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A B S T R A C T

High-fidelity digital human representations are increasingly in demand in the digital world, particularly for
interactive telepresence, AR/VR, 3D graphics, and the rapidly evolving metaverse. Even though they work
well in small spaces, conventional methods for reconstructing 3D human motion frequently require the use
of expensive hardware and have high processing costs. This study presents HumanAvatar, an innovative
approach that efficiently reconstructs precise human avatars from monocular video sources. At the core of
our methodology, we integrate the pre-trained HuMoR, a model celebrated for its proficiency in human
motion estimation. This is adeptly fused with the cutting-edge neural radiance field technology, Instant-NGP,
and the state-of-the-art articulated model, Fast-SNARF, to enhance the reconstruction fidelity and speed. By
combining these two technologies, a system is created that can render quickly and effectively while also
providing estimation of human pose parameters that are unmatched in accuracy. We have enhanced our
system with an advanced posture-sensitive space reduction technique, which optimally balances rendering
quality with computational efficiency. In our detailed experimental analysis using both artificial and real-
world monocular videos, we establish the advanced performance of our approach. HumanAvatar consistently
equals or surpasses contemporary leading-edge reconstruction techniques in quality. Furthermore, it achieves
these complex reconstructions in minutes, a fraction of the time typically required by existing methods.
Our models achieve a training speed that is 110× faster than that of State-of-The-Art (SoTA) NeRF-based
models. Our technique performs noticeably better than SoTA dynamic human NeRF methods if given an
identical runtime limit. HumanAvatar can provide effective visuals after only 30 s of training. Please visit
https://github.com/HZXu-526/Human-Avatar for further demo results and code.
1. Introduction

Numerous applications, such as interactive telepresence, AR/VR, 3D
graphics, and the developing metaverse depend on the ability to create
high-fidelity digital humans. Existing techniques such as multiple syn-
chronized cameras [1], RGB-D sensor [2], and magnetic trackers [3] are
the most effective for capturing 3D human motion within a restricted
space. However, these existing methods require expensive instruments
to capture motion and accumulate high processing costs, making them
inaccessible to most researchers. Given a single RGB video as input,
it is desirable to reconstruct realistic human motion and acquire a
3D human mesh. The scarcity and difficulty of obtaining 3D motion
datasets underscore the need to expand these resources for training
motion generation models, such as ‘‘text to motion’’ models [4,5]. How-
ever, previous 3D human reconstruction methods [6,7] still struggle to
accurately capture details like hair and textile creases. In this paper, we
set out to develop a lightweight, broadly deployable system for learning
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smoother 3D virtual people from monocular video independently which
is sufficiently quick to support real-world situations (see Fig. 1).

In the field of computer vision, models that capture the essential
geometry, texture, and appearance to accurately depict human move-
ment are crucial. In recent literature, a multitude of approaches have
emerged. The HuMoR model [8], a notable auto-regressive human
motion estimation method, excels in predicting plausible shapes and
poses from unclear data sources. Owing to its training on a diverse
motion capture dataset, HuMoR is adept at generalizing across a range
of movements and body types, processing inputs from 3D keypoints,
and RGB or RGB-D videos. However, its application is confined to pose
estimation and it does not support the generation of novel movements
beyond its trained repertoire.

Recent advances focus on motion scene reconstruction through neu-
ral rendering, which combines principles of physics with deep learning
in computer graphics. Neural networks can now capture the intricacies
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Fig. 1. HumanAvatar: We present a framework that produces computationally realistic human avatar representations from single-camera video footage, incorporating both poses
and facial features. After reconstruction, the avatar can be animated and displayed at a rate of 15 frames per second with a resolution of 540 × 540 pixels. To accomplish our
goals, we combine a pre-trained model specialized in human motion with efficient neural radiance fields, which were initially created for static environments. We also incorporate
a rapid articulation correspondence search mechanism. By leveraging an established technique for skipping empty spaces, we enhance both the training and inference speeds,
making it possible to learn avatar dynamics within minutes.
of complex scenes, producing photorealistic outputs. A testament to
this progress is the introduction of Neural Radiance Fields (NeRF) [9],
which have demonstrated proficiency in understanding 3D scenes and
objects. NeRF can synthesize realistic images from novel viewpoints
by processing 5D coordinates, including spatial locations (x, y, z) and
viewing directions (𝜃, 𝜙), and translating them into volume density
and color. Over the past two years, various models have expanded
upon NeRF to specifically render dynamic humans [10–15], leading
to the emergence of Dynamic Human NeRFs. These methods typi-
cally represent the human figure and appearance in a pose-invariant
canonical space. They use animation and rendering techniques like
skinning algorithms to morph and display the model in posed space,
facilitating reconstruction from images of humans in various postures.
This interplay between posed and canonical spaces allows for network
optimization by minimizing the discrepancy between reconstructed
pixel values and actual images. Dynamic Human NeRFs also employ hu-
man parametric models like SMPL [16] for frame-by-frame animation,
using NeRF’s rendering capabilities to recreate human movements. A
significant challenge with these methods is the lack of consistency in
the 3D human models across frames, which can lead to inaccuracies.
Moreover, the extensive training and inference times required by these
models present practical deployment challenges.

In this paper, we intend to develop a novel Dynamic Human NeRF
model that can reconstruct smoother human motion efficiently. In
order to achieve this, we propose HumanAvatar, an approach that
estimates a smooth human pose parameter and reconstructs high-
fidelity avatars from a monocular video within a few minutes. The
avatar can be animated and generated at dynamic speeds after it has
been trained. Accomplishing such a speedup and smooth estimation
is a difficult endeavour that needs meticulous method design, speedy
differentiable rendering and effective implementation. The utility of
the Dynamic Human NeRF model extends significantly into real-world
applications, offering a more convenient and expedited means of inte-
grating high-fidelity human avatars into AR and VR environments. This
capability not only enhances user engagement by providing immersive
and interactive experiences but also facilitates a variety of practical
applications ranging from virtual meetings and remote learning to
interactive gaming and virtual social interactions.

Our straightforward effective pipeline includes different essential el-
ements. First, we leverage a newly proposed pre-trained human motion
model HuMoR [8] to estimate more accurate human pose parameters.
HuMoR [8] estimates future human posture parameters based on past
and present human posture parameters. Since it incorporates corre-
lations between video frames, the estimation is smoother than when
correlations between frames are not included. Second, we use a newly
2

invented variation of the neural radiance field [17] for learning the
canonical pose and shape. Through the use of a more effective hash
table in place of multi-layer perceptrons (MLPs), Instant-NGP [17]
speeds up the process of volume rendering. However, Instant-NGP is
only capable of handling rigid objects since the spatial properties are
explicitly specified. Third, we integrate the conventional NeRF with a
powerful articulation model Fast-SNARF [18] that allows learning from
posed inputs and the capacity to move the avatar. Fast-SNARF [18] is
hundreds of times quicker than its slower version, SNARF [19], and
effectively generates a constant deformation field to bend the canonical
space into the pose field.

However, merely merging current acceleration methodologies will
not produce the needed efficiency. As the quick articulation section and
acceleration mechanisms for the canonical field are in place, rendering
the real volume turns into the processing bottleneck. Normal volume
rendering requires querying and accumulating the density of hundreds
of locations along the light ray in order to determine the color of a
pixel. The practice of keeping the occupancy grid to skip pixels in the
empty area is a typical way to speed up this process. Nevertheless, such
a method presupposes static situations and cannot be used for dynamic
applications especially moving humans.

To address this challenge, we apply a posture-sensitive space reduc-
tion to form articulated structures in dynamic settings. Our method
gathers pixel points from a standard grid within the pose field for
each input pose during inference, repositioning these samples to the
canonical pose for density calculations. We then use these densities to
craft a spatial occupancy grid that bypasses empty spaces in volumetric
rendering. For training, we maintain a persistent occupancy grid over
all frames, tracking occupied regions across time. The parameters of
this grid are periodically updated with densities from randomly sam-
pled points across various training frames, balancing computational
efficiency with rendering quality.

To assess the efficacy of our approach, we conduct evaluations using
both computer-generated and real-world one-camera videos featuring
humans in motion. We make comparisons with the latest innovative
techniques developed specifically for the reconstruction of monocular
avatars. Remarkably, our methodology not only matches the quality
of reconstructions achieved by these state-of-the-art methods but also
outperforms them in terms of animation fidelity. The integration of Hu-
MoR, Instant-NGP, and Fast-SNARF represents a significant innovation
in our work. It offers a synergistic effect that elevates the capabilities
of our Dynamic Human NeRF model beyond the sum of its parts.
Additionally, we offer a thorough ablation analysis to better understand
how various elements within our system contribute to its speed and
precision.
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Contributions

In summary, the contributions of this work are as follows:

1. We integrate a pre-trained human motion model into a dy-
namic human NeRF in the preprocessing procedure, which es-
timates more accurate human parameters and reduces the jitter
of the predicted human parameters to reconstruct higher-quality
human avatars.

2. We propose an accelerated framework that replaces the basic
volume rendering method in the dynamic human NeRF with a
more efficient rendering method and integrates an efficient ar-
ticulation human model from SoTA for transforming the human
body from canonical space to pose space.

3. We integrate a posture-sensitive space reduction approach in
the process of volumetric rendering in our framework. This
strategy maintains an equilibrium between rendering quality and
the effectiveness of computation. It can further speed up our
inference and training speed.

4. We conduct experiments using real and synthetic data to com-
pare the accuracy of human reconstruction. In comparison to
approaches that estimate human pose parameters in each frame
independently, results show that the estimated human pose pa-
rameters are better matched to humans. Moreover, our recon-
struction speed is much faster than methods using NeRF.

The remainder of this paper is organized as follows: Section 2 details
he related work, while Section 3 describes our methodology. Section 4
iscusses the experimental setup, model configurations, performance
omparisons of our approach against other state-of-the-art (SOTA) dy-
amic human NeRFs, ablation studies and limitations. Finally, Section 5
oncludes with a summary of our contributions.

. Related work

D Reconstruction on Humans The challenge of accurately rendering
he three-dimensional form and appearance of humans has been an en-
uring area of research. Previously, exceptional levels of reconstruction
ave been accomplished as demonstrated in studies [20–22], utilizing
n extensive assembly of cameras or depth-capturing devices. However,
he high costs associated with such equipment confine their use to
rofessional environments. More recent studies [7,23–26] have shown
he potential for reconstructing 3D humans from single-camera video
ootage by using either bespoke or standard template mesh models
ike SMPL [16]. These approaches achieve 3D form by adapting the
emplate to align with two-dimensional joint positions and outlines.
evertheless, tailored mesh templates may not always be obtainable,
nd standard mesh templates often fall short in replicating intricate
etails and varying styles of apparel.

Neural representations [9,27,28] have recently been recognized for
heir robustness in modeling three-dimensional humans [6,12–15,19,
9–32]. These techniques have enabled various studies [10,12–15,33,
4] to accurately create detailed neural-based human avatars by using
limited number of images or even a single-camera video, eliminating

he need for a pre-scanned individualized template. Furthermore, the
ecently proposed MonoHuman [35] is to obtain a canonical NeRF
Neural Radiance Field) [9]representation, which is accomplished by
arping camera rays from the observation space into the canonical

pace. This is done in order to obtain density and radiance values
traight from the canonical NeRF. Although these methods produce
igh-quality results and can reconstruct avatars from monocular video
ata, their effectiveness is limited by slow training and processing
imes. This limitation stems from the inherent latency involved in
3

anonical representation and deformation computations. Our proposed
method tackles this bottleneck, making it feasible to learn avatars in a
matter of minutes.

Rendering Radiance Field Numerous strategies have been advanced
to enhance the speed of training and inference for neural represen-
tations [17,36–40], focusing on substituting multilayer perceptrons
(MLPs) with more expedient formats within these representations.
Some studies [38–40] have suggested employing voxel grids for de-
picting neural fields, resulting in accelerated training and inference.
Instant-NGP [17] takes this a step further by utilizing a multi-resolution
hash table in place of dense voxels, which is not only more space-saving
but also capable of capturing finer details. Additionally, to enhance
rendering efficiency, other studies [17,38] have focused on using an
occupancy grid to bypass voids. These approaches significantly speed
up both training and inference processes.

3D Gaussians 3D Gaussian Splatting [41] is recently proposed and it is
defined as a point-based technique for scene representation that enables
high-quality real-time rendering. This method of scene rendering can be
expressed using a collection of 3D Gaussians. The initial 3D Gaussians
are mostly concerned with static images. As 3D Gaussian Splatting
(3DGS) [41] is highly effective in terms of quality and speed, a wide
range of research works have explored the use of the 3D Gaussian
model for dynamic scene reconstruction. As a result, 3D Gaussian-based
avatar reconstruction [42–47] has rapidly evolved, quickly establishing
itself as a dynamic research domain. These methods utilize the strength
of 3D Gaussians for reconstructing avatars but often come with draw-
backs such as irregular clustering and initial bias. Consequently, avatars
developed through this method tend to exhibit prominent artifacts dur-
ing novel pose animations. The D3GA [46] proposes to incorporate 3D
Gaussians into tetrahedral frameworks and then use these framework
modifications to animate avatars. Nevertheless, it deviates from our
original goal by requiring an extra 3D scan in order to fabricate the base
three-dimensional mesh structure and depending on inputs obtained
from densely calibrated multi-perspective videos. Ye et al. [47] employ
rigid body movements and pose-dependent deformations to adapt 3D
Gaussians inside a canonical framework. However, this method requires
two hours of training time and does not present results based on inputs
from a single camera. Similarly, Li et al. [48] applied 2D CNNs to
improve radiance field renderings during the post-processing phase in
order to create avatars with intricate visuals based on the analysis of
multi-view video data. However, there are rendering speed limitations
with this approach.

Despite the remarkable quality and efficiency these methods offer
for rigid body objects, adapting them to non-rigid bodies presents chal-
lenges. Our approach balances quality and training speed and merges
the capabilities of Instant-NGP with a novel articulation algorithm
to facilitate animation and learning from posed data. Additionally,
we introduce a novel concept for posture-sensitive space reduction,
specifically designed for animated, articulated human avatars.

3. Methodology

Our main goal is to properly reconstruct a 3D avatar of the moving
human subject in a video. In this section, we discuss the deployment of
a segmentation model to generate human masks. After that, we elab-
orate on our unique framework, which integrates the human motion
model and the volumetric rendering method. This integration effec-
tively transforms radiance fields into observable space. Additionally,
our framework includes an accelerated neural radiance field, engi-
neered to capture both the physical form and aesthetic attributes within
a canonical space, along with a dedicated articulation module. To
circumvent the unnecessary sampling of voids within the 3D bounding
box encompassing the human body, which is predominantly composed
of empty space, our approach introduces a specialized posture-sensitive
space reduction strategy tailored for humans. Finally, we delve into
the training objectives that guide our model’s learning process and the

regularization strategies.
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3.1. Image segmentation

Our preprocessing suite is encapsulated within the Segmentation-
Anything Model (SAM) [49] which sets a new standard in image
segmentation. SAM’s architecture melds a pre-trained Vision Trans-
former (ViT) with a versatile prompt encoder and an efficient mask
decoder, establishing it as a robust solution for segmentation tasks.
This targeted approach helps our model to train the human part.
Furthermore, this segmentation precision plays a crucial role in the
training phase, especially in optimizing the loss function, ensuring
that our model concentrates on human figures, thereby sharpening the
accuracy of our estimations. Within our architectural framework, the
SAM is utilized to distinguish the human subject from the background,
effectively extracting the figure while excluding non-relevant elements.
Throughout the model’s training iterations, these generated human
masks are instrumental in refining our algorithm, being integral to
the loss function computation. This is achieved by using the masks
to focus the comparison between the actual human pixel values and
those reconstructed by the model, thereby enhancing the precision of
our human avatar reconstruction.

3.2. Human motion model

In our framework, we leverage a SoTA pre-trained human motion
model, HuMoR (Human Motion Model for Robust Estimation) [8],
which is one of the time-series human motion models to estimate the
SMPL body mesh [16] of the human in the monocular video.

State Representation It captures the underlying dynamics of human
motion through a state representation matrix 𝐗. This matrix comprises
root translation 𝑟, root orientation 𝛷, body pose joint angles 𝛩, and
joint positions 𝐽 , mathematically expressed as

𝐗 =
[

𝑟 𝑟̇ 𝛷 𝛷̇ 𝛩 𝐽 𝐽̇
]

, (1)

where 𝑟̇, 𝛷̇, and 𝐽̇ are the representation of the root and joint velocities.
The model’s latent variable dynamics focus on modeling the probability
of a time sequence of states, which is crucial for capturing the nuances
of human motion. The latent space can be interpreted as general-
ized forces, serving as inputs to a dynamics model with numerical
integration.

Latent Variable Dynamics Model Despite not being explicitly linked
to physical laws, the latent space of this model can be thought of
as generalized forces. These generalized forces are the inputs of a
numerically integrated dynamics model. This can be expressed as:

𝐗𝑇 = 𝑓 (𝐗0, 𝑧1∶𝑇 ), (2)

where 𝐗𝑇 is the state at time 𝑇 , 𝐗0 is the initial state, and 𝑧1∶𝑇
s the sequence of latent transitions. HuMoR incorporates this latent
ynamics model when predicting human poses, which gives the motion
emporal information. This allows the video to predict situations where
he human body is slightly occluded.

est-time Motion Optimization Test-time Motion Optimization
TestOpt) operates in synergy with the HuMoR model to facilitate
he recovery of human posture and form from observational data
hat may be occluded or contain errors. Given a temporal sequence
f observations 𝑦0∶𝑇 , TestOpt aims to deduce the underlying body
hape 𝛽 and a series of SMPL pose parameters (𝑟0∶𝑇 , 𝛷0∶𝑇 , 𝛩0∶𝑇 ). This

optimization process is particularly noteworthy for its use of the CVAE’s
initial state 𝑥0 and a sequence of latent transitions 𝑧1∶𝑇 to parameterize
the motion.

In the preprocessing stage of our model, we employ the Test-time
Motion Optimization procedure of the pre-trained HuMoR model to
split our input video into different frames, and then estimate SMPL pose
4

parameters for the person in this video. We use a 6D transformation
matrix 𝐵 to represent HuMoR’s output 𝐗 in the stage of rigid trans-
formation and canonical space transformation, which can be expressed
as:

𝐗 = 𝐵 = {𝐵1,… , 𝐵𝑛𝑏}. (3)

We employed the Fast-SNARF [18], where we use the Linear Blend
Skinning (LBS) algorithm to compute coordinates in the canonical
space, shown in Eq. (7). This algorithm necessitates the use of the
bone transformations 𝐵 = {𝐵1,… , 𝐵𝑛𝑏} to calculate the transformed
coordinate. After obtaining the coordinates, we apply the Instant-
NGP [17] to calculate color and volume density for these coordinates
within the canonical space. The sampling required for the radiance
field, symbolized as 𝐹𝜃𝑓 , is also accomplished through the human body
parameters, which can be shown as:

𝐹𝜃𝑓 (𝑥
∗, 𝑇 (𝐵)) = 𝐶, (4)

where 𝐶 is the pixel color in the canonical space, 𝑥∗ is the canonical
oordinates of the human and 𝑇 represents the process of transforming
he matrix 𝐵 into the input for the Rendering Radiance Field.

In the rendering stage of the human body within our canonical
pace, we utilize the SMPL state representation matrix 𝐗 obtained

through HuMoR as an occupancy grid to optimize the quality of the
human avatar in the canonical space. This approach allows us to
eliminate extraneous pixels rendered beyond a certain distance from
the pose parameters in the state representation matrix 𝐗. Consequently,
it facilitates the successful training of an avatar that represents a human
figure.

3.3. Rendering Radiance Field

Our method employs the articulated radiance fields to synthesize
new viewpoints. We trace a ray for each pixel from the camera origin
𝐨 through the pixel in direction 𝐝, expressed as 𝐫 = 𝐨 + 𝑡𝐝. We sample
𝑁 points along this ray within the scene’s depth bounds, transforming
these points back into their canonical positions before evaluating them
with our foundational radiance field 𝐹𝜃𝑓 , depicted in Fig. 2. This
process retrieves the color and density for each point on the ray in the
articulated field 𝐹 ′

𝜃𝑓
. We calculate the pixel color 𝐶 by accumulating

the products of the color 𝑐𝑖 and the transmittance 𝛼𝑖 along the ray, using
the equation:

𝐶 =
𝑁
∑

𝑖=1
𝛼𝑖

(

∏

𝑗<𝑖
(1 − 𝛼𝑗 )

)

𝑐𝑖, where 𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖), (5)

with 𝛿𝑖 representing the distance between consecutive samples. Our
research targets this by optimizing neural rendering for dynamic hu-
man avatars, prioritizing the efficient exclusion of empty space. This
optimization balances performance with output fidelity, contributing
to the advancement of neural rendering techniques.

Efficient Neural Radiance Field for Canonical Space We utilize a
radiance field, symbolized as 𝐹𝜃𝑓 , to characterize both the shape and
appearance of a human figure in a standard canonical space. This
radiance field is designed to estimate the density 𝜎 and color 𝑐 for every
3D coordinate 𝑥 within this canonical area, expressed as:

𝐹𝜃𝑓 ∶ R3 → R3,R+ (6)

𝑥 ↦ 𝑐, 𝜎, (7)

where 𝜃𝑓 are the parameters that define the radiance field. To param-
eterize 𝐹𝜃𝑓 , we employ the Instant-NGP [17] technique. This method
uses a hash table to hold feature grids at several granularity levels,
enabling quick training and inference. Instant-NGP uses a tri-linear
interpolation of the characteristics at neighboring grid points while
attempting to predict the textural and geometric qualities of a query

spatial location. A shallow Multi-Layer Perceptron (MLP) is used to
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Fig. 2. Model Structure: We estimated the SMPL parameters using HuMoR for each frame and sampled the rays’ pose space positions. The global orientation and translation
are then subtracted from these points’ locations in a normalized space, after which our occupancy vector is used to filter out points in unoccupied space. We use the SMPL body
model to optimize the human avatar in the canonical space. To assess the color and density attributes, additional data points are incorporated into a canonical neural radiance
field. This is achieved by utilizing an articulation module that warps these points into the canonical space.
aggregate and finally decode these interpolated characteristics that
were gathered from various levels.

Articulating Radiance Fields In our model, generating animations
and facilitating learning from images in specific poses requires the
production of deformed radiance fields in the target poses, denoted as
𝐹 ′
𝜃𝑓

. This pose space is represented by a radiance field which can be
described by the following function:

𝐹 ′
𝜃𝑓

∶ R3 → R3,R+ (8)

𝑥′ ↦ 𝜎, 𝑐. (9)

Here, 𝑥′ maps to both the color and density in the posed space. In
order to simulate articulation, we employ a skinning weight space 𝑠
in canonical space, where 𝜎𝑠 are its parameters:

𝑆𝜎𝑠 ∶ R3 → R𝑛𝑏 , (10)

𝑥 ↦ 𝑠1,… , 𝑠𝑛𝑏 , (11)

that 𝑛𝑏 stands for the total number of bones in the skeletal structure.
Fast-SNARF [18] renders this skinning weight field as a low-resolution
voxel grid to avoid the computing expense of SNARF [19]. The skin-
ning parameters of each grid point’s closest vertex on the SMPL body
model [16] are used to calculate its value. The point 𝑥 in the canonical
field is changed to deformed space 𝑥′ by linear blend skinning using
the canonical skinning space and objective bone transformations 𝐵 =
{𝐵1,… , 𝐵𝑛𝑏} as shown below:

𝑥′ =
𝑛𝑏
∑

𝑖=1
𝑆𝑖𝐵𝑖𝑥. (12)

With the inverse mapping of Eq. (7), the canonical coordinates 𝑥∗ for
a warped point 𝑥′ are identified. The most important step is to define
the mapping between points in the pose space 𝑥′ and the corresponding
points in the canonical space 𝑥∗. Fast-SNARF’s root-finding method
is an effective way to accomplish this. Consequently, the presented
radiance field 𝐹 ′

𝜃𝑓
may be written as:

𝐹 ′
𝜃𝑓
(𝑥′) = 𝐹𝜃𝑓 (𝑥

∗), (13)

where 𝐹𝜃𝑓 is the radiance field that we use.

3.4. Posture-sensitive space reduction

We observe that the human anatomy, due to its articulated nature,
is mostly comprised of empty spaces within the three-dimensional
bounding volume that surrounds it. This leads to substantial empty
spaces within the bounding volume. This characteristic significantly
hinders the rendering process by necessitating numerous redundant
5

sampling operations. While precomputed occupancy grids provide a
partial solution for static models, they fall short when applied to
dynamic humans, where the voids shift with the movements, making
the rendering task more complex.

Inference Phase: During inference, our method entails generating a
set of points on a 64 × 64 × 64 grid corresponding to the posed space
for each given body posture as shown in Fig. 3. We query these points
against our posed radiance field 𝐹𝜃𝑓 to obtain their densities, which
we then convert to binary occupancy values. To fully encapsulate the
subject and reduce errors from the grid’s coarse resolution, we use a
dilation technique to expand the occupancy regions, thus preventing
potential false negatives. Given the grid’s low granularity and the vast
number of queries required for comprehensive rendering, the creation
of this occupancy grid imposes a negligible computational burden. In
the volumetric rendering process, we enhance efficiency by setting the
density of unoccupied cells to zero. This eliminates the need for further
queries to𝐹𝜃𝑓 and streamlines the rendering operation.

Training Phase: During training, the computational burden accumu-
lates with each iteration due to the creation of an occupancy grid. To
address this, we adopt a more holistic strategy by initializing a unified
occupancy grid at the onset of training, which aggregates the occupied
regions from multiple frames. This grid is updated regularly every 𝑘
iteration, leveraging the moving average of current occupancy against
the densities queried from the posed radiance field 𝐹𝜃𝑓 . Notably, this
grid operates within a normalized coordinate field, which strips away
the human’s translation and global orientation. This minimizes the
volume of occupied space, thereby reducing redundant queries and
enhancing computational efficiency.

3.5. Training losses

We fine-tune our model by employing a robust variant of the Huber
loss, the Huber loss is defined as:

Huber(𝑦, 𝑓 (𝑥)) =
{

1
2 (𝑦 − 𝑓 (𝑥))2 if |𝑦 − 𝑓 (𝑥)| ≤ 𝛿
𝛿|𝑦 − 𝑓 (𝑥)| − 1

2 𝛿
2 otherwise,

(14)

where 𝑦 is the true value, 𝑓 (𝑥) is the predicted value, and 𝛿 is a user-
defined threshold parameter. We symbolized the Huber loss as 𝜌, to
quantify the divergence between the estimated pixel color 𝐶 and its
corresponding ground truth pixel color 𝐶gt:

𝐿rgb = 𝜌(‖𝐶 − 𝐶gt‖). (15)

Additionally, we introduced our approach of image segmentation in
Section 3.1, which contains the segmentation of people and contexts
with the Segment Anything Model (SAM) [49]. Among them, the seg-
mented people are retained by us as mask information. In the training
phase, we will use this mask information to optimize our model. We
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Fig. 3. Posture-sensitive space reduction procedure. In the inference stage, our method skips redundant sampling.
proceed under the presumption that a rough estimation of the human
mask is available. Then, in order to reduce the presence of spatial
artefacts, we apply a specialized loss function on the values of the 2D
alpha channel:

𝐿𝛼 = ‖𝛼 − 𝛼gt‖1. (16)

For the purpose of Hard Surface Regularization, we follow the method-
ology [50] to introduce supplementary regularization terms. These
terms are designed to guide the NeRF model towards the prediction
of more physically plausible surfaces:

𝐿hard = − log(exp−|𝛼| +exp−|𝛼−1|) + const. (17)

where const. is a constant term that is used in this case to guarantee that
the number of loss do not stray into the negative range. By enabling the
early termination of rays whenever the cumulative opacity reaches a
value of one, this type of regularization helps to speed up the rendering
process.

In the realm of Occupancy-based Regularization, the SMPL body
model has been used as a regularizer in previous techniques [10,13]
for the learning of human avatars, which frequently encourage models
to anticipate zero density for locations outside of the surface and
solid density for sites inside the surface. By doing this, artefacts close
to the body’s surface are reduced. However, such regularization can
be inadequate for loosely fitting clothing due to over-reliance on the
body’s shape assumptions and has been found lacking in removing
artifacts close to the body. To address this, we forgo the use of the
SMPL model for regularization and instead introduce an additional loss
function, 𝐿reg, which encourages points within the unoccupied cells of
our occupancy grid to adopt zero-density. This approach allows for a
more conservative estimation of both the subject’s form and that of
their clothing. The loss 𝐿reg is in the form of:

𝐿reg =

{

|𝜎(𝑥)| if 𝑥 resides in empty space
0 otherwise.

(18)

4. Experiments

Our evaluation encompasses both accuracy and speed assessments
of our approach using monocular video inputs. We benchmark our
method against current state-of-the-art (SoTA) alternatives. Moreover,
we conduct an ablation study to dissect the impact of each technical
component within our methodology.

4.1. Implementation details

Our approach was developed in Python, utilizing the PyTorch li-
brary, and involved the creation of custom CUDA kernels. Concentrat-
ing on the foreground entity, we allocated 90% of the rays for sampling
6

from the foreground, with the residual 10% designated for background
sampling. In all our experiments, we utilize images of size 540 × 540.
We employ the Adam optimizer [51] with the learning rate set to 1e−4
in training and it operates 10k iterations.

4.2. Datasets

PeopleSnapshot We utilize the PeopleSnapshot dataset [7], containing
recordings of individuals rotating before cameras which is available in
its repository. For our experimental validation, we follow the protocol
of Anim-NeRF [13]. Notably, the pose parameters derived using SM-
PLify [52] for this dataset do not consistently align with the images.
Therefore, similar to Anim-NeRF, we optimize the human poses from
the training and testing videos for our model and fix them during
training to ensure a fair quantitative comparison. Moreover, our model
is equipped to optimize body poses, a feature we exploit for all other
results in the paper. For this purpose, we infer human pose parameters
using HuMoR [8], a state-of-the-art 3D human motion estimator. We
refine these estimations through joint optimization within our model
via back-propagation of the image reconstruction loss gradient on the
pose parameters. The dataset includes camera parameters procured
from a standardized calibration technique.

NeuMan dataset As in NeuMan [10], we anticipate that our model’s
training data will consist of a video of a specific person conducting ac-
tions. Our model will use NeuMan’s six videos: Seattle, Citron, Parking,
Bike, Jogging, and Lab. They are available in NeuMan’s repository. We
will also use some of the videos in HuMoR [8] dataset, as NeuMan’s
videos do not contain occluded scenes. These videos are shot on cell
phones and the scenes are in line with our daily use. Early research [9,
10] shows that mobile phone videos are sufficient for NeRF network
training. In addition, we will subsample the video frames, resulting in
between 30 and 100 images depending on the length of the video. We
will use COLMAP [53] to derive camera positions, scene representation,
and multi-view-stereo (MVS) depth maps from subsampled frames of
the same scene. This follows the procedures established in NeuMan [10]
and other prior NeRF models [9,54,55]. In the data preprocessing phase
of our study, we employed a structured approach to prepare the data
for analysis. Initially, we utilized OpenPose [56] for the detection of 2D
key points on human parts. Following the detection of 2D key points,
we applied the HuMoR model [8] to combine these with OpenPose’s
2D key points for the purpose of fitting the human body’s SMPL
(Skinned Multi-Person Linear model) estimation. This process enabled
us to construct a three-dimensional representation of the human figure.
Lastly, we utilized the SAM model [49] for segmenting the human body
from the background. This step was crucial for generating masks for
training.
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Fig. 4. SMPL estimation results of HuMoR [8] (top) and ROMP [57] (bottom).
4.3. Baselines

NeuMan [10] Two separate Neural Radiance Fields (NeRF) networks
[9] form the basis of the NeuMan system. NeuMan approximates the
Skinned Multi-Person Linear (SMPL) body model [16] for the portrayal
of humans. A rigid transformation is then used to translocate this
approximation SMPL model into a standard or canonical coordinate
framework. Additionally, using NeRF’s processing capacity, the system
uses this canonical space to directly determine the RGB color spectrum
and volumetric density of the human. NeuMan provides the capability
to generate high-fidelity representations of human avatars and their
environments from diverse and novel perspectives. We present out-
comes for a fundamental setup of NeuMan, which operates across 500k
iterations.

Instant-Avatar [34] InstantAvatar refines the standard neural radiance
field methodology with an innovative variant to capture the canonical
structure and visual attributes. It utilizes Instant-NGP [17] to expedite
the rendering of neural volumes for human avatar formation, em-
ploying a spatially efficient hash table as an alternative to traditional
multilayer perceptions. We present outcomes for a fundamental setup
of Instant-Avatar, which operates across 30k iterations.

Anim-NeRF [13] This foundational approach constructs human fig-
ures and their aesthetic features within a canonical space using an
MLP-based Neural Radiance Field (NeRF). It initiates the process by
generating an SMPL body configured to a specified pose. Subsequently,
for each sample point in the deformed space, the corresponding skin-
ning weights are determined by computing the weighted average of
the nearest K vertices’ skinning weights from the posed SMPL mesh.
Ultimately, these skinning weights enable the transformation of the
sample point back to the canonical space through the application of
inverse Linear Blend Skinning (LBS). For Anim-NeRF, we configure
its hyperparameters as follows: |𝑁(𝑖)| = 4, 𝛿 = 0.2, 𝜆1 = 0.001, 𝜆2
= 0.01, and 𝜆𝑑 = 0.1. It requires 200k iterations of training on the
PeopleSnapshot Dataset.

Neural Body [14] This alternative baseline method concentrates on
a spectrum of latent variables affixed to a malleable Skinned Multi-
Person Linear (SMPL) mesh. These variables, anchored to the mesh, are
decoded to generate pose-specific radiance fields. A neural network,
predicated on these latent codes, regresses the density and color for
each three-dimensional voxel. In the reconstruction phase, both the
latent codes and the network are collaboratively learned from images
spanning all video frames. For Neural Body, the configuration sets
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the initial learning rate at 5 × 10−4, with an exponential decay to
5 × 10−5 throughout the optimization process. Convergence on a four-
view video consisting of 300 frames typically requires approximately
200k iterations.

4.4. Comparison with SoTA 3D pose estimator

Human pose estimation comparison in the normal scene
Prevailing Dynamic Human Neural Radiance Fields (NeRFs) typi-

cally rely on external 3D human pose estimators for predicting human
posture, such as ROMP [57]. ROMP represents the forefront of single-
frame SMPL [16] estimation within this domain. These estimators
enable the capture and reasonable reconstruction of human motion
parameters. We have improved our model for better motion capture,
maintaining accurate human motion estimation even with occlusions,
as seen with HuMoR [8]. Both models were tested against a video
dataset featuring a range of movements, from simple gestures to com-
plex actions, to validate their performance. These tests were con-
ducted under uniform hardware and software conditions to maintain
comparability.

The comparison in Fig. 4 highlights a marked improvement in
SMPL parameter accuracy with the HuMoR model. HuMoR accurately
estimates complex anatomical structures, notably in hands and heads,
as shown by the mesh. This is further illustrated in Fig. 4 views 2
and 3, where ROMP struggles with foot estimation in dynamic actions.
HuMoR ensures consistent parameters for smoother SMPL estimation,
in contrast to ROMP’s jittery output.

Human pose estimation comparison in the occluded scene
Effective occlusion management is key in 3D reconstruction, with

many models struggling to produce accurate SMPL parameter esti-
mates. This challenge is highlighted in our extensive experiments com-
paring HuMoR and ROMP models. In occluded scenes, where the lower
body of a subject is hidden, such as when seated on a sofa, our findings
illustrate the models’ divergent capabilities, as shown in Fig. 5. HuMoR
excels at estimating anatomically accurate SMPL meshes, leveraging
data from adjacent frames to handle occlusions effectively. In contrast,
ROMP’s estimations often diverge from a realistic human shape. This
is particularly evident in view 1 of Fig. 5, where it inaccurately
predicts the positioning of the subject’s legs. As demonstrated in view
2, where ROMP misinterprets the subject’s posture, HuMoR’s context-
sensitive estimations diverge significantly from ROMP’s error. Overall,
our analyses confirm HuMoR’s robustness and accuracy in occlusion
scenarios, consistently outperforming ROMP by effectively utilizing
temporal context.
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Fig. 5. SMPL estimation results for HuMoR [8] (top) and ROMP [57] (bottom) in partially occluded scenes.
Fig. 6. Qualitative results on NeuMan dataset. We show front and side views of the reconstructed human avatar results in canonical space. Compared to SoTA NeuMan [10],
our method converges much faster.
4.5. Comparison with SoTA Dynamic Human NeRFs

4.5.1. Experiment results on NeuMan dataset
The NeuMan dataset contains six videos shot on a mobile phone and

requires visual comparison for model evaluation due to the absence
of quantitative metrics. The videos feature unbroken sequences of
walking or running from the side, and turning motions, allowing for a
complete capture of the body. Our model’s partial reconstruction results
are illustrated in Fig. 6, compared against those from the NeuMan
model [10]. Fig. 6 shows that the NeuMan model, reliant on ROMP for
SMPL [16] estimation, struggles with keeping poses consistent across
frames. The step-by-step ROMP approach results in jarring transitions
and visible mistakes, especially in dynamic areas like the feet which
lead to blurred features such as the shoes. In contrast, our model
results in a better reconstruction quality, especially in the feet area.
While the NeRF-based human rendering in NeuMan is computationally
intensive—requiring approximately 160 h for the results shown in
Fig. 6—our model employs Instant-NGP [17] rendering. This approach
reduces the computation time to just 7 min and can be further de-
creased with smart frame sampling. Our approach not only achieves
more precise and consistent avatar reconstructions but also signifi-
cantly lower computational requirements. This results in making it an
advantageous choice for 3D human avatar reconstruction tasks.
8

In Fig. 7, we showcase a detailed comparison of our model with
Instant-Avatar [34]. Both models utilize Instant-NGP [17] for efficient
rendering, but the core difference lies in the SMPL parameter estima-
tion technique. In contrast, our model shows significantly fewer noisy
pixels surrounding the human as a result of the intricate integration
of a human motion prior, improving the reconstructions’ precision and
clarity. Eventually, the reconstructions become more refined, and our
model generates accurate and distinct representations of the Da pose in
canonical space. This comparison highlights the accuracy and resilience
of our model both aesthetically and narratively, particularly in its
capacity to reconstruct 3D human avatars devoid of environmental
artefact interference.

Reconstruction Comparison in the Occluded Scene Fig. 8 provides a
visual comparison between our model and Instant-Avatar [34], specif-
ically focusing on the challenge of reconstructing a human avatar in
a scene where occlusion is present. In the training video, almost half
of the human subject’s lower body is obscured by a sofa, present-
ing a significant challenge for 3D reconstruction. The figure clearly
showcases that our model is superior in reconstructing the occluded
human figure, yielding a high-quality avatar. The reconstructed avatar
from our model shows a remarkable reduction in extraneous pixels,
resulting in a cleaner and more precise representation of the human
form. Our framework is specifically designed to generate more accurate



Pattern Recognition 156 (2024) 110758Z. Huang et al.
Fig. 7. Training progression on NeuMan dataset. We demonstrate the quality of the reconstructed human at various training iterations. Compared to SoTA Instant-Avatar [34],
our method converges with higher quality and has less noise.
Fig. 8. Reconstruction results in occluded scenes. We present the novel pose as well as front and back views of the reconstructed human avatar results in canonical space.
Compared to SoTA Instant-Avatar [34], our method converges with higher reconstruction quality in occluded scenes.
SMPL parameter predictions, even in scenarios involving occlusion or
dynamic movement. The SMPL parameter estimation directly affects
the sampling of human body parts during reconstruction. With our
model’s enhanced ability to closely approximate true human body con-
figurations, the sampling process incurs fewer errors. Consequently, this
leads to reconstructions with significantly better quality, characterized
by fewer artifacts and noise. This indicates that our model has a robust
understanding of human anatomy and can infer the occluded parts with
greater accuracy. The visual fidelity of our avatar is not only more
coherent with the visible portions but also maintains consistency in
areas that are not directly observable. The performance of our model
under these complex conditions suggests a sophisticated approach to
interpreting and filling in unseen details. This likely involves leveraging
a more advanced understanding of human shapes and postures. This
feature is particularly important for applications that require realistic
and accurate representation of human figures, even when those figures
are partially obscured.

4.5.2. Experiment results on the PeopleSnapshot dataset
Fig. 9 and Table 1 from our most recent comparative analysis

illustrate this intricate interplay by contrasting our model with the
9

Anim-NeRF. PeopleSnapshot [7], the datasets central to this compar-
ison, are not simply ordinary; they exemplify meticulous curation and
precision. PeopleSnapshot benefits from the accuracy of professional
tools, unlike the NeuMan dataset, which was collected using mobile
devices. Because of this distinction, the renderings produced using
these datasets are of noticeably higher quality. Unlike mobile-captured
datasets such as NeuMan, PeopleSnapshot is lab-created which offers
accurate ground truth for SMPL values along with high-quality render-
ings. To evaluate the visual fidelity of avatar reconstructions, we use
the PeopleSnapshot dataset for animation. The comparison information
in Table 1 and the subjective assessments from Fig. 9 support this.
Anim-NeRF struggles with noise and inaccuracies even with its sophis-
ticated approach, and our model stands out for its accurate and detailed
renderings that faithfully capture the nuances of human anatomy. This
is especially evident when rendering complex movements. The limited
pose range of the PeopleSnapshot dataset does not adequately capture
the quality of synthesizing novel poses. Without actual ground truth for
these new poses, we rely on a qualitative assessment, creating images
of challenging new postures with our model and Anim-NeRF. Our
method shines in these tests, handling complex positions with finesse
and avoiding the artifacts seen with Anim-NeRF, such as distortions
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Fig. 9. Qualitative results on PeopleSnapshot dataset [7]. These datasets use a multi-camera system to capture the human and they provide the actual SMPL and real human
avatars. We display reconstructed human avatars on PeopleSnapshot (top) in a variety of stances and from various vantage points. Compared to SoTA Anim-NeRF [34], our method
converges with higher quality and a faster speed.
Table 1
Qualitative Comparison with Anim-NeRF [13] and Neural Body [14] on the PeopleSnapshot [7] dataset. We compare actual pictures with images
reconstructed by our approach and two dynamic human NeRF methods, Neural Body and Anim-NeRF, and give PSNR, SSIM, and LPIPS [58]
results. We evaluate Anim-NeRF and our technique with both 5 min and 1 min of training time, as well as every approach at their convergence.

Female-3-casual Female-4-casual Male-3-casual Male-4-casual
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Neural Body (∼14 h) 23.87 0.9504 0.0346 24.37 0.9451 0.0382 24.94 0.9428 0.0326 24.71 0.9469 0.0423
Anim-NeRF (∼13 h) 28.91 0.9743 0.0215 28.90 0.9678 0.0174 29.37 0.9703 0.0168 28.37 0.9605 0.0268
Ours (5 min) 28.08 0.9697 0.0205 29.05 0.9681 0.0150 29.27 0.9707 0.0155 27.69 0.9608 0.0344

Anim-NeRF (5 min) 22.37 0.9311 0.0784 23.18 0.9292 0.0687 23.17 0.9266 0.0784 22.30 0.9235 0.0911
Ours (5 min) 28.08 0.9697 0.0205 29.05 0.9681 0.0150 29.27 0.9707 0.0155 27.69 0.9608 0.0344

Anim-NeRF (1 min) 11.71 0.7797 0.3321 12.31 0.8089 0.3344 12.39 0.7929 0.3393 13.10 0.7705 0.3460
Ours (1 min) 27.96 0.9763 0.0229 28.72 0.9635 0.0173 29.33 0.9779 0.0189 27.92 0.9656 0.0339
under the arms and between legs. Our model performs better, especially
with loose clothing, because it is not limited by SMPL parameters
for regularization. To provide a basis for quantitative evaluation, we
generate synthetic ground truth data for these difficult new poses. We
demonstrate that our model not only outperforms Neural Body [14] but
also achieves parity with the state-of-the-art Anim-NeRF [13] in terms
of quality. We base this comparison on the reconstructed images and
their similarity to real images.

Speed Compared to SoTA approaches, our method uses a lot less
training time and computational resources. We only have to spend a
couple of minutes to train on a single RTX 3090, but Anim- NeRF [13]
needs two RTX 3090 trained for 13 h, and Neural Body [14] needs
four RTX 2080 trained for 14 h. We are able to produce reconstructed
human avatars at 540 × 540 resolution at a rate of greater than 15
frames per second with our framework, which is thousands of magni-
tude quicker than baselines. As results can be shown in Table 1, our
approach greatly outperforms Anim-NeRF in terms of picture quality
for the same amount of training time. As demonstrated in Fig. 7, our
training process significantly outperforms Instant-Avatar’s. Our system
captures considerable details and achieves satisfactory visual quality
within just 20 s, with further enhancements in 30 s. Our approach
achieves high-fidelity reconstruction within just a minute of training,
while Instant-Avatar produces lower-quality outcomes at this early
stage.
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Table 2
Ablation Study: Posture-sensitive Space Reduction Approach. Regarding the hyperpa-
rameters of the posture-sensitive space reduction method, we conduct an ablation
analysis. In PeopleSnapshot dataset after fifty epochs, we offer the mean of 4 sequences
for each trial.

PSNR↑ SSIM↑ LPIPS↓ Training time↓

w/o Skipping 27.92 0.9720 0.029 3 m 11s
w/ Skipping 28.10 0.9713 0.031 1 m 57s

Decay Rate = 0.6 28.02 0.9514 0.031 1 m 49s
Decay Rate = 0.75 28.23 0.9719 0.032 1 m 41s

4.6. Ablation study

4.6.1. Posture-sensitive space reduction
In our model, we use a technique called posture-sensitive space re-

duction to reduce redundant samplings during the rendering procedure.
For dynamic humans, we examine the impact of our posture-sensitive
space reduction approach. The training and rendering performances are
greatly improved by avoiding empty space, as shown in Table 2, and
this effect is independent of the hyperparameter selection.

4.6.2. Occupancy-based regularization loss term
By using our regularization loss 𝐿reg from Section 4.6, the occu-

pancy field for posture-sensitive space reduction may also assist in
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Table 3
Ablation Study: Occupancy-based Regularization Loss Term. We assess
the quality of images as an average over the four PeopleSnapshot
training sets.

PSNR↑ SSIM↑ LPIPS↓

w/o occupancy-based term 27.94 0.9590 0.0342
w occupancy-based term 28.31 0.9630 0.0230

Fig. 10. Limitation: Cannot model facial expressions and the details of hands.

regularizing the radiance field and decreasing noise. As shown by the
PSNR increase in Table 3, this loss successfully lowers floating artefacts
and thus aids in improving the overall image quality. Encouraging zero
density at all points in space is a different typical strategy for decreasing
floating noise. We contrast this approach with our own and discover
that it (Global Sparsity) results in a worse quality.

4.7. Limitation

Fig. 10 illustrates a limitation in our model: the nuanced capture
of facial expressions and the fine details of hands. Even with the
HuMoR model improving SMPL estimation accuracy, our model still
faces challenges in accurately capturing the complex movements of
facial muscles and the nuances of hand gestures. This difficulty under-
scores the complexity of human expressions and gestures, composed of
subtle signals and rapid changes. Future work could further enhance
the quality of our reconstructions by incorporating models such as
SMPL-H [59] or SMPL-X [60]. These models provide a more refined
representation of facial and hand details, potentially elevating the
quality of our reconstructions.

A crucial element of our conversation concerns the computational
complexity entailed in rendering and reconstructing human figures.
The precise calculation of pixel values is essential to this process. This
intensity results from the need to accurately calculate light’s interac-
tions with the human model across a large number of frames. The
computational demands increase significantly as the reconstruction’s
resolution increases. This can be mainly ascribed to the exponential
rise in the number of pixels that need to be processed individually.
Consequently, longer training times and more computational power are
required to achieve higher-resolution reconstructions.

There are limitations to our model’s reliance on visual data, partic-
ularly when attempting to infer details from areas that are obscured or
invisible. For instance, it is still difficult to reconstruct a subject’s back
from a video that only shows their front. A solution might be found
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by expanding the model to include learning-based techniques, which
would allow for the prediction and full reconstruction of these invisible
areas for an avatar that is fully realized.

5. Conclusion

In this paper, we provide an approach that can quickly create
animateable human avatars from motion sequences and then generate
and display the model at 15 frames per second. We integrate the
human motion model HuMoR with the effective neural radiance field
Instant-NGP [17] and the effective articulated model Fast-SNARF [18]
to accomplish it. The speed of this simple combination is not ideal.
To increase rendering performance and decrease drifting artefacts in
the area, we designed an SMPL-based optimization for human avatar,
occupancy-based regularization loss and a posture-sensitive space re-
duction strategy. Our approach delivers comparable picture quality
while being noticeably quicker during inference and learning than
the SoTA NeRF-based approaches. Although the focus of this study is
human reconstruction, the concept is transferrable to other issues. The
intriguing next stage is to expand our methodology to produce human
geometry mesh and human avatars with efficient generation of hand
and facial information.
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