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Do Fairness Interventions Come at the Cost of
Privacy: Evaluations for Binary Classifiers

Huan Tian, Guangsheng Zhang, Bo Liu, Tianqing Zhu*, Ming Ding, Wanlei Zhou

Abstract—While in-processing fairness approaches show promise in mitigating biased predictions, their potential impact on privacy
leakage remains under-explored. We aim to address this gap by assessing the privacy risks of fairness-enhanced binary classifiers via
membership inference attacks (MIAs) and attribute inference attacks (AIAs). Surprisingly, our results reveal that enhancing fairness
does not necessarily lead to privacy compromises. For example, these fairness interventions exhibit increased resilience against MIAs
and AIAs. This is because fairness interventions tend to remove sensitive information among extracted features and reduce confidence
scores for the majority of training data for fairer predictions. However, during the evaluations, we uncover a potential threat mechanism
that exploits prediction discrepancies between fair and biased models, leading to advanced attack results for both MIAs and AIAs. This
mechanism reveals potent vulnerabilities of fair models and poses significant privacy risks of current fairness methods. Extensive
experiments across multiple datasets, attack methods, and representative fairness approaches confirm our findings and demonstrate
the efficacy of the uncovered mechanism. Our study exposes the under-explored privacy threats in fairness studies, advocating for
thorough evaluations of potential security vulnerabilities before model deployments.
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1 INTRODUCTION

In recent years, there have been remarkable advancements
in various fields thanks to large models such as the GPT
models [1] and the Segment Anything Model [2]. These
models have proven to be highly effective, but their success
heavily relies on extensive training data, which often con-
tains biased data distributions. This raises concerns about
algorithmic fairness, where the resulting trained models
(biased models) may exhibit discriminative performances for
certain demographic subgroups [3]. To address the issue,
previous studies have proposed in-processing methods that
modify the learning algorithm to remove bias during model
training. After applying these fairness interventions, the
obtained fairness-enhanced models (fair models) can provide
more equitable performance across subgroups, thus mitigat-
ing unfairness predictions. However, despite promising to
enhance fairness, their potential impact on privacy leakage
remains under-explored.

One pioneering work by Chang and Shokri [4] has
explored the privacy implications of fairness interventions
through the lens of membership inference attacks (MIAs).
With the model’s predictions, MIAs aim to infer whether
a given sample was part of the training data (sample
membership). These attacks are widely used to assess pri-
vacy risks in models deployed via Machine Learning as
a Service (MLaaS) [5]. Building on this, the authors first
train biased models and then apply fairness interventions to
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obtain fair models. They perform MIAs on both the biased
and fair models, comparing the attack results before and
after the interventions. Their findings reveal that fairness
interventions improve the effectiveness of MIAs, suggesting
a potential trade-off between achieving model fairness and
model privacy.

Although the study by Chang and Shokri [4] offers
valuable insights, it has limitations. Firstly, the evalua-
tions primarily focused on decision tree models. Although
they briefly explored simple convolutional neural networks
(CNNs), their evaluation was limited to a single synthetic
dataset. This leaves open questions regarding the privacy
risks of fairness interventions for neural networks in real-
world datasets, such as binary classifiers, which are preva-
lent in fairness studies. Secondly, the study adopted only
one type of attack–score-based membership inference at-
tacks (MIAs)–for evaluations. While this approach provides
insights, it might not fully characterize the privacy impact of
fairness interventions. Given that both fairness and privacy
are crucial aspects of model trustworthiness, conducting
thorough evaluations of these interventions is crucial. To
address these gaps, our work considers multiple attacks,
including both membership inference attacks (MIAs) and
attribute inference attacks (AIAs), to evaluate fair binary
classifiers, thereby comprehensively assessing the associ-
ated privacy risks.

Specifically, we evaluate the privacy of fair binary classi-
fiers via membership inference attacks (MIAs) and attribute
inference attacks (AIAs). While MIAs aim to infer given
sample membership information, AIAs attempt to infer sen-
sitive information about the sample, e.g., male or female for
the gender attribute. To conduct thorough evaluations, we
consider different attack methods for both MIAs and AIAs.
Surprisingly, our evaluation results show that fair models
show more resilience to current attacks than their biased



2

(a) MIAs (b) AIAs

Fig. 1. Fairness interventions increase loss values for the majority training data, leading to diminished attack successful rates for MIAs (Figure 1a).
Meanwhile, compared to biased models, fair models show more resilience to AIAs under both Black and White-box settings (Figure 1b).

counterparts. Figure 1 presents the MIAs and AIAs results
on fair and biased models over 100 runs. For MIAs, we
report the per-sample loss values and the attack success rate
(Figure 1a) before and after applying fairness interventions–
biased vs fair models. The plots show increased loss values
yet decreased attack success rates for most data points with
fair models. This indicates that these interventions can lead
to less successful attacks with existing attack approaches.
For AIAs, we illustrate the test accuracy for both white and
black-box AIAs (Figure 1b). The plots show decreased attack
results after fairness interventions, indicating inferior attack
performance.

Through further analyses, we find that fairness inter-
ventions reduce sensitive information among the extracted
features and confidence scores for the majority of training
data, leading to fairer predictions. These reductions lead
to more challenging attacks for both AIAs and MIAs, as
the attacks have less exploitable information to leverage.
Meanwhile, our experiments reveal that the existing at-
tack methods, which are primarily designed for multi-class
scenarios, become less effective when applied to binary
classification tasks. This inefficacy stems from the binary
outputs, which cause the attack models to degrade into
simple threshold-based decisions. The degradation incurs
substantial performance trade-offs. For example, in the case
of MIAs, while effective at recognizing member data, the
attack models struggle with non-member data. The phe-
nomenon is particularly pronounced for “hard examples”—
samples where the predictions are similar across groups.

Before concluding that fairness interventions are
privacy-friendly to binary classifiers, we further identify a
potential threat that could enable more effective attacks.
During the evaluation, we observe divergent prediction
behaviors for different data groups after applying fairness
interventions. Specifically, the prediction scores typically
increase for the majority of the training data and decrease
for the minority training data. In contrast, the scores for non-
member data conform to a normal distribution. This dispar-
ity creates pronounced prediction gaps between the data
groups. However, if adversaries exploit these widened gaps
between groups, it might enable more successful attacks,
thereby posing substantial privacy threats to fair binary
classifiers.

Inspired by these observations, we introduce two new
attack methods: Fairness Discrepancy-based Membership
Inference Attacks (FD-MIAs) and Fairness Discrepancy-
based Attribute Inference Attacks (FD-AIAs). These meth-

ods exploit the prediction gaps between the original biased
models and the fair models more effectively. The key is to
leverage model fairness disparities. Moreover, we demon-
strate that FD-MIAs and FD-AIAs can be integrated with ex-
isting attack methods, such as score-based [6] and reference-
based attacks [7]. This integration delivers advanced attack
performance and poses real privacy threats to fair binary
classifiers.

In the experiments, we conduct comprehensive evalua-
tions across three datasets, with up to six attack methods
and five in-processing fairness approaches. This amounts to
128 different settings and more than 400 distinct models.
The results consistently validate our findings and the iden-
tified threat. Our study reveals that fairness interventions
can introduce new threats to model privacy, advocating a
more comprehensive examination of their potential security
defects before deployment. Our main contributions are as
follows:

• To the best of our knowledge, this is the first work
to comprehensively study the impact of fairness
interventions on privacy through the lens of MIAs
and AIAs, targeting deep classifiers with real-world
datasets.

• We reveal that fairness interventions do not com-
promise model privacy with existing attack methods,
primarily due to their limited efficacy in attacking
binary classifiers.

• We identify a previously unexamined vulnerability
and propose two novel attack methods, FD-MIA and
FD-AIA, which pose real threats to model privacy
by exploiting prediction gaps between biased and
fair models. These methods can be integrated into
existing attack frameworks.

• Extensive experiments on three datasets have con-
firmed our observations and demonstrated the effi-
cacy of the proposed methods.

A preliminary version of this research was presented at
IJCAI 2024 in [8]. While the conference paper introduced the
concept of privacy evaluations for fair models using MIAs,
this manuscript significantly expands the scope and depth
of our investigation. We broaden the privacy risk assessment
by incorporating both MIAs and AIAs, providing a more
comprehensive evaluation of fair binary classifiers. Further-
more, we extend the attack mechanism originally developed
for MIAs to the domain of AIAs, resulting in novel and more
potent attack strategies.
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The organization of the paper is as follows: Section
2 reviews related work on fairness and privacy attacks.
Section 3 outlines the preliminaries and evaluation metrics.
In Section 4, we assess model privacy using membership
inference attacks, while Section 5 extends this evaluation
to attribute inference attacks. Building on these findings,
Section 6 introduces our enhanced attack mechanism (FD-
MIA and FD-AIA), which exploits prediction discrepancies
between biased and fair models. Section 7 presents exper-
imental evaluations, and Section 8 discusses potential mit-
igations and future research directions. Section 9 provides
a broader discussion of our proposed methods. Sections
10 and 11 discuss the limitations and provide conclusions,
respectively.

2 RELATED WORK

2.1 Algorithmic fairness

Given biased models, fairness methods aim to ensure consis-
tent prediction performance across subgroups. According to
the method modification phases, fairness studies generally
fall into three categories: pre-processing, in-processing, and
post-processing approaches. For deep classification models,
studies usually adopt in-processing methods as they deliver
fair results efficiently. Widely adopted methods involve
the introduction of fair constraints, adversarial training, or
mixup augmentation operations.

Fair constraint methods [9], [10], [11], [12], [13], [14], [15],
[16] introduce additional constraints based on the fairness
metrics. They formulate the problem as optimization issues.
Initially proposed in [9], subsequent studies have developed
the method with diverse settings such as proposing different
constraints [11], [17], [18] or training schemes [10]. Later,
adversarial training methods have been proposed [19], [20],
[21], [22], [23]. These methods require additional predictions
for sensitive attributes and update gradients reversely to
remove sensitive information from extracted features. The
operation leads to more similar representations across sub-
groups, contributing to fairer predictions. More recently,
studies aim to learn “neutral” representations using mixup
augmentation operations [24], [25] or contrastive learn-
ing [26], [27], [28], [29]. These methods either interpolate
inputs or modify features to pursue fair representations.
Other fairness methods include data operations such as
balancing the data with synthetic data generation [30], [31],
[32], data sampling strategies [33] [34] or data re-weighting
strategies [35], [36] to enforce fairness. Others concentrate
on different settings, such as semi-supervised learning [28],
[37], [38], multi-attribute protections [22], [39], [40], or en-
forcing fairness without demographics [41]. In the exper-
iments, we evaluate model privacy considering multiple
fairness methods, delivering comprehensive evaluations.

2.2 Membership inference attacks

Membership inference attacks aim to determine whether
a given data sample was in the target model’s training
dataset or not [5]. A number of attacks leverage the target
model’s direct output as inputs to train the attack models
and infer the membership of queried samples. For example,
various studies [5], [6], [42] utilize the confidence scores

as input, while others [43], [44], [45] focus on the training
losses. Additionally, some studies [46], [47] employ the
prediction labels for their attacks. These methods are usually
considered score-based attack methods. On the other hand,
some studies focus on enhancing attack performance by
modeling prediction distributions of the target models [7],
[48]. These methods aim to model the distributions for both
member and non-member data. They then leverage the
distribution difference to attain superior attack outcomes.
These methods are commonly referred to as reference-based
attack methods. such as reference models. Other research
extends their focus into various scenarios [49], [50], [51],
[52] or proposes defense methods against the attacks [53],
[54], [55], [56], [57]. In the experiments, we consider two
representative attack approaches to evaluate model privacy
leakage: score-based [6], [42] and reference-based [7] mem-
bership inference attacks.
Enhanced membership inference attacks. More recently, re-
searchers have begun incorporating additional information
as key indicators to boost the overall effectiveness of their
attacks. For instance, in the work by He et al. [58], the adver-
sary leverages prediction outcomes obtained from multiple
augmented views to significantly enhance its performance.
Another study by Li et al. [59] focuses on results derived
from multi-exit models as their attack strategy. Furthermore,
the study conducted by Hu et al. [60] integrates prediction
results from a multi-modality model to achieve enhanced at-
tack performance. Inspired by previous studies, we propose
a novel approach to enhance attack performance by lever-
aging additional information from fairness interventions.
Differently, our method uniquely exploits the disparities
introduced by model fairness techniques and integrates this
insight with existing attack strategies. This innovative com-
bination yields superior attack results, revealing previously
unrecognized vulnerabilities in fair models.

2.3 Attribute inference attacks
Attribute Inference Attacks (AIAs) aim to infer sensitive
attributes of samples using deployed model predictions.
These attacks share similarities with MIAs, particularly
in how some AIA methods exploit prediction gaps be-
tween different subgroups to infer attribute information,
as demonstrated by Yeom et al. and Ganju et al. [61],
[62]. These approaches are typically classified as black-box
attacks. However, state-of-the-art AIAs often employ more
sophisticated techniques, relying on the embeddings of tar-
get samples. These white-box attacks infer sample attribute
information by analyzing the extracted features from the
target model. In our comprehensive privacy evaluations
of fair binary classifiers, we consider both types of attack
methods: those exploiting prediction gaps (black box) and
those leveraging the embeddings (white box). This dual
approach allows us to assess the vulnerabilities of fair mod-
els from multiple perspectives, providing a more thorough
understanding of their privacy implications.

2.4 Fairness interventions and attacks
Currently, limited research focuses on algorithmic fairness
and attacks. Some earlier studies have explored the connec-
tions between fairness studies and adversarial attacks [63],
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[64], [65], [66], [67]. They find that fair models tend to be
more vulnerable to attacks than biased models [65]. Later,
studies have taken the approach to attack target models and
compromise model fairness results [64], [66], [67].

Recent research has explored various methods to attack
fair-enforced models. For instance, studies by Aalmoes et
al. [68] and Balunović et al. [69] have investigated the rela-
tionship between attribute attacks and fair-enforced models.
Balunović et al. [69] aim to promote fairness predictions
by reducing the performance of attribute attacks, while
Aalmoes et al. [68] utilize fairness methods to defend against
such attacks. These studies demonstrate the alignment be-
tween model fairness and attribute privacy. In contrast,
our work uncovers an overlooked attack mechanism that
poses significant threats to attribute privacy in fair-enforced
models.

More related to our study, Chang and Shokri [4] attack
fair-enforced methods with membership inference attack
methods. They consider fairness constraint methods for
decision tree models with structure data. They then measure
the attack performance with average-case success metrics of
accuracy and AUC. They find that score-based methods can
effectively attack fair models more accurately than biased
ones. Our study aims to examine the attack performance in
binary classifications and enforce more efficient attacks. We
employ multiple attack methods and metrics to assess the
privacy impact of fairness approaches.

3 PRELIMINARIES

3.1 Algorithmic fairness

Given biased models, we consider sensitive attributes s ∈ S
and subgroups {s0, s1} with binary attribute values {0, 1}.
Then, for fair models, as the prediction target and the
sensitive attribute are irrelevant, the model prediction ỹ and
S should be independent, i.e., ỹ ⊥ S|Y = y.

With different values of the sensitive attribute {s0, s1} ∈
A, one selected fairness metric γ can be expressed as follows:

γ(ỹ, y, S), S = {s0, s1} (1)

Fairness metrics. Ideally, the fairness metric value for dif-
ferent subgroups should be equal (γs0 = γs1 ). However,
biased models tend to have different metric values across
subgroups. Generally, we adopt the difference to quantify
the discrimination level and measure model fairness perfor-
mance:

Γ = |γs0 − γs1 |, (2)

where Γ is the discrimination level, γs0 and γs1 are the
fairness metric values across subgroups. In the experiments,
we adopt bias amplification (BA) from [70] and equalized
odds (EO) from [71] as fairness metrics.

Bias amplification (BA) is introduced in [70]. BA measures
the difference in true positive predictions across subgroups,
normalized by the total true positives. A lower BA indicates
less bias amplification. It can be written as:

1

2

|TPs0 − TPs1 |
TPs0 +TPs1

, (3)

where TP presents the true positive value of predictions.

Equalized odds (EO) is proposed in [71]. EO requires that
the probability of a positive prediction given the true label
should be equal across subgroups. This ensures that both
true positive rates (TPRs) and false positive rates (FPRs)
are equalized across subgroups. The fairness metric can be
defined as:

P{Ỹ |Y, S};Y = {0, 1}, S = {s0, s1}. (4)

We report the discrimination level with the difference of BA
and EO across subgroups for fairness evaluations as they are
widely adopted for fairness evaluations. For instance, with
the discrimination level in Eq. (2), fairness measurement
considering the metric of EO can be calculated as follows:

DEO = |EOs0 − EOs1 |. (5)

Datasets. CelebA [72], UTKFace [73], and FairFace [74]
are the commonly adopted datasets in fairness studies.
CelebA contains over 200, 000 celebrity face images with
40 attribute annotations. UTKFace and FairFace are diverse
facial datasets with balanced annotations across different
demographic groups. In our experiments, we create bi-
ased training data by sampling with a 9:1 ratio between
majority and minority groups while maintaining balanced
distributions for the target classification tasks and test sets.
In the evaluations, we first adopt the CelebA dataset in
Sections 4 and 5, focusing on smiling classifications as
the target and gender as the sensitive attribute. We then
extend our analysis in Section 7 to include all three datasets,
using various attribute combinations to further validate the
generalizability of our observations and the efficacy of our
proposed attack methods across different data distributions
and fairness scenarios.

3.2 Membership inference attacks
In the evaluations, we consider score-based and reference-
based MIA methods to evaluate model privacy.
Score-based attack methods rely on the target model’s (i.e.,
models under attack) prediction outcomes (e.g., scores or
losses) to determine the membership on each individual
data sample. Typically, to mimic the behavior of the target
model, a “shadow model” is trained with an auxiliary
dataset that shares the same distribution as the training
data. The outputs of the shadow model are then adopted to
train the attack models, where the membership of the data
is considered as the labels. In this way, the attack model can
infer whether the given samples are from the training data
or not. Formally, given target models T with queried sample
x, the membership of the sample M(x) can be predicted by,

M(x) = fm
a (T (x)), (6)

where the designed membership attack model fm
a outputs

the confidence scores of predicted membership. Generally,
existing studies usually adopt deep learning models as
attack models.
Reference-based likelihood ratio attack methods, on the
other hand, infer the membership by modeling the predic-
tion distributions. They first train multiple shadow models
on random subsets of training data. For a target example
x, the methods then model the prediction distributions for
models (fin) trained with the sample x and models (fout)
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trained without x. Both distributions are modeled as Gaus-
sians. Then, they determine the membership of x by com-
paring the likelihood of the sample prediction results T (x)
from the target model with the two distributions above.
Formally, the likelihood ratio between the distributions of
member and non-member data can be defined as,

Λ =
p(ϕ(T (x))|N (µin, σin))

p(ϕ(T (x))|N (µout, σout))
, (7)

where ϕ is a logic scaling function, (µin, σin) are calculated
with the predictions from the predictions of member data
(fin), and (µout, σout) are from fout. With likelihood ratio Λ,
whichever is more likely determines the membership of x.

3.3 Attribute inference attacks

AIAs aim to infer sample sensitive information–subgroups
such as male or female. They can be conducted in both
black-box and white-box settings. In a black-box setting,
given predictions of target models, the subgroup can be
predicted by:

A(x) = fa
a (T (x)). (8)

Similar to MIAs, the designed inference attack model fa
a

predicts sample subgroups with target model predictions.
As state-of-the-art AIAs usually rely on sample embed-

ding of the target models with a white-box attack setting.
Specifically, the trained target model T can be composed of
a feature extraction module h and a classification module g,
such that T = g(h(x)). Given sample embedding h(x), the
subgroup can be predicted by:

A(x) = fa
a (h(x)). (9)

3.4 Notations

Table 1 summarizes the main notations adopted throughout
the paper. In the table, x and y presents model inputs and la-
bels, respectively. Predicted labels are represented as ỹ. Our
models consist of feature extractors h(x), and classification
heads g(·). In our privacy analysis, membership inference
results for a sample x are denoted as M(x), while attribute
inference results are represented as A(x). The attack mod-
els for membership and attribute inference are denoted as
fm
a (·) and fa

a (·), respectively. We consider different types
of attacks: score-based (MIAs) and reference-based (MIAl)
membership inference attacks, as well as black-box (AIAb)
and white-box (AIAw) attribute inference attacks. We adopt
metrics including accuracy of target classifiers (Acct) and
attack classifiers (Acca), as well as true positive rate (TPR)
and false positive rate (FPR).

4 EVALUATIONS WITH MIAS

In this section, we evaluate the privacy impact of fairness
interventions with MIAs. We first introduce attack settings
and then present the attack results.

Fig. 2. Model privacy impact evaluation pipelines.

4.1 Attack settings
Attack pipeline. We evaluate the privacy performance of
models before and after applying fairness interventions
using Membership Inference Attacks (MIAs). We follow the
attack pipeline depicted in Figure 2, which is consistent with
the approach adopted in previous work [4]. Specifically, we
begin by training biased models using biased training data.
To enhance the fairness performance of these models, we
apply fairness interventions to obtain their counterpart, fair
models. Next, we attack both the biased and fair models
using existing MIA methods. Finally, we compare the attack
results to evaluate the impact of fairness interventions on
the privacy of the models.
Target models. We train biased models with the CelebA
dataset [72], which contains imbalanced data distributions
for various attributes. In particular, we consider smile as
classification targets and gender as the sensitive attribute.
We train biased models following settings in ML-Doctor
from [6]. We apply fair mixup operations from [24], [25]
to mitigate the biased predictions. Table 2 presents accuracy
(Acct) and fairness metrics (BA, DEO) results for both biased
(“Bias”) and fair (“Fair”) models. The results show de-
creased fairness metric results, indicating the effectiveness
of the adopted fairness interventions.
Threat models. We apply both the score-based attacks
(MIAs from [6]) and reference-based attacks (LiRA from [7])
on target models in a black-box manner. In particular,
adversaries can only access models’ predictions and an
auxiliary dataset, which shares similar data distributions
with the training data. The adversary trains shadow models
to mimic the target models’ behavior and uses the prediction
scores and results (true or false predictions) to infer sample
membership. We conduct the attacks following settings in
ML-Doctor.

4.2 Score-based attacks
Table 2 shows the Acca and AUCa results for attacks on the
models. It shows improved attack results after fairness inter-
ventions. For example, the accuracy results decreased from
59.8% to 53.2% with the fair models. AUC results exhibit
similar trends. This aligns with results in Figure 1, where
fewer training samples can be successfully attacked after the
interventions. Our results show that fairness interventions
provide some defense against existing MIAs.

4.3 Reference-based attacks
We further use the reference-based attack method of LiRA
from [7] to evaluate model privacy. The method examines
attack performance via the True Positive Rates (TPR) value



6

TABLE 1
Summary of Main Symbols and Notation

Symbol Description Symbol Description

x Inputs y Labels
ỹ Predicted labels h(x) Feature extractors
g(·) Classification heads T = g ◦ h Target models (T (x) = g(h(x)))
s ∈ S Sensitive attributes s0, s1 Binary attribute values (0, 1)
γ(ỹ, y, S) Generic fairness metric Γ = |γs0 − γs1 | Discrimination level across subgroups
BA Bias Amplification (fairness metric) DEO Difference in Equalized Odds (fairness metric)
M(x) Membership inference results for x A(x) Attribute inference results for x
fm
a (·) Membership attack models fa

a (·) Attribute attack models
MIAs Score-based membership inference attacks MIAl Reference-based membership inference attacks (LiRA)
AIAb Black-box attribute attacks AIAw White-box attribute attacks
ϕ(·) Logit scaling functions p(·) Probability functions
µin, µout Mean prediction vectors (member, non-member) σin, σout Std. dev. (member, non-member)
Acct Accuracy of target (main) classifiers Acca Accuracy of attack classifiers
TPR True positive rate FPR False positive rate
Λ Likelihood ratio in reference-based MIA Cov Covariance matrix for distribution modeling
Tb(x), Tf (x) Biased, fair target models hb(x), hf (x) Biased, fair feature extractors
TPs0 ,TPs1 True Positives for subgroups s0, s1 AUC Area-under-ROC-curve measure

TABLE 2
Attack results with the score-based methods from [6] in (%).

Models Acct ↑ BA ↓ DEO ↓ Acca ↑ AUCa ↑

Bias 87.6 7.7 21.7 59.8 62.8
Fair 90.5 2.5 5.6 53.2 54.8

TABLE 3
Attacks using LiRA from [7] with TPR @ 0.1% FPR in (%).

Models Acca ↑ AUCa ↑ TPR ↑

Bias 51.5 51.4 0.6
Fair 50.8 50.3 0.2

in the low False Positive Rates (FPR) region. This enables
MIAs on hard examples, where samples from both member
and non-member groups share similar prediction results.
Table 3 shows the attack results with the TPR results at
a low FPR value of 0.1%. The table shows inferior attack
performance for fair models compared to the biased ones
with all three considered metrics. The results are consistent
with the score-based MIAs.

4.4 Discussions

To better understand the results, we further explore the
attack results and find the following observations:
Performance trade-offs. During the evaluation, we observe
evident trade-offs in attack performance on member versus
non-member data. Figure 3a illustrates the inherent perfor-
mance trade-offs in membership inference attacks by plot-
ting the accuracy results for member data (x-axis) against
the accuracy for non-member data (y-axis). We conducted
over 100 independent attack experiments on both biased
and fair models, with each circle in the scatter plot rep-
resenting a single attack instance. Green circles represent
attack results on biased models, while blue circles represent
attack results on fair models. The clear negative correlation
visible in both model types demonstrates a fundamental
trade-off: as an attack model becomes more accurate at

identifying member groups (moving rightward on the x-
axis), it simultaneously becomes less accurate at correctly
classifying non-members (moving downward on the y-
axis). This pattern holds consistently across both biased
and fair models. This trade-off raises significant concerns
about the practical effectiveness of membership inference
attacks. Specifically, it suggests that achieving high attack
performance on training data members inevitably comes at
the cost of a higher false positive rate (FPR) on non-member
data, making the attack less reliable overall. This obser-
vation aligns with findings from previous studies [7] that
highlight the limitations of threshold-based attack methods
when applied to binary classification tasks.

The issue becomes more pronounced for hard examples
where members and non-members share similar prediction
scores. As suggested in [7], we assess the attack perfor-
mance for hard examples with TPR values in the low FPR
region. We find the TPR values are around 0.0 for most
attacks. Figure 3b presents two worst-case scenarios. The
green curve in the figure shows closely aligned TPR and
FPR values, indicating the attack results are equivalent to
random guesses. The blue line shows 0.0 TPR values in
low FPR regions, indicating that no positive samples can be
correctly identified. The findings reveal that attack models
fail to differentiate the membership of hard examples, indi-
cating invalid attacks. This aligns with the concerns about
the effectiveness of score-based attacks raised in previous
studies [7], [48].
Model degradation. To explore the reason for the trade-
off phenomenon, we have discovered that trained attack
models typically degrade into simple threshold models
with one-dimensional inputs. This is because current at-
tack methods rely on prediction outcomes to determine
the sample membership. For binary classifiers, prediction
scores can be reduced to one dimension as the sum of
the confidence scores always equals one. Consequently, the
attack model can essentially be viewed as a simple threshold
model, which infers the membership by “thresholding” one-
dimensional values.

Figure 4a presents histograms of prediction scores with
vertical lines indicating the threshold value. By adjusting
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(a) Attack accuracy (b) Attack for hard examples

Fig. 3. Existing attacks (a) exhibit clear performance trade-offs between
member and non-member data, each green circle represents attack
accuracy on biased models and each blue circle represents attack ac-
curacy on fair models; and (b) are inefficient in attacking hard examples
in the low FPR region.

the vertical line (thresholds), it is possible to achieve higher
accuracy for member data, but this comes at the expense
of decreased accuracy for non-member data. This threshold
adjustment explains the trade-off phenomenon.
Impacts of fairness interventions. When examining the
prediction scores, we find that fairness interventions de-
crease confidence scores for the majority training data,
introducing some defense against existing MIAs. This is evi-
denced by the histograms of confidence scores in Figures 4a
and 4b. The figures show that fairness interventions result in
more similar score distributions between member and non-
member data, making it more difficult for the threshold-
based attack models to distinguish them.

Moreover, we explore the score changes for different
subgroups in Figures 4c and 4d. From the plots, the majority
data are more “spread out”, whereas the minority are more
“concentrated”. This is because fairness interventions strive
to balance prediction performance across subgroups for fair
predictions. The results advocate the observed increased
loss values for most data points in Figure 1a. It also aligns
with the fairness-utility trade-off, which is extensively ob-
served in fairness studies [75], [76], [77].

Our analyses indicate that existing attack methods are
ineffective in exploiting prediction gaps that could lead
to model privacy leaks. While fairness interventions do
introduce some defense to MIAs, we identify a novel threat
that will pose significant risks to model privacy.

5 EVALUATIONS WITH AIAS

This section further assesses model privacy performance by
conducting Attribute Inference Attacks (AIAs). We begin by
outlining the attack settings, followed by a presentation of
the attack results and an in-depth analysis of our findings.
Our evaluation uses the same CelebA dataset configuration
as in the previous section to ensure consistency.

5.1 Attack settings

Attack pipeline. Attribute Inference Attacks (AIAs) are
designed to infer sensitive attribute information about data
samples by exploiting the outputs of target models. We
follow the same attack pipeline in Figure 2.
Target models. We consider the same target models as in
MIAs. Specifically, we launch AIAs on both biased and

TABLE 4
Attribute inference attack results with biased and fair models in (%).

Models Acct ↑ BA ↓ DEO ↓ AIAb (Acc) ↑ AIAw (Acc) ↑

Bias 87.6 7.7 21.7 56.5 83.4
Fair 90.5 2.5 5.6 47.5 82.9

fair models and compare the attack results for privacy
evaluations.
Threat models. In our evaluations, we employ both black-
box and white-box AIAs to comprehensively assess the
privacy risks of biased and fair models.

In the black-box setting, the attacker has access only to
the prediction scores from the target model. This scenario
mimics real-world situations where an adversary can query
the model but has no access to its internal structure. In the
white-box setting, the attacker has more privileged access
and can obtain sample embeddings from internal layers
of the target model. Specifically, we extract features from
the last layer of the feature extraction module in the target
model, which is the layer immediately preceding the fully
connected layers. This approach provides the attacker with
more information with the sample embeddings. For both
settings, we train attack models following the methodology
outlined in the ML-Doctor framework [6].

5.2 Attack results
Table 4 presents the attack results, where AIAb represents
the black-box attack, and AIAw represents the white-box
attack. For example, the black-box attack accuracy decreases
from 56.5% for biased models to 47.5% for fair models,
and the white-box attack accuracy decreases from 83.4%
for biased models to 82.9% for fair models. Notably, the
black-box attack accuracy on fair models is close to random
guessing.

5.3 Discussions
Our results suggest that fairness interventions introduce
some level of robustness against AIAs. For black-box at-
tacks, the attack model uses the prediction scores of target
models to infer sample subgroup information. As observed
in Figure 4c and Figure 4d, fairness interventions adjust
scores across subgroups to achieve fairer predictions. This
adjustment results in more similar scores across subgroups,
making it harder for attackers to infer subgroup informa-
tion. Consequently, the pursuit of fairer results can inadver-
tently enhance model privacy. These findings align with the
study by [69], which examined model fairness by evaluating
whether extracted features contain sensitive information via
AIAs.

Similar trends can also be observed with white-box
attacks. Fair models resulted in lower attack success rates
compared to biased models. Notably, the attack accuracy for
white-box attacks remains higher than for black-box attacks,
even though it declined after fairness interventions. This
is because white-box attacks leverage sample embeddings
to infer subgroup information, preventing trained attack
models from degrading into simple threshold models. As
black-box attacks adopt prediction scores as inputs, similar
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(a) Biased models (b) Fair models (c) Majority subgroups (d) Minority subgroups

Fig. 4. Prediction score changes after applying fairness methods. The red lines in (a) and (b) indicate that the trained attack models infer sample
membership with certain threshold values. (c) and (d) show the changes in terms of different subgroups.

(a) All data (b) Hard examples

Fig. 5. Histograms of prediction score distances between groups of
member and non-member data for fair and biased models. We measure
the distance with score value difference between the groups and present
comparisons regarding (a) all data and (b) hard examples, where sam-
ples from the member and non-member data share similar scores.

to MIAs, attack models degrade into simple threshold mod-
els when considering binary classifiers as the target models.
However, with white-box attacks, the inputs are extracted
features, ensuring sufficient information to launch efficient
AIAs.

6 AN ENHANCED ATTACK MECHANISM

While our experiment results show inferior attack results
after fairness interventions, during the evaluations, we dis-
cover an overlooked attack mechanism and propose two
novel attack methods, FD-MIA and FD-AIA. We first intro-
duce the attack mechanism and then present the proposed
FD-MIA and FD-AIA.

6.1 Fairness disparity based attack mechanism

The enlarged distribution gaps. The previous findings
have indicated that fairness methods tend to decrease the
score values for the majority subgroups while increasing
the scores for the minority subgroups. This can lead to an
enlarged gap in predictions across subgroups. On the other
hand, the score changes for the non-member data are likely
to follow normal distributions, causing a different behav-
ior pattern compared to the member data. These different
behavior patterns in score changes can serve as additional
clues to achieve better performance in MIAs and AIAs.
For example, in MIAs, we can plot the histograms of the
prediction gaps, as shown in Figure 5, to analyze the gaps
for the overall training data and the hard examples.

(a) Attack pipeline

(b) Enlarged distribution gaps

Fig. 6. Fairness discrepancy based attacks exploit the difference in pre-
dictions from both models to more effectively distinguish different data
groups, such as different subgroups or member versus non-member
data.

Specifically, we first calculate the mean and variance
of the prediction scores for biased and fair models. We
then compute the distribution distance between member
and non-member data using the results from the biased
models and the results from both biased and fair models,
respectively. This calculation is performed over a total of 50
runs. The figure shows enlarged distances when predictions
from both models are considered. Moreover, we explore the
distance in Figure 5b considering only the hard examples–
samples with similar prediction scores among member and
non-member data. Again, the figure demonstrates enlarged
prediction distances when using predictions from both mod-
els. Inspired by the observations, we propose an enhanced
attack method tailored for fair models with the observed
prediction gaps.
Attack pipeline. Figure 6 illustrates the attack pipeline,
wherein an adversary can access prediction results from
both models. The attack models will exploit the difference
in predictions to infer the membership or subgroup infor-
mation. We refer to the proposed method as the Fairness
Discrepancy based Membership Inference Attack (FD-MIA) and
Fairness Discrepancy based Attribute Inference Attack (FD-AIA).
As the proposed method only modifies the inputs, it can be
integrated into existing attack techniques.
Threat models. The discovered attack mechanism operates
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as a black-box attack, requiring only access to the predic-
tions from both a biased model and a fair model. In practice,
adversaries could obtain such predictions, as real-world
models often exhibit persistent biased predictions that linger
even after attempts at debiasing. For instance, an attacker
could monitor a Machine Learning as a Service (MLaaS)
platform over time, as debiasing efforts are typically an on-
going process to adhere to relevant legislation. Alternatively,
the adversary could deliberately report biases, compelling
the model owner to refine the model in accordance with
regulations. By recording the prediction shifts that occur
during these debiasing efforts, the adversary can gather the
necessary information to enable efficient attacks that exploit
the discrepancies between the biased and fair models.

6.2 FD-MIA

The discovered attack mechanism can be seamlessly inte-
grated into the existing MIAs of score-based and reference-
based attacks, enhancing their attack performance.
Score-based FD-MIA. Score-based FD-MIA has been intro-
duced to enhance traditional score-based MIAs by integrat-
ing additional encoding layers. These layers are designed
to extract the features of model predictions, exploiting the
observed prediction gaps. Formally, it can be expressed as
follows:

M(x) = fm
a (Tb(x), Tf(x)), (10)

where the attack models fm
a takes predictions from both

biased models Tb and fair models Tf.
Reference-based FD-MIA. Reference-based FD-MIA is in-
tegrated with the LiRA framework [7], which infer sample
membership by modeling the prediction distributions. It
enhances attack performance using two target models - the
biased and the fair ones. Formally, for a given sample x and
target models T , the probability of membership is given by:

p = (ϕ(T (x))|N (µb, µf,Cov)), (11)

where Cov is the covariance matrix. The distribution func-
tion N takes the mean confidence scores from both the
biased µb and fair models µf. This function estimates the
likelihood of a data point being a member or non-member.
The result is determined by the higher probability score.

6.3 FD-AIA

The designed fairness disparity based attack mechanism can
be integrated into existing black-box and white-box attribute
inference attacks.
Black-box FD-AIA. Black-box AIAs infer sample subgroup
information with target model prediction results. With re-
sults from both biased and fair models, the subgroup infor-
mation can be predicted as:

A(x) = fa
a (Tb(x), Tf(x)). (12)

Here, the attack model fa
a combines these prediction results

to infer the sensitive subgroup information for the input
sample x.
White-box FD-AIA. On the other hand, white-box AIAs
use sample embeddings to obtain subgroup information

predictions. With access to both the biased and fair models,
the prediction can be formulated as:

A(x) = fa
a (hb(x), hf(x)), (13)

where the attack model fa
a leverages features from the

biased model hb(x) and features from the fair model hf(x).
By combining information from both models, the attack
model A(x) can make more accurate predictions about the
sensitive subgroup information.

6.4 Discussions
The introduced fairness disparity based attack mechanism is
designed to enhance the attack performance by leveraging
predictions from both biased and fair models. Unlike ex-
isting attack methods, this mitigates the risk of degraded
performance in the trained attack model. Our findings
reveal that fairness interventions inadvertently introduce
new privacy risks, making target models more vulnerable
to membership inference attacks and attribute inference
attacks.

7 EXPERIMENTS

We now extensively evaluate our findings and the proposed
method under diverse scenarios. We start by introducing the
experiment settings.

7.1 Settings
Datasets. With the gender attribute, we consider the fol-
lowing binary classifications: smiling predictions (T=s/S=g)
with the CelebA dataset [72], race predictions (T=r/S=g)
with the UTKFace dataset [73] and the FairFace dataset [74].
As UTKFace and FairFace contain multiple racial sub-
groups, we first group them into White and Others and then
obtain the binary subgroups.
Training data. For training data, we sample the data to
skew the distribution with specified sensitive attributes to
induce biased predictions. We set a highly imbalanced ratio
of 9 : 1 between the majority and minority groups (e.g., 90%
male data and 10% female data). Meanwhile, we maintain
a balanced distribution for the target learning (e.g., 50%
smiling and 50% non-smiling). We also maintain a balanced
distribution for the test data. In the ablation studies, we
consider different imbalanced ratios to further verify the
proposed method.
Models. For the target models, we utilize a 6-layer deep
model comprising three consecutive CNN layers followed
by three linear layers. We adopt the fair mixup operations
from [24], [25] to obtain fair models. We follow their imple-
mentations to apply the fairness intervention.

7.2 Results with the gender attribute
Table 5 presents the attack results with different attack meth-
ods and metrics. We integrate the proposed method with
score-based MIAs (MIAs), reference-based MIAs (MIAl), the
black-box AIAs (AIAb), and the white-box AIAs (AIAw).
For MIAl, we report the TPR results at a low FPR value of
0.1%, following suggestions in [7]. The table shows that FD-
MIA and FD-AIA outperform all existing attack methods
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(a) Score-based attacks (b) LiRA attacks

Fig. 7. Attack result comparisons in the low FPR region for (a) score-
based attacks and (b) LiRA attacks.

with all cases and metrics. Notably, it achieves higher attack
success on fair models than the biased ones. In contrast,
the existing MIAs and AIAs perform worse on fair models.
This reveals that the proposed FD-MIA and FD-AIA can
effectively exploit model fairness disparities to improve
attack performance, posing threats to model privacy.

Specifically, in score-based attacks (MIAs), FD-MIA out-
performed others with the highest accuracy. Similar trends
can be observed with the LiRA attacks (MIAl). We further
present the ROC curves for the CelebA case in Figure 7. The
figure further confirms the invalid attacks of the existing
methods and the valid TPR results of FD-MIA. Moreover,
from the table, we observe that the attacks achieved superior
results on FairFace compared to other datasets. Meanwhile,
FairFace exhibits a greater discrepancy in fairness between
biased and fair models. We believe the enlarged discrepancy
leads to enlarged prediction gaps, enabling more effective
attacks. Additionally, we notice that score-based attacks per-
form better on accuracy and AUC, whereas LiRA achieves
better TPR values. This aligns with the observations in [7]
as LiRA is designed for efficient attacks at the low FPR.

For AIAs, the table shows decreased attack performance
with fair models when using existing methods. This is
because fairness interventions aim to reduce prediction
gaps across different demographic subgroups, making it
more challenging to distinguish subgroups. Specifically, for
CelebA, the accuracy of black-box AIAs drops from 83.4%
on biased models to 82.9% on fair models, and white-box
AIAs show a similar trend (92.9% to 91.6%). In contrast,
with FD-AIA, we see improved attack performance on fair
models. For instance, on CelebA, FD-AIA achieves 87.6%
accuracy on fair models compared to 83.4% on biased mod-
els for black-box attacks and 93.8% vs 92.9% for white-box
attacks. This trend is consistent across all datasets, demon-
strating that FD-AIA can effectively leverage the fairness-
induced changes in the model to enhance attack success.

7.3 Results with other attributes
We further explore attacks with different attributes, includ-
ing wavy hair (T=s/S=h) and heavy makeup (T=s/S=m) for
CelebA, as well as race (T=g/S=r) for UTKFace and FairFace.
Table 6 presents the results. Once again, the proposed FD-
MIA and FD-AIA outperform existing attack methods on all
datasets and metrics, posing real privacy threats. Notably,
it consistently achieves superior performance with varying
accuracy, ranging from 51% to 77%. The results illustrate
the robustness of the proposed methods, highlighting their

Fig. 8. Score-based MIAs with models of varying fairness levels. The red
star indicates the biased model.

efficacy in real-world scenarios. Additionally, similar to
previous results, the proposed attack methods achieve better
attack performance on FairFace, likely due to the enlarged
fairness discrepancy between fair and biased models.

7.4 Ablation studies
Results with varying fairness levels. We attack models
of different fairness performances. Here, we conduct score-
based MIAs to evaluate the results. Specifically, we consider
the case of CelebA (T=s/S=g) and conduct attacks on biased
and fair models of different DEO values. Figure 8 presents
the results. For FD-MIA, we utilize prediction results from
multiple fair models and one biased one, which is indicated
by a red star in the figure. We further adopt dashed gray
lines to outline the trend.

The figure illustrates that attack accuracy decreases for
both biased and fair models as the DEO value decreases. The
results indicate that models with stronger fairness interven-
tions exhibit more robustness against existing MIAs. While
achieving improved fairness, these models lower their con-
fidence scores, making the attacks more challenging. In
contrast, FD-MIA, which exploits discrepancies in fairness,
achieves superior attack performance. Particularly, larger
fairness discrepancies contribute to more powerful attacks.

We further examine AIA results with different fair mod-
els in Figure 10. Similarly, we observe that as the DEO
value decreases, indicating improved fairness, the accuracy
of traditional AIAs tends to decrease. This trend aligns
with our previous observations that fairness interventions
make it more difficult for standard attacks to infer sensitive
attributes. However, the FD-AIA method shows a different
trend. As the fairness discrepancy between the biased and
fair models increases (i.e., as the fair model’s DEO decreases
further from the biased model’s DEO), the accuracy of
FD-AIA improves. This is because FD-AIA leverages these
fairness discrepancies to enhance its attack effectiveness.
Results with different fairness approaches. We evalu-
ate our findings with various fairness approaches, includ-
ing data sampling, reweighting, adversarial training, and
constraint-based approaches. In the experiments, we adopt
the implementations of these approaches from [78], [79].
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TABLE 5
Target learning and attack results for the gender attribute in (%).

Dataset Models
Target prediction results Attack results

Acct ↑ BA ↓ DEO ↓ MIAs (Acc) MIAl (TPR) AIAb (Acc) AIAw (Acc)

CelebA
(T=s/S=g)

Bias 87.6 (±0.0) 7.7 (±0.1) 21.7 (±0.0) 59.8 (±0.0) 0.6 (±0.1) 56.5 (±0.5) 83.4 (±0.5)
Fair 90.5 (±0.0) 2.5 (±0.9) 5.6 (±1.0) 53.2 (±1.1) 0.2 (±0.0) 47.5 (±0.4) 82.9 (±0.8)
Our - - - 60.6 (±0.2) 1.2 (±0.3) 75.2 (±0.2) 87.6 (±0.6)

UTKFace
(T=r/S=g)

Bias 87.4 (±0.4) 3.6 (±0.3) 14.2 (±0.2) 58.5 (±0.1) 0.9 (±0.4) 66.0 (±0.7) 84.5 (±0.2)
Fair 89 (±0.5) 0.8 (±0.1) 6.3(±0.2) 52.6 (±0.1) 0.7 (±0.3) 57.0 (±0.5) 84.1 (±0.1)
Our - - - 60.2 (±2.5) 1.7 (±0.3) 77.3 (±0.9) 85.9 (±0.1)

FaceFace
(T=r/S=g)

Bias 87.2 (±0.0) 7.7 (±0.0) 22.2 (±0.4) 63.6 (±0.2) 1.3 (±0.5) 51.9 (±0.5) 68.3 (±0.2)
Fair 87.6 (±0.1) 1.9 (±0.6) 3.9(±0.2) 63.3 (±0.3) 0.9 (±0.1) 49.6 (±0.3) 67.8 (±0.4)
Our - - - 65.2 (±0.1) 2.3 (±0.3) 53.4 (±0.9) 73.6 (±0.7)

TABLE 6
Attacks with different sensitive attributes and learning targets in (%).

Dataset Models
Target prediction results Attack results

Acct ↑ BA ↓ DEO ↓ MIAs (Acc) MIAl (TPR) AIAb (Acc) AIAw (Acc)

CelebA
(T=s/S=h)

Bias 89.9 (±0.1) 2.5 (±0.0) 10.4 (±0.1) 55.1 (±0.1) 0.3 (±0.1) 54.2 (±0.1) 60.9 (±0.3)
Fair 90.1 (±0.4) 0.9 (±0.2) 3.7(±0.5) 52.6 (±0.1) 0.1 (±0.1) 51.9 (±0.5) 59.7 (±0.4)
Our - - - 55.4 (±0.5) 0.8 (±0.1) 57.1 (±0.6) 62.5 (±0.6)

CelebA
(T=s/S=m)

Bias 88.6 (±0.1) 3.5 (±0.0) 14.6 (±0.1) 57.4 (±0.1) 0.4 (±0.1) 57.1 (±0.1) 75.6 (±0.3)
Fair 90.5 (±0.3) 0.8 (±0.1) 2.4(±0.6) 53.1 (±0.3) 0.1 (±0.1) 51.1 (±0.3) 75.1 (±0.1)
Our - - - 59.6 (±0.2) 0.6 (±0.1) 69.1 (±0.1) 77.6 (±0.1)

UTKFace
(T=g/S=r)

Bias 80.8 (±0.1) 8.8 (±0.6) 31.9 (±1.4) 64.0 (±1.3) 1.4 (±0.1) 56.9 (±0.1) 70.4 (±0.5)
Fair 86.3 (±0.4) 2.8 (±0.4) 14.3(±0.4) 55.3 (±0.8) 0.9 (±0.1) 52.0 (±0.4) 69.4 (±0.1)
Our - - - 66.7 (±0.1) 2.1 (±0.3) 64.3 (±0.1) 73.8 (±0.0)

FaceFace
(T=g/S=r)

Bias 90.5 (±0.3) 12.5 (±0.7) 5.3 (±1.1) 75.5 (±1.7) 1.5 (±0.1) 61.0 (±0.2) 64.9 (±0.4)
Fair 92.0 (±0.3) 5.1 (±2.0) 4.5(±1.1) 73.2 (±0.9) 0.6 (±0.4) 51.7 (±0.3) 63.6 (±0.9)
Our - - - 77.0 (±0.3) 2.9 (±0.7) 65.7 (±0.6) 77.4 (±0.3)

Similarly, we focus on the case of CelebA (T=s/S=g), and
Figure 9 presents the results. The figure shows reduced DEO
values after fairness interventions, indicating the effective-
ness of these approaches.

For attack results, the naive score-based attacks exhibit
degraded performance with fair models for all fairness
approaches. The attack accuracy drops as the DEO values
reduce. The results align with our previous findings, where
fairness interventions introduce some robustness to MIAs.
Notably, the drops are more pronounced with the adver-
sarial training and constraint approaches. We believe this is
due to the more substantial trade-offs between fairness and
utility inherent to the approaches.

In contrast, for all approaches, FD-MIA achieved higher
attack accuracy with fair models compared to biased ones.
Similarly, the attack performance improves when the fair-
ness discrepancy enlarges as FD-MIA explores the predic-
tion gaps. A similar trend can also be observed with AIAs in
Figure 11. These experiments demonstrate our findings and
the proposed method with various representative fairness
approaches. The results indicate fairness interventions can
impose real privacy threats.
Results with different model structures. We assess the
performance of the proposed method considering different
model structures: ResNet18 [80] and VGG [81]. Table 7
shows the results with score-based attacks. As consistently
observed in our evaluations, the proposed FD-MIA and FD-
AIA outperform existing attack methods with all model

Fig. 9. Score-based MIAs on models with different fairness intervention
methods.

structures. Notably, it achieves better attack performance
with lighter model structures, such as ResNet18, compared
to VGG. This can be attributed to the fact that lighter models
are more susceptible to the influence of imbalanced data
distributions, leading to more biased predictions. Conse-
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TABLE 7
Attack results with different model structures in (%).

Structures Models Attack accuracy

MIAs AIAb

Light CNN [6]
Bias 59.8 (±0.0) 56.5 (±0.5)
Fair 53.2 (±1.1) 47.5 (±0.4)
Our 60.6 (±0.2) 75.2 (±0.2)

ResNet18 [80]
Bias 59.6 (±0.6) 55.8 (±0.2)
Fair 54.2 (±0.1) 48.4 (±0.6)
Our 64.5 (±0.0) 74.9 (±0.4)

VGG [81]
Bias 55.2 (±0.2) 54.1 (±0.2)
Fair 52.2 (±0.8) 45.2 (±0.3)
Our 59.6 (±0.2) 72.2 (±0.3)

Fig. 10. Black-Box AIAs with models of varying fairness levels. The red
star indicates the biased model.

quently, this imbalance results in larger prediction gaps be-
tween member and non-member data, thereby contributing
to enhanced attack performance.
Attacks with varying skewed distributions. We further
consider varying skewed data distributions for the consid-
ered sensitive attribute. Specifically, we consider smiling
classifications with the CelebA dataset considering gender
as the sensitive attribute. We then sample the data randomly
and set imbalanced ratios between the majority and minor-
ity subgroups with different values ranging from 0.95 to
0.75. Table 8 presents the results for target learning and the
attack results. All results indicate that fairness interventions
tend to introduce some robustness to MIAs and AIAs.
However, with the proposed attack method, fair models can
compromise model privacy with superior attack results. The
results are consistent with our findings.

7.5 Discussions
Our experimental results, as presented in the previous ta-
bles, show that the proposed FD-MIA and FD-AIA meth-
ods achieved improvements in attack performance, albeit
modest in some cases. This is because we deliberately chose
fair models that maintained relatively high accuracy levels.
This decision was motivated by practical considerations, as
models with severe accuracy degradation are less likely to
be deployed in real-world scenarios. However, this choice

Fig. 11. Black-box AIAs on models with different fairness intervention
methods.

resulted in smaller prediction gaps between the fair and
biased models, which in turn limited the potential for our
attack methods to exploit these differences. Despite these
constraints, our findings in Figures 8 and 9 reveal an
important trend. The attack performance of FD-MIA and
FD-AIA can be significantly enhanced when using fairer
models that exhibit more substantial drops in accuracy
or when employing fair methods that demonstrate more
significant fairness-accuracy trade-offs.

8 MITIGATIONS

Previous evaluations have demonstrated that the proposed
method compromises model privacy performance. This sec-
tion outlines two potential defense mechanisms to mitigate
privacy leakage from the proposed method.

8.1 Restricting information access
This method involves limiting the adversary’s access to the
information required for the attack methods. Specifically, we
consider the following restrictions:

• Label-only access: Only providing predicted labels
without confidence scores or other intermediate out-
puts.

• Fair model isolation: Publishing only the prediction
results from fair models, preventing adversaries from
obtaining the prediction discrepancies that FD-MIA
and FD-AIA exploit.

• Prediction truncation: Limiting the precision of con-
fidence scores by rounding or truncation.

While effective, these approaches come with trade-offs:
First, restricting to label-only access may limit the utility of
deployed models, such as risk assessment systems requiring
probability scores, medical diagnostics where confidence
levels guide treatment decisions, or recommendation sys-
tems that rank items based on prediction scores. Second,
fair model isolation may not be feasible when both models
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TABLE 8
Attack results for different skewed distributions.

Distributions Models
Target prediction results Attack results

Acct ↑ BA ↓ DEO ↓ MIAs (Acc) MIAl (TPR) AIAb (Acc) AIAw (Acc)

0.95
Bias 82.7 (±0.0) 9.6 (±0.0) 31.0 (±0.0) 63.8 (±0.4) 0.0 (±0.0) 60.1 (±0.3) 86.3 (±0.1)
Fair 89.3 (±0.3) 3.3 (±0.8) 9.2(±1.1) 54.9 (±0.4) 0.2 (±0.0) 50.9 (±0.6) 85.1 (±0.5)
Our - - - 64.5 (±0.3) 0.2 (±0.0) 79.4 (±0.6) 89.1 (±0.6)

0.9
Bias 87.6 (±0.0) 7.7 (±0.1) 21.7 (±0.0) 59.8 (±0.0) 0.0 (±0.0) 58.2 (±0.1) 86.1 (±0.2)
Fair 90.5 (±0.0) 2.5 (±0.9) 5.6(±1.0) 53.2 (±1.1) 0.0 (±0.0) 50.2 (±0.4) 85.2 (±0.5)
Our - - - 60.6 (±0.2) 0.3 (±0.1) 78.9 (±0.6) 88.6 (±0.8)

0.85
Bias 88.6 (±0.3) 4.8 (±0.2) 17.0 (±0.7) 57.6 (±0.7) 0.0 (±0.0) 56.9 (±0.1) 84.2 (±0.5)
Fair 90.1 (±0.5) 1.7 (±0.8) 3.8(±0.8) 54.1 (±0.3) 0.0 (±0.0) 83.6 (±0.9) 84.1 (±0.6)
Our - - - 60.3 (±0.1) 0.3 (±0.1) 76.3 (±0.7) 88.1 (±0.5)

0.8
Bias 88.1 (±0.3) 5.0 (±0.3) 12.4 (±0.6) 58.7 (±0.8) 0.0 (±0.0) 56.4 (±0.3) 83.4 (±0.4)
Fair 90.5 (±0.3) 1.9 (±0.6) 4.1(±1.1) 54.2 (±0.2) 0.0 (±0.0) 47.6 (±0.3) 82.6 (±0.3)
Our - - - 59.5 (±0.2) 0.2 (±0.0) 75.3 (±0.4) 87.4 (±0.6)

0.75
Bias 89.1 (±0.3) 5.0 (±0.3) 12.4 (±0.6) 58.7 (±0.8) 0.0 (±0.0) 56.0 (±0.2) 83.4 (±0.1)
Fair 90.1 (±0.1) 0.8 (±0.3) 2.8(±1.2) 53.8 (±0.3) 0.0 (±0.0) 47.1 (±0.3) 82.0 (±0.4)
Our - - - 58.3 (±0.7) 0.3 (±0.1) 75.3 (±0.5) 87.4 (±0.9)

0.7
Bias 92.0 (±0.3) 1.9 (±0.0) 4.8 (±0.1) 56.9 (±1.4) 0.0 (±0.0) 55.1 (±0.1) 83.6 (±0.3)
Fair 91.4 (±0.4) 0.9 (±0.0) 2.7(±0.6) 53.9 (±0.3) 0.0 (±0.0) 47.0 (±0.2) 82.2 (±0.1)
Our - - - 57.3 (±0.3) 0.3 (±0.0) 75.3 (±0.3) 87.2 (±0.2)

are part of a model evolution timeline, as organizations
typically maintain version histories for audit purposes and
compliance requirements that mandate preserving model
histories. Third, users requiring high-precision outputs for
decision support or quality control systems may find trun-
cation unacceptable for their applications.

8.2 Differential privacy
Differential privacy (DP) [82] imposes a constraint on the
ability to distinguish between two neighbouring datasets
that differ by only a single data sample, and research has
shown that DP can effectively mitigate MIAs and AIAs.
DP-SGD [83] is effective against our proposed attacks as
it targets the vulnerability exploited by our attacks: the
model’s ability to memorize training data. By adding noise
to gradients during training, DP-SGD limits how precisely
the model can fit individual training data. This reduces the
prediction discrepancies between different subgroups that
our attacks exploit.
Experimental results. We utilize the differentially private
stochastic gradient descent (DP-SGD) [83] for attacks con-
sidering the results of CelebA (T=s/S=g) in Table 2. Table 9
shows the results, where we compare the attack perfor-
mance with DP noise between the proposed methods and
existing ones (the score-based attacks s and the LiRA attacks
l). The results show lower accuracy results than the original
attacks, indicating the effectiveness of the defense methods.
Moreover, with the same amount of noise, our attacks (Ours,
Ourl) achieve higher attack performance than the others,
indicating that the proposed models require more DP noise
to attain comparable levels of defense performance. The
results show that the proposed methods are more effective
in attacks than the existing approaches.

Figure 12 illustrates the defense results with different
values of the DP budget ϵ. In the figure, we report the
accuracy results for the target predictions and the attack
models. As shown in the figure, the DP noise will lead to

TABLE 9
DP-SGD results with δ = 10−5, ϵ = 0.85 in (%).

Models
Attack results

MIAs (Acc) MIAl (TPR) AIAb (Acc) AIAw (Acc)

Fair 50.8 (±0.3) 0.1 (±0.1) 46.5 (±0.3) 64.3 (±0.5)
Our 53.4 (±0.4) 0.1 (±0.1) 57.3 (±0.2) 67.1 (±0.4)

Fig. 12. DP-SGD results for different values of ϵ. We compare accuracy
results for target models and attack models.

decreased accuracy of learning targets. With smaller values
of ϵ, more noise will be injected during the training, leading
to inferior attack performance but lower prediction per-
formance. The figure demonstrates the trade-offs between
privacy defense and model utility. The results also indicate
that, with careful tuning of the noise budget ϵ, DP-SGD can
prevent privacy leaks from fairness-enforced models while
maintaining performance on main predictions.
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8.3 Discussions

Our analyses show that information access restriction meth-
ods provide a straightforward approach to mitigate FD-
MIA and FD-AIA attacks. Particularly, fair model isolation
effectively prevents adversaries from obtaining the predic-
tion pairs essential for these attacks. While label-only access
offers strong protection, it substantially reduces the model’s
usefulness for applications requiring confidence scores. Pre-
diction truncation presents a middle ground, offering mod-
erate protection with less utility impact.

Differential privacy methods provide the strongest theo-
retical guarantees against these attacks. With carefully cho-
sen privacy budgets (ϵ ≤ 1.0), DP-SGD maintains reason-
able model performance while significantly reducing attack
success rates. This approach introduces a trade-off between
privacy protection and model utility, making it suitable for
high-sensitivity applications.

The choice between these defense strategies depends on
specific deployment requirements. Information restriction
methods are easier to implement but more limiting for appli-
cations, while differential privacy offers stronger guarantees
but requires more complex implementation and potentially
greater utility sacrifices. For applications with strict privacy
requirements, combining both approaches may provide the
most comprehensive protection.

9 DISCUSSIONS

Computational cost. While our proposed attack meth-
ods demonstrate improved effectiveness over existing ap-
proaches, they require more computational cost compared
to conventional single-model attacks. Specifically, for the
inference phase, the proposed attack methods require ad-
ditional layers to process inputs from both biased and fair
models. Similarly, during the training phase, the attacks
need shadow models mimicking both the biased and fair
target models. This doubles the training requirement com-
pared to a single-model attack pipeline.
Real-world feasibility. The proposed FD-MIA and FD-
AIA methods require predictions from both biased and fair
models. The practical feasibility depends on the adversary’s
ability to access predictions from both biased and fair
models. We identify several realistic scenarios. For exam-
ple, as organizations continuously improve their models to
address fairness concerns due to regulatory requirements,
an adversary can record predictions from different versions
of deployed models over time. Alternatively, the attacker
could also deliberately report bias, compelling the model
owner to implement fairness interventions. In collaborative
ML environments where multiple stakeholders participate
in model development, different versions of models (in-
cluding biased and fair variants) might be accessible to
participants, inadvertently providing information that could
be exploited.

10 LIMITATIONS

While our study provides empirical evidence regarding
privacy risks in fairness-enhanced machine learning models,
there are limitations.

Theoretical analyses. Our focus lies in exploring and em-
pirically measuring privacy leakage after enforcing fairness
enhancement methods. We have not presented a compre-
hensive theoretical explanation of why fairness interven-
tions can create exploitable prediction gaps. We have found
that fairness methods adjust prediction scores differently
for different subgroups. This results in prediction shifts
that our FD-MIA and FD-AIA methods exploit. However,
there is a broader theoretical question regarding whether
such distribution shifts are tied to fairness enforcement or
are contingent on specific optimization objectives. Future
work might build on existing analytical frameworks to
characterize these phenomena: explain how, when, and why
fairness mechanisms may inadvertently reveal sensitive in-
formation.
Fairness definition scope. Our study focuses on group fair-
ness metrics (e.g., demographic parity or equalized odds).
We find that fairness improvements do not necessarily in-
crease privacy risks with naive attack methods. However,
alternative fairness notions may lead to different privacy
outcomes. Indeed, recent studies report trade-offs between
fairness and privacy in various settings. For instance, Zhang
et al. [84] explore how enforcing individual fairness in
Graph Neural Networks can heighten privacy vulnerabil-
ities. These findings underscore the need to evaluate fair-
ness–privacy interactions across diverse fairness formula-
tions.
Scope and future directions. Our experiments focus on
binary classification tasks. Although this setup offers a clear
starting point for analyzing how fairness methods interact
with privacy, real-world pipelines often involve more com-
plex settings. For example, future research could extend to
more complex model architectures, such as large language
models, more applications in domains such as healthcare
and finance, and alternative attack vectors such as model-
stealing attacks.

11 CONCLUSIONS

This paper presents a comprehensive analysis of the in-
terplay between algorithmic fairness methods and privacy
vulnerabilities against membership and attribute inference
attacks. Our extensive experiments across three datasets
reveal that fairness interventions do not necessarily com-
promise model privacy when evaluated with existing MIA
and AIA methods. However, we find that current attack
methods are inadequate for fully assessing privacy leakage
in fair models due to performance trade-offs and model
degradation issues. Motivated by these observations, we
propose FD-MIA and FD-AIA novel attack methods tai-
lored for fair models. These approaches exploit prediction
disparities between original and fair models, consistently
outperforming existing attacks and uncovering previously
overlooked privacy risks in fair models. Our findings un-
derscore the need for a holistic approach to responsible AI
system design that simultaneously addresses fairness and
privacy concerns. The challenge of developing trustworthy
systems that optimally balance these competing objectives
remains an important area for future research.
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[31] J. Joo and K. Kärkkäinen, “Gender slopes: Counterfactual fairness
for computer vision models by attribute manipulation,” in Pro-
ceedings of the 2nd International Workshop on Fairness, Accountability,
Transparency and Ethics in Multimedia, 2020, pp. 1–5.

[32] V. V. Ramaswamy, S. S. Kim, and O. Russakovsky, “Fair attribute
classification through latent space de-biasing,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 9301–9310.

[33] Y. Roh, K. Lee, S. E. Whang, and C. Suh, “Fairbatch: Batch
selection for model fairness,” in International Conference on Learning
Representations, 2021.

[34] M. M. Khalili, X. Zhang, and M. Abroshan, “Fair sequen-
tial selection using supervised learning models,” ArXiv, vol.
abs/2110.13986, 2021.

[35] B. Zhao, X. Xiao, G. Gan, B. Zhang, and S.-T. Xia, “Maintaining
discrimination and fairness in class incremental learning,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 13 208–13 217.

[36] S. Gong, X. Liu, and A. K. Jain, “Mitigating face recognition
bias via group adaptive classifier,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
3414–3424.

[37] T. Zhang, t. zhu, J. Li, M. Han, W. Zhou, and P. Yu,
“Fairness in semi-supervised learning: Unlabeled data help
to reduce discrimination,” IEEE Transactions on Knowledge
and Data Engineering, pp. 1–1, 2020. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2020.3002567

[38] X.-X. Wei and H. Huang, “Balanced federated semisupervised
learning with fairness-aware pseudo-labeling,” IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[39] H. Tian, B. Liu, T. Zhu, W. Zhou, and P. S. Yu, “Multifair: Model
fairness with multiple sensitive attributes,” IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–14, 2024.

[40] ——, “Multifair: Model fairness with multiple sensitive at-



16

tributes,” IEEE Transactions on Neural Networks and Learning Sys-
tems, pp. 1–14, 2024.

[41] J. Chai and X. Wang, “Self-supervised fair representation learning
without demographics,” Advances in Neural Information Processing
Systems, vol. 35, pp. 27 100–27 113, 2022.

[42] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and
M. Backes, “ML-Leaks: Model and data independent membership
inference attacks and defenses on machine learning models,” in
26th Annual Network and Distributed System Security Symposium,
NDSS 2019, 2019.

[43] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy Risk
in Machine Learning: Analyzing the Connection to Overfitting,”
in 2018 IEEE 31st Computer Security Foundations Symposium (CSF),
2018, pp. 268–282.

[44] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jegou,
“White-box vs Black-box: Bayes Optimal Strategies for Member-
ship Inference,” in International Conference on Machine Learning,
2019, pp. 5558–5567.

[45] L. Liu, Y. Wang, G. Liu, K. Peng, and C. Wang, “Membership
inference attacks against machine learning models via prediction
sensitivity,” IEEE Transactions on Dependable and Secure Computing,
vol. 20, no. 3, pp. 2341–2347, 2023.

[46] C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot,
“Label-Only Membership Inference Attacks,” in International Con-
ference on Machine Learning, 2021, pp. 1964–1974.

[47] Z. Li and Y. Zhang, “Membership Leakage in Label-Only Expo-
sures,” in ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS 2021), 2021.

[48] J. Ye, A. Maddi, S. K. Murakonda, V. Bindschaedler, and R. Shokri,
“Enhanced membership inference attacks against machine learn-
ing models,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 3093–3106.

[49] H. Liu, J. Jia, W. Qu, and N. Z. Gong, “EncoderMI: Membership
Inference against Pre-trained Encoders in Contrastive Learning,”
in Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 2081–2095.

[50] J. Gao, X. Jiang, H. Zhang, Y. Yang, S. Dou, D. Li, D. Miao,
C. Deng, and C. Zhao, “Similarity Distribution Based Membership
Inference Attack on Person Re-identification,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2023, pp. 14 820–14 828.

[51] X. Yuan and L. Zhang, “Membership Inference Attacks and De-
fenses in Neural Network Pruning,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 4561–4578.

[52] G. Zhang, B. Liu, T. Zhu, M. Ding, and W. Zhou, “Label-only mem-
bership inference attacks and defenses in semantic segmentation
models,” IEEE Transactions on Dependable and Secure Computing,
vol. 20, no. 2, pp. 1435–1449, 2023.

[53] D. Chen, N. Yu, and M. Fritz, “RelaxLoss: Defending Membership
Inference Attacks without Losing Utility,” in International Confer-
ence on Learning Representations, 2022.

[54] Z. Yang, L. Wang, D. Yang, J. Wan, Z. Zhao, E.-C. Chang, F. Zhang,
and K. Ren, “Purifier: Defending Data Inference Attacks via Trans-
forming Confidence Scores,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2023, pp. 10 871–10 879.

[55] H. Huang, W. Luo, G. Zeng, J. Weng, Y. Zhang, and A. Yang,
“Damia: Leveraging domain adaptation as a defense against mem-
bership inference attacks,” IEEE Transactions on Dependable and
Secure Computing, vol. 19, no. 5, pp. 3183–3199, 2022.

[56] Y. Liu, H. Li, G. Huang, and W. Hua, “Opupo: Defending against
membership inference attacks with order-preserving and utility-
preserving obfuscation,” IEEE Transactions on Dependable and Se-
cure Computing, vol. 20, no. 6, pp. 4690–4701, 2023.

[57] L. Hu, J. Li, G. Lin, S. Peng, Z. Zhang, Y. Zhang, and C. Dong,
“Defending against membership inference attacks with high util-
ity by gan,” IEEE Transactions on Dependable and Secure Computing,
vol. 20, no. 3, pp. 2144–2157, 2023.

[58] X. He, H. Liu, N. Z. Gong, and Y. Zhang, “Semi-Leak: Membership
Inference Attacks Against Semi-supervised Learning,” in Computer
Vision – ECCV 2022, 2022, pp. 365–381.

[59] Z. Li, Y. Liu, X. He, N. Yu, M. Backes, and Y. Zhang, “Auditing
Membership Leakages of Multi-Exit Networks,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 1917–1931.

[60] P. Hu, Z. Wang, R. Sun, H. Wang, and M. Xue, “M4i: Multi-modal
models membership inference,” in Advances in Neural Information
Processing Systems, 2022, pp. 1867–1882.

[61] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk
in machine learning: Analyzing the connection to overfitting,” in
2018 IEEE 31st Computer Security Foundations Symposium (CSF).
IEEE, 2018, pp. 268–282.

[62] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov,
“Property inference attacks on fully connected neural networks
using permutation invariant representations,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 619–632.

[63] H. Xu, X. Liu, Y. Li, A. Jain, and J. Tang, “To be robust or to be fair:
Towards fairness in adversarial training,” in International conference
on machine learning. PMLR, 2021, pp. 11 492–11 501.

[64] T. Zhang, T. Zhu, J. Li, W. Zhou, and S. Y. Philip, “Revisiting model
fairness via adversarial examples,” Knowledge-Based Systems, p.
110777, 2023.

[65] H. Chang, T. D. Nguyen, S. K. Murakonda, E. Kazemi, and
R. Shokri, “On adversarial bias and the robustness of fair machine
learning,” ArXiv, vol. abs/2006.08669, 2020.

[66] H. Zeng, Z. Yue, L. Shang, Y. Zhang, and D. Wang, “On adversarial
robustness of demographic fairness in face attribute recognition,”
in Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, IJCAI-23, 2023, pp. 527–535.

[67] N. Mehrabi, M. Naveed, F. Morstatter, and A. Galstyan, “Exacer-
bating algorithmic bias through fairness attacks,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, 2021,
pp. 8930–8938.

[68] J. Aalmoes, V. Duddu, and A. Boutet, “On the alignment of group
fairness with attribute privacy,” 2024.

[69] M. Balunovic, A. Ruoss, and M. Vechev, “Fair normalizing
flows,” in International Conference on Learning Representations,
2022. [Online]. Available: https://openreview.net/forum?id=
BrFIKuxrZE

[70] J. Zhao, T. Wang, M. Yatskar, V. Ordonez, and K.-W. Chang, “Men
also like shopping: Reducing gender bias amplification using
corpus-level constraints,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, 2017, pp. 2979–
2989.

[71] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in
supervised learning,” in Advances in neural information processing
systems, 2016, pp. 3315–3323.

[72] C.-H. Lee, Z. Liu, L. Wu, and P. Luo, “Maskgan: Towards diverse
and interactive facial image manipulation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[73] J. Geralds, “Utkface large scale face dataset,” github. com, 2017.
[74] K. Karkkainen and J. Joo, “Fairface: Face attribute dataset for bal-

anced race, gender, and age for bias measurement and mitigation,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2021, pp. 1548–1558.

[75] F. Zhang, K. Kuang, L. Chen, Y. Liu, C. Wu, and J. Xiao, “Fairness-
aware contrastive learning with partially annotated sensitive at-
tributes,” in The Eleventh International Conference on Learning Repre-
sentations, 2023.

[76] C. Pinzón, C. Palamidessi, P. Piantanida, and F. Valencia, “On the
impossibility of non-trivial accuracy in presence of fairness con-
straints,” in Thirty-Sixth AAAI Conference on Artificial Intelligence,
2022, pp. 7993–8000.

[77] D. Zietlow, M. Lohaus, G. Balakrishnan, M. Kleindessner, F. Lo-
catello, B. Schölkopf, and C. Russell, “Leveling down in computer
vision: Pareto inefficiencies in fair deep classifiers,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2022, pp. 10 410–10 421.

[78] M. Wang and W. Deng, “Mitigating Bias in Face Recognition Using
Skewness-Aware Reinforcement Learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, p. 10.

[79] X. Han, J. Chi, Y. Chen, Q. Wang, H. Zhao, N. Zou, and X. Hu,
“Ffb: A fair fairness benchmark for in-processing group fairness
methods,” 2023.

[80] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

[81] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2015.



17

[82] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Theory of Cryptog-
raphy: Third Theory of Cryptography Conference, 2006, pp. 265–284.

[83] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
in Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 308–318.

[84] H. Zhang, X. Yuan, and S. Pan, “Unraveling privacy risks of
individual fairness in graph neural networks,” in 2024 IEEE 40th
International Conference on Data Engineering (ICDE). IEEE, 2024,
pp. 1712–1725.

Huan Tian is currently working towards the
Ph.D. degree in the School of Computer Sci-
ence, University of Technology Sydney, Aus-
tralia. He received a B.Sc. degree from the Uni-
versity of Shanghai for Science and Technology,
China in 2011, and an M.Sc. degree from TU
Dortmund, Germany in 2015. His research in-
terests include fairness and privacy, computer
vision, and deep learning.

Guangsheng Zhang is a Research Associate
in the School of Computer Science, University
of Technology Sydney. He received the B.Eng.
degree from Northeastern University, China in
2012, the M.Sc. degree from Aberystwyth Uni-
versity, the UK in 2015, and the Ph.D. degree
from University of Technology Sydney, Australia
in 2024. His research interests include privacy
and security, computer vision, and deep learn-
ing.

Bo Liu received the BEng degree from the De-
partment of Computer Science and Technology,
Nanjing University of Posts and Telecommunica-
tions, Nanjing, China, in 2004. He then received
the MEng. and PhD. Degrees from the Depart-
ment of Electronic Engineering, Shanghai Jiao
Tong University, Shanghai, China, in 2007 and
2010, respectively. He is currently an Associate
Professor at the University of Technology Syd-
ney, Australia. His research interests include cy-
bersecurity, privacy, location privacy, image pri-

vacy, privacy protection, machine learning.

Tianqing Zhu is a professor in the Faculty
of Data Science, City University of Macau,
Macao SAR, China. She received the B.Eng. de-
gree and M.Eng. degree from Wuhan University,
Wuhan, China, in 2000 and 2004, respectively,
and the Ph.D. degree from Deakin University,
Australia, in 2014. She was a lecturer at the
School of Information Technology, Deakin Uni-
versity, from 2014 to 2018, and an associate
professor at the University of Technology Syd-
ney, from 2018 to 2024. Her research interests

include cyber security and privacy in AI.

Ming Ding (M’12-SM’17) received the B.S. and
M.S. degrees (with first-class Hons.) in elec-
tronics engineering from Shanghai Jiao Tong
University (SJTU), Shanghai, China, and the
Doctor of Philosophy (Ph.D.) degree in sig-
nal and information processing from SJTU, in
2004, 2007, and 2011, respectively. From April
2007 to September 2014, he worked at Sharp
Laboratories of China in Shanghai, China as
a Researcher/Senior Researcher/Principal Re-
searcher. Currently, he is a principal research

scientist at Data61, CSIRO, in Sydney, NSW, Australia. His research
interests include information technology, data privacy and security, and
machine learning and AI. He has authored more than 150 papers in
IEEE journals and conferences, all in recognized venues, and around 20
3GPP standardization contributions, as well as a book “Multi-point Co-
operative Communication Systems: Theory and Applications” (Springer,
2013). Also, he holds 21 US patents and has co-invented another 100+
patents on 4G/5G technologies. Currently, he is an editor of IEEE Trans-
actions on Wireless Communications and IEEE Communications Sur-
veys and Tutorials. Besides, he has served as a guest editor/co-chair/co-
tutor/TPC member for multiple IEEE top-tier journals/conferences and
received several awards for his research work and professional services.

Wanlei Zhou (Senior member, IEEE) is currently
the Vice Rector (Academic Affairs) and Dean
of Institute of Data Science, City University of
Macau, Macao SAR, China. He received the
B.Eng and M.Eng degrees from Harbin Insti-
tute of Technology, Harbin, China in 1982 and
1984, respectively, and the PhD degree from
The Australian National University, Canberra,
Australia, in 1991, all in Computer Science and
Engineering. He also received a DSc degree (a
higher Doctorate degree) from Deakin University

in 2002. Before joining City University of Macau, Professor Zhou held
various positions including the Head of School of Computer Science at
University of Technology Sydney, Australia, the Alfred Deakin Professor,
Chair of Information Technology, Associate Dean, and Head of School of
Information Technology in Deakin University, Australia. Professor Zhou
also served as a lecturer in University of Electronic Science and Tech-
nology of China, a system programmer in HP at Massachusetts, USA;
a lecturer in Monash University, Melbourne, Australia; and a lecturer in
National University of Singapore, Singapore. His main research interests
include security, privacy, and distributed computing. Professor Zhou has
published more than 400 papers in refereed international journals and
refereed international conferences proceedings, including many articles
in IEEE transactions and journals.


	2021 IEEE
	2025- TDSC-1.pdf

