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A B S T R A C T

Background and Objectives: Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) are progressive 
neurological disorders that significantly impair the cognitive functions, memory, and daily activities. They affect 
millions of individuals worldwide, posing a significant challenge for its diagnosis and management, leading to 
detrimental impacts on patients’ quality of lives and increased burden on caregivers. Hence, early detection of 
MCI and AD is crucial for timely intervention and effective disease management.
Methods: This study presents a comprehensive systematic review focusing on the applications of deep learning in 
detecting MCI and AD using electroencephalogram (EEG) signals. Through a rigorous literature screening process 
based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the 
research has investigated 74 different papers in detail to analyze the different approaches used to detect MCI and 
AD neurological disorders.
Results: The findings of this study stand out as the first to deal with the classification of dual MCI and AD 
(MCI+AD) using EEG signals. This unique approach has enabled us to highlight the state-of-the-art high-per-
forming models, specifically focusing on deep learning while examining their strengths and limitations in 
detecting the MCI, AD, and the MCI+AD comorbidity situations.
Conclusion: The present study has not only identified the current limitations in deep learning area for MCI and AD 
detection but also proposes specific future directions to address these neurological disorders by implement best 
practice deep learning approaches. Our main goal is to offer insights as references for future research encour-
aging the development of deep learning techniques in early detection and diagnosis of MCI and AD neurological 
disorders. By recommending the most effective deep learning tools, we have also provided a benchmark for 
future research, with clear implications for the practical use of these techniques in healthcare.
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1. Introduction

Dementia is a group of diseases that manifest with a decline in 
memory, reasoning, and the ability to perform daily activities. Globally, 
more than 55 million people suffer from dementia worldwide, with over 
60 % in low-and middle-income countries [1,2], and 10 million new 
cases are diagnosed every year [3]. Mild cognitive impairment (MCI) is 
considered the intermediate stage between the cognitive changes seen in 
normal aging–e.g., occasional forgetfulness–and those associated with 
dementia [4]. Unlike dementia, MCI patients often retain functional 
capacity. The prevalence of MCI among adults aged 60 and above ranges 
from approximately 6.7 % to 25.2 % [5]. The risk decreases with age and 
higher levels of education, and it is more prevalent in men [6]. The most 
common cause of dementia is Alzheimer’s disease (AD), a progressive 
neurodegenerative disease characterized by amyloid-beta peptide’s 
accumulation in the brain [7]. The exact etiology of AD is unclear, 
although multiple factors have been implicated, including advanced age 
and gene [8]. Genetic variations in the APOE ε4 allele are associated 
with AD and MCI [9]–some MCI patients are pre-clinical AD who 
eventually progress to clinical AD with severe functional impair-
ment–but the presence of a culprit gene may not always result in 
cognitive decline [10]. Finally, several chronic diseases and lifestyle 
factors have been linked to cognitive impairment, e.g., diabetes, hy-
pertension, hypercholesterolemia, obesity, depression, smoking, lack of 
physical exercise, and low education levels [11].

There is no definitive test for Alzheimer’s disease (AD). The clinical 
diagnosis requires comprehensive cognitive and neurological evalua-
tions, neuroimaging such as magnetic resonance imaging (MRI) and 
positron emission tomography (PET), and electroencephalogram (EEG) 
[12]. In imaging studies, the hippocampus (the memory center) shows a 
gradual decrease in size with age, mild cognitive impairment (MCI), and 
AD (Fig. 1). Imaging tests are expensive, time-consuming, and require 
expert interpretation [13].

Fig. 1 demonstrates the progression of brain degeneration from 
normal aging to severe AD, highlighting the specific structural changes 
that occur in key brain areas responsible for memory and cognitive 
functions. The Fig. serves as a visual aid to understand how Alzheimer’s 
disease manifests and worsens over time. EEG, which can continuously 
map the brain’s surface electrical potentials via multichannel scalp 
electrodes, provides spatial and highly resolved temporal information 
about the functional activities of various brain regions and has been used 
to detect diverse neurocognitive disorders, including Alzheimer’s Dis-
ease (AD) [14,15]. EEG signals are particularly useful in such applica-
tions as they capture both linear and non-linear dynamic information 
[16]. Disease-associated variations in EEG signals and their frequency 
spectra allow for diagnostic discrimination [17]. However, because EEG 
signals have small amplitudes (measured in microvolts), subtle changes 
in different channels are difficult to analyse, especially when the data set 
is large. Hence, there is a need for computer-aided diagnosis of Mild 
Cognitive Impairment (MCI) and AD in the presence of voluminous data. 
Indeed, artificial intelligence (AI) techniques, especially deep learning, 

have shown great potential to detect and diagnose MCI and AD based on 
EEG signals [18]. Instead of relying entirely on human intervention, 
which can be time-consuming and expensive, deep learning techniques 
self-optimise by analysing large amounts of data to detect intricate 
patterns in EEG signals automatically. In other words, they can detect 
subtle patterns in the data that are otherwise difficult for humans to 
discern [19]. The variations in EEG signals and their frequency spectra 
associated with diseases allow diagnostic discrimination [20]. As EEG 
signals have small amplitudes (microvolts), subtle changes in the 
different channels are difficult to analyse, especially when the data is 
huge [21].

Fig. 2 provides a visual summary of the landscape of systematic re-
views in AD and MCI detection, highlighting the complementary focus of 
different studies. Each review covers a specific aspect of neurological 
detection (EEG, MRI, progression from MCI to AD), contributing to a 
holistic understanding of how deep learning and other techniques are 
advancing the detection of neurodegenerative diseases.

Hence, computer-aided diagnosis of MCI and AD is needed in the 
presence of voluminous data. Indeed, artificial intelligence (AI) tech-
niques, especially deep learning, have shown great potential to detect 
and diagnose MCI and AD based on EEG signals [22]. Instead of relying 
entirely on human intervention, which could be time-consuming and 
expensive, deep learning techniques self-optimize by analyzing large 
amounts of data to identify intricate patterns in EEG signals automati-
cally. In other words, they can detect subtle patterns in the data that are 
otherwise difficult for humans to discern [23].

In this review paper, we aim to perform a detailed systematic review 
of deep learning methods for diagnosing AD and MCI neurological dis-
orders using EEG signals. The remainder of the paper is organized as 
follows: Section 2 details the information search methodology related to 
AD and MCI, Section 3 presents the results and synthesis of the findings, 
Section 4 discusses the results in further detail, and Section 5 presents 
the conclusions and recommendations for future research directions in 
adopting deep learning for AD and MCI neurological disorder detection.

2. Material and methods

2.1. Related reviews

Our literature search demonstrated that there currently appears to be 
a lack of systematic reviews focusing on deep-learning methods for EEG- 
based AD and MCI diagnosis. Therefore, using different combinations of 
the search words “EEG”, “deep learning”, “Alzheimer OR AD OR MCI OR 
Mild Cognitive Impairment” and “Review” on PubMed and Google 
Scholar, we found 14 review studies (Table A. 1) that were most relevant 
for AD and MCI neurological disorder detection. The search shows that 
several studies [24,25,26] have reviewed different techniques to iden-
tify the various neuropsychiatric disorders, including MCI, AD, Parkin-
son’s diseases, bipolar disorder, depression, etc, but none of those 
studies have specifically focused on MCI or AD detection techniques 
(like deep learning), and utilising the particular data types (like EEG) 

Fig. 1. Brain structure of the normal individuals compared to the MCI and AD patients.
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considered in this research. Some papers reviewed deep learning, EEG 
signals, and MCI or AD in general, but they lacked a specific focus on 
EEG-based MCI/AD detection using AI techniques. [27] and [28] have 
also studied the application of machine learning (ML) to detect AD using 
EEG images. Still, these studies did not include the high-performing deep 
learning models that are commonly used today.

In Fig. 2, we depict how our carefully selected papers differed from 
five of the most recent related review studies in this field.

According to Fig. 3, there are three phases: Identification, Screening 
and Inclusion. Initially, 440 papers were collected, with 359 remaining 
after removing duplicates. In the Screening phase, 244 papers were 
excluded for irrelevance, leaving 115 for assessment. Finally, 41 more 
papers were excluded due to a lack of machine learning or deep learning 
results, resulting in 74 papers being included in the review. The process 
ensures a rigorous selection of relevant, high-quality studies.

2.2. Literature search

We conducted a comprehensive literature search in PubMed, Scopus, 
Web of Science, and IEEE repositories for articles published between 1st 

January 2014 and 30th June 2024, following the PRISMA guidelines. 
Using the Boolean string: (Alzheimer OR AD OR MCI OR mild cognitive 
impairment) AND (Deep Learning OR Transfer Learning OR Natural 
Language Processing) AND (EEG OR Electroencephalogram), the initial 
search yielded 440 results across the four databases. After removing 81 
duplicates and excluding 244 irrelevant works, review studies and non- 
journal publications, 115 articles remained. Of these, 41 papers did not 
report any performance results of the deep learning models, leaving 74 
papers for analysis and review (Fig. 3: Article search strategy based on 
the PRISMA guidelines.).

3. Results

Among the 74 papers published in the last decade, 45 papers (61 %) 
have been published from 2022 (Fig. 4), which mirrors the secular 
development of state-of-the-art deep learning models in the field as well 
as computing power, which significantly improved the accuracy and 
efficiency of analyzing EEG signals for detecting MCI and AD. For the 
analysis of results, we stratified the 74 papers into three groups based on 
the condition/s being classified: MCI (11 papers), AD (38 papers), or 
both (25 papers). The first two groups classify MCI patients versus 
healthy controls and AD patients versus healthy controls, respectively. 
The third group included papers that either classify MCI versus AD 
versus healthy controls or MCI versus AD patients. Among the last group 
are papers that studied the progression of MCI into AD.

Fig. 4 highlights a significant increase in research starting in 2018, 
with peaks in 2022 and 2023 due to advances in deep learning models 
and computational power. 2014-2017 saw low activity, likely reflecting 
the initial stages of applying AI to EEG analysis. A drop in 2020 is 
attributed to the pandemic, but there was a resurgence in 2021, aligning 
with improvements in machine learning technologies. The text notes a 
decline in publications in 2024, potentially indicating stabilization in 
research. Fig. 4 shows that 61 % of papers were published from 2022 
onwards, emphasizing the field’s rapid growth, driven by technological 
advancements and the need for early detection of neurodegenerative 
diseases.

3.1. MCI detection

In this section, we report the key papers that used deep learning 
methods for EEG-based MCI diagnosis (Table A. 2). Early detection of 
MCI is crucial so that intervention can be introduced to retard its 

Fig. 2. Comparison of our review paper with other review papers developed for automated detection of AD and MCI.
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progression to AD, which is associated with severe cognitive decline, 
loss of independence, and higher healthcare costs. Modifications in 
brain connectivity density can be detected on the EEG. Compared with 
MCI, AD patients exhibit increased amounts of permutation Jaccard 
distances (PJD) and reduction in network density across all sub-bands 
[29]. [30] investigated various techniques like tuned residue iteration 
decomposition (t-RIDE), residue iteration decomposition (RIDE), 

independent component analysis (ICA), and the grand average method 
on data acquired from subjects who had performed a P300 speller task. 
Their t-RIDE algorithm demonstrated high efficiency for MCI diagnosis 
versus controls, which opens up the possibility of AI-based techniques 
for automatic MCI screening and, via mobile devices, remote monitoring 
of neurocognitive function.

Later studies are broadly categorized into three groups: articles that 

Fig. 3. Article search strategy based on the PRISMA guidelines.

Fig. 4. Distribution of articles by the publication year.
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used scarce data, transfer learning models, and EEG data in a multi-
modal setting. To overcome the challenge of obtaining large open-access 
EEG databases to train AI models, [31] has developed a model based on 
iterative amplitude adjusted Fourier transform (IAAFT) and bidirec-
tional long short-term memory (BiLSTM) that could distinguish MCI 
patients versus healthy controls using small amounts of EEG signal data. 
Used along with data augmentation, IAAFT generates surrogate EEG 
data with similar characteristics to the original data, thereby decreasing 
the chances of overfitting and improving generalizability.

By additionally deploying BiLSTM to capture temporal dependencies 
in EEG signals, their model attained 97.20 % classification accuracy on a 
small dataset of 10 MCI patients and 10 healthy controls. Other studies 
relied on pre-processing steps to mitigate data scarcity, including 
denoising using techniques like stationary wavelet transformation, 
segmentation, and down-sampling of raw data to expand the sample size 
and achieve similar classification performance. The key lies in per-
forming clever transformations to represent the available data in a more 
interpretable form. In [32] and [33], stationary wavelet and discrete 
wavelet transformations, respectively, were used to decompose EEG 
signals into sub-bands, from which features were extracted to perform 
MCI versus normal classifications, which attained accuracies exceeding 
95 %. These studies demonstrate that by carefully selecting EEG chan-
nels and features, it is possible to achieve high accuracy in detecting 
MCI, even in the presence of limited data.

[34] used ResNet-18 to distinguish MCI patients versus healthy 
controls based on the frequency and spatial properties of EEG data. They 
observed that the frontal, left temporal, and parietal areas of the brain 
were most affected in MCI patients, which differed from healthy controls 
in the θ and low α bands on the EEG signal. From studying how MCI 
patients differed from mild AD patients, they observed that MCI patients 
had a larger affected right temporal area. Incorporating these findings 
into the model, they attained a high 98.33 % accuracy for the classifi-
cation of MCI patients versus healthy controls. [35] reproduced similar 
results on a larger, publicly available database, which not only lent 
support to the results of [34], but also suggested a disrupted brain 
network organization in MCI patients characterized by higher local ef-
ficiency in the beta band on the EEG signal.

Integrating information from multimodal sources in individual pa-
tients can potentially provide a more complex and comprehensive cap-
ture of the disease for more a accurate diagnosis. However, it can come 
at the cost of increased difficulty in acquiring the different data. Several 
studies used such an approach to detect MCI, with EEG signals being part 
of the multimodal datasets. [36] They used eye movement data, infor-
mation from neuropsychological assessments, and EEG signals. Their 
model extracted 40 features using logistic regression, among which five 
features were significantly related to MCI, yielding 81.51 % classifica-
tion accuracy. [37] studied mindfulness impact in MCI using 
sleep-related information. In a double-blind randomized controlled trial, 
they assigned 75 patients with MCI and insomnia into two groups: the 
mindfulness group and the health education control group.

Compared to the control group, the mindfulness group showed sig-
nificant improvements in sleep quality along with low levels of anxiety 
and stress. Analysis of EEG recordings of both these groups revealed 
changes in brain activity, indicating relaxation and alterations in fre-
quency bands associated with attention during mindfulness practice. 
This suggests that mindfulness can enhance sleep and cognitive abilities 
in MCI patients, providing a low-cost, scalable intervention suitable for 
implementation. [38] studied robot-based training for improving 
working memory and cognitive function in older patients. Their nu-
merical results indicated that the intervention led to an 8 % increase in 
cognitive scores, as measured by standardized assessments, compared to 
the control group. [39] developed an EEG-based MCI to assess cognitive 
workloads in MCI patients. They recorded EEG data from 124 brain 
areas of participants as they performed different cognitive tasks on a 
robot simulator. EEG-based MCI was found to be sensitive to changes in 
the subject’s mental workload. Their study’s results demonstrated that 

the EMCI index could effectively differentiate between MCI and HC 
groups, with accuracy rates of 89.09 % and an F1 score of 89.44 % in the 
beta frequency band.

3.2. AD detection

In this section, we report the papers that used deep learning methods 
for EEG-based AD diagnosis (Table A. 3). Deep learning techniques were 
used for both feature extraction [17] and classification [40,41,42,43]. 
[44] investigated various biomarkers, including EEG signals, priori-
tizing non-invasiveness, cost, and portability. Applying multiscale 
analysis and embedding space theory to EEG-based brain functional 
networks, they were able to classify AD patients versus healthy controls 
with 98 % accuracy using traditional classifiers. [45] developed a deep 
learning model that could distinguish AD from healthy aging adults 
based on signal inputs acquired using a two-lead ambulatory EEG system 
that recorded sleep-related data. Compared with healthy controls, AD 
patients spent less time in slow-wave sleep; other sleep stages were not 
significantly different between the two groups.

Among the deep learning architectures, convolutional neural net-
works (CNNs), transfer learning models, and generative adversarial 
networks (GANs) have gained popularity for AD diagnostic applications. 
CNNs are adept at image analysis and can automatically learn intricate 
patterns from EEG signals. Moreover, they can extract features and 
produce highly accurate results when combined with advanced graph- 
based networks [46,47,48,49]. [50] used CNNs to extract spatiotem-
poral features from multi-channel time series EEG signal data efficiently. 
However, they formatted the EEG signals collected from multiple brain 
regions into a 2D array. This allowed them to analyze the in-
terrelationships between these areas like in an image. Their model 
attained 100 % classification accuracy for AD detection While such 
complex models perform well, the results generated are unclear. In 
developing their CNN-based AD detection model, [48] incorporated 
explainability and interpretability by using saliency maps to visually 
highlight components of the EEG signals (e.g., which frequency bands 
and modulations) that contributed the most to model classification. This 
combination of CNNs and saliency maps not only improved diagnostic 
accuracy but also provided a clearer understanding of the model’s 
decision-making process. In a recent study, [51] used CNNs to classify 
AD patients into two groups based on severity. Their CNN model used 
multiple layers, including three convolutional and two fully connected 
layers, to process 2D matrices extracted from multi-channel EEG signals, 
as in [50]. From a database of more than 650 patients from five different 
hospitals, they classified AD patients into moderate and advanced with 
over 97 % accuracy.

Pre-trained on ImageNet data, transfer learning AD detection models 
do not need to be trained from scratch and only require fine-tuning to 
the specific EEG dataset. [52] employed AlexNet on resting-state EEG 
signals to classify AD versus MCI versus MC healthy aging, attaining 
over 98 % three-class classification accuracy. This study showcased the 
potential of transfer learning for AD detection, which paved the way for 
the development of more advanced transfer learning models. [53] used 
ResNet-50 to detect AD using EEG signals. In their model, raw EEG data 
were first pre-processed using principal component analysis to remove 
noise and then decomposed using wavelet transforms to extract statis-
tical features. These features were converted into 2D plots, which then 
served as input to ResNet-50. To obviate the need for fine-tuning of 
pre-trained networks, some researchers proposed novel transfer learning 
architectures trained specifically for AD detection to address the specific 
needs of the application. [54] proposed EEGAlzheimer’s Net, a transfer 
learning-based attention LSTM to handle non-linearities in EEG signals. 
The architecture combined spatial and temporal feature extraction using 
CNNS and recurrent neural networks (RNNs), respectively, with a 
transformer-based architecture to detect AD. Model accuracy was 99.85 
%. To address the spontaneous and highly variable nature of EEG sig-
nals, [55] proposed Adazd-Net, which used adaptive flexible analytic 
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wavelet transforms to capture subtle changes in EEG signals associated 
with AD. They then incorporated Shapely explanations, Morris sensi-
tivity analysis, and local interpretable model-agnostic explanations 
(LIME) by depicting the contributions of each feature towards 
decision-making and providing explainability and interpretability to the 
model. Model accuracy was 99.85 %.

Several researchers have developed GANs and encoder-based models 
for EEG-based AD diagnosis (but less so for MCI diagnosis). To address 
limited and imbalanced EEG training data in their AD detection models, 
[56] and [57] used GANs to generate synthetic data points very similar 
to real data, which facilitated model training and improved model ac-
curacy. To improve the quality of synthetic data and produce explain-
able predictions, [56] used Wasserstein GAN to minimize the 
earth-mover distance between real and synthetic data distributions. 
[57] combined GANs with a Marine Predator Algorithm to optimize 
feature extraction and improve accuracy. Unlike GANs, which synthe-
size data, encoder-based models extract features and are widely com-
bined with CNNs, LSTMs, and transformers for AD detection. [58] 
proposed DICENet, a convolutional-transformer-based encoder archi-
tecture, for AD diagnosis. DICENet comprises two parallel convolutional 
blocks that perform dimensionality reduction, yielding outputs that are 
fed to a transformer-based model to make the final prediction. [59] used 
spatiotemporal autoencoders with CNNs and LSTMs to analyze brain 
dynamics as assessed by EEG in AD patients, attaining over 96 % AD 
classification accuracy. They observed that their model was robust 
against different instabilities of EEG signals and that the brain state 
trajectories of AD patients manifested as ring-manifolds, distinguishing 
them from controls.

Like in the case of MCI detection, several recent studies [60,61,62] 
have explored the use of multimodal data, information fusion, and 
model fusion for EEG-based AD detection. These approaches typically 
have high robustness and generalizability and produce better results 
than models that use data from one source alone. [63] analyzed EEG 
data in combination with functional near-infrared spectroscopy (fNIRS), 
which observed significantly better results in AD versus healthy classi-
fication performance than models trained on either EEG or fNIRS data 
alone. [64] studied the impacts of AD on spontaneous brain activity by 
using a thermodynamics-based framework to map the asymmetry of 
brain dynamics with time using a multimodal dataset of functional 
magnetic resonance imaging (fMRI) and EEG signals collected from AD 
patients and healthy controls. They found that AD correlated with a 
breakdown of temporal irreversibility at global, local, and network 
levels, and across multiple oscillatory frequency bands. The limbic, 
frontoparietal, default mode and salience networks were particularly 
affected, while temporal irreversibility was linked to cognitive decline in 
AD and gray matter volume in healthy controls. [65] combined multi-
modal data with ensemble deep learning models. From EEG signals and 
fNIRS collected concurrently during cognitive tasks, features derived 
from both modalities were optimized using a Pearson correlation 
coefficient-based feature selection strategy. Using a hybrid system that 
combined deep learning methods and decision analysis techniques, they 
accurately classified subjects into healthy, MCI, and two levels of AD 
severity, showcasing the potential of integrated data to refine medical 
assessments. [66] built an ensemble model combining multiple 
2D-CNNs to capture intricate patterns in EEG images. Each CNN model 
serves as an individual classifier, and the predictions from all CNNs are 
aggregated to form the final decision. In so doing, the model mitigates 
inherent model biases, attaining 97.9 % accuracy, which outperformed 
the individual models.

[67] used the state-of-the-art vision transformers to screen for AD 
patients. EEG images are first converted into scalograms and fed to the 
vision transformer model. These models treat each segment of the EEG 
scalogram as part of a larger picture, assessing not only local features but 
also how these features relate to others across the entire image, allowing 
for comprehensive extraction of spatial and temporal patterns. Further, 
the self-attention block allows the capture of complex long-range 

dependencies in data.

3.3. MCI+AD (MCI and SD) detection

In this section, we describe the studies that used EEG recordings and 
deep learning for MCI+AD detection (Table A. 4), which encompassed 
three-class classification of healthy versus MCI versus AD, binary clas-
sification of MCI versus, or progression of MCI to AD. Deep learning 
setups like artificial neural networks can help eliminate noise and 
identify invariant features within these signals [68]. In addition, deep 
learning extracts and selects features automatically, which can either be 
classified by the deep model or be fed to standard ML classifiers. In their 
deep model, [68] used traditional ML algorithms like naïve Bayes for 
classification, attaining 98.25 % accuracy for three-class classification. 
Other researchers have also adopted this approach [69,70,71,72]. [69] 
used fast Fourier and continuous wavelet transforms to identify specific 
bands in the EEG signals that capture the most important features that 
discriminate AD versus MCI versus healthy controls.

Inputting deep learning-extracted features to a k-nearest neighbors 
(KNN) classifier, which is simple yet able to handle non-linear data 
effectively, they attained 99 % model classification accuracy. [72] also 
used KNNs for classification, but performed the feature selection 
differently. They introduced a technique called iterative filtering 
decomposition to decompose EEG signals into intrinsic mode functions. 
From here, four crucial features–power spectral density, Tsallis entropy, 
variance, and fractal dimension–are extracted. Including other cognitive 
tests to enrich these features, they attained 92 % accuracy. The impor-
tance of efficient feature selection increases as the number of classes in 
the classification task increases. Apart from neural networks and Fourier 
transformations, ANOVA and regressions have also been used for feature 
selection in such cases [70]. In their model, the EEG features obtained 
using ANOVA and Ridge regression reflected phase, spectral, and tem-
poral characteristics during rest and memory-encoding states. With such 
comprehensive feature extraction, they were able to successfully classify 
the participants into four groups–AD, amnestic MCI, non-amnestic MCI, 
and subjective cognitive decline–with 93.1 % accuracy.

While the works above involved deep learning for feature extraction/ 
selection only, recent works have also applied deep learning for the 
classification of MCI and AD from EEG signal data [73,74,75,76,77]. 
[78] built an attention-based technique to distinguish MCI from sub-
jective cognitive decline using resting state EEG signals. Owing to its 
multi-head attention, the transformer architecture is particularly effi-
cient at handling temporal dependencies. By pre-processing EEG signals 
and extracting relevant frequency bands such as delta, theta, alpha, and 
beta, the model achieved an area-under-curve (AUC) of 0.807, demon-
strating the potential of deep learning models for MCI detection. Deep 
learning and transfer learning models often outperform ML classifiers. 
[75] built a deep neural network model called CEEDNet that consisted of 
different state-of-the-art models like VGG, ResNet, and vision trans-
formers to detect MCI versus AD patients using spatial and temporal EEG 
signals and attained an AUC score of 0.9. While these models are 
extremely powerful, data augmentation and extensive pre-processing 
are often required to prevent this. [79] investigated the importance of 
data augmentation and its impact on transfer learning approaches. By 
performing data augmentation on their data, they were able to improve 
the classification accuracy of transfer learning models like ResNet by 
over 5 %.

Among diverse deep learning architectures, CNNs are the most 
common for medical image analysis, often attaining classification ac-
curacies exceeding 90 % [80,81,82]. [77] used CNNs to distinguish AD 
from healthy cognitive aging using EEG data and attained 92.5 % model 
accuracy. Of note, their work exploited CNNs in two ways. First, the 
CNN model allowed them to bypass the complexities of traditional 
feature engineering, directly identifying patterns in EEG signals associ-
ated with different dementia subtypes, such as AD, dementia with Lewy 
bodies, and idiopathic normal-pressure hydrocephalus. Second, the 
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model’s temporal resolution and ability to learn from short, overlapping 
EEG segments enable it to capture transient neural dynamics disrupted 
in dementia.

Recent papers have also taken advantage of CNNs by using them in 
combination with other models. [83] proposed a hybrid model that used 
CNN and bi-directional gated recurrent units to detect MCI. In this work, 
CNNs are cleverly used to extract both spatial and temporal data asso-
ciated with EEG recordings. Specifically, the model uses small and large 
temporal CNNs to independently capture temporal aspects of the EEG 
data, which are then combined. A spatial CNN further processes these 
combined features to exploit spatial relationships between different 
brain regions. Such a model is highly robust and [83] was able to detect 
MCI patients with 99 % accuracy despite using images that had not been 
pre-processed. [84] and [85] used graph convolutional networks (GCNs) 
to construct brain functional networks from EEG data for MCI and AD 
detection. GCNs effectively capture topological structures and neural 
interactions within EEG-derived functional connectivity, enabling the 
extraction of significant features and patterns associated with different 
stages of dementia. Here, the use of graph theory metrics enhances 
diagnostic precision, highlighting the potential of GCNs in clinical ap-
plications for early and accurate MCI, AD, and dementia diagnosis.

The performance of deep models can potentially improve with the 
incorporation of multimodal data. Notably, deep architectures can 
process large amounts of data and extract useful features from all 
different sources. As a result, building functional connectivity frame-
works, using information fusion and developing diagnostic tools to 
analyze EEG signals automatically, have become popular [86,87,88]. 
[89] explored the use of complex tensor factorization with the PAR-
AFAC2 model for estimating brain connectivity from EEG data. Their 
EEG model was built to effectively decompose EEG data into meaningful 
scalp components that are described by spatial, spectral, and complex 
trial profiles. They derived a new connectivity metric based on the 
complex trial profiles of the extracted components and showed that 
PARAFAC2 outperformed other traditional tensor analysis methods like 
PARAFAC and MVAR-ICA.

While dealing with feature fusion and multimodal data, one needs to 
be wary of incomplete data as it is extremely difficult to obtain complete 
data from multiple sources for the same subject. [76] proposed a method 
to handle incomplete multimodal data using a disease-image-specific 
deep learning framework that integrates image synthesis and disease 
diagnosis into a unified process. It comprises a disease-image-specific 
network (DSNet) for modelling disease-image specificity and a 
feature-consistency generative adversarial network (FGAN) for 
imputing missing images. While DSNet captures disease-relevant infor-
mation from whole-brain scans, the FGAN module is used for synthe-
sizing missing images while ensuring feature consistency. By training 
DSNet and FGAN together, they generated synthetic diagnosis-oriented 
images that achieved state-of-the-art performance in detecting AD as 
well as the progression of MCI to AD. [90] used a combination of EEG, 
eye tracking, and behavioral data to provide a cost-effective and 
noninvasive diagnostic alternative to traditional clinical methods, which 
are often expensive and require specialized expertise. Using domain 
adversarial neural networks and data augmentation, they attained ac-
curacies of 88.81 % and 100 % for MCI and AD diagnoses, respectively.

4. Discussion

Deep learning has burgeoned due to recent exponential improve-
ments in computational power, data availability, and algorithmic in-
novations. This has a direct impact on its applications in detecting MCI 
and AD based on EEG recordings over the last couple of years (Figure). In 
the following sections, we will describe some of the best models in each 
of the three domains (MCI detection, AD detection, and MCI+AD 
detection) and highlight pressing aspects like multimodality and 
explainability that have gained the spotlight over the last couple of 
years.

Fig. 5 presents the scalable workflow for diagnosing cognitive im-
pairments. By combining EEG data with deep learning and cloud tech-
nology, this system enables automated and accessible detection of 
normal aging, mild cognitive impairment, and Alzheimer’s disease, 
potentially leading to earlier and more accurate diagnoses.

In the following sections, we will describe some of the best models 
across three key areas: MCI detection, AD detection, and MCI + AD 
detection. Each domain addresses different aspects of neurodegenera-
tive disease identification, providing unique insights into how deep 
learning can be applied to EEG data. We will also discuss two critical 
areas that have gained prominence recently: multimodality and 
explainability, both of which have substantially impacted the develop-
ment of more reliable and transparent AI models.

Multimodality refers to integrating multiple data sources, such as 
EEG, MRI, and PET scans, to enhance the diagnostic accuracy of deep 
learning models. While EEG provides valuable temporal information 
about brain function, combining it with structural data from MRI or PET 
scans offers a more comprehensive view of the brain, leading to 
improved detection of MCI and AD. This approach has become 
increasingly popular as it helps to overcome the limitations of single- 
modality analysis, providing a richer understanding of 
neurodegeneration.

Explainability, on the other hand, has emerged as a crucial factor in 
building trust with clinicians and patients. Traditional deep learning 
models are often considered "black boxes" that deliver predictions 
without offering insight into how those predictions were made. Recent 
advances in explainable AI (XAI) techniques, such as SHAP, LIME, and 
GradCAM, now allow researchers to interpret the decision-making 
process of these models. By highlighting which EEG features or brain 
regions contribute most to a prediction, explainable models can provide 
clinicians with clearer insights into the workings of the model, making 
them more likely to be adopted in clinical settings.

In the following sections, we will explore the top-performing models 
in each of the three domains and how these models incorporate multi-
modal data and explainability techniques to improve the detection of 
MCI and AD.

4.1. Key findings and discussion of the best models

From our review of 74 papers, we found that CNNs are widely 
adaptable and perform exceedingly well in different tasks ranging from 
feature extraction to classification. They can also be used as ensembles 
with other CNNs or deep learning architectures. Transfer learning 
models like ResNet have performed the best in detecting MCI and AD 
and require minimal training time. Coming to MCI+AD detection, 
feature extraction is the most crucial step. This is because it might be 
difficult to distinguish between patterns of MCI and AD patients 
compared to MCI/AD patients versus healthy controls. In all three cases, 
multimodal models outperformed all others and demonstrated the po-
tential to use information from different sources to detect these diseases 
at an early stage.

In the context of detecting MCI, four papers reported accuracy scores 
(Fig. 6). Among these, the ResNet model by [34] performed the best. 
EEG recordings were first processed to obtain low-order functional 
connectivity (LOFC) scores, which helped quantify the interactions be-
tween different brain regions. The LOFC measurements from four fre-
quency bands were combined to create a multi-channel input for the 
ResNet model. Because of ResNet’s ability to capture both local and 
hierarchical features in the data, it identified patterns specific to MCI 
and analyze how different regions of the brain connected and commu-
nicated across various frequency bands. In so doing, the model attained 
accuracy of up to 100 %.

In AD detection, we have observed that different authors quantified 
their results using different metrics. These results are summarized in 
Figs 7- 9 in terms of accuracy, AUC, and F1 scores. Due to their well- 
established ability to extract features and perform classification based 
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on image data, many studies have used CNN-based models to detect AD. 
Their work highlights the predictive ability of deep learning models in 
an ensemble setup. The paper utilizes an ensemble approach where they 

train five 2D-CNNs independently on the same EEG dataset after pre- 
processing and noise removal. Building an ensemble of five indepen-
dent CNNs allows each constituent model to independently identify and 
learn from different features, potentially capturing a broader spectrum 
of diagnostic signals. To make the final prediction, the outputs of each 
individual CNN are aggregated to form a single, more accurate predic-
tion. This reduces the chances of overfitting and mitigates the risk of any 
model introducing its bias into the prediction, thus guaranteeing 
increased generalizability and robustness.

With respect to MCI+AD detection, several machine learning models 
performed exceedingly well, achieving accuracies of over 90 % (Fig. 10). 
Once again, different metrics were used to quantify model performances 
(Figs. 11 and 12) . As discussed earlier, [69,90], and [83] are a few 
examples, all of whom achieved over 99 % predictive accuracy. [86] 
produced a similar work by developing a tool called a lacsogram to 
characterize MCI and different stages of AD. Their work relies on elab-
orate signal processing. EEG signals are first decomposed using discrete 
wavelet transforms into the delta, theta, alpha, beta, and gamma 
sub-bands since each of these might determine AD differently. Lapstral 
and cepstral analyses are conducted on these signals and different 

Fig. 5. Pictorial summary of MCI/AD/MCI+AD detection using deep learning and EEG signals.

Fig. 6. Accuracy scores for models used in detecting MCI.

Fig. 7. Accuracy score for the models used in detecting AD.
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distance measures are used between these lapstral and cepstral co-
efficients of different sub-bands. These distance measures then help 
statistical and ML models quantify the differences between the EEG 
patterns of healthy controls and patients with different stages of AD.

While these results highlight the high performance of deep learning 
models, collectively these works suggest that multimodal and ensemble 
models always stand out and perform significantly better than their 

counterparts and that performing elaborate signal processing, data 
augmentation, and feature selection can help build reliable, robust 
models, in all the cases of MCI, AD, and MCI+AD detection. In partic-
ular, ResNet has been the best-performing model for MCI classification, 
while an ensemble of CNNs has been best suited for AD detection. In the 
more complex case of MCI+AD detection that typically deals with a 
three-class classification problem, feature extraction is key, and the 

Fig. 8. AUC scores for the models used in detecting AD.

Fig. 9. F1 scores for models used in detecting AD.
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model’s predictive ability depends on how well it distinguishes between 
MCI and AD features which are likely to be more similar as compared to 
that of healthy controls. Further, while accuracy and AUC scores have 
been commonly used metrics to report model performance, sensitivity 
and specificity scores have also been used in a few works (Fig. 13). 
Moving ahead, we urge the research community to adopt a single reli-
able metric, such as the accuracy of F1 scores, to allow for model 
comparison and reproduction of results.

The Multi-Modal Classification Method achieves the highest sensi-
tivity (100 %), meaning it correctly identifies all AD cases. STCGRU and 
KNN models also perform excellently, with sensitivity scores close to 99 
%. Lacsogram, MOCA, and other models also show very high sensitivity 
scores (>97 %), suggesting robust performance in identifying AD pa-
tients. The Feature Fusion Model has the lowest sensitivity (86.08 %), 
indicating it misses more AD cases than other models.

Adazd-Net shows perfect specificity (100 %), meaning it successfully 

identifies all non-AD patients. DCssCDBM model, GAN + MPA, and DEL 
also exhibit very high specificity (>99 %), making them excellent for 
avoiding false positives. The ViT model shows the lowest specificity 
(57.10 %), indicating it struggles with correctly identifying non-AD 
patients, resulting in a high rate of false positives.

MOCA achieves perfect sensitivity (100 %), correctly identifying all 
MCI+AD cases, making it the best-performing model for combined 
detection. ResNet (93.33 %) and DSDL (91.05 %) also perform well, but 
models like PCA + FBCSP show slightly lower sensitivity (87 %).

MOCA again leads in specificity (97.38 %), meaning it avoids false 
positives better than the other models. ResNet and DSDL also perform 
well with specificity scores above 88 %, but PCA + FBCSP shows the 
lowest specificity (80 %), meaning it is less effective in identifying non- 
MCI/AD patients compared to the top models.

The findings of the reviewed models according to Figs 13 -- 16 are: 

Fig. 10. Accuracy scores for the models used in detecting MCI+AD.

Fig. 11. AUC scores for models used in detecting MCI+AD.
Fig. 12. F1 scores for models used in detecting MCI+AD.
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- Models like MOCA, Multi-Modal Classification Method, Adazd-Net, 
and STCGRU show consistently high sensitivity and specificity, 
making them the best choices for both AD and MCI+AD detection.

- While models like the Multi-Modal Classification Method and MOCA 
excel in sensitivity, others like Adazd-Net and GAN + MPA stand out 
for their high specificity.

- Lower-performing models such as the Feature Fusion Model and ViT 
model may require further refinement to enhance both sensitivity 
and specificity, ensuring they can reliably detect AD and MCI cases 
without producing false positives.

4.2. Benefits and challenges of multi-modality

With the deep learning models processing large amounts of data 
easily and identifying the crucial features from all of them, multimodal 
data have gained popularity recently. Since these datasets involve 
integrating information from different sources about the same person, 
they provide a holistic view of the person’s condition, thus enabling 
more reliable predictions. Further, since information is available at 
different levels about the same individual, extracting different features 
from each of these would not only enable early detection of the disease, 
but also open possibilities for personalized treatments. One such 

Fig. 13. Sensitivity scores for models used in detecting AD.

Fig. 14. Specificity scores for models used in detecting AD.
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example is the study by [62]. They used EEG recordings in combination 
with PET scans, sleep measurement techniques, and cognitive testing to 
study MCI and AD patients.

Among the 74 studies reviewed in this work, nine of them used 
multimodal data, among which five were published in 2022 or later. 
Among these studies, we found that EEG data was often used in com-
bination with other neuroimaging data like MRI or eye movement data. 
One such example is that of [64], who used EEG in combination with 
fMRI data to study the temporal irreversibility of brain dynamics in AD. 
In this process, while fMRI provided spatial details about brain activity, 
they exploited EEG signals to get insights into temporal changes. By 
studying the irreversibility of time series signals across the two modal-
ities, they found that AD patients showed significantly lower levels of 
complexity and temporal asymmetry in brain activity, which could be a 
crucial feature in differentiating them from healthy individuals. While 
[62] and [64] used different neuroimaging recordings, [36] and [90] 

used eye-movement data along with EEG recordings to detect MCI and 
AD. Tracking the movement of eyes can give insights into the in-
dividual’s cognitive load and response accuracy, which may be dimin-
ished in the presence of MCI/AD. For example, fixation and saccade 
tasks can help measure how quickly someone can redirect their gaze. 
Difficulty in performing such a task can be a sign of execution 
dysfunction common in MCI and AD patients. As a result, both [36] and 
[90] noted that tracking eye movement in the presence of visual stim-
ulus can help ameliorate the performance of models that use EEG re-
cordings alone.

While multimodal data allows for the training of more robust and 
generalizable models that are not overfitted to any setting, they come 
with a separate set of challenges. Integrating data from multiple mo-
dalities into one deep learning model is a complex task and requires 
technical expertise. Next, the complexity of multimodal models also 
requires more computational and storage resources to process all the 
information carefully. Moreover, obtaining information about the same 
individual from multiple data sources is extremely difficult, tedious, and 
time-consuming. In such cases, incomplete data should be dealt with 
carefully [76]. Finally, interpreting the results obtained from such 
models is extremely difficult because it is very challenging to identify 
which features from which data source were instrumental in making a 
prediction.

4.3. Explainable AI and interpretability of deep learning models

In the context of medical image analysis, deep learning models 
appear to lack interpretability and explainability aspects because their 
decision-making process involves complex, nonlinear computations 
across multiple layers, making it difficult to trace how different inputs 
and features affect prediction. Several works have highlighted the 
importance of building explainable and interpretable deep learning 
models in medical image analysis [91,92]. It is extremely crucial to build 
such transparent models to gain medical practitioners’ trust and ensure 
the application of deep learning in practice [93]. By highlighting the 
most discriminative features and ranking them in terms of their 
importance toward the final decision-making, such efforts add a layer of 
interpretability and support clinicians in decision-making [56]. This 
would not only provide enhanced diagnostic accuracy but improve 

Fig. 15. Sensitivity scores for models used in detecting MCI+AD.

Fig. 16. Specificity scores for models used in detecting MCI+AD.
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scalability and facilitate personalized treatment.
In the context of explainability and interpretability, visualization is 

key. Visualization helps researchers understand how a model has made a 
particular prediction and what features were given importance during 
this decision-making process. For example, [55] used Shapley explana-
tions, Morris sensitivity analysis, and LIME to provide interpretability. 
While Morris sensitivity analysis allows one to identify the input vari-
ables that are most influential, LIME and Shapley scores help understand 
which features contribute the most to decision-making. They do so by 
quantifying the contribution of each feature to the prediction of a spe-
cific instance. The visual attention mechanism adopted by [48] works 
similarly. By incorporating visual attention within neural networks, one 
can highlight those regions of the input EEG data that are most influ-
ential in making a prediction. Highlighting such features as specific time 
points or electrode readings provides relevant understanding for clini-
cians using them. [94] show a different approach to achieve interpret-
ability. They represent EEG signals as a graph, where each node refers to 
an EEG electrode and each edge denotes functional connections and 
interactions of the brain. Following this, they build a gated graph con-
volutional model that allows for dynamic weighting of the edges and 
nodes in the graph. Interpretability is achieved by studying these 
weights since each edge corresponds to the brain’s functional connec-
tions and priority is given to those nodes that carry more predictive 
power in predicting if a patient is healthy or affected by MCI or AD.

Several studies have attempted to make deep learning models more 
explainable by identifying specific visual features or input components 
that contribute most to the decision-making process in EEG-based MCI 
and AD detection. These features are critical in improving the diagnostic 
accuracy and usability of models in clinical practice.

The visual and EEG features that have been found to be most 
indicative of class discrimination between healthy controls, MCI pa-
tients, and AD patients include: 

- Specific electrode readings from temporal, parietal, prefrontal, and 
hippocampal regions.

- Changes in functional brain connectivity observed through graph- 
based models.

- Important time points in EEG recordings, often in the alpha and beta 
bands.

- Frequency bands such as theta and delta, which have shown to 
correlate with cognitive decline.

- Spatial EEG topography, particularly in the occipital and frontal 
lobes, which helps distinguish AD patients.

By identifying and highlighting these discriminative features using 
explainable AI techniques like Shapley values, LIME, and Grad-CAM, 
researchers have made deep learning models more transparent. This 
interpretability is essential in clinical settings, where understanding 
which specific features contribute to diagnoses allows clinicians to make 
more informed decisions, ultimately enhancing the models’ adoption in 
practice.

Among the 74 reviewed studies, considering that only four papers 
[55,94,48,56] have worked on building explainable and interpretable 
models, the working of all other papers remains a black box. We thus 
urge future researchers to expand on such works to bridge the gap be-
tween using deep learning for MCI and AD detection in theory and 
practice.

Fig. 17 highlights the need for more public dataset usage and 
disclosure in the field of EEG-based MCI and AD detection. Coupled with 
the call for more explainable models, this figure suggests a need for 
greater openness and accessibility in future research efforts to foster 
collaboration and innovation.

4.4. Databases used

In this section, we discuss the databases used by the reviewed 

studies. Out of the 74 studies reviewed, 67 papers have explicitly cited 
the source of their data. Of these 67 studies, 49 used private datasets, 
while 18 used publicly available datasets. Fig. 17 and Fig. 18 depict the 
percentage of papers that used public and private datasets in each 
category.

Fig. 18 showcases the reliance on private datasets across AD and MCI 
detection studies. This trend points to a critical need for more publicly 
accessible datasets to support transparency, reproducibility, and inno-
vation in this domain. The scarcity of public datasets limits the research 
community’s ability to build on existing studies, highlighting a gap that 
future research should aim to address. It is crucial to highlight that 
compared to studies that have used publicly available datasets, almost 
2.5 times the number of studies have used private datasets. This in-
dicates the lack of large public datasets easily accessible to researchers 

Fig. 17. Distribution of private and public databased used.

Fig. 18. Distribution of databases based on the detection task.
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in this domain. Analyzing this further, Fig. 19 sheds more light on this 
limitation. Among the 67 studies that cited their data sources and sta-
tistics, 21 works used datasets consisting of 50 or fewer participants, and 
more than half the studies were based on datasets consisting of 100 or 
fewer participants. To build models that are robust, generalizable, and 
capable of catering to different individuals in the real world, it is 
extremely important to release publicly available datasets consisting of a 
large number of data points.

Fig. 19 showcases the variability in sample sizes across studies in AD, 
MCI, and combined detection (AD + MCI) categories. While AD detec-
tion studies are more likely to use larger datasets, MCI detection studies 
often rely on smaller sample sizes. The figure underscores the need for 
larger, more diverse datasets, especially in MCI detection, to improve 
the generalizability and robustness of findings in this important area of 
neurodegenerative research.

Table 1: Details of publicly available datasets for MCI/AD detection 
using EEG recordings. Among these publicly available datasets, some of 
the largest ones include the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) dataset, the Sina and Nour Hospital dataset [95], and the Florida 
State University dataset [96]. The Florida State University dataset re-
cords EEG signals from healthy controls in two settings. The 96 partic-
ipants are divided into two categories of 46 individuals each. The first 
category consists of 24 AD patients and 24 healthy controls whose EEG 
signals are recorded with their eyes open. The second category consists 
of a similar split of participants, but the EEG signals are recorded with 
their eyes closed. Recent studies like [53] and [66] have used this 
dataset to detect AD. The Sina and Nour Hospital dataset [95] has also 
been widely used over the last couple of years [33,32,82,83]. It is a 
relatively smaller dataset consisting of EEG recordings of 27 subjects (16 
normal and 11 MCI participants) aged between 60 and 77. All EEG 
signals were recorded continuously using 19 electrodes in the morning 
with the participants resting comfortably in a quiet room with closed 
eyes. Because of the targeted age group of the participants, this dataset 
can be used to train models to distinguish between naturally aging in-
dividuals and MCI patients. Although used in several research works, 
these databases are limited by the availability of EEG recordings and 
cater only to the study of MCI or AD. On the other hand, the ADNI 
dataset consists of a huge EEG dataset along with MRI and PET scans for 
studying AD and MCI. The EEG images in the dataset are used to assess 
brain activity patterns that may differentiate between normal aging, 

MCI, and AD. This multimodal approach facilitates comprehensive 
research in studying potential biomarkers of both AD and MCI. It not 
only provides multimodal information, but also facilitates the study of 
MCI, AD, and healthy controls simultaneously.

Table 1 provides a comprehensive overview of publicly available 
EEG datasets used for MCI and AD detection, which are critical for 
advancing research in this field. These datasets offer a range of sample 
sizes, conditions (MCI, AD, dementia), and multimodal features (e.g., 
MRI, PET), providing valuable resources for training and validating 
machine learning models aimed at early detection and progression 
monitoring of neurodegenerative diseases. The availability of these 
datasets fosters collaboration, transparency, and reproducibility in the 
research community.

Moreover, the deep learning models comparisons have been given in 
Table 2.

4.5. Future research work

To overcome the different limitations discussed earlier, we propose 
the following future research works: 

1. Availability of a huge public database: It may be noted from this work 
that most of the research has been carried out using smaller private 
or public databases. We propose to have more public databases for 
researchers to develop accurate, robust, and faster DL models. The 
public databases developed using data collected from various coun-
tries and centers can aid in creating a robust model.

2. Explainable AI and uncertainty quantification: AI models perform like 
black boxes by diagnosing input data. It does not explain the process 
involved in obtaining output. Hence, explainable AI (XAI) can be 
employed to develop the confidence of clinicians and researchers. 
Such techniques can be employed in hospitals for the detection of 
various mental disorders and treatment. Techniques such as LIME, 
SHapley Additive exPlanations (SHAP), and Gradcam (Gradient- 
weighted Class Activation Mapping) have been developed to address 
the model explainability to explain the working of the generated 
model [106].

3. Uncertainty Quantification (UQ): Most developed AI models perform 
well using small databases. Their performances vary when subjected 
to real-world scenarios in the presence of noises due to changes in the 

Fig. 19. Studies stratified based on the size of the dataset.
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data or tuning parameters. In such cases, UQ can be employed to 
quantify and mitigate the uncertainty in the data and model in the 
clinical environment [107,108,109].

4. Information Fusion: The performance obtained using EEG signals and 
DL models has been considered in this review. Physiological signals 
such as electrocardiogram (ECG), heart rate variability (HRV), 
photoplethysmography (PPG), or/and speech signals can also be 
considered with brain images. Such data fusion methods can improve 
the performance of the DL models with huge databases [110].

5. Developing new DL models: New DL models, such as deep attention 
mechanism models (Hafiz et al., [111]), graph convolutional neural 
networks (GCNN) [112], deep multi-task learning models (DMTLM) 
[113], federated learning (FL) models [114], and deep mutual 
learning models (DMLM) [115,116], can be explored to obtain ac-
curate performance with huge databases. The attention mechanism 
helps to focus on the important portion of the input. The graph 

models are the structures fed as input to the DL models. DMTLM 
performs multiple trained tasks simultaneously. FL is a technology 
that obtains information about the data for new AI models without 
touching it. DMLM improves each other’s performance among many 
networks.

6. Data Standardization: During the data collection of EEG and other 
physiological signals from various centers, due to the variation in the 
acquisition protocols and types of equipment, there is a possibility of 
changes in the magnitude of input data to the AI system. Such in-
consistencies introduce errors in the AI systems. To overcome these 
problems, data standardization needs to be done before feeding to 
the AI system [117].

7. Incorporation of Transfer Learning: Transfer learning can be explored 
to address the issue of limited data availability in smaller databases. 
This method allows leveraging pre-trained models developed on 
larger, related datasets to improve model performance on smaller 
datasets. Transfer learning has shown promise in various fields, 
including medical imaging, where models trained on larger datasets 
can be fine-tuned for specific tasks like MCI and AD detection using 
EEG data.

8. Personalized AI Models: Developing personalized AI models tailored 
to individual differences in brain activity can significantly enhance 
the accuracy and reliability of MCI and AD detection. EEG signals 
exhibit high variability between individuals, so AI models that ac-
count for personalized baselines and patterns may yield better results 
than generalized models.

9. Real-Time Detection and Monitoring: Future research can focus on 
developing AI systems capable of real-time EEG analysis for contin-
uous monitoring of MCI and AD progression.

5. Conclusion

This review paper has analysed the various models employed for AD, 
MCI, and (MCI+AD) categories from (2013-2024) using EEG signals. We 
have observed that the ensemble CNN model yields the highest for 
automated detection of AD, ResNet is effective for detecting MCI, and 
efficient feature extraction using CNNs is extremely crucial for (MCI-
+AD) detection. Further, we observed that multimodal datasets help 
build robust, generalizable, and high-performing models in all three 
cases.

The limitation of this work is that most of the studies have used 
smaller databases for the automated detection of classes based on EEG 
signals. We need to use large databases from many countries and various 
centers to overcome this limitation. Also, HRV or PPG signals can be 
extracted using wearable devices to develop DL models and can be used 
in home-based environments.

XAI and UQ must be employed to use the developed model in the 
clinical environment. The deep learning model needs to be developed 
using a huge, diverse data population belonging to various races and age 
groups.
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Table 1 
Details of publicly available datasets for MCI/AD detection using EEG 
recordings.

Database Name/Citation/ 
Link

Studies 
using the 
database

Important characteristics

ADNI dataset (https://adni. 
loni.usc.edu/)

[76,35,64] ADNI primarily focuses on MRI 
and PET imaging, but it includes 
EEG data for multimodal MCI 
and AD research.

Sina and Nour Hospital, 
Isfahan, Iran [95] (https:// 
misp.mui.ac.ir/en/ee 
g-data-0)

[32,82,33,
83]

EEG dataset of 27 subjects - 16 
healthy controls and 11 MCI 
patients, all of whom are aged 
between 60 and 77 years.

[97] [82] Consists of 109 subjects - 7 MCI 
patients and 102 healthy 
controls

Chung-Ang University Hospital 
EEG – CAUEEG Dataset [75]

[75] 1379 EEG recordings from 1155 
patients including normal (459), 
MCI (417), Dementia (311) 
classes.

The MCI and mild AD dataset – 
[98,99]

[79] MCI Dataset - consists of 22 MCI 
subjects and 38 healthy 
controls. Mild AD Dataset - 
consists of 17 mild AD subjects 
and 24 healthy controls

VSTMBT memory task EEG 
Data [100]

[89] EEG data collected based on the 
VSTMBT memory task from 23 
MCI patients and 24 healthy 
controls

OpenNeuro Dataset – [101] [102] EEG dataset of 36 AD patients, 
23 Dementia patients, and 29 
healthy controls.

Scalp EEG dataset 
(https://osf.io/download/yh 
g9w/)

[50] Information from 19 channels 
for 24 healthy individuals and 
24 AD patients.

Hospital das Clínicas in São 
Paulo, Brazil [17]

[52,103] EEG recordings from 31 mild AD 
patients, 20 moderate AD 
patients, and 35 healthy 
individuals.

RFGHCPLA Dataset [104] [105] EEG recordings from 39 subjects 
(20 healthy controls and 19 
aMCI patients).

Florida State University dataset  
[96]

[53,66] EEG recordings taken with the 
eyes of individuals opened and 
closed - 48 healthy controls and 
48 AD patients.

Matoǔs Cejnek dataset - 
(https://figshare.com/ 
articles/
dataset/dataset_zip/ 
5450293/1)

[53] EEG recordings of 7 MCI 
patients, 59 AD patients, and 
102 healthy controls.

AD Classification dataset – 
(https://github.com/
tsyoshihara/Alzheimer-s- 
Classification-EEG/tree/ 
master/data)

[54] EEG data consisting of MCI 
patients, AD patients, and 
healthy controls.
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data, effective for image-like EEG 
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Feature extraction and 
classification of EEG 
signals

Commonly used in AD detection, shows high 
performance in ensemble learning (e.g., 99 
% sensitivity)

ResNet (Residual 
Neural Network)

Residual connections, deep 
architecture

Handles very deep networks without 
vanishing gradient issues, captures both 
local and global features

MCI detection, EEG data 
with multi-channel input

Achieved up to 100 % accuracy in MCI 
detection

LSTM (Long Short- 
Term Memory 
Network)

Recurrent architecture with 
memory cells and gates

Captures temporal dependencies, 
retains information across sequences

Sequential EEG data, 
temporal analysis

Paired with CNN for high specificity (96.33 
%) in AD detection

GCN (Graph 
Convolutional 
Network)

Graph convolution layers, 
handles graph-structured data

Models spatial relationships between 
brain regions

EEG as brain 
connectivity graphs, MCI 
detection

High accuracy due to effective modeling of 
brain connectivity

Autoencoders (Conv- 
AE)

Encoder-decoder structure, 
unsupervised feature learning

Learns compressed representations of 
EEG signals

Feature extraction and 
dimensionality reduction

Achieved high sensitivity (92 %) in AD 
detection

Attention-based 
Models

Attention layers, context 
vectors

Focuses on important parts of the input 
data, enhances interpretability

MCI and AD detection, 
explainable AI

Models like STCGRU achieve sensitivity 
close to 99 %

Federated Learning 
(FL)

Distributed local models, 
central aggregation

Protects data privacy, enables training 
across multiple sources

EEG data from 
decentralized datasets

Promising for privacy-sensitive EEG data, 
reduces data sharing concerns

Multi-modal Models Parallel input streams, fusion 
layers for multiple data types (e. 
g., EEG + MRI)

Combines complementary information 
from multiple sources

Combining EEG with 
neuroimaging, AD 
detection

Improved diagnostic accuracy through 
modality integration (e.g., 99 % predictive 
accuracy in combined MCI+AD detection)
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