern Iran. 
International Journal of Low-Carbon Technologies 2022;17:1319–37.

[56] Maleki A. Optimization based on modified swarm intelligence techniques for a 
stand-alone hybrid photovoltaic/diesel/battery system. Sustainable Energy 
Technol Assess 2022;51:101856.

[57] Maleki A. Optimal operation of a grid-connected fuel cell based combined heat and 
power systems using particle swarm optimisation for residential sector. Int J 
Ambient Energy 2021;42(5):550–7.

[58] Lazzari F, Mor G, Cipriano J, Solsona F, Chemisana D, Guericke D. Optimizing 
planning and operation of renewable energy communities with genetic algorithms. 
Appl Energy 2023;338:120906.

[59] Sousa J, Lagarto J, Camus C, Viveiros C, Barata F, Silva P, et al. Renewable energy 
communities optimal design supported by an optimization model for investment in 
PV/wind capacity and renewable electricity sharing. Energy 2023;283:128464.

[60] Javed MS, Ma T, Jurasz J, Canales FA, Lin S, Ahmed S, et al. Economic analysis and 
optimization of a renewable energy based power supply system with different 
energy storages for a remote island. Renew Energy 2021;164:1376–94.

[61] Byrnes L, Brown C, Wagner L, Foster J. Reviewing the viability of renewable energy 
in community electrification: the case of remote Western Australian communities. 
Renew Sustain Energy Rev 2016;59:470–81.

[62] Clifton J, Boruff BJ. Assessing the potential for concentrated solar power 
development in rural Australia. Energy Policy 2010;38(9):5272–80.

[63] Fornarelli R, Shahnia F, Anda M, Bahri PA, Ho G. Selecting an economically 
suitable and sustainable solution for a renewable energy-powered water 
desalination system: a rural Australian case study. Desalination 2018;435:128–39.

[64] Hicks J, Ison N. Community-owned renewable energy (CRE): opportunities for 
rural Australia. Rural Soc 2011;20(3):244–55.

[65] McHenry MP. Remote area power supply system technologies in Western Australia: 
New developments in 30 years of slow progress. Renew Energy 2009;34(5): 
1348–53.

[66] Yiridoe EK, et al. Social acceptance of wind energy development and planning in 
rural communities of Australia: a consumer analysis. Energy Policy 2014;74: 
262–70.

[67] Maulik U, Bandyopadhyay S. Performance evaluation of some clustering 
algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 2002;24(12): 
1650–4.
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