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A B S T R A C T   

Fault diagnosis based on data-driven intelligence has recently attracted extensive interest owing to the rapid 
development of big data and deep-learning algorithms. However, when the amount of faulty data is limited, deep 
learning training is prone to overfitting. When the application scenario is changed, the generalization ability of 
the trained network is affected. In this study, a fault diagnosis architecture based on deep transfer learning is 
proposed to work with limited data and transfer between multiple scenarios. A wide convolution kernel con
volutional long short-term memory neural network (WCL) was used to improve the feature extraction ability of 
fault data from a diesel engine with a low signal-to-noise ratio. A multiple transfer learning scheme based on 
WCL was further adopted to transfer the well-trained diagnostic knowledge of large-scale labeled source domain 
data to the target domain with limited samples. In addition, for diesel engines for various purposes, the 
knowledge transferability between different scenarios was studied. The algorithm evaluates the transfer per
formance of four different domains when the sample is insufficient, including the cross-fault type, cross- 
equipment type, cross-fault degree, and cross-working conditions. The results show the proposed method is 
proven with high noise immunity improves the accuracy of small sample cross-domain diagnosis and provides an 
optimal transfer scheme suitable for diesel engine fault signals.   

1. Introduction 

Diesel engines are a driving force in industries, agriculture, nuclear 
power, and other fields. The mechanical components of diesel engines 
are prone to faults because of their complex structures and poor working 
environments. The key to ensuring the safety of diesel engines is 
establishing a reliable fault diagnosis system. Traditional fault-diagnosis 
methods are based on signal processing for feature extraction and clas
sification. Bi [1] proposed a novel diagnostic method based on varia
tional mode decomposition (VMD) and kernel-based fuzzy c-means 
clustering (KFCM). Liu [2] proposed a novel approach based on 
improved intrinsic time-scale decomposition (ITD) and relevance vector 
machine (RVM) for the identification of diesel engine valve train faults. 
Xu [3] proposed an integrated pattern recognition algorithm, including 
an artificial neural network (ANN) model, a belief rule-based inference 
(BRB) model, and an evidential reasoning (ER) rule model. However, 

traditional fault diagnosis methods require expert experience, time- 
consuming design, and cannot guarantee versatility. In addition, it is 
difficult to characterize the complex mapping relationship between the 
measured signals and faults, which limits diagnostic accuracy. 

Deep learning, one of the latest developmental directions and 
research trends in the field of machine learning, has brought revolu
tionary progress to the intelligent diagnosis of diesel engines. With the 
help of sufficient historical fault data, intelligent fault diagnosis estab
lishes and trains a deep neural network model, mines the high- 
dimensional features contained in the original data, and reduces 
dependence on expert knowledge [4,5]. Chen [6] designed a neural 
network model called multiscale convolutional neural network-long 
short-term memory (CNN-LSTM) and a deep residual learning model 
that combined a multiscale-wide CNN-LSTM module and a deep residual 
module for rolling bearing fault diagnosis. Jiang [7] proposed a diesel 
engine operating condition recognition method based on a one- 
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dimensional convolutional long short-term memory network (1D- 
CLSTM) with a recognition accuracy of 99.08 %. Wang [8] presented a 
novel fault diagnosis method called a graph convolutional network 
(GCN) based on the distance and probability topological graph (DPGCN) 
model to solve the problem of imbalanced classification. However, in 
actual diesel engine engineering scenarios, the collected real-time data 
has two characteristics: (1) imbalance. Most of the time, they work in a 
healthy state and faults seldom occur. Therefore, the collected data were 
imbalanced, and the fault data were insufficient. (2) Inconsistent. The 
industrial application of diesel engines is complex and changeable, and 
fault samples of a single scenario are difficult to apply to the training of 
diagnostic models in other scenarios. Although simulating faults on an 
engine bench is a way to quickly obtain fault data, the cost of man-made 
faults under different operating conditions is extremely high, and 
running under long-term fault conditions is very risky. In particular, the 
environmental differences between the engine bench test and the actual 
operation cannot be ignored. When label samples are scarce, deep neural 
networks (DNNs) are prone to overfitting. When the industrial scenario 
was changed, the generalization performance was poor, resulting in 
reduced diagnostic accuracy. Therefore, in an actual diagnosis task, the 
key problem is how to use the historical data of different engineering 
scenarios for effective mining and correlation, realizing the transfer and 
reuse of knowledge, and improving the classification and generalization 
capabilities of networks under the scarcity of fault samples. 

Transfer learning is one of the most effective methods for solving 
small-sample cross-domain fault diagnoses. Scholars at home and 
abroad have carried out basic research on small samples based on 
transfer learning, especially in rotating machinery such as bearings and 
gears. Zhuang [9,10] proposed an adversarial domain generalization 
framework with regularization learning (ADGR) and a two-stage trans
fer alignment (TSTA) methodto complete fault diagnosis of bearings 
under transfer tasks. Dong [11] proposed a diagnostic model for a ma
rine low-speed diesel engine fuel-injection system based on the TrAda
Boost transfer-learning algorithm. Zhang [12] fine-tuned a pretrained 
diagnostic model based on samples under target operating conditions for 
motor bearing transfer scenarios under different operating conditions. 
Liu [13] used AlexNet and ResNet-18 convolutional networks as pre- 
trained models to fine-tune diesel engine time–frequency graph sam
ples. Hou [14] proposed a new transfer learning method based on 
simulation data focusing on the no fault data problems. Bai [15] pro
posed a diagnostic approach utilizing intelligent methods of optimized 
variational mode decomposition and deep transfer learning to perform 
fault diagnosis. Shao [16] directly used the pretrained AlexNet model, 
used a time–frequency graph to optimize the high level of the network, 
and improved the diagnostic accuracy of bearings for small samples. 
Han [17] proposed a deep adversarial transfer-network diagnosis model 
with good classification accuracy and generalization ability for transfer 
tasks with different loads. However, pre-trained models mostly apply 
typical existing networks. These networks have advantages in image 
processing, which is not a low-SNR noise signal; therefore, it is difficult 
to effectively solve the problem of the high noise interference of diesel 
engine signals. In addition, most studies focused on diagnostic scenarios 
with slight cross-domain differences. In practical engineering problems, 
the information contained in the source domain is not entirely related to 
that of the target domain. Therefore, the cross-domain diagnosis of 
diesel engines for multiple scenarios deserves more attention. 

In this study, an intelligent fault diagnosis method based on deep 
transfer learning was proposed to solve the problem of small samples 
and multiple industrial scenarios. First, a wide convolution kernel con
volutional long- and short-term memory neural network is constructed. 
Subsequently, based on the model transfer in inductive transfer learning, 
a small-sample fault can be accurately classified. Specifically, the source 
domain data were used to fully train the WCL in a strong noise envi
ronment to obtain a pretrained network with high diagnostic accuracy 
and excellent noise immunity. Next, we input the rare target domain 
data, freeze the specific layer to fine-tune the pre-training model, and 

make it suitable for new tasks in the target domain. 
The remainder of this paper is organized as follows. Section 2 briefly 

introduces the basic principles of CNN and LSTM. Section 3 proposes a 
method for solving the problem of small samples and noisy signals in a 
diesel engine fault diagnosis. Section 4 presents the diesel engine fault 
simulation experiment and describes the datasets used in this study. 
Section 5 presents four cross-domain diagnostic tasks and six transfer 
schemes to illustrate the transferability of diesel engines in different 
industrial scenarios, followed by conclusions in Section 6. 

2. A brief introduction to CNN and LSTM 

2.1. Convolutional neural network 

A CNN is a multilayer deep neural network that combines low-level 
features to form a more abstract high-level representation. CNN have 
four basic properties: local feature extraction, nonlinear mapping, 
weight-sharing, and feature pooling. Compared with fully connected 
networks, CNN significantly reduce the number of trainable parameters 
and promote effective training without loss of expression ability. A 
typical CNN structure includes convolutional, activation, pooling, and 
fully connected layers. Among them, the convolutional and pooling 
layers are the unique structure of the CNN and are the key to realizing 
the above four basic characteristics. This study only shows the operation 
process of the convolutional and pooling layers in a simple form, as 
shown in Eq. (1). 
⎧
⎨

⎩

al
conv = σ

(
al− 1

pool*Wl + bl
)

al
pool = p(al

conv)
(1)  

where l is the number of layers, σ is the activation function, * is the 
convolution operation, W is the convolution kernel matrix, b is the bias, 
and p is the pooling operation. 

2.2. Long short term memory 

A recurrent neural network (RNN) is suitable for processing time 
series, which requires consideration of input order. LSTM is an improved 
RNN that solves the problems of gradient disappearance and gradient 
explosion during the training process of long sequences with a clever 
gating structure and hidden cell states. A typical LSTM architecture is 
shown in Fig. 1. The figure shows that, in addition to the same hidden 
state ht as the RNN, another hidden state is propagated forward at each 
sequence index position t. This hidden state is called the Cell State, and is 
denoted as Ct. The LSTM also has several gates. The gates of the LSTM at 
each sequence index position t generally include three types: forget, 
input, and output gates. 

Fig. 1. LSTM Gating architecture.  
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3. Proposed transfer learning method 

3.1. Structure of the proposed WCL 

Inspired by the classic CNN [18] and LSTM [19] models, a WCL was 
constructed to improve noise immunity. The overall architecture of the 
proposed WCL was similar to that of an ordinary 1D-CNN, as shown in 
Fig. 2. The input of the network was the original vibration signal of the 
diesel engine in the time domain. Four sets of convolutional and pooling 
layers are established to extract the local features of the original signal. 
The number of convolution kernels was gradually increased (16, 32, 64, 
and 128) to obtain more discriminative features in the higher layers of 
the network. After each group of convolution operations, batch 
normalization (BN) [20] is performed to reduce the difference in feature 
learning at each layer of the network. The activation function then 
chooses LeakyReLU [21] to solve the problem of the ReLU function not 
learning in the negative interval. Subsequently, 2 × 1 maximum pooling 

is performed to reduce the output feature size after pooling by half to 
reduce the complexity of the network. The network output layer was 
softmax, which was used to obtain the category probability output of 
each input sample. Finally, the parameters of each layer are updated by 
backpropagation based on the cross-entropy loss function. The advan
tages of the WCL network are as follows:1) the first convolution layer 
uses a wide convolution kernel and 2) an LSTM network is added after 
the last pooling layer. The structural parameters of the WCL are listed in 
Table 1. 

3.1.1. Wide convolution kernel 
The convolutional layer uses convolutional kernels to perform 

convolution operations on the local area of the input signal (or features) 
and generate the corresponding features. Its function is similar to that of 
short-time Fourier transform. A diesel engine vibration signal has a low 
signal-to-noise ratio, and it is difficult for a small convolution kernel to 
capture the characteristics of medium and low frequencies, and is 

Fig. 2. The architecture of the proposed WCL.  

Table 1 
Structural parameters of WCL.  

Block Layer Size of convolution kernel Number of convolution kernels Stride Padding Output dimension 

B1 Conv 64 × 1 16 16 Yes 16 × 196 
BN – – – – 16 × 196 
LeakyReLU – – – – 16 × 196 
Pool 2 × 1 16 2 No 16 × 98  

B2 Conv 3 × 1 32 16 Yes 32 × 98 
BN – – – – 32 × 98 
LeakyReLU – – – – 32 × 98 
Pool 2 × 1 32 2 No 32 × 49  

B3 Conv 3 × 1 64 16 Yes 64 × 49 
BN – – – – 64 × 49 
LeakyReLU – – – – 64 × 49 
Pool 2 × 1 64 2 No 64 × 24  

B4 Conv 3 × 1 128 16 Yes 128 × 24 
BN – – – – 128 × 24 
LeakyReLU – – – – 128 × 24 
Pool 2 × 1 128 2 No 128 × 12  

B5 LSTM – – – – 128 × 12 
FC 128 × 12 – – – 100 
BN – – – – 100 
LeakyReLU – – – – 100 
Dropout(0.5) – – – – 100 
FC 100   – 12 
LeakyReLU – – – – 12 
Softmax 12 – – – 12  
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susceptible to high-frequency noise. When the noise is large, choosing a 
larger convolution kernel is beneficial for improving the noise immunity 
of the model [22]. In this study, the first layer of the convolution step 
length was set to 16, the width of the convolution kernel was four times 
the step length, and the size was 64 × 1. Except for the first layer, the 
size of the convolution kernel of the other convolutional layers was 3 × 1 
and the step size was 2. The smaller convolution kernel in the upper 
layer enhances the network’s ability to learn the detailed features. In 
addition, the number of convolution cores in the last convolution layer is 
increased to 128 to deal with the long sample sequence. 

3.1.2. LSTM parameter settings 
In this study, the time-domain signal, which has an obvious time 

correlation, was used as the input. Feature learning is the main focus of 
the front part of a network to ensure comprehensiveness of fault fea
tures. In the latter part of the network, additional consideration was 
given to the sequence of the appearance of features to improve the fault 
tolerance of diesel engine diagnosis in harsh noise environments. So an 
LSTM network is added after the last pooling layer. The basic parameters 
of LSTM were set to an input size of 128, hidden size of 128, and number 
of layers of two. 

3.2. Model transfer scheme 

Model transfer based on deep neural networks is a type of inductive 
transfer-learning method. Problems that are good at handling have the 
following requirements: (1) A large number of source domain datasets 
accompanied by labels. (2) A small number of target domain datasets are 
accompanied by labels. (3) The source and target domain data come 
from different but similar distributions. The purpose of model transfer is 
to transfer the knowledge learned from the source domain to the target 
domain with a small amount of data to improve the small-sample clas
sification performance of the target domain task. 

The fault diagnosis process of the model transfer based on WCL is 
shown in Fig. 3. The first step was to fully pre-train the proposed WCL 
based on the constructed large-scale labeled source domain dataset 
using the traditional supervised deep neural network training method. 
The parameters of each layer of the pre-trained model obtained diag
nostic knowledge of the source domain dataset. The pre-training output 
is guaranteed to meet the accuracy of the source domain samples. The 
second step is to freeze the low-level parameters of the pre-training 
network and use a small number of target domain training samples to 
fine-tune the high-level parameters, because the features learned by the 
deep neural network are more general in the first few layers and more 

specific in the high level. Finally, with the help of the model transfer, a 
diagnostic model suitable for the target domain is established. The 
adaptive output can satisfy the precision of the target domain sample. 

4. Data description 

4.1. Dataset A: Diesel engine a fault 

The test data were obtained from a six-cylinder diesel engine, the 
main technical parameters are listed in Table 2. 

In the test, a PCB company ICP 356A26 three-way piezoelectric ac
celeration sensor was used to obtain the cylinder head signal under 
idling and no-load conditions. The sampling frequency was 25 kHz, and 
the working cycle contains 3152 sampling points. Based on the above 
settings, the test simulated 11 common faults in the fuel system and 
valve train as listed in Table 3. Twelve different state single-cycle time- 
domain waveforms were marked as Normal, Fault1-Fault11. The layout 
of the test bench and fault simulation scheme are detailed in [23]. 

Fig. 3. Model Transfer Scheme.  

Table 2 
Parameters of the diesel engine.  

Item Parameter 

Number of cylinders 6 
Shape I-shape 
Firing sequence 1–5-3–6-2–4 
Idle speed 950 rpm 
Max output power 112 kW  

Table 3 
Fault simulation of 12 different operating conditions.  

No. Source domain No. Target domain 

1 Normal 7 Exhaust pipe clogged 
2 Intake valve clearance is 0.1 mm 

larger 
8 The fuel advance Angle is 

increased by 3◦

3 Intake valve clearance is 0.2 mm 
larger 

9 The fifth cylinder misfired 

4 Exhaust valve clearance is 0.1 
mm larger 

10 The sixth cylinder misfired 

5 Exhaust valve clearance is 0.2 
mm larger 

11 The sixth cylinder performed 
poorly 

6 The air intake filter is clogged 12 The sixth cylinder performed 
badly  
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4.2. Dataset B: Diesel engine B fault 

The test data were derived from another six-cylinder diesel engine 
that simulated various faults to varying degrees, including air intake 
filter blockages, abnormal valve clearances, gear cracks, gear tooth 
breakages, and misfires. The sampling frequency was 51.2 kHz, and the 
working cycle contains 5120 sampling points. The test bench is shown in 
Fig. 4. 

The artificial fault simulation scheme is illustrated in Fig. 5. Fig. 5(a) 
illustrates the blocking method for the air intake filter. The filter was 
blocked using adhesive tape, and the blocking degrees were set to 20 %, 
40 %, 50 %, and 60 %. Fig. 5(b) shows the adjustment mode of intake 
valve clearance. The normal clearance of this diesel engine model is 
approximately 0.4 mm, and two types of abnormal clearances are set in 
the test, 0.19 mm, and 0.59 mm. Fig. 5(c) shows a simulated gear-crack 
fault. The cracks were manually cut at the root of the teeth with lengths 
of 1, 2, and 3 mm. Fig. 5(d) shows the test gear after the artificial tooth 
broke. The misfire fault was controlled directly by the ECU of the diesel 
engine, and two fault degrees of a single cylinder and a double cylinder 
were set. 

The data collected in the experiment were divided into one source- 
domain dataset and two target-domain datasets, as shown in Table 4. 
Compared with the source domain, the fault degree of target domain A is 
different and minor or rare in the actual operation. The target domain B 
and the source domain are only different in the operating conditions. 

4.3. Dataset C: Bearing fault 

The bearing failure dataset of Western Reserve University was used 
as the target domain dataset to verify the transfer learning effect of the 
proposed method between different devices [24]. There are six types of 
bearing faults: normal, ball, inner-race, and three outer-race faults at 
different locations. This study selected data with motor speeds of 1797r/ 
min and 1772r/min under a fault diameter of 0.1778 mm for a total of 
12 groups, and the labels are marked as 0–11. Table 5 presents the 
results. 

Fig. 4. Test bench layout.  

Fig. 5. Artificial fault simulation.  

Table 4 
Description of diesel engine B datasets.  

Source domain Target domain A Target domain B 

Working condition Fault type Working condition Fault type Working condition Fault type 

Speed:1200 rpm 
Load:25 % 

Normal Speed:1200 rpm 
Load:25 % 

Normal Speed:1000 rpm 
Load:25 % 

Normal 
Blocking50 Blocking20 Blocking50 
Blocking60 Blocking40 Blocking60 
Clearance 0.19 mm Clearance 0.36 mm Clearance 0.19 mm 
Clearance 0.59 mm Clearance 0.44 mm Clearance 0.59 mm 
Gear tooth breakage Gear crack 2 mm Gear tooth breakage 
Gear crack 3 mm Gear crack 1 mm Gear crack 3 mm 
Misfire #1 Misfire #1&6 Misfire #1 
Misfire #2 Misfire #2&4 Misfire #2 
Misfire #3 Misfire #2&6 Misfire #3 
Misfire #4 Misfire #3&6 Misfire #4 
Misfire #5 Misfire #4&6 Misfire #5 
Misfire #6 Misfire #5&6 Misfire #6  
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5. Validation and discussion 

The deep learning framework was built using PyTorch and devel
oped using Facebook. The computer was configured with a CPU i7 
10,700 and 16 GB memory. Five patients were included in the study. In 
the first case, the noise immunity of the WCL model was tested. The 
second through fifth cases tested the diagnostic ability of the transfer 
model in different domains. The test divided the samples into training, 
validation, and test sets at a ratio of 0.5:0.25:0.25. The validation and 
test sets do not participate in model training and is used to monitor 
whether the model is overfitted to determine whether to stop training 
and adjust the hyperparameters. The test results for all cases, the num
ber of samples in the training set, and the average accuracy of the test set 
are listed. 

5.1. Case study 1: Performance of the pretrained WCL 

The precision of WCL pre-training model is firstly compared and 
verified, which is one of the steps of transfer learning and the basis for 
ensuring the transfer effect. The accuracy of the proposed WCL was 
tested with datasets A and B and compared with three other deep 
learning methods: WDCNN and LSTM. The results are shown in Fig. 6. 

The results showed that the average accuracies of WDCNN, WCL, and 
LSTM exceeded 89 %, and WDCNN and WCL were quite close in the two 
tests. Regardless of random noise interference, the advantage of the WCL 
is not obvious. To verify the noise immunity of the network further, 
additive white Gaussian noise [25] was added to the original signal, as 

shown in Eq. (2), to simulate the noise pollution of the diesel engine 
working environment. 

SNRdB = 10log10

(
Psignal

Pnoise

)

(2)  

where Pnoise and Psignal represent signal energy and noise, respectively. If 
the discrete signal is S = {s1, s2,…, sn}, then Psignal = 1

n
∑n

k=1S2
k . The 

greater the noise contained in the signal, the smaller the SNR value. 
When the SNR value was 0 dB, the energies contained in the signal and 
noise were equal. 

The original signal, noise, and the signal with noise in the normal 
state are shown in Fig. 7. 

The diagnostic accuracies of the three methods for different signal- 
to-noise ratios are shown in Fig. 8. The sample size of the three 
methods is 6000. It can be observed that the WCL has stronger noise 
immunity, and the lower the signal-to-noise ratio, the more obvious the 
advantage of the WCL. 

The proposed WCL network can achieve superior classification per
formance owing to the large amount of labeled training data. However, 
in actual industrial applications, it is difficult to obtain sufficient labeled 
data for certain research tasks. As shown in Fig. 9, in the same noise 
environment (SNR = 0), the diagnostic ability of the DNN decreased 
exponentially as the label data of the target domain task decreased. In 
particular, when the number of samples in each state decreased to 1000, 
the diagnostic accuracy of the CNN and LSTM methods was only 
approximately 60 %. The proposed method performed slightly better; 
however, its accuracy was still less than 80 %. 

To solve the aforementioned sample shortage problem, the latter 
four cases will discuss in detail the advantages of cross-domain diagnosis 
based on transfer learning in small samples. 

Table 5 
Description of rolling element-bearing datasets.  

Fault diameter Speed (r/min) Normal Ball fault InnerRace fault OuterRace fault at 6:00 OuterRace fault at 3:00 OuterRace fault at 12:00 

0.1778 mm 1797 0 1 2 3 4 5 
1772 6 7 8 9 10 11  

Fig. 6. Diagnostic accuracy of datasets A and B without noise interference.  

Fig. 7. Signals (a) in a normal state, (b) with an additive white Gaussian noise, 
and (c) with the composite noisy signal with SNR = 0 dB. 
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Fig. 8. Diagnostic accuracy of datasets A and B with noise interference.  

Fig. 9. Diagnostic accuracy of different sample numbers.  
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5.2. Case study 2: Performance across fault type 

Dataset A was split into two parts to study the transfer effect of 
different fault type domains, named Dataset A1: Normal and fault1-5 
and Dataset A2: Fault6-11. Assume that Dataset A1 represents a data
set that has a large failure rate and is easy to obtain in actual situations, 
and Dataset A2 represents a dataset that has a small failure rate and is 
difficult to obtain. To address the problem of insufficient samples in the 

target domain Dataset A2, Dataset A1 was used as the source domain 
data for the WCL model training. Dataset A2 was then used to train and 
fine-tune the optimization layer of the pre-training model and calculate 
it after adding AWGN with SNR = 0 to the dataset. The results are shown 
in Fig. 10. 

The results showed that the effect of training A2 based only on the 
WCL was very poor, and the accuracy continued to decline as the 
number of samples decreased. In comparison, the deep transfer learning 

Fig. 10. Diagnosis accuracy before and after domain transfer for different fault types.  

Fig. 11. Diagnosis accuracy before and after domain transfer for different types of equipment.  

Fig. 12. Description of several transfer schemes.  
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method A1 → A2 has obvious advantages in terms of accuracy and is less 
dependent on the number of samples. It should be noted that the diag
nostic accuracy of only A2 data at 1000 samples is higher than that in 
Section 5.1, because this section is a 6-classification problem, whereas 
the previous section is a 12-classification problem. This case shows that 
when a fault sample is limited, the diagnosis accuracy can be effectively 
improved by using other fault data of the same equipment based on the 
proposed model to transfer the learned knowledge to the target task. 

5.3. Case study 3: Performance across equipment type 

In this case, we evaluate the transfer capability of the proposed 
method between different devices. Fig. 11 shows the diagnosis results 
with diesel engine fault dataset A as the source domain, and bearing 
fault dataset C as the target domain. Similarly, the A → C model transfer 
method performed better than using only Dataset C. It is worth 
mentioning that, compared with the diesel engine fault data, the bearing 

fault data are cleaner and have a higher signal-to-noise ratio; therefore, 
the model requires fewer samples for the target domain after diesel 
engine data pre-training. 

This case explains that the knowledge of diesel engine fault charac
teristics learned by the proposed WCL model through pre-training can 
also be transferred to the fault diagnosis task of the bearing. It can be 
proven that transfer learning across device domains provides another 
feasible approach for solving small-sample problems. 

5.4. Case study 4: Performance across fault degree 

Furthermore, the influence of different transfer schemes on the re
sults was considered. As shown in Fig. 12, the transfer scheme can be 
divided into six cases according to the number of frozen and fine-tuned 
layers. If the number of freezing layers is M and the number of fine- 
tuning layers is N, the scheme is denoted as M− N. 

This part of the analysis considered the fault degree as an example. 

Fig. 13. Diagnostic accuracy of different transfer schemes for different fault degrees.  

Fig. 14. Diagnostic accuracy of different transfer schemes for different working conditions.  
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Specifically, the Source and target domains A in Dataset B were used. 
The results are shown in Fig. 13, where when M = 5 and N = 0, the 
model parameters are all frozen, indicating that the pretrained model is 
directly applied to the target domain dataset. Owing to the obvious 
distribution difference between the source and target domains, the 
diagnostic ability of the model is completely lost. When M = 0 and N =
5, the model parameters were retrained, and the accuracy was not 
satisfied by the limit of the number of samples. The results of these two 
special schemes indirectly illustrate the necessity of transfer learning. 
Although the middle four transfer schemes are all effective, schemes 3–2 
and 2–3 perform better than 4–1 and 1–4. In contrast to the common use 
of a fully connected layer as a fine-tuning layer, it is better to appro
priately add one or two fine-tuning layers in the face of low-signal-to- 
noise ratio signals. 

5.5. Case study 5: Performance across working condition 

Similarly, this part of the analysis considers the working conditions 
as an example. Source and target domains B in Dataset B were selected. 
The results are shown in Fig. 14 and are broadly similar to those of Case 
Study 4. The difference is that the distribution difference between 
different working conditions is small; therefore, more samples are 
required to achieve the desired accuracy compared with different fault 
degrees. For the same reason, the accuracy of scheme 5-0 shows a 
certain improvement. 

6. Conclusion 

The core idea of the proposed method is to transfer the diagnostic 
knowledge obtained by training the deep neural network with historical 
data of different fault type domains, equipment type domains, fault 
degree domains, and working condition domains to the new target 
domain task to improve the classification ability of the target diagnosis 
task in the case of scarce samples. On the one hand, the proposed 
method constructs a multilayer anti-noise neural network to adaptively 
extract features from the original vibration signal automatically, which 
improves the anti-noise and effectiveness of feature extraction. On the 
other hand, the model transfer scheme is further applied to WCL. By 
fixing the specific layer parameters and tuning the remaining layers, the 
diagnosis knowledge of the large source domain data is effectively 
transferred to the target domain task, which promotes fast and effective 
training of the target diagnosis network and improves the target domain 
task diagnosis performance. 

The experimental results show that, compared with other deep 
neural network methods, the proposed method has better anti-noise 
performance and calculation accuracy. However, with a decrease in 
the target domain-labeled data, the diagnostic ability of deep neural 
networks will still be greatly reduced. It was also found that when a 
certain fault sample was limited, the diagnosis accuracy could be 
effectively improved by using other fault data, other working condition 
data, and other fault degree data of the same equipment and transferring 
the learned knowledge to the target task. In addition, Different from the 
common fine-tune full connection layer, a modest increase in the 
number of fine-tuning layers may be beneficial for complex signals 
generated by diesel-engine-type equipment. Therefore, the performance 
of model transfer is related to the size of the target domain training data, 
similarity between the target and source domains, transfer scheme, and 
signal-to-noise ratio. The more training data in which the target domain 
task participates and is more similar to the source domain task, the 
better the transfer performance and the higher the classification accu
racy. Therefore, in addition to building a powerful deep neural network 
diagnostic model, the quantity and quality of the training data are still 
two crucial factors for improving model transfer performance. 
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