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Abstract
The use of Exploratory Data Analysis (EDA) and machine learning in material science has rapidly advanced in recent years.  

EDA enables researchers to thoroughly explore and analyze material datasets, while machine learning allows for the development of pre-
dictive models capable of understanding complex patterns within the data. This study aims to develop an optimization tool to enhance the 
ana lysis of tensile strength in stainless steel by leveraging integrated data exploration and machine learning approaches within the Stream-
lit framework. The developed tool consists of four main features: data visualization, correlation analysis, 3D visualization, and machine 
learning. The developed machine learning model has 14 input variables, including chemical elements and heat treatment temperatures. 
In this research, the machine learning features comprise three models: Decision Tree, Random Forest, and Artificial Neural Network. 
The research findings indicate that the optimization tool can automatically display stainless steel tensile strength data using available 
pandas profiling in the visualization feature. The correlation feature can illustrate the relationship between chemical elements and heat 
treatment temperatures concerning stainless steel tensile strength. The 3D visualization feature can be utilized to identify optimal values 
of chemical elements and heat treatment temperatures according to desired tensile strength. Meanwhile, the machine learning feature can 
accurately predict stainless steel tensile strength based on chemical composition and heat treatment temperatures. This is evident from 
the performance evaluation metrics of the Random Forest model, which achieved MAE of 10.36, RMSE of 14.44, and R-squared of 0.97.
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1. Introduction
The conventional analysis of the mechanical properties of materials, especially alloy steels, 

often involves a series of experimental physical tests and laboratory testing [1]. This process is 
time-consuming and requires significant costs. The initial stages involve the preparation of varied 
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samples, requiring a considerable amount. Subsequently, testing is conducted using specialized equip-
ment, such as tensile testing machines and hardness testing machines. The data generated from these 
tests then needs to be manually analyzed to extract information about the desired mechanical proper-
ties of the material, such as strength, toughness, and hardness [2, 3]. This conventional approach is of-
ten prone to human errors due to the complexity of the data required to obtain accurate analysis results.

Research indicates [4, 5], that when designing the mechanical properties of alloy steels, vari-
ables such as chemical composition percentages, heat treatment processes, and microstructure need 
to be considered. Generally, alloy steels consist of a mixture of specific metal elements in appropriate 
proportions. Changes in the percentage of chemical elements can affect the strength, toughness, and 
hardness of alloy steels; for example, adding carbon can increase the hardness of alloy steels, while 
adding chromium can enhance corrosion resistance [6]. Heat treatment is a critical step in shaping 
the mechanical properties of alloy steels. This process involves heating and cooling alloy steels at 
specific temperatures to alter their microstructure and mechanical properties. Heat treatment can 
influence the level of hardness, strength, and toughness of alloy steels. Research suggests [7, 8] that 
rapid heat treatment can increase the hardness of alloy steels, while slow heat treatment with gradual 
cooling can enhance strength and toughness. The microstructure of alloy steels refers to the arrange-
ment of crystal grains and phases formed during the formation and heat treatment processes. This 
microstructure significantly affects the mechanical properties of materials by determining stress 
distribution and dislocation movement within the material. A homogeneous microstructure with 
fine crystal grains tends to provide higher strength, whereas a heterogeneous microstructure or the 
presence of defects in crystal grains can reduce strength and toughness [9]. These three variables 
are interrelated and have a highly complex relationship when influencing the mechanical properties 
of alloy steels. Therefore, a profound understanding of the relationship between these variables is 
crucial in designing alloy steels with the desired mechanical properties.

The field of materials science and engineering has undergone three stages of development 
over the years, starting from the experimental stage, moving to the theoretical stage, and pro-
gressing to the computational simulation stage [10, 11]. In recent years, the data generated from 
experiments and simulations has rapidly evolved, as evidenced by the proliferation of material 
databases such as the Open Quantum Material Database, Material Project, Computational Mate-
rials Repository, Harvard Clean Energy Project, Inorganic Crystal Structure Database, Matmach, 
MatWeb, and Aflowlib [12, 13]. This phenomenon enables the active utilization of material data 
for designing, simulating, and predicting the mechanical properties of materials based on data us-
ing an approach called exploratory data analysis (EDA) integrated with the Streamlit framework. 
EDA is an initial data analysis process aimed at understanding the characteristics, structure, and 
essential components of data before further analysis or predictive modeling [14, 15]. This analysis 
involves descriptive statistical approaches and various 2D and 3D visualization techniques such as 
histograms, scatter plots, box plots, bar plots, line plots, and other visualization methods [16]. On 
the other hand, Streamlit is an open-source framework that allows developers to use the Python 
programming language to create interactive web applications easily and quickly. By integrating 
EDA into Streamlit, researchers can create interactive user interfaces (UI) for direct data analysis 
within a web browser. Various EDA techniques like data visualization, descriptive statistics, and 
exploration of patterns in data can be implemented into web-based Streamlit applications [17].

The integration of EDA with Streamlit has proven to be one of the tools capable of optimizing 
data-driven analysis, as demonstrated in the study [18]. They developed an interactive tool named 
QuickViz, a web application leveraging the Streamlit framework. QuickViz is designed to simplify 
the complex data analysis process and make it more accessible to various stakeholders, including 
users with no programming background. The use of this tool allows researchers and data analysts 
to upload their datasets into the web application without having to write complex code or additional 
commands. The research findings indicate that using QuickViz can save time in data analysis, as the 
analysis results are automatically presented in an interactive web dashboard. This facilitates stake-
holders in understanding of the findings of the data analysis and aids in making better decisions.  
In another study conducted [19], they integrated machine learning models with the Streamlit frame-
work as a platform to build interactive web applications that enable users to easily access developed  
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prediction models. The research results show that machine learning models integrated with Streamlit 
can be accessed in real-time by users, allowing them to take necessary preventive actions quickly [20] 
combined EDA and machine learning methods integrated with Streamlit to create a predictive model 
for consumer loan approval. Using EDA, loan approval data was prepared and evaluated to identify 
patterns and relationships among variables. Steps like feature engineering and feature selection 
were performed to prepare the data before training the model. ML modeling was conducted using 
various algorithms, including Logistic Regression (LR), Random Forest (RF), and XGBoost (XGB).  
The research results indicate that this combination allows users to input loan application details and 
obtain prediction results directly. Based on the findings of previous research, it can be seen that EDA 
integrated with Streamlit can be a solution to optimize data-driven analysis.

With the rapid growth of material data in the past and the development of open-source frameworks 
that can be integrated with various methods such as data analysis techniques, visualization, machine 
learning models, and web technologies, this research aims to develop a supporting tool to optimize the 
design of stainless steel tensile strength based on a web platform using the Streamlit framework. In this 
study, EDA and machine learning methods are integrated with the Streamlit framework to analyze the 
influence of chemical elements, heat treatment methods, cooling methods, and heat treatment tempera-
tures on the tensile strength of stainless steel. Additionally, machine learning methods can also be used 
to predict and simulate how the variables of chemical elements and heat treatment can affect the tensile 
strength of stainless steel. The use of this framework allows researchers and analysts to conduct stainless 
steel tensile strength analysis more efficiently, as it can be accessed in real-time through a web browser.

2. Materials and methods
In this study, the methods of exploratory data analysis (EDA) and machine learning are com-

bined using the Streamlit framework. This combination produces a web-based optimization tool that 
can be used to enhance the tensile strength of stainless steel. This tool enables interactive and efficient 
analysis of data and prediction of stainless steel tensile strength. In general, the design of this stainless 
steel tensile strength optimization tool is divided into two stages:

1) the design of the machine learning model;
2) the integration of all features into the Streamlit framework, as shown in Fig. 1.

Fig. 1. Research scheme

2. 1. Dataset
The dataset used in this study refers to tensile test results from various types of austenitic 

stainless steels (ASS), such as SUS 304, SUS 316, SUS 321, SUS 347, and NCF 800 H. The entire 
dataset consists of 2180 samples, including information on mechanical properties, alloy chemical 

 



Original Research Article:
full paper

(2024), «EUREKA: Physics and Engineering»
Number 5

76

Engineering

elements, heat treatment temperatures, and cooling methods. The data source is from the Creep Data 
Sheet of Steel (No. 4B, 5B, 6B, 14B, 15B, 26B, 27B, 28B, 32A, 42, and 45) published by NIMS Mat-
Navi and BSCC High Temperature Data from the British Steelmakers Creep Committee [21]. This 
data has been collected by the Material Algorithm Project (MAP) [22], a research project conducted 
by the University of Cambridge, and is available for research and educational purposes.

2. 2. Design of machine learning models
The machine learning method used in this research consists of three models, namely deci-

sion trees, random forests, and artificial neural networks. The three algorithms were set using the 
default parameters provided by the scikit-learn library version 1.2.2 [23] for DT and RF and Keras ver-
sion 2.12.0 [24] for ANN. By varying these three models, users can optimize the prediction of stainless 
steel tensile strength by leveraging the strengths and advantages of each model. This provides flexibi-
lity and higher prediction accuracy, allowing users to select the model that best fits their needs and the 
characteristics of the data they possess. Each model is evaluated using several evaluation metrics, such 
as mean absolute error (MAE), root mean square error (RMSE), and R-squared. These evaluation met-
rics are commonly used in the context of predicting the mechanical properties of alloy steels [25–27].

MAE measures the average of the absolute differences between the predicted values and the 
actual values, providing an insight into how accurate the model’s predictions are in capturing the 
data variation. MAE can be calculated using the following equation:

 MAE
i

N
y zi i ,= ∑ −  (1)

where i represents the index of the data sample, N signifies the total number of samples, y_i denotes 
the actual value of the i-th data point, and z_i indicates the predicted value by the model for the 
i-th data point.

RMSE measures the root of the mean square of the differences between the predicted values 
and the actual values, providing an insight into how well the model estimates the true values of  
the data. RMSE can be calculated using the following equation:
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where n is the number of data points used to test the model, f(X_i) is the value predicted by the 
model for the i-th data point, and Y_i is the actual value for the i-th data point.

R-squared measures how well the model fits the data by comparing the variation explained 
by the model to the total variation in the data, thus providing information about how well the model 
explains the data variability. R-squared can be calculated using the following equation:
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where f(Xi) denotes the predicted value of the dependent variable (Y) based on the independent 
variable (X) for the i-th observation, f X( ) represents the average of all predicted values f(Xi) across 
all observations, Yi indicates the actual observed value of the dependent variable for the i-th obser-
vation, Y  signifies the average of all observed values Yi across all observations, and n represents the 
total number of observations.

2. 3. Streamlit integration
The integration process involves developing an interactive web application using Streamlit, 

which will combine the EDA techniques and pre-prepared machine learning models. The EDA me-
thods implemented in this optimization tool consist of Pandas profiling, data visualization tech-
niques, and correlation heatmaps. The use of pandas profiling enables the tool to automatically 
present statistical summaries of the data, including distributions, the presence of missing values, 
and correlations between variables [28]. Meanwhile, visualization techniques will assist users in  
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understanding hidden patterns in the data more easily through various types of interactive graphs  
and plots [29]. Additionally, the correlation heatmap will provide a clear visual insight into the re-
lationships between variables in the form of a color matrix [30]. Thus, users can quickly identify 
significant relationships between variables and make informed decisions based on the available infor-
mation. This will be key in optimizing the strength of stainless steel’s tensile pull, as it enables users 
to take appropriate actions based on a comprehensive understanding of the data. Correlation heatmap 
can be calculated using the Pearson correlation equation as can be seen in the following equation:

 r
xy

n S Sxy
x y

=
∑

−( )1
, (4)

where r_xy represents the Pearson correlation coefficient, Σxy denotes the sum of the products of  
x and y, n indicates the sample size, x stands for the independent variable, y represents the depen-
dent variable, and S signifies the standard deviation [13]. The value of the correlation coefficient 
ranges from –1 to 1. A value of –1 indicates a strong negative correlation between the two variables, 
a value of 0 indicates no correlation, and a value of 1 indicates a strong positive correlation [30, 31].

In this way, users can directly access the optimization tool through a web browser. This in-
tegration enables users to easily utilize EDA and machine learning technologies in analyzing data 
and making real-time predictions, thus supporting faster and more accurate decision-making. With 
a user-friendly interface, integration with the Streamlit framework ensures that the results of this 
research can be easily and effectively utilized in practical situations.

3. Results and Discussion
Essentially, the tensile strength of stainless steel is influenced by several key factors, includ-

ing the chemical elements contained in the material, the heat treatment processes applied, and the 
microstructure of the material itself. These three factors play a significant role in determining the 
mechanical performance of stainless steel. The chemical composition of stainless steel can affect 
its mechanical properties, such as strength, ductility, and corrosion resistance. On the other hand, 
heat treatment processes such as heating, cooling, and recrystallization can alter the microstructure 
of the material, which in turn affects its mechanical properties [32, 33]. Therefore, the optimization 
tool designed aims to improve the analysis process of stainless steel tensile strength by considering 
these factors holistically. This tool is designed to enable users to optimize the analysis process by 
considering the composition of chemical elements and the heat treatment applied to the material. 
Thus, users can identify the optimal combination of chemical elements and heat treatment that can 
produce the desired tensile strength for specific applications. With this approach, the optimization 
tool aims to provide a more efficient and precise solution in the development and processing of 
stainless steel, thereby enhancing product quality and overall manufacturing process efficiency.

3. 1. Dataset
The dataset initially consisted of 2180 samples, but after cleaning, only 986 samples with 

complete information remained. The original dataset contained various other information, such as 
grain size, melting type, and bar size. However, this research only utilized 14 input variables and 
one output variable, as shown in Table 1.

Next, the stainless steel dataset is divided into two parts: for training and external testing. The 
total number of cleaned samples reached 986, then was reduced by 50 samples for external testing 
purposes. Thus, the number of training datasets used is 936. This training data is further divided into 
two parts, with 80 % for the training process and 20 % for validation purposes. To obtain maximum 
results, the external testing data must represent the distribution of the training data, so a Kolmo-
gorov-Smirnov (KS) test is needed. The Kolmogorov-Smirnov (KS) test results indicate how similar 
the distribution of variables is between the training dataset (data used to train machine learning 
models) and the external testing dataset (data used to test model performance). The smaller the KS 
statistic value, the more similar the distribution between the two datasets. Conversely, the larger the 
p-value, the less significant the difference between the distributions of the two datasets [34]. The KS 
test values obtained range from 0.060 to 0.132, indicating relatively small differences between the  
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distributions. Furthermore, the p-values are calculated for each test, ranging from 0.20 to 0.98. These 
results indicate that the low KS statistic values and high p-values are indicative of the similarity in 
variable distribution between the training dataset and the external testing dataset. The similarity in 
distribution between the training and external testing datasets helps ensure that machine learning 
models trained using the training dataset can provide consistent and accurate predictions when ap-
plied to previously unseen data, such as external testing data. This greatly assists in objectively mea-
suring model performance and ensuring the reliability of model predictions in real-world situations.  
Fig. 2 illustrates the comparison of the distribution of training data and external testing data.

Table 1
Variables of the austenitic stainless steel (ASS) dataset

No. Variables No. Variables
1 Chromium (Cr, wt %) 8 Carbon (C, wt %)
2 Nickel (Ni, wt %) 9 Boron (B, wt %)
3 Molybdenum (Mo, wt %) 10 Phosphorus (P, wt %)
4 Manganese (Mn, wt %) 11 Sulfur (S, wt %)
5 Silicon (Si, wt %) 12 Solution treatment temperature (Ts, K)
6 Niobium (Nb, wt %) 13 Solution treatment time (ts, s)
7 Titanium (Ti, wt %) 14 Temperature (K)

Fig. 2. Comparison of training and external testing data distributions where:  
a – Chromium; b – Nickel; c – Molybdenum; d – Manganese; e – Silicon; f – Niobium; g – Titanium; 

h – Carbon; i – Boron; j – Phosphorus; k – Sulphur; l – solution treatment temperature;  
m – solution treatment time; n – temperature; o – ultimate tensile strength
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3. 2. Design of machine learning models
In this study, three predictive machine learning algorithms are employed to predict the ten-

sile strength of stainless steel, namely Decision Tree (DT), Random Forest (RF), and Artificial Neu-
ral Networks (ANN). The use of these three algorithms aims to provide variation and flexibility in 
modeling, as well as enable users to leverage the strengths and advantages of each model. Decision 
Tree (DT) is chosen for its intuitive and easy-to-interpret nature. DT works by dividing the dataset 
into smaller subsets based on simple decision rules [35]. This allows researchers to understand the 
relationships between variables and directly identify factors that affect the tensile strength of stain-
less steel. Random Forest (RF) is selected for its ability to address overfitting issues and improve 
prediction accuracy. RF works by combining predictions from multiple different decision trees,  
resulting in more stable and reliable predictions [36]. The use of RF can help improve the accuracy 
and reliability of models for predicting the tensile strength of stainless steel. Meanwhile, artificial 
neural networks (ANN) are chosen for their ability to handle complex and non-linear patterns in data.  
ANN operates with a network structure inspired by the human brain, allowing it to identify com-
plex relationships between input and output variables [37]. The use of ANN can help reveal pat-
terns that are difficult for humans to understand or explain. In this research, the three algorithms 
were set using the default parameters provided by the scikit-learn library version 1.2.2 for DT and 
RF and Keras version 2.12.0 for ANN. These default values and parameters can be seen in Table 2:

Table 2
Parameters and values of machine learning models for each algorithm

DT RF ANN
Parameter Value Parameter Value Parameter Value
Criterion Mse n_estimators 100 Epochs 100
Splitter best criterion Mse Batch 32

Min Samples Split 2 max_depth None Model Sequential

Min Samples Leaf 1

min_samples_split 
min_samples_leaf 
max_features boot-

strap

2
Dense (layer 1)

Units: 32
1 Activation: relu

Auto
Dense (layer 2)

Units: 16

True
Activation: relu

Dense (output layer)
Units: 1

Activation: linear

The designed machine learning model consists of 14 input variables and 1 output variable, 
as seen in Table 1. Additionally, to address the issue of overfitting, the method of cross-validation 
is employed with a fold count of 10. This approach helps improve the model’s generalization and 
avoids the tendency for the model to memorize the training data excessively, resulting in more 
consistent and reliable predictions for new unseen data [38]. Furthermore, each model is evalua-
ted using three evaluation metrics: mean absolute error (MAE), root mean square error (RMSE),  
and R-squared. The evaluation results of training the three models can be observed in Fig. 3.

Based on the training model evaluation results, RF demonstrates the best performance with 
MAE of 9.42, RMSE of 11.68, and an R-squared value of 0.98. This is followed by DT with MAE 
of 15.19, RMSE of 18.75, and R-squared of 0.95. Meanwhile, ANN shows lower performance with 
MAE of 40.80, an RMSE of 50.19, and R-squared of 0.70. From these results, it can be concluded 
that RF has more accurate predictive capabilities compared to DT and ANN in predicting the ten-
sile strength of stainless steel based on chemical composition and heat treatment.

Next, model testing is conducted using external data. Model testing with external data refers 
to the process of evaluating the performance of a machine learning model using a dataset not used 
in the training phase. This external dataset is specifically separated from the dataset used to train 
the model and is used to test how well the model can generalize patterns in new data that it has not 
seen before [39]. In other words, testing the model with external data helps ensure that the model 
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has good predictive capabilities for the mechanical properties of stainless steel using new data  
it has never encountered before. The practice of testing models using external data has become  
a common standard in evaluating the performance of machine learning models, as outlined in 
studies [25–27]. This approach aims to validate the results of the proposed model, ensuring that the 
model is reliable and has strong generalization capabilities in various real-world situations. Thus, 
the use of external data in model testing becomes a critical step in ensuring the reliability and  
superiority of the proposed machine learning model.

Fig. 3. Comparison of model evaluation results:  
a – mean absolute error; b – root mean squared error; c – R-squared

In this stage, each model is tested using a new dataset consisting of 50 data samples that were 
not used in the model training process. The performance evaluation of the models using this new 
dataset can be found in Table 3, while the prediction results of each model can be seen in Fig. 4. 

Table 3
Comparison of training and testing evaluation metrics using new data

Model Evaluation metrics Training New data

DT MAE 15.77 16.12

RMSE 18.75 19.09

R-squared 0.95 0.94

RF MAE 9.42 10.36

RMSE 11.6 14.44

R-squared 0.98 0.97

ANN MAE 40.8 42.26

RMSE 50.19 58.97

R-squared 0.7 0.69
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Fig. 4. Comparison of predicted and actual results:  
a – decision tree; b – random forest; c – artificial neural network

The evaluation results indicate that, overall, there is no significant difference between the 
evaluation metrics in training and testing for each model. This indicates that the models have good 
capabilities for generalizing patterns from new data that were not seen in the training dataset.  
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The testing results with the new data also show that RF still outperforms DT and ANN. These 
findings are consistent with previous research [40], which shows that Random Forest (RF) tends to 
exhibit better performance. One reason is the application of the ensemble learning concept, where 
the combination of a large number of decision trees in an ensemble can reduce variance and signifi-
cantly improve prediction accuracy. Additionally, RF also applies random feature selection when 
building each decision tree, allowing for more effective handling of datasets with a large number 
of features or redundancy. Another advantage is RF’s ability to handle imbalanced datasets without 
relying on feature normalization or standardization because it does not require measuring the dis-
tance between features [41]. Overall, these metric factors give RF an advantage in various situations, 
especially in complex datasets with many features such as chemical composition and heat treatment.

Based on Fig. 4, it can be seen that random forest (RF) obtains the smallest error values 
when predicting the tensile strength of stainless steel, ranging from –30 MPa to 20 MPa. This in-
dicates that RF tends to produce predictions that are close to the actual values of tensile strength. 
However, although RF has the smallest error values, there is still variability in its predictions, as 
reflected by the range of error values. Furthermore, Decision Tree (DT) also shows relatively good 
performance, with an error range of –60 MPa to 40 MPa. Although this range is slightly wider than 
RF, DT is still capable of producing predictions that are relatively close to the actual values. Mean-
while, artificial neural networks (ANN) experience higher error levels, with a range of –125 MPa 
to 75 MPa. This indicates that ANN tends to have difficulty predicting the tensile strength of 
stainless steel with high accuracy. In the context of predicting the tensile strength of stainless steel, 
positive error indicates that the model’s prediction is lower than the actual value, while negative 
error indicates that the model’s prediction is higher than the actual value [26]. Therefore, the diffe-
rent ranges of errors for each model provide an indication of how well the model can predict tensile 
strength, as well as whether the model tends to underestimate or overestimate.

3. 3. Streamlit integration
At this stage, the exploratory data analysis (EDA) method and machine learning are com-

bined using the Streamlit framework. This combination results in a web-based optimization tool 
that can be used to enhance the tensile strength of stainless steel. This tool enables interactive and 
efficient data analysis and prediction of the tensile strength of stainless steel. The stainless steel 
tensile strength optimization tool is designed with four main features: 

1) data visualization;
2) correlation;
3) 3D visualization;
4) machine learning.
The EDA method implemented in this optimization tool consists of three features: data 

visualization, correlation feature, and 3D visualization feature. These features are created using 
various Python libraries, such as Pandas profiling, Matplotlib, and Seaborn, which are integrated 
into the Streamlit framework for web-based interface access. Fig. 5 illustrates the interface view of 
the visualization features of the stainless steel tensile strength optimization tool.

Based on Fig. 5, it can be seen that the visualization feature consists of various visualization 
techniques, ranging from automatic ones like Pandas profiling to manual ones like boxplot, line-
plot, and scatterplot. Pandas Profiling is a Python library used for comprehensive and automated 
data analysis of datasets using Pandas DataFrame. Its function is to provide a general overview of 
the dataset’s structure and characteristics in depth without requiring much code or manual steps. 
By using Pandas Profiling, users can quickly gain insights into various aspects of the dataset, in-
cluding descriptive statistics, variable distributions, and variable correlations, as well as detecting 
missing or duplicate values. This enables users to save time and effort in the data exploration pro-
cess, especially when working with large or complex datasets. Additionally, the reports generated 
by Pandas Profiling are presented in an easily understandable format and can be visualized well, 
making it easier for users to understand the dataset’s characteristics comprehensively. Thus, Pan-
das profiling becomes a highly useful tool in the initial stage of data analysis to identify patterns, 
anomalies, and trends that can aid in better decision-making.
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Fig. 5. Interface display of data visualization features using Pandas profiling

In the analysis of alloy steel mechanical properties based on data, it often takes a considerable 
amount of time to inspect the data structure in detail. This process involves examining the value distri-
bution, identifying outliers, analyzing variable correlations, and so on. All of these steps are important 
for understanding the dataset well before proceeding to further analysis. Therefore, Pandas profiling 
becomes one of the most effective solutions to address these challenges. By using Pandas Profiling, 
users can easily view the value distribution of each variable, including the chemical composition and 
heat treatment temperature optimal for obtaining the desired tensile strength in stainless steel.

The second feature of this stainless steel tensile strength optimization tool is the correlation fea-
ture. This feature plays a significant role in providing a deep insight into the relationship between che-
mical composition and heat treatment temperature and the tensile strength of stainless steel. This feature 
not only displays the statistical correlation between variables but also allows users to explore the com-
plex dynamics behind the interaction of various factors. With this capability, users can quickly see how 
variations in chemical composition or changes in heat treatment temperature affect the tensile strength 
of steel. With a deeper understanding of this correlation, users can identify patterns or trends that may 
be hidden in the data, enabling them to make better decisions in the analysis of stainless steel tensile 
strength. Thus, the correlation feature not only provides additional insights but also enriches users’  
understanding of the factors contributing to the tensile strength of stainless steel, thereby improving 
the quality and accuracy of their overall analysis. The display of this feature can be seen in Fig. 6.

The third feature of this stainless steel tensile strength optimization tool is the 3D visuali-
zation feature. By leveraging the 3D visualization feature, users can explore data more deeply and 
intuitively, thus presenting complex information in an easily understandable manner. This feature 
consists of two models, namely the surface area and the contour diagram. The 3D visualization fea-
ture not only allows users to explore data more deeply and intuitively but also provides the capability  
to perform optimization analysis of the percentage values of chemical elements and heat treatment 
temperature according to the desired tensile strength. By using the surface area and contour dia-
gram models, users can visually identify the optimal combination of chemical elements and heat 
treatment temperature that will result in the desired tensile strength of stainless steel according to 
the established standards or goals. Thus, the 3D visualization feature not only facilitates a better 
understanding of the data but also enables users to make more precise decisions in optimizing the 
production process and producing products with the desired quality.

Various previous studies have highlighted the important role of 3D visualization in support-
ing, facilitating, and even enhancing the results of steel mechanical property analysis. With its ability  
to present data more intuitively and deeply, 3D visualization has proven to be a highly useful tool 
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for understanding material characteristics. One study conducted [42], showed that 3D visualization 
can be used as a medium to enhance a better understanding of the complex relationship between 
the chemical composition and mechanical properties of steel. By using 3D visualization models, 
researchers can easily explore variations in crystal structure and material phase distribution, which 
in turn help identify factors influencing mechanical properties. In another study conducted [43],  
it was highlighted that 3D visualization plays a key role in presenting a more in-depth analysis of 
the effects of heat treatment on the microstructure of steel. By presenting the steel microstructure in 
a realistic three-dimensional representation, researchers can effectively observe structural changes 
that occur during the heat treatment process. These findings support the idea that 3D visualization 
has a positive impact on deepening understanding of steel mechanical properties, which in turn can 
aid in designing stronger, more durable, and more cost-efficient materials. Therefore, the integration 
of the 3D visualization feature into the stainless steel tensile strength optimization tool is a suit-
able step. The display of the 3D visualization feature can be seen in Fig. 7.

Fig. 6. Interface display of correlation analysis using heatmap

Fig. 7. Interface display of the 3D visualization feature

 

 



Original Research Article:
full paper

(2024), «EUREKA: Physics and Engineering»
Number 5

85

Engineering

The last feature of this optimization tool is the prediction model using machine learning. 
This feature is designed to predict the tensile strength of stainless steel using 14 input variables that 
include chemical elements such as chromium (Cr), nickel (Ni), molybdenum (Mo), manganese (Mn), 
silicon (Si), niobium (Nb), titanium (Ti), carbon (C), boron (B), phosphorus (P), and sulfur (S), as well 
as heat treatment factors such as initial temperature (ST temperature), heat treatment time (ST time), 
and tempering temperature. Users can utilize this feature by inputting chemical element and heat 
treatment temperature data through the sidebar, as seen in Fig. 8. By leveraging machine learning 
technology, the process of predicting the tensile strength of stainless steel can be done faster, more 
cost-effectively, and more environmentally friendly. The machine learning models implemented in 
this optimization tool consist of three machine learning models: DT, RF, and ANN. This is intended 
to allow users to choose the model that best suits their needs and data characteristics.

Fig. 8. Interface display of the machine learning feature

Based on several previous studies, machine learning methods have proven to be highly 
effective in designing new materials, predicting the mechanical properties of steel, and optimizing 
steel production processes. Research conducted [44], highlights that the use of machine learning 
techniques in material design allows researchers to explore a wider design space, identify complex 
patterns in material structures, and predict material mechanical properties. Another study [45], 
shows that machine learning methods have succeeded in predicting the mechanical properties of 
steel with high accuracy. By leveraging data related to chemical composition, heat treatment, and 
mechanical characteristics, machine learning models can produce predictions that closely appro-
ximate the actual values of the tensile strength, hardness, and toughness of steel. Studies conduc-
ted [27], emphasize that machine learning can be used to optimize steel production processes.  
By analyzing data from various production parameters such as temperature, time, and material 
composition, machine learning models can provide better recommendations to improve the effi-
ciency, quality, and reliability of steel production processes. From these studies, it can be concluded 
that machine learning methods have great potential for supporting material research and develop-
ment as well as improving operational efficiency in the steel industry. Integrating this technology 
into the optimization tool for the tensile strength of stainless steel is a fitting step in supporting 
practitioners to achieve better, faster, and more efficient material analysis and design.

This optimization tool plays a very important role in the overall analysis of the tensile strength 
of stainless steel. However, it should be acknowledged that this tool has limitations in predicting 
the tensile strength of stainless steel for more complex or extensive materials. When used to predict 
the properties of more complex materials, the results obtained may not be as optimal as expected.  
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Limitations of the data used in the study can also affect the accuracy and precision of the model. 
Additionally, the machine learning models used only utilize default parameters, so there is poten-
tial to improve model performance by adjusting parameters more specifically. Therefore, for future 
research, it is recommended to conduct more thorough parameter tuning for each model to enhance 
the quality of prediction results.

4. Conclusions
Based on the results of designing the optimization tool to improve the analysis of the tensile 

strength of stainless steel using data exploration and machine learning methods using Streamlit, it can be 
concluded that this tool can be used to improve efficiency in the analysis of the tensile strength of stainless 
steel. The optimization tool for the tensile strength of stainless steel is designed with four main features:

1) data visualization;
2) correlation;
3) 3D visualization;
4) machine learning.
These features can help users identify complex patterns between chemical elements and heat 

treatments with the tensile strength of stainless steel. Machine learning models are designed with 
14 input variables and one output variable. Input variables consist of chemical elements such as 
chromium (Cr), nickel (Ni), molybdenum (Mo), manganese (Mn), silicon (Si), niobium (Nb), titani-
um (Ti), carbon (C), boron (B), phosphorus (P), and sulfur (S), as well as heat treatments such as ini-
tial temperature (ST temperature), heat treatment time (ST time), and tempering temperature (Tem-
perature). The machine learning algorithms used include decision Tree (DT), random Forest (RF), 
and artificial neural networks (ANN). Each model is evaluated using three evaluation metrics, such 
as MAE, RMSE, and R-squared. Based on the training model evaluation results, RF demonstrates 
the best performance with MAE of 9.42, an RMSE of 11.68, and an R-squared value of 0.98. This is 
followed by DT with MAE of 15.19, RMSE of 18.75, and R-squared of 0.95. Meanwhile, ANN shows 
lower performance with MAE of 40.80, an RMSE of 50.19, and an R-squared of 0.70. From these 
results, it can be concluded that RF has more accurate predictive capabilities compared to DT and 
ANN in predicting the tensile strength of stainless steel based on chemical composition and heat 
treatment. Thus, this tool can be an effective solution for designing new materials, understanding 
sensitivity to certain factors, and improving the overall quality of steel production processes.
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