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ABSTRACT

Medical image segmentation aims to partition medical images into distinct physio-
logical regions, such as organs and lesions, which is crucial for disease diagnosis
and treatment planning. The advent of deep neural networks has significantly

advanced this field. However, the performance in real-world scenarios remains unsat-
isfactory due to imperfect data and annotations during both training and deployment.
First, scaling up training data and annotations is challenging. This is because obtaining
medical images is difficult due to privacy concerns. Furthermore, annotating medical
images requires substantial expertise, making the process costly and difficult to carry
out. Second, the quality of medical images cannot always be guaranteed in real-world
scenarios, leading to significant performance drops in outlier cases. Third, real-world
medical applications are safety-critical and demand extremely accurate predictions,
a requirement that most existing models fail to meet adequately. These challenges
hinder the practical deployment of medical image segmentation. Consequently, both
academic and industrial communities are striving to develop highly accurate medical
image segmentation algorithms that can perform well despite imperfect data. To this
end, this thesis proposes deep learning methods to develop a well-performed medical
image segmentation model that can be effectively trained with limited and low-quality
data/annotations. Specifically, a comprehensive suite is proposed from three directions:
(1) applying image registration to generate realistic and diverse training samples and
adopting barely-supervised learning paradigms to enable learning with insufficient
annotated data; (2) devising region-aware fusion module to address missing modality
problem; (3) incorporating automatic and interactive medical image segmentation into a
single model and one training session to achieve sufficient segmentation performance
for practical use. Extensive experiments on several medical image segmentation tasks,
such as brain tumor segmentation, brain structure segmentation and abdominal organ
segmentation, demonstrate the effectiveness and efficiency of the proposed techniques.
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1
INTRODUCTION

This dissertation presents four work regarding learning with imperfect datasets for

medical image segmentation (MIS), i.e., one-shot/barely-supervised MIS, incomplete

multi-modal MIS, and interactive MIS. This chapter begins by introducing medical

image segmentation, including background and challenges, and then outlines research

objectives and the organization of the thesis.

1.1 Medical Image Segmentation

1.1.1 Background

Medical image segmentation (MIS) classifies each pixel or voxel of medical images into

specific anatomical or pathological categories. This enhances the visibility of structures

and helps the measurement of critical metrics, making MIS crucial for medical applica-

tions, such as disease diagnosis, clinical evaluations, and surgical preparation. MIS aims

to segment various anatomical areas in different human parts, such as brain structures

and tumors [32, 136], retina [164], cardiac [169], and live tumors [107, 176]. This vari-

ety requires distinct imaging techniques, such as Magnetic Resonance Imaging (MRI),

Computed Tomography (CT), and Optical Coherence Tomography (OCT). For example,

MRI excels at imaging soft tissue contrast, making it ideal for diagnosing conditions

in the brain, spinal cord, nerves, and muscles, while CT is particularly effective for

high-contrast resolution in dense structures, such as bones. Thus, research efforts are

1



CHAPTER 1. INTRODUCTION

necessitated for various anatomical regions captured from different scanners.

Early research begins by adapting conventional techniques, such as template match-

ing techniques, edge detection, active contours, statistical shape models, and machine

learning, to medical image segmentation. For example, Lalonde et al. [95] and Chen et
al. [27] introduce template matching for disc inspection and ventricular segmentation,

respectively. Yu et al. [218] propose a novel edge detection algorithm of mathematical

morphology for lung CT images. Tsai et al. [170] develop a shape-based method for car-

diac and prostate MRI segmentation. Li et al. [104] combine level sets and support vector

machines (SVMs) for medical image segmentation, while Held et al. [73] introduce the

use of Markov Random Fields (MRF) to segment brain MRI images. Despite numerous

conventional algorithms being explored, traditional methods are hindered by the poor

representation ability of hand-crafted features and still yield limited segmentation per-

formance. Consequently, the research focus has shifted towards deep learning methods

using more powerful, deeply-learned features.

Deep-learning research attempts mainly explore various network architectures and

training objectives loss functions. Improving network architectures enables the extraction

of more representative features. Early research efforts mainly develop fully convolu-

tional neural networks [126], such as U-Net [33, 153], V-Net [140], and U-Net++ [241].

Recently, with the rise and emergence of a series of transformer technologies, only

not pure-transformer-based architectures have been devised in the MIS field, such

as Swin-Unet [18], DS-TransUNet [114], nnFormer [234], MISSFormer [76], Trans-

DeepLab [5], but also hybrid models are explored, such as TransUNet [25], Trans-

BTS [115], MedT [173], UNETR [64], Swin UNETR [63], Swin UNETR++ [184], Seg-

tran [105], CoTr [203], and HiFormer [72]. Research on training losses mainly improves

the optimization of networks and maximizes the capabilities of the networks and training

data. For example, weighted cross-entropy loss, Dice loss, Tversky loss [156], and general-

ized Dice loss [165] are devised for imbalanced data and improve the network capability

on small and rarely-seen areas. Based on these basic architectures and objective loss

functions, Isensee et al. [78] propose nnUNet to handle images of various structures

scanned from various imaging techniques in a fully supervised manner and achieve

the SOTA accuracy on all those applications. These deeply-learned methods achieve

impressive segmentation performance yet face several challenges in practice.
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Figure 1.1: Overview of the challenges and solutions in medical image segmentation.

1.1.2 Challenges

Although deep learning has significantly improved the accuracy of medical image seg-

mentation (MIS), it still faces several challenges (as seen in Fig. 1.1) that hinder the

deployment of MIS in real-world applications. First, deep learning-based methods de-

mand large-scale training data, yet perfectly labeled datasets are rarely available, which

hinders networks from achieving optimal performance. Second, low-quality samples

often exist in clinic practice, and deep learning networks are particularly vulnerable to

these outliers. Third, real-world applications are safety-critical and thus often require

extremely high accuracy for MIS, which is difficult to achieve with existing deep learning

methods. In the following, the details of these challenges will be presented, and potential

solutions will be discussed.

Imperfect Training Data. Deep learning-based methods usually require perfectly-

sized and carefully-labeled training datasets to achieve optimal performance. However,

these datasets are hard to collect in the real world. Firstly, collecting patient data,

including medical images and metadata, into a centralized data lake is often impractical.

To be specific, patient data is usually collected from various institutions and hospitals,

and cannot be combined into one centralized data lake for training due to privacy

regulations [82, 152]. For this challenge, decentralized and privacy-preserving training

schemes, such as federated learning [134, 137], are explored to exploit the decentralized

data effectively. Second, obtaining pixel-wise segmentation annotations for 3D medical

images costs too much time and expertise. Even worse, medical image segmentation

usually focuses on various anatomical human regions. This variety increases the difficulty

of the annotation process as different regions may need different expertise. Therefore,

collecting large-scale labeled medical segmentation datasets is impractical, while deep
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learning-based methods often require much reliable supervision from these datasets to

perform accurately. For this challenge, research efforts pay attention to one-shot/semi-

supervised/barely-supervised learning, which mainly aims to exploit unlabeled data

effectively. In this fashion, the demand for labeled data is reduced.

Imperfect Test Data. Due to varying patient conditions and scanning protocols,

deep learning-based methods usually encounter various defective medical images in real-

world scenarios. If deep learning-based networks do not encounter similar images during

training, they become vulnerable to these imperfect images and cannot segment them

accurately. For example, in some medical image segmentation applications, multiple

modalities are employed to boost the performance of segmentation. However, the absence

of certain modalities frequently occurs in practice [23, 45], leading to severe segmentation

accuracy reduction. To address this challenge, researchers simulate missing modality

scenarios during network training. They also propose aligning predictions from full-

modal and partial-modal images to further enhance network capability. In addition

to the missing modality challenge, low-quality challenges often occur, such as motion

blurring, ghosting, and spike artifacts. For this challenge, multiple data augmentation

techniques are employed to enhance network robustness against these artifacts.

Extremely High Accuracy Requirement. Medical applications are often safety-

critical [36, 219], and minor mistakes may lead to severe consequences. For example,

a misdiagnosis may lead doctors to adopt inappropriate treatment methods, delaying

the timely containment of the underlying condition, which may result in the patient’s

death. Additionally, even slight deviations during surgery may cause the procedure to

fail, potentially leading to the patient’s death. Therefore, medical image segmentation in

these applications typically requires extremely high segmentation accuracy. However,

existing deep learning-based methods rarely meet this requirement. For this challenge,

interactive segmentation has been proposed to incorporate expert interactions, allowing

for the iterative prediction refinement and achieving satisfactory results.

Discussions The deployment of medical image segmentation (MIS) models in real-

world practice faces significant challenges related to training, testing and strict re-

quirements. Furthermore, these issues often occur simultaneously, compounding the

difficulty of resolving them. Firstly, decentralized data increases annotation costs as it

must be annotated in separate locations, potentially with different principles. For this

combined challenge, the application of semi-supervised learning within the framework of

federated learning can reduce the need for extensive annotations in decentralized data.

Secondly, the interplay between insufficient training data and annotations exacerbates

4



1.2. RESEARCH OBJECTIVES

the performance degradation. For this combined challenge, one potential solution is to

generate more training augmentations using generative models equipped with image

registration and various data augmentation techniques. Thirdly, the strict accuracy

requirements often conflict with the challenges of imperfect test data. To be specific,

low-quality test samples typically result in accuracy drops, thereby preventing networks

from meeting the required standards. To overcome this, interactive segmentation mod-

els need to improve to better adapt to imperfect test data. This thesis considers the

three challenges and provides the corresponding solutions, including the insufficient

annotations challenge (§3 and §4), the missing modality challenge (§5) and the strict

accuracy requirement challenge (§6). Additionally, the combined challenge of insufficient

annotations and missing modality is also considered in §4.

1.2 Research Objectives

The objectives of the project are as follows:

• To enhance the accuracy of medical image segmentation with insufficient anno-

tations, I conduct research on generating diverse, realistic and labeled training

samples using image registration and variational autoencoder (VAE) networks.

• To improve the accuracy of barely-supervised brain tumor segmentation, I conduct

research on effectively exploiting unlabeled data through not only the segmentation

foundation model, i.e., Segment Anything Model (SAM), but also the consistency

supervision derived from full-modal and incomplete-modal images.

• To improve the accuracy of brain tumor segmentation under missing modality

scenarios, I conduct research on adaptively fusing incomplete multi-modal features

and designing a region-aware fusion model.

• To help medical image segmentation achieve satisfactory accuracy in real-world

practice, I conduct research on developing a segmentation system that integrates

automatic and interactive medical image segmentation within a unified network.

1.3 Thesis Organization

This thesis is organized as follows:
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• Chapter2: This chapter reviews the related work on medical image segmentation

(MIS), including standard MIS, atlas-based MIS, one-shot MIS, semi-supervised

MIS, barely-supervised MIS, incomplete multi-modal MIS and, interactive MIS.

• Chapter3: This chapter addresses one-shot medical segmentation problem, where

only one labeled (called atlas) and a few unlabeled images are available, by gen-

erating labeled training augmentations. The generation process begins by using

image registration and VAEs to learn the probability distributions of deformations,

including shapes and intensities, between the atlas and unlabeled images. Thus,

VAEs can generate diverse deformations that match the distributions of the whole

dataset. Then, a designed warp operation applies these deformations to the atlas

as well as its segmentation mask, so that diverse, realistic and labeled training

augments can be synthesized. Extensive experiments on two benchmarks prove

the effectiveness of the proposed data augmentation. Its excellent generalization

ability is also demonstrated via experiments conducted across different datasets.

• Chapter4: This chapter explores barely-supervised brain tumor segmentation

where minimal supervision, i.e., fewer than ten labeled samples, is available. Cur-

rent methods often neglect two key problems in barely-supervised segmentation:

i) the insufficient labeled data may not be able to offer enough information to

networks for accurately segmenting tumor areas across various cases; ii) networks

might overfit to the relation of multiple modalities of the limited labeled data,

thus overly depending on certain modalities while overlooking other valuable

modalities during segmentation. To tackle these two problems, this chapter intro-

duces a barely-supervised training framework, called BarelySAM. BarelySAM first

employs Segment Anything Model (SAM) during training by generating pseudo

labels for unlabeled data. In this manner, pre-trained knowledge exhibited in SAM

can be exploited to compensate for limited knowledge in labeled data, boosting

network training and thus improving performance. For the overfitting problem,

Multi-modality Dependency Minimization (MDM) is designed in BarelySAM to

construct various partial combinations for full-modal samples, thus enforcing net-

works to exploit each modality effectively. Experiments on two benchmark datasets

validate the effectiveness of the integrated SAM and the designed MDM module.

• Chapter5: This chapter focuses on the problem of certain modalities being missing

in medical images, which often happens in clinical practice. For the missing modal-

ity problem, this chapter introduces a Region-aware Fusion Network (RFNet)
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that can adaptively and effectively utilize various combinations of multi-modal

data for tumor segmentation. In light of the observation that different modalities

are sensitive to different brain tumor regions, I design a Region-aware Fusion

Module (RFM) in RFNet to perform feature fusion from available image modal-

ities tailored specifically to different regions. Benefiting from RFM, RFNet can

adaptively segment tumor regions from an incomplete set of multi-modal images

by effectively aggregating modal features. Furthermore, a segmentation-based

regularizer is developed to prevent RFNet from insufficient and unbalanced train-

ing caused by incomplete multi-modal data. Specifically, apart from obtaining

segmentation results from fused modal features, RFNet also segments each modal

image individually from the corresponding encoded features. In this fashion, each

modal encoder is compelled to learn distinctive features, thereby enhancing the

representational quality of the fused features. Remarkably, extensive experiments

on three benchmarks demonstrate that RFNet outperforms the state-of-the-art

significantly.

• Chapter6: This chapter introduces S2VNet, a universal framework that leverages

Slice-to-Volume propagation to unify automatic/interactive segmentation within a

single model and one training session. Inspired by clustering-based segmentation

techniques, S2VNet makes full use of the slice-wise structure of volumetric data by

initializing cluster centers from the cluster results of previous slice. This enables

knowledge acquired from prior slices to assist in the segmentation of the current

slice, further efficiently bridging the communication between remote slices using

mere 2D networks. Moreover, such a framework readily accommodates interactive

segmentation with no architectural change simply by initializing centroids from

user inputs. S2VNet distinguishes itself by swift inference speeds and reduced

memory consumption compared to prevailing 3D solutions. It can also handle

multi-class interactions, with each of them serving to initialize different centroids.

S2VNet demonstrates state-of-the-art performance that surpasses task-specified

solutions on both automatic/interactive setups across three volumetric datasets.
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2
LITERATURE REVIEW

This chapter presents a survey of the literature on i) medical image segmentation,

that is volumetric medical segmentation (§2.1); ii) medical image segmentation with

limited annotations, including atlas-based medical segmentation (§2.2), one-shot medical

segmentation (§2.3), semi-supervised medical segmentation (§2.4), and barely-supervised

medical segmentation (§2.5); iii) incomplete multi-modal tumor segmentation (§2.6); and

iv) interactive medical segmentation (§2.7).

2.1 Volumetric Medical Segmentation

Medical images are usually scanned in a volume-wise manner to better capture the 3D

nature of human anatomical or pathological structures. Consequently, recent research

mainly pay attention to volumetric medical segmentation and can be broadly grouped

into two categories [248]: slice-wise and volume-wise. The slice-wise methods [96,

172, 177, 205, 250] usually split 3D images into 2D slices along the z-axis, and then

segment them separately. Since the proposal of [153], there has been a research surge

based on the U-shaped architecture[40, 57–59, 61, 68, 75, 102, 144, 174, 175, 193, 209,

214, 225, 236, 241, 246]. Such paradigm enjoys fast inference but makes no use of the

3D structure of images. In contrast, volume-wise methods [6, 33, 36, 47, 69, 79, 81,

85, 89, 98, 140, 147, 183, 192, 217, 219, 226, 247, 248] directly process 3D images by

extending 2D operations to their 3D counterparts. While capturing spatial context in

three dimensions, they are inefficient in establishing meaningful connections between
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distant regions due to the limited receptive field of CNNs[25]. Recently, efforts have been

made to leverage Transformer to capture long-range dependencies[18, 56, 63, 64, 117,

122, 145, 173, 185, 190, 194, 203, 212, 224, 235]. However, the inputs are still 3D image

patches that contains only nearby slices, remaining unable to bridge remote slices.

2.2 Atlas-based Medical Segmentation

An atlas is defined as a template image and its segmentation mask, while atlas-based

medical segmentation methods [71, 93] aim to segment target images with the help of

only one or a few atlases. Single-atlas-based segmentation methods [46] begin by aligning

the atlas to target images with image registration, and then transfer atlas labels to

target image masks according to the alignment. Multi-altas-based segmentation is based

on single-atlas-based segmentation but improves performance in other aspects, such

as atlas selection [211] and label fusion [44, 211]. Atlas-based medical segmentation

typically exploits limited samples and often relies on hand-crafted features; thus, it

cannot enjoy the recent advances in data-driven deep learning techniques. Therefore,

altas-based medical segmentation struggles to deal with complex and varied scenarios

encountered in real-world practice.

2.3 One-shot Medical Segmentation

To remedy the deficiency of altas-based medical segmentation, one-shot medical seg-

mentation [71, 93] extend single-atlas-based segmentation by additionally incorporating

unlabeled training data. In this manner, deep neural networks can driven by these data

with minimal annotation efforts to achieve satisfactory segmentation.

Wang et al. [188] accomplish one-shot medical segmentation also through image

registration, similar to previous atlas-based segmentation studies [46]. Meanwhile, they

additionally include unlabeled data so that they can achieve better image registration

with data-driven learning. In particular, they develop a forward-backward consistency

training scheme to exploit unlabeled data to optimize a well-performed registration

network. However, employing image registration for segmentation is indirect and error-

prone. Specifically, registration networks still suffer misalignment, leading to inferior

segmentation results. Therefore, several recent attempts [207, 227, 244] consider to

generate labeled training augments with image registration and train a network with

these augments to achieve explicit segmentation. For example, Zhao et al. [227] leverage
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image registration to learn shape and intensity deformations between the atlas and

unlabeled images. Then, labeled training augments can be synthesized by applying these

deformations to the atlas. With the help of these synthesized data, one segmentation

network can be effectively trained for explicit segmentation. In [207, 244], networks of

image registration and segmentation are jointly optimized so that the image registration

networks can learn to generate more suitable training augments for segmentation net-

work learning. These attempts regarding training data generation make great progress.

However, the deterministic nature of image registration in these studies limits the va-

riety of training augmentations, hindering the segmentation networks from reaching

optimal performance. Even worse, these techniques primarily rely on image registration,

which usually underperforms in irregular regions. Consequently, they are ill-suited for

the abnormal area segmentation, such as brain tumor segmentation.

2.4 Semi-supervised Medical Segmentation.

This task focuses on achieving accurate medical image segmentation by leveraging

knowledge from a small set of labeled images and a vast collection of unlabeled im-

ages. Recent research for semi-supervised medical segmentation have explored vari-

ous techniques, such as self-training methods [7, 110, 158, 180], adversarial learning

methods [51, 106, 146, 197], registration-based methods [43, 166, 189, 208, 228, 245],

multi-task methods [22, 26, 87, 106, 131, 159], uncertainty-based methods [19, 110,

128, 158, 195, 201, 213], logic-induced methods [111], and consistency-based methods

[10, 19, 34, 51, 55, 62, 70, 109, 128, 131, 186, 195, 202, 206, 210, 213, 220, 231]. In the

following, we will only review the most popular technique, consistency-based methods,

for brevity.

In general, consistency-based methods can be divided into three groups: First, con-

sistency comes from training samples [10, 55, 109, 201, 202]. Li et al.[109] encourage

consistent predictions from the same input with different augmentations, including

rotation, flipping, and scaling augmentation, while Bortsova et al.[10] build consis-

tency based on elastic transformation. Xia et al.[201] develop consistency among dif-

ferent image views to train the network. Second, consistency is drawn from networks

[34, 51, 62, 70, 128, 195, 213, 231]. The methods [51, 186, 201, 210] leverage consistency

between predictions from two networks with different initialization while others [70, 128]

take advantage of the consistency of predictions from different stages in hierarchical

architectures. Recently, exponential moving averaging (EMA) [34, 62, 195, 213, 231]
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has been extensively studied to capture temporal consistency between networks during

training. Third, consistency roots from different tasks [131]. Luo et al.[131] propose to

leverage unlabeled data by enforcing consistent predictions from two distinct tasks, i.e.,
standard pixel-wise segmentation and signed distance map-based segmentation.

2.5 Barely-supervised Medical Segmentation

Semi-supervised medical segmentation can largely reduce the demand for annotations

but still necessitates a considerable amount of labeled images. For example, 16 out of 80

images need to be annotated for left atrium (LA) segmentation in [127]. To further scale

down the demand for labeled images, several efforts [17, 103, 116, 198] have been made

for barely-supervised medical image segmentation, where extremely limited labeled data

is available. For example, Cai et al.[17] and Li et al.[103] only use slice-wise annotations

for volume medical image segmentation, whereas Lin et al.[116] and Wu et al.[198]

focus on scenarios with fewer than 10 labeled images. To be specific, Cai et al.[17] and

Li et al.[103] begin by extending slice-wise labels to volume-wise labels with image

registration, and then exploit these volume-wise labeled data as well as unlabeled data

to train segmentation networks. However, incorporating slice-wise annotations often

encounters challenges in selecting appropriate slices, as the areas of interest may appear

at various locations in various shapes. Lin et al.[116] and Wu et al.[198] reduce the

impact of limited annotations by effectively using unlabeled data. To this end, they

employ consistency among multiple networks and leverage comprehensive information

from these networks to generate better pseudo-labels.

2.6 Incomplete Multi-modal Tumor Segmentation

Medical images, derived from various imaging techniques and operations, often contain

various modalities. For example, MRI imaging for brain tumor segmentation usually

provides four modalities, including T1, T2, Flair and T1ce. These modalities can provide

comprehensive information for better segmentation. However, multi-modal segmentation

usually encounters the missing modality problem [123, 168, 221, 232] because of diverse

patient conditions and mistaken imaging operations. Therefore, several research efforts

have been made in incomplete multi-modal brain tumor segmentation, which is more

practical but more challenging compared with the standard one [65, 141, 160, 230].
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Shen et al.[161] treat various missing modalities as different domains and then

leverage adversarial learning to project images from these domains into a unified feature

space during segmentation. However, since it is difficult to align distinct and diverse

distributions simultaneously, their method can only handle a small number of missing

modalities. Zhou et al.[237] generate the features of missing modalities according to the

correlations between different modalities. However, their method may not be suitable

when few modalities are available because only one or two modalities are not enough to

generate reliable features for the missing modalities.

In addition to feature alignment [161] and feature completion [237], several prior

work [23, 48, 66] attempt to leverage feature fusion to solve the missing modality problem:

Havaei et al.[66] aggregate partial modalities by calculating the mean and variance of the

available features. Dorent et al.[48] embed all observed modalities into a shared latent

representation by employing a multi-modal variational auto-encoder. Chen et al.[23]

aggregate incomplete modalities via concatenation and leverage feature disentanglement

jointly to achieve a modality-invariant and discriminative representation.

2.7 Interactive Medical Segmentation

Though achieving promising performance, automatic medical segmentation methods

still face challenges in clinical applications due to the severe biological variation present

in medical images [239]. In response to this, interactive medical segmentation [9, 11,

12, 38, 52, 108, 113, 132, 143, 178, 182] is emerging as a practical strategy to improve

accuracy by incorporating user interactions, which includes bounding boxes[151, 240],

scribbles[3, 4, 100, 182, 223], clicks[94, 130, 133, 181], and extreme points[88]. Moreover,

endeavors have been striven to enhance accuracy by emphasizing the effective integration

of user interactions, such as extracting informative cue maps[130, 133, 181], or adapting

networks to inference images[157, 179]. Recently, alternate research[119, 120, 162, 238,

239] explores interactive segmentation in a mask propagation manner, i.e., wrapping the

mask of previous slice according to affinity matrix to predict the next slices.

Since interactive medical segmentation can attain high levels of segmentation accu-

racy, it finds utility in the annotation process. Several recent studies have endeavored to

enhance the labeling process by integrating interactive segmentation with other method-

ologies, such as few-shot learning [52], active learning [108, 178], weakly-supervised

learning [143], and reinforcement learning [113, 132]. Further, studies like [9, 38] have

developed workflows for medical image labeling rooted in interactive segmentation.
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3
ONE-SHOT MEDICAL IMAGE SEGMENTATION WITH

STATISTICAL-DISTRIBUTION-MODELING-BASED DATA

GENERATION

3.1 Introduction

Medical image segmentation aims to partition medical images, such as magnetic reso-

nance imaging (MRI) images, into different anatomic regions. It plays a crucial role in

numerous medical analysis applications, e.g., computer-assisted diagnosis and treatment

planning. In recent years, benefiting from deep convolution neural networks (CNNs),

fully supervised medical image segmentation methods [28, 242] have been extensively

studied and achieved promising progress. However, labeling anatomic regions for large-

scale 3D images requires a huge amount of time and expert knowledge. Hence, obtaining

sufficient labelled data becomes the bottleneck of fully supervised segmentation methods.

One-shot medical image segmentation has been proposed to reduce the demand for

copious labeled data. The prior arts [139, 148, 154, 155] mainly adopt hand-crafted data

augmentations, such as random elastic deformations, to generate new labeled images to

improve segmentation performance. However, those methods often generate non-realistic

images since they do not take the distribution of real images into account. Thus, their

networks usually fail to generalize well on real data. Recently research [21, 188, 207,

This chapter is based on joint work [43] with Xin Yu and Yi Yang, presented primarily as it appears
in the AAAI 2021 proceedings.

15



CHAPTER 3. ONE-SHOT MEDICAL IMAGE SEGMENTATION WITH
STATISTICAL-DISTRIBUTION-MODELING-BASED DATA GENERATION

Figure 3.1: Illustration of our generated diverse deformations. From top to bottom:
intensity offsets, shape deformations, synthesized images using the corresponding defor-
mations and segmentation labels. Red frames highlight variations.

227, 244] mainly focuses on deep learning-based data augmentation. Those methods

often leverage image registration to obtain shape and intensity differences between the

only labeled image and other unlabeled images, and then combine the learned shape and

intensity deformations to generate new images for segmentation.

Considering the domain gap and insufficient variations of synthesized data by previ-

ous methods, we aim to develop a novel medical image (i.e., MRI) augmentation method

to address one-shot medical image segmentation tasks. To achieve this goal, we propose

a probabilistic data augmentation approach to generate sufficient training images while

ensuring they follow the distribution of real MRI images in terms of brain shapes and

MRI intensities, as shown in Fig 3.1. Thus, our segmentation network trained on our

synthesized data will be robustly adapted to real MRI images.

In this work, we first employ image registration to obtain the shape deformations

and intensity changes between an unlabeled MRI image and the atlas. However, since

registration errors might occur in the registration procedure, directly classifying the reg-

istered images will lead to erroneous segmentation results. The prior art [227] combines

the registered deformation fields and intensity changes to generate new labeled images

and exploits them to train a segmentation network, thus mitigating registration errors.

However, [227] cannot provide new deformation fields and intensity changes. Therefore,

the variety of generated images is still limited.
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In contrast to prior work, we propose to exploit two variational autoencoders (VAEs)

to capture the probabilistic distributions of deformation fields and intensity offsets

with respect to the atlas. After that, our VAEs are employed to generate various profile

deformations and intensity changes. The generative deformation fields and intensity

variations are used to synthesize new MRI images. In this manner, our synthesized

training data is not only abundant and diverse but also authentic to real MRIs. Hence,

using our augmented data, we improve the performance of our segmentation network

significantly and achieve superior performance to that of SOTA.

Since different MRI machines (i.e., imaging sources) may lead to different character-

istics in MRI images, such as intensity changes and signal-to-noise ratio, we also conduct

experiments on unseen MRI sources to evaluate the robustness of our method. Thus, we

propose a more challenging benchmark with an additional unseen test set. Benefiting

from our generated diverse training data, our segmentation network also performs better

than the state-of-the-art on unseen MRI sources, thus demonstrating the superiority of

our presented probabilistic augmentation method.

Overall, our contributions are threefold:

• We devise probabilistic data augmentation based on VAEs to generate diverse and

realistic training images for the downstream segmentation task.

• We propose a new challenging segmentation benchmark to evaluate the perfor-

mance of our proposed method and competing methods. It contains 3D brain MRI

images from different sources. Thus, we can also test the generalization ability of

the methods on unseen MRI sources.

• Taking advantage of our generated images, our method outperforms the state-of-

the-art one-shot segmentation algorithms on both seen and unseen image sources.

3.2 Proposed Method

In this work, we leverage an image registration network and two VAEs to generate

diverse and authentic brain MRI training samples. The generative samples are then em-

ployed to improve our segmentation network. Here, we introduce the procedure of image

registration as well as modeling the probabilistic distributions of those deformations

via our shape and intensity 3D VAEs, respectively. After obtaining the models of the

deformations, we randomly sample from the distributions of the deformations and then
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Figure 3.2: The framework of our proposed method: (i) image deformations are obtained
by two Unet-based registration networks; (ii) our shape and intensity VAEs are proposed
to learn the variation distributions and generate new deformations; (iii) new training
samples are synthesized by applying the generated deformations to the atlas image and
our segmentation network is trained on these samples.

construct new MRI images with the atlas image. The newly synthesized MRI images

with their labels will be used to train our segmentation network.

3.2.1 Learning Deformations from Image Registration

Image registration [138, 249] aims to align an image to a template one, called an

atlas, by learning shape deformations between them. Most existing registration-based

segmentation methods [188, 207, 244] only consider the structure differences between

two images. However, due to different patients, scan machines and operations, image

intensities also vary. Therefore, we model both shape and intensity deformations.

First, as shown in Fig. 3.2, we leverage a Unet-based [154] registration network

(named shape registration network) to learn 3D shape deformations. Denote an atlas

image and its segmentation mask as (xa, ya) and N unlabeled images as {xu
1 , xu

2 , · · ·, xu
N }.

Taking the atlas image xa and an unlabeled training image xu
i as the input, the regis-

tration network is trained to propagate the atlas image xa to an unlabeled image xu
i

by estimating a shape deformation Si. In other words, Si is optimized to warp xa to xu
i :

xu
i ← xa ◦Si, where ◦ represents a warping operation implemented by a differentiable

bilinear interpolation-based spatial transformer layer [8]. Following the work [60], we

employ a local cross-correlation (CC) loss LCC and a deformation smoothness regulariza-

tion L
reg
S to train our shape registration network in an unsupervised manner and its
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objective Lsrn is formulated as:

LCC=∑
i

∑
p∈Ω

g(xu
i , [xa ◦Si], p)2

g(xu
i , xu

i , p)g([xa ◦Si], [xa ◦Si], p)
,

L
reg
S =∑

i ∥∇Si∥2,

Lsrn=−LCC +L
reg
S ,

(3.1)

where g(a,b, p) denotes the correlation between local patches a and b on voxel p:

g(a,b, p) = ∑
p j (a(p j)− a(p))(b(p j)− b(p)), and a(p) indicates the mean of local patch

intensities on p: a(p) = 1
∥p∥1

∑
p j a(p j). p represents a n3 cube in a 3D image Ω and p j

denotes the pixels in the cube. We set n to 9 similar to prior methods [60]. LCC encour-

ages the structure similarities between two images regardless of the intensity variations

while L
reg
S aims to constrain shape deformations to be smooth. ∇Si denotes the spatial

gradients of the shape variations.

Similar to learning shape deformations, we also use a Unet-based network, called

intensity alignment network, to align 3D intensity deformations. As visible in Fig. 3.2, the

network takes the atlas image xa and the inverse-warped image x̂u
i as input to measure

the intensity deformations I i. x̂u
i is generated by aligning xu

i to xa, and thus x̂u
i and xa

share similar profile structure. Similar to [227], we exploit a pixel-wise reconstruction

loss Lsim between xa and xu
i and an intensity smoothness regularization L

reg
I to train

our intensity alignment network. The objective function Lirn is expressed as:

Lsim=∑
i ∥(xa + I i)◦Si − xu

i ∥2,

L
reg
I =∑

i

∑
q j

(1− ca(p j))|∇I i(p j)|,
Lirn=Lsim +λL

reg
I .

(3.2)

Here, L
reg
I is designed to prevent dramatic changes of the I i in the same brain area.

∇I i(p j) denotes the gradients of I i at p j. ca denotes the mask of contours across different

areas. λ is a trade-off weight and set to 0.02, following the work [227].

3.2.2 Diverse Image Generation via VAEs

After image registration, we obtain N shape deformations and N intensity changes

from the atlas and N unlabeled images. In the work [227], these variations are directly

combined to generate new labeled training images for segmentation. However, only

N kinds of shape and intensity transformations are involved during training, and the

diversity of the samples is not rich enough to train an accurate segmentation network.
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[21] employ GANs to generate new deformations but their method requires a large

number of unlabeled data to train GANs. However, we only have less than 100 unlabeled

images. Thus, their method will suffer mode collapse and is not applicable in our case.

Different from previous methods, we adopt a 3D shape VAE and a 3D intensity VAE to

learn the probabilistic distributions of the variations with respect to the atlas separately,

since VAE does not suffer mode collapse. Furthermore, inspired by beta-VAE [13, 74],

we reduce impacts of the Kullback-Leibler (KL) divergence in a conventional VAE to

increase the diversity of generated samples. Doing so is also driven by the insufficiency

of the training samples. After training, we sample deformations from our shape and

intensity VAEs, and then generate a large number of various training images.

As illustrated in Fig. 3.2, our shape VAE first uses an encoder to project an input

shape deformation into a latent vector z = ES(Si) and then decodes z to the image domain,

i.e., a reconstructed shape deformation S i = DS(z). During training, three objectives,

including KL divergence L kl
S and pixel-wise reconstruction losses on the deformations

L d
S and image intensities L i

S, are employed to train our shape VAE, written as:

L kl
S =∑

i Dkl(q(z|Si)||p(z)),

L d
S =∑

i ∥Si −S i∥2,

L i
S =∑

i ∥(xa ◦Si)− (xa ◦S i)∥2,

LS = (L d
S +L i

S)+βL kl
S ,

(3.3)

where L kl
S forces the distribution of latent vector z to be a standard normal distribution,

(i.e., z ∼ N(0,1)), q(z|·) denotes the posterior distribution, p(z) denotes the Gaussian prior

distribution modeled by a standard normal distribution, and β is a hyper-parameter

controlling rigidity of the distributions of the latent variable z and the quality of recon-

struction. Here, we not only compare the decoded shape deformations with the input

ones but also measure the differences between the warped images by the input shape

deformations and reconstructed ones.

Smaller β indicates less attention is paid to the KL divergence loss during training

and will result in a larger KL divergence between the posterior and prior distributions.

As suggested by [13], larger KL divergence allows a latent vector to reside in a large

space. In other words, smaller β allows our VAE to preserve variations of input images,

especially when the training samples are scarce. Therefore, using a small β is preferable

when training samples is insufficient. Moreover, since the latent space has been enlarged,

more variations can be generated from this latent vector space via our decoder in the

testing phase. Therefore, we set β to a small value (i.e., 0.1) for all the experiments.
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It is worth noting that we employ both L d
S and L i

S as the reconstruction loss for

our shape VAE instead of only reconstructing network inputs by L d
S as in the original

VAE. When L d
S is only employed, image structure information is neglected. In particular,

shape deformations should pay attention to the consistency of image contour movements.

However, L d
S treats the movement of each pixel individually and thus may not perform

consistent movements along the contour regions. On the contrary, the reconstruction

loss L i
S is sensitive to the movements of image contours because image intensities

around contours change dramatically. In other words, small reconstruction errors in the

deformations of the contours will lead to large intensity differences between two warped

images. On the other hand, since L i
S only measures intensity similarities, it may not

preserve boundary information when two areas have similar intensities. Therefore, we

leverage both L i
S and L d

S as the reconstruction loss in learning our shape VAE.

Similar to our shape VAE, we employ a VAE to model the distribution of the intensity

variations with respect to the atlas. Here, we adopt the standard KL divergence loss and

a pixel-wise reconstruction loss to train our intensity deformation VAE, expressed as:

L kl
I =∑

i Dkl(q(z|I i)||p(z)),

L d
I =∑

i ∥I i − I i∥2,

LI =L d
I +βL kl

I ,

(3.4)

where I i is the intensity deformation reconstructed from I i.

After modeling the deformation distributions, our shape and intensity VAEs are

exploited to generate diverse variations by random sampling. Specifically, in the process

of the generation, the decoders DS and D I take random latent vectors sampled from a

Gaussian distribution N(0,σ) as input and output various shape deformations Sg and

intensity changes Ig, respectively. Then, our synthesized labeled training images are

constructed as:

(3.5) xg = (xa + Ig)◦Sg, yg = ya ◦Sg,

where xg and yg represent the synthesized images and their corresponding segmentation

masks. Note that, different from MRI images, segmentation masks are warped by a

nearest-neighbor interpolation-based 3D spatial transformer layer [8].

3.2.3 Segmentation Network

Once augmented training samples are obtained, we can train our segmentation network

on those samples. For fair comparisons[227], we employ the same 2D Unet with a five-
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layer encoder and a five-layer decoder to segment each slice of 3D images individually. In

the encoder and decoder, we use 3×3 2D convolutional operations followed by LeakyReLU

layers. 2×2 Max-pooling layers are employed to decrease the resolution of features, while

upsampling layers are used to increase resolution by a factor of 2.

In each training iteration, we construct a batch by randomly sampling slices from 3D

images. The standard cross-entropy loss is applied as described:

(3.6) LCE =−
W∑

i=1

H∑
j=1

1
H ·W log

exp(yp[i, j, yg(i, j)])∑K
k=1 exp(yp[i, j,k])

,

where yp is the predicted mask from our segmentation network g (i.e., yp = g(xg;θ)) and

θ denotes the parameters of the segmentation network. W and H denote the width and

height of a 2D slice, respectively. K indicates the number of anatomical components in

an MRI image. Similar to the training process, every 3D image is split into 2D slices and

segmented in a slice-wise fashion in the testing phase.

Although we incorporate two VAEs to generate labeled data, they are only used in the

training phase. During testing, only our segmentation network is exploited. Therefore,

our method does not increase the network parameters and FLOPs during inference and

thus can be deployed as easily as previous work.

3.2.4 Implementation Details

We employ the same network architecture for our shape and intensity VAEs, and the

VAEs are 3D VAEs since deformations should be consistent in 3D space. In the 3D VAE

networks, group normalization [200] is employed. For the activation function, we use

LeakyReLU and ReLU for the encoder and the decoder, respectively. The dimension of

the latent vector is set to 512.

During training, Adam [91] optimizer is used to train our VAEs, where β1 and β2 are

set to 0.5 and 0.999, respectively. Considering GPU memory limitation, we set the batch

size to 1. The learning rate is fixed to 1e−4 for the whole 40k training iterations. The

hyper-parameter β in both two VAEs is set to 0.1. In generating deformations, the shape

VAE and the intensity VAE take latent vectors sampled from N(0,10) as input in order

to achieve more diverse data.

For other networks (i.e., shape registration, intensity alignment and segmentation

networks), a default Adam with 1e−4 learning rate is employed. For the shape registration

and intensity alignment networks, the batch size is set to 1 and the networks are trained

for 500 epochs. For the segmentation network, the batch size is set to 16 and the network
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is trained for 40,000 iterations. Our method is trained and tested on an Nvidia Tesla

V100 GPU and achieves similar results on Keras with a TensorFlow backend.

Note that, in training the 3D VAEs and segmentation networks, images are gener-

ated on the fly, and thus, we train these networks in terms of iterations. In training

registration and alignment networks, only 82 MRI images will be aligned to the atlas,

and thus, we train the networks in terms of epochs.

3.3 Experiments

In this section, we begin by comparing our proposed method with the latest one-shot-

based methods. Following that, we analyze the contributions of each component within

our method. For fair comparisons, experiments are conducted on the same dataset as

previous work [60, 188, 227]. Moreover, we propose a more challenging MRI benchmark

to evaluate the generalization capability of the proposed method.

3.3.1 Experimental Setup

Dataset: CANDI dataset [86] consists 103 T1-weighted brain MRI images from 46

females and 57 males. In this dataset, four types of diagnostic groups are considered,

including bipolar disorder without psychosis, bipolar disorder with psychosis, schizophre-

nia spectrum, and healthy controls. In the experiments, we use the same train and

test splits as in [188]. To be specific, 20/82/1 images are employed as test/unlabeled

training/atlas images. Following the work [188], We crop a volume of 160×160×128 from

the center of an original MRI image. For segmentation, similar to [188], we consider 28

primary brain anatomical areas.

Evaluation Metric: Dice coefficient [39] is employed to evaluate the segmentation

performance, written by:

(3.7) Dice(Mk
yp

, Mk
ygth

)= 2 ·
Mk

yp

⋂
Mk

ygth

|Mk
yp |+ |Mk

ygth |
,

where Mk
yp

and Mk
ygth

denote segmentation masks of the anatomical region k with

predicted labels yp and its corresponding ground-truth ygth.

Larger Dice scores indicate more overlaps between predictions and ground-truth la-

bels and thus represent better segmentation performance. To showcase the segmentation

capability of methods more effectively, we report not only a mean Dice score but also its

corresponding standard variance, minimum Dice score and maximum Dice score.
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Method Mean(std) Min Max
Supervised learning 88.3(1.7) 83.5 90.3
VoxelMorph [60] 76.0(9.7) 61.7 80.1
DataAug [227] 80.4(4.3) 73.8 84.0
LT-Net [188] 82.3(2.5) 75.6 84.2
Ours 85.1(1.9) 80.2 87.8

Table 3.1: Quantitative segmentation results on CANDI. Fully-supervised segmentation
accuracy is reported as an upper bound. Mean/Min/Max/ are reported to indicate the
middle/worst/best Dice scores. “std” denotes the standard deviations.

Method Shape Intensity VAE Mean(std) Min Max
Registration based

(VoxelMorph) 76.0(9.7) 61.7 80.1

Segmentation
with data

augmentation

✓ 81.7(5.6) 65.4 87.4
✓ ✓ 83.5(4.2) 71.1 87.8
✓ ✓ 84.2(1.7) 79.7 86.5
✓ ✓ ✓ 85.1(1.9) 80.2 87.8

Table 3.2: Analysis of data augmentation. Shape and Intensity denote that the deforma-
tions from image registration. VAE indicates that the deformations are generated from
our VAEs.

Method Mean(std) Min Max
L d

S 81.3 (2.8) 74.4 85.0
L i

S 82.3(6.2) 63.9 87.7
L d

S + L i
S 83.5(4.2) 71.1 87.8

Table 3.3: Analysis of reconstruction losses in the shape VAE.

3.3.2 Comparison to State-of-the-arts

Two latest one-shot atlas based method, i.e.DataAug [227] and TL-Net [188], are com-

pared. In addition, one unsupervised registration method i.e., VoxelMorph [8] is applied

to one-shot medical image segmentation for comparison. VoxelMorph and TL-Net lever-

age a registration network to align the atlas to test images, simultaneously applying

it to the segmentation mask of the atlas to generate segmentation predictions for the

corresponding test images. DataAug employs image registration to achieve shape and

intensity transformation and then augments the atlas image with the attained transfor-

mation for segmentation network training. Note that these methods do not generate new

deformations while our method does.

In Table 3.1, our method enhances the Dice score by 2.8% in comparison to the

current best method LT-Net [188]. Moreover, our method also obtains the smallest

variance, demonstrating that our method is more robust and effective.
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Method
Seen Unseen

Mean(std) Min Max Mean(std) Min Max
Supervised learning 87.6(2.7) 79.3 91.1 85.9(1.7) 81.3 87.5
VoxelMorph 70.3(11.6) 33.1 82.5 62.9(13.2) 32.3 79.6
DataAug 69.6(9.02) 39.7 80.4 64.3(9.9) 35.0 77.2
Ours 76.7(7.4) 53.2 86.5 74.8(6.6) 54.1 83.3

Table 3.4: Quantitative segmentation results on our newly proposed ABIDE benchmark.

3.3.3 Ablation Study

To demonstrate the effectiveness of our VAEs, we compare four different types of data

augmentation in Table 3.2. As simply applying intensity offsets to the atlas does not

change the segmentation mask, synthesized images will have the same segmentation

labels, thus leading to a trivial segmentation solution.

3.3.3.1 Effectiveness of our VAEs

As indicated in Table 3.2, compared with direct registration, data augmentation-based

segmentation methods achieve better segmentation accuracy. Note that all the augmen-

tation methods learn the shape deformations similar to VoxelMorph. Compared with

the data augmentation methods using deformations from image registration, our VAEs

can generate richer data for training a segmentation network, thus leading to better

performance. Moreover, we observe that intensity deformations make great contributions

to segmentation performance, and various intensity changes facilitate the generalization

of our segmentation network. In Table 3.2, we also notice that our network employing

registered shape and intensity deformations achieves better performance than DataAug.

This is because DataAug pre-trains a segmentation network with an l2 loss and does

not employ the atlas in training the segmentation network. Thus, using the atlas for

training segmentation networks is important.

Effectiveness of the Combined Reconstruction Loss. To demonstrate the effective-

ness of our combined reconstruction loss i.e., L d
S +L i

S, we train the shape VAEs with

L d
S , L i

S and L d
S +L i

S, respectively, and then apply them to augment data. To avoid the

influence of the intensity augmentation, we do not use intensity augmentation and the

segmentation results are reported in Table 3.3. As seen, our combined reconstruction

loss is more suitable for the learning and generation of shape deformations.

Hyper-parameter β in Eq. (3.3) and Eq. (3.4), and σ for sampling latent codes. As

aforementioned, a small β introduces more diversity into the generated deformations,

thus improving the segmentation performance. Figure 3.3 manifests that using a small

25



CHAPTER 3. ONE-SHOT MEDICAL IMAGE SEGMENTATION WITH
STATISTICAL-DISTRIBUTION-MODELING-BASED DATA GENERATION

85.1

84.6

84

84.5

85

85.5

0.1 1

D
ic

e 
sc

or
e 

(%
)

β

84.8

85.1 85.1

84

84.5

85

85.5

1 10 100

D
ic

e 
sc

or
e(

%
)

σ

Figure 3.3: Analysis of hyper-parameter β and σ. β controls the weight of the KL
divergence and σ is the standard deviation of a prior Gaussian distribution N(0,σ) in
VAEs.

β, we achieve better segmentation accuracy. Thus, in all the experiments, β is set to 0.1.

Furthermore, as illustrated in Fig. 3.3, the segmentation performance degrades when

the standard deviation σ for sampling latent codes is set to 1. This is because we employ

a small β to enforce the KL divergence during training, and the latent vector space would

deviate from the standard normal distribution. Thus, we use a larger σ to sample latent

codes. Figure 3.3 shows the segmentation accuracy is similar when σ is set to 10 and

100. Thus, σ is set to 10 for all the experiments.

3.3.4 Our Proposed ABIDE Benchmark

Since the MRI images in CANDI are collected from only one source, the variances (in-

cluding shape and intensity) mainly come from different individuals. However, different

MRI machines and operations may also lead to variations. Therefore, to validate the

robustness of our method, we propose a new standard segmentation benchmark, called

ABIDE benchmark, as visible in Fig. 3.4.

From Autism Brain Imaging Data Exchange (ABIDE) database, collected from 17

international sites, we sample 190 T1-weighted MRI images from ten imaging sources

and split them into 100, 30, 60 volumes for training, validation and testing, respectively.

These testing images form a seen test set. As suggested by [60], the image most similar

to the average volume is chosen as the atlas. We also sample 60 images from the rest

imaging sources as an unseen test set. All the volumes are resampled into a 256×256×256

with 1mm isotropic voxels and then cropped to 160×160×192. 28 anatomical regions

are annotated by FreeSurfer [54].

As our benchmark collects images from multiple sites and contains an unseen test,
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Figure 3.4: Illustration of significant variances in our ABIDE benchmark. The 96-th
slices of ten 3D MRI images are shown. (Top row: images from seen datasets; Bottom
row: images from unseen datasets.) More images are shown in supplementary materials.

it is more challenging and is also able to evaluate the robustness of a method. We

compare our method with VoxelMorph[60] and DataAug[227] 1 in Table 3.4. The fully

supervised performance is also reported as the upper bound. Compared with the prior

arts, we achieve superior performance on both seen and unseen datasets, demonstrating

the effectiveness of our data augmentation method. In addition, our performance only

degrades 1.9% on the unseen test dataset while the performance of the competing

methods decreases more than 5%. This demonstrates that our method achieves a better

generalization ability with the help of our generated various deformations.

3.4 Conclusion

This chapter introduces the devised 3D VAE-based data augmentation scheme for one-

shot medical image segmentation. Specifically, the shape and intensity deformation VAEs

are developed to learn the deformation distributions of unlabeled real images relative to

the only labeled image. Subsequently, these two VAEs generate numerous shape and

intensity deformations, which can be randomly combined to further enhance diversity.

Finally, the combined deformations are applied to the labeled images, generating real-

istic, diverse and labeled training samples that facilitate sufficient network training.

Extensive experiments demonstrate the superiority of the proposed data augmentation

scheme on both seen and unseen datasets. However, the effectiveness of this data aug-

mentation scheme depends on precise image registration, which limits its applicability

in lesion segmentation. The challenge emerges as the shapes and locations of lesions

1Since [188] do not release their code, we do not include their results.
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vary, resulting in frequent registration misalignments. For this issue, barely-supervised

learning approaches are being considered for lesion segmentation, as discussed in §4.

28



C
H

A
P

T
E

R

4
BARELY-SUPERVISED BRAIN TUMOR SEGMENTATION

VIA EMPLOYING SEGMENT ANYTHING MODEL

4.1 Introduction

Automatic brain tumor segmentation is crucial for clinical assessment and treatment

planning. In the past few years, considerable research [39, 50, 65, 79, 83, 84, 141] has

been devoted to exploring and advancing fully-supervised brain tumor segmentation.

However, these fully-supervised approaches require a substantial number of labeled

images to attain satisfactory accuracy. Unfortunately, annotating brain tumors requires

significant expertise and effort. Consequently, achieving discriminative tumor segmenta-

tion networks with limited labeled data is highly desirable in clinical practice.

To mitigate the problem of high annotation costs, numerous research efforts [10,

34, 51, 55, 62, 70, 109, 128, 131, 195, 201, 202, 213, 231] have been undertaken in

semi-supervised medical image segmentation where only a small portion of data re-

quires annotation. Nonetheless, these methods still necessitate a considerable amount

of annotated images. For instance, 16 out of 80 images need to be annotated for left

atrium (LA) segmentation in [127]. Recently, there has been an exploration of one-shot

medical image segmentation methods [43, 166, 208, 228, 245] inspired by atlas-based

segmentation [1, 16], where only a single labeled image is required. Nevertheless, these

This chapter is based on joint work [42] with Hongming Liu, presented primarily as it will appear in
the TCSVT 2024.
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Labeled data Network

Network

Labeled data
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Train

Train

(a)

(b) (c)
Figure 4.1: (a): Previous methods rely solely on knowledge from labeled data for training
networks. (b): BarelySAM exploits the pre-trained knowledge from SAM to boost network
training. (c): During inference, full and partial modalities (with one modality removed)
are fed to the networks. Without the help of the proposed MDM, the network overly
relies on the Flair modality and suffers obvious performance decreases in all three tumor
regions, i.e., whole, core, and enhancing tumors, when the Flair modality is removed.

techniques primarily rely on image registration, which usually underperforms in regions

with varying shapes and locations. Consequently, they are ill-suited for abnormal area

segmentation, such as brain tumor segmentation.

Given the constraints in semi-supervised and one-shot medical image segmentation,

several studies [116, 198] have shifted focus towards barely-supervised learning, where

a minimal amount (typically less than 10) of labeled samples are involved. These work

aim to improve pseudo label quality by tackling the class imbalance problem [116] or

using confidence maps [198]. Nonetheless, they only consider labeled data knowledge,

as shown in Fig.4.1(a), and overlook two critical issues inherent in barely-supervised

segmentation. Firstly, the limited labeled samples cannot provide sufficient information

for accurate tumor segmentation across different cases. The scarcity of labeled samples

indicates that they cannot capture the complexity and variability of tumors across various

patients. Therefore, when trained with these labeled samples, networks lack the ability

to generalize and accurately segment tumors across diverse cases. Secondly, networks

often overfit to labeled data in exploiting multiple modalities. To be specific, brain tumor

segmentation typically employs four distinct modalities, and the correlations between

these modalities in labeled data will train networks how to exploit modalities effectively.

However, in barely-supervised learning, the networks cannot see sufficient labeled

variations, where different modalities contribute to tumor segmentation differently.

Therefore, the networks may be misled by multi-modality correlations in the labeled

data to overly rely on certain modalities while neglecting other valuable modalities.

In this paper, we propose BarelySAM, a training framework for barely-supervised

brain tumor segmentation. To address the problem of limited labeled data, we propose
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to harness Segment Anything Model (SAM) [92], a class-agnostic foundation model

capable of predicting fine-grained object masks according to the corresponding prompts,

as depicted in Fig. 4.1(b). Specifically, our network first predicts the locations of each

tumor area, which can be used to generate box and point prompts for SAM. Then, SAM-

based pseudo-labels are leveraged as an additional supervision for network optimization.

In this fashion, SAM offers its pre-trained knowledge to compensate for insufficient

supervision from limited labeled data, leading to a robust and effective network. As

employed only during training, our proposed SAM-based pseudo-label generation process

does not produce any additional computational budget during the deployment phase.

To address the overfitting issue in handling multiple modalities, we propose a Multi-

modality Dependency Minimization (MDM) module. Specifically, MDM re-arranges

training samples with full modalities into a range of partial modality combinations

and enforces the output of these diverse combinations to align closely with the ground

truth. We further extend the application of MDM to unlabeled data by introducing an

innovative consistency supervision mechanism. This involves encouraging consistent

predictions between full modalities and other modality combinations of the same training

sample. Specifically, we use pseudo labels derived from full-modality samples to guide

the training of their partial-modality counterparts. Through the utilization of various

modality combinations during training, MDM enables our network to effectively leverage

each modality and to adaptively aggregate information from various modality combina-

tions. Consequently, MDM can prevent our network from relying on specific correlations

present in labeled data and mitigate the network’s overdependence on specific modalities.

Additionally, MDM enforces our model to train with various modality combinations,

enabling it to process scenarios with missing modalities, as depicted in Fig. 4.1(c).

Benefitting from the incorporated SAM and proposed MDM module, BarelySAM

attains impressive results in both full- and incomplete-modal brain tumor segmentation

tasks on BRATS2015 and BRATS2020. In particular, our method, relying on merely 6

(2%) labeled samples, achieves accuracy comparable to a fully supervised approach in

whole tumor segmentation on BRATS2020, with a slight 1.09% drop in Dice score.

Our contributions can be concluded in three aspects:

• We propose a novel barely-supervised training framework called BarelySAM.

BarelySAM uses SAM [92] to generate pseudo labels as an additional supervi-

sion, employing its pre-trained knowledge to boost network training.

• BarelySAM develops a Multi-modality Dependency Minimization (MDM) module to
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Figure 4.2: The illustration of BarelySAM. (a): SAM generates pseudo labels according
to previous pseudo labels. (b): MDM re-arranges training samples with full modalities
into a range of partial modality combinations. (c): Our training framework consists of
our network and a teacher network. Our network is updated by gradients from Ll , Lu1,
and Lu2, while the teacher network is updated in an EMA manner.

prevent networks from the overfitting problem, thus exploiting modalities properly.

Additionally, novel consistency supervision is devised for unlabeled data based on

MDM, further facilitating network training.

• Our method inherently exhibits robustness towards incomplete modal brain tumor

segmentation. Extensive experiments demonstrate that our barely-supervised

approach surpasses state-of-the-art methods in both full-modality and incomplete-

modality brain tumor segmentation tasks.

4.2 Proposed Method

This work tackles the problem of insufficient annotations for brain tumor segmentation.

To this end, we propose BarelySAM to boost the training by incorporating SAM [92] and

devising a multi-modality dependency minimization (MDM) strategy. In this section,

we first introduce adapting SAM into training in §4.2.1. SAM offers its pre-trained

knowledge to assist networks in distinguishing various tumor areas by generating pseudo-

labels. In §4.2.2, MDM leverages diverse partial modality combinations to encourage

networks to use each modality effectively, thereby reducing the risk of overfitting. In

§4.2.3, the training framework with SAM and MDM is introduced.
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4.2.1 SAM-based Pseudo Label Generation

During the training of barely-supervised brain tumor segmentation, only insufficient

labeled data are available. These labeled data may lack enough knowledge, which enables

networks to segment objects accurately across various domains or cases. For this problem,

we incorporate a well-trained and generalized foundation model, i.e., SAM [92], to provide

additional information for better network optimization.

SAM improves network training by generating reliable pseudo labels for unlabeled

data, as depicted in Fig. 4.2. To be specific, necessary box and point prompts for SAM

are first generated according to the previous pseudo labels. Given that brain tumors

comprise multiple regions and SAM cannot process multiple objects simultaneously,

we generate class-specific prompts for SAM and produce class-wise masks. For the box

prompt for each class, we use the bounding box of each tumor region. For point prompts,

we randomly select 5 points per class, and then for each class, we view the corresponding

5 points as positive points and others as negative points. This method of contrastive

point selection enables SAM to better differentiate between tumor areas, thus improving

the quality of pseudo labels and network performance. This is evidenced in Table 4.7.

Based on class-wise prompts, SAM generates predictions for each foreground class, and

pseudo labels are obtained by merging these predictions. In the merging process, an

area is considered as background if all class predictions identify it as such, whereas the

foreground class is determined by comparing predictions across classes. The merging

process is defined by,

(4.1) Ỹ (i, j)=


0 if

⋃K
k=1(Pk(i, j)< 0.5),

argmax
k

Pk(i, j) otherwise.

Pk denotes SAM-generated predictions (after the sigmoid function) for the k-th class

and Ỹ denotes merged pseudo labels.

4.2.2 Multi-modality Dependency Minimization

Brain tumor segmentation usually exploits comprehensive information from four modali-

ties to obtain high performance. However, in barely-supervised learning, networks cannot

see sufficient labeled variations, where different modalities contribute differently in

various tumor regions. Thus, networks may over-fit in the multi-modality dependency

existing in the limited labeled samples, overly relying on specific modalities and neglect-

ing some useful modalities. For this problem, we propose Multi-modality Dependency
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Figure 4.3: Visual predictions with and without the proposed MDM. Left: input MRI
modalities, including full and partial modality combinations. Right: segmentation results
produced from the networks with and without MDM and the corresponding ground-truth.

Minimization (MDM), which considers various partial modality combinations instead of

paying all attention to full modalities.

As shown in Fig. 4.2, MDM firstly generates various partial modality combinations

from a full-modality sample by randomly removing one or a few of its modalities and

then chooses to use these combinations at probability ps during training. In particular,

fourteen partial modality combinations can be constructed by randomly erasing one (four

cases), two (six cases), or three (four cases) modalities from each four-modal sample.

In this work, MDM is employed for both labeled and unlabeled data. For labeled data,

MDM directly encourages predictions from various modality combinations to be similar

to the corresponding ground truth. For unlabeled data, we develop novel multi-modality

consistency supervision to facilitate the training. In particular, although some modalities

were removed, we believe the remaining partial modality combinations could still repre-

sent the corresponding samples and thus should gain similar predictions to the full-set

versions of the same samples. Therefore, as shown in Fig. 4.2, our network generates

pseudo labels from full modalities of unlabeled samples first and uses these pseudo labels

to supervise the predictions from corresponding partial modality combinations. We do

not consider generating pseudo labels using those partial modality combinations because

full modalities contain more modalities as well as information and thus are more likely

to produce more accurate pseudo labels.
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By additionally feeding partial modality combinations to the network, MDM is able

to prevent our network from overly relying on certain modalities while enforcing to fully

exploit each modality. Therefore, MDM is able to achieve better segmentation predictions

by reducing multi-modal dependency and enhancing feature representations. As shown

in Fig. 4.3, our network with MDM achieves more accurate segmentation predictions

from full modalities. Moreover, when it comes to incomplete modalities, our network

with MDM can still perform well, while the network without MDM cannot since it overly

relies on specific modalities (such as the Flair modality).

4.2.3 Training Framework

As seen in Fig. 4.2, the training framework is divided into two parts: i) supervised training

for the labeled data and ii) self-training with the proposed MDM-based multi-modality

consistency for the unlabeled data.

For the labeled data (X l ,Y l), fully-supervised learning is exploited for network

training. Besides, the deep supervision technique [49, 99] is employed to improve hierar-

chical representations of our model. The training loss for the labeled data, combining the

Dice loss Ldl and the cross-entropy loss Lce, is defined as:

Ll =
S∑
s

βs·(Ldl(P l
s,Y

l)+Lce(P l
s,Y

l)),(4.2)

where P l
s= f (φ(X l);θ)s denotes the prediction of the labeled sample X l at the s-th stage

of our network f . φ(·) denotes the process of MDM (as depicted in Fig. 4.2), and θ denotes

the parameters of our network. S denotes the number of stages of our UNet-based

network, and βs is the loss weighting factor for the s-th stage in deep supervision.

For the unlabeled data X u, we adopt a self-training scheme with the proposed

MDM-based multi-modality consistency. As shown in Fig. 4.2, we firstly keep a temporal

ensembling version f te [167] of our network f , which is called teacher network. The

teacher network is updated in an exponential moving average (EMA) manner, defined

by:

(4.3) θte
t =α ·θte

t−1 + (1−α) ·θt−1,

where θte denotes parameters of the teacher network. t denotes the t-th iteration and α

is a coefficient controlling the update rate.

Then, we incorporate the multi-modality consistency based on MDM to facilitate the

exploitation of unlabeled data during training. Instead of focusing on full modalities
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during all training periods, the designed consistency considers partial modalities of

unlabeled data and helps the network to fully exploit each modality while adaptively

aggregating various modalities. To be specific, we input full modalities into the teacher

network to generate pseudo labels and leverage them as targets to supervise the learning

of our network with corresponding modality combinations, including partial and full

modalities. Employing the teacher network to generate pseudo labels is because the

teacher network can be viewed as an ensemble of our networks in previous iterations

and thus is able to achieve more reliable pseudo labels. Note that, to increase the

data diversity and perturbations in consistency-based learning, we additionally employ

different intensity augmentation and mirror augmentation before inputting samples into

our network and the teacher network. The training loss for unlabeled data is defined as:

Pu′
s = f (φ(X u′

);θ)s, Pu′′
s =ϕ( f te(X u′′

;θte)s),

Y u′′
s = argmax(Pu′′

s ), M = 1(max(Pu′′
s )> τ),

Lte(X u′
, X u′′

)s =Ldl(M ◦Pu′
s , M ◦Y u′′

s ) +
Lce(M ◦Pu′

s , M ◦Y u′′
s ) +

Lmse(M ◦Pu′
s , M ◦Pu′′

s ),

(4.4)

where X u′
and X u′′

denote the unlabeled data X u with two different data augmenta-

tions, and Pu′
s and Pu′′

s denote the corresponding predictions from our network and the

teacher network, respectively. ϕ denotes a flipping operation to maintain the pixel-wise

correspondence of predictions from the sample with different mirror augmentation. Y u′′

denotes the pseudo label generated from Pu′′
s . We leverage a threshold technique with the

threshold τ (set to 0.8) to select reliable pseudo labels, and M denotes the threshold mask.

1 denotes the indicator function and ◦ denotes the element-wise product. In addition to

the Dice loss and the cross-entropy loss, we also exploit the mean squared error loss Lmse

to facilitate network training by providing different constraints as well as gradients.

With Lte in Eq. (4.4), the training loss for all unlabeled data is defined by:

Lu1 =
S∑
s

βs· (Lte(X u′
, X u′′

)s +Lte(X u′′
, X u′

)s),(4.5)

where βs is the loss weighting factor for the s-th stage in deep supervision.

In addition to Lu1, we also use the pseudo labels generated from SAM to supervise

network training. Since SAM can only process 2D images, we select 20 slices for each

medical volume and exploit SAM to supervise the training of these slices. The objective
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Table 4.1: Quantitative segmentation results on BRATS2020 in barely-supervised brain
tumor segmentation. “Whole”, “Core”, and “Enhancing” denote three tumor regions, i.e.,
the whole tumor, the tumor core, and the enhancing tumor, respectively. “Avg” denotes
the average results of the three tumor regions.

Dice (%) ↑
2 Labels / 267 Unlabels 4 Labels / 265 Unlabels 6 Labels / 263 UnlabelsMethods

Whole Core Enhancing Avg Whole Core Enhancing Avg Whole Core Enhancing Avg
Fully supervised 91.01 86.02 80.70 85.91 91.01 86.02 80.70 85.91 91.01 86.02 80.70 85.91
SASSNet [106] 56.71 19.94 32.19 36.28 77.29 53.98 58.28 63.18 78.80 57.15 61.13 65.69
UA-MT [213] 68.32 45.59 51.60 55.15 74.33 53.16 56.99 61.49 77.42 57.53 65.00 66.65
DTC [127] 72.81 24.60 52.09 49.83 79.62 54.32 60.23 64.72 82.21 58.23 62.27 67.57
URPC [128] 74.59 54.56 57.73 62.29 80.41 62.06 62.68 68.38 81.38 64.18 66.25 70.60
CPS[29] 79.83 56.60 65.00 67.14 85.67 68.04 69.77 74.49 87.31 71.22 71.12 76.55
CLD [116] 77.57 53.81 62.30 64.56 81.16 59.28 66.04 68.83 83.11 63.03 68.36 71.50
ComWin [198] 83.07 64.72 73.54 73.77 85.87 68.31 73.91 76.03 87.64 71.57 73.64 77.62
BarelySAM(Ours) 88.48 77.58 74.90 80.32 89.70 78.38 76.37 81.48 89.92 81.80 77.85 83.19

loss is defined by:

Lu2 = Ldl(Pu′
, Ỹ u′′

)+Lce(Pu′
, Ỹ u′′

)

+Ldl(Pu′′
, Ỹ u′

)+Lce(Pu′′
, Ỹ u′

),
(4.6)

where P and Ỹ denote the prediction of our network and the pseudo label of SAM. As

SAM is pre-trained on natural images, adapting it to the appearance of various tumor

areas is necessary. To this end, we also train SAM with the help of the teacher network.

The loss is defined by:

LSAM = Ldl(P̃,Y )+Lce(P̃,Y ),(4.7)

where P̃ and Y denote the prediction of SAM and the pseudo label of the teacher network.

Note that, Lu2 and LSAM also leverage the data augmentation and the threshold

strategies introduced in Eq. (4.4).

The overall loss is written as:

(4.8) L =Ll +λ(Lu1 +Lu2)+LSAM ,

where λ= 0.1 is a coefficient and aims to control the contributions of losses.

4.2.4 Implementation Details

Network Architecture. We employ nnUNet [79], the prevailing benchmark model in

medical image segmentation, as the network architecture. The model is composed of a

pixel encoder and a pixel decoder, interlinked through a series of skip connections.
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Table 4.2: Quantitative segmentation results on BRATS2015 in barely-supervised brain
tumor segmentation.

Dice (%) ↑
2 Labels / 252 Unlabels 4 Labels / 250 Unlabels 6 Labels / 248 UnlabelsMethods

Whole Core Enhancing Avg Whole Core Enhancing Avg Whole Core Enhancing Avg
Fully supervised 91.15 83.28 79.13 84.52 91.15 83.28 79.13 84.52 91.15 83.28 79.13 84.52
SASSNet [106] 67.45 39.12 43.81 50.13 70.82 61.37 68.00 66.73 80.57 63.54 67.61 70.57
UA-MT [213] 68.14 42.67 45.44 52.08 72.18 54.48 58.62 61.76 76.83 67.32 65.39 69.85
DTC [127] 55.42 44.88 57.31 52.54 79.47 67.35 65.86 70.89 85.04 66.63 66.36 72.68
URPC [128] 76.36 64.62 62.57 67.85 78.69 64.38 61.76 68.28 81.79 67.32 66.02 71.71
CPS [29] 76.38 64.47 64.93 68.59 84.94 69.67 68.24 74.28 86.56 71.58 70.99 76.38
CLD [116] 79.34 65.29 63.08 69.23 82.28 68.77 66.90 72.65 83.40 69.55 67.90 73.62
ComWin [198] 76.99 63.88 66.84 69.24 84.96 67.97 69.40 74.11 86.50 70.62 69.36 75.49
BarelySAM(Ours) 85.93 66.96 66.42 73.10 86.64 68.97 69.19 74.93 86.93 70.50 73.53 76.99

Image Preprocessing. The pre-processing of our MRI images initiates with skull-

stripping, co-registering, and re-sampling to a spatial resolution of 1mm3. Subsequently,

non-brain regions (black background) are cut out, and the images within brain areas are

normalized to a zero mean and unit variance.

Training. The training images initially undergo random scaling and rotation, followed by

random cropping to create 128×128×128 patches. Subsequently, we implement random

mirror and intensity augmentations, i.e., Gaussian blur, Gaussian noise, brightness

modifications, contrast modifications, low-resolution simulation, and gamma correction.

The network is optimized 25,000 iterations using Stochastic Gradient Descent (SGD),

with the momentum and weight decay set to 0.9 and 3e−5. The batch size is set to 2. We

adjust the learning rate in a “poly” way, as 0.01×(1− iter
max_iter )0.9. The selection probability

P is defined as 0.2. For the loss weight β in the labeled loss equation, we use a sequence

of [1.0,0.5,0.25,0.125,0.0] combined with the L1 norm. The update momentum α for the

TE network, as specified in the Exponential Moving Average (EMA) update equation, is

dynamically set to 0.99+0.01(1−cos(π · iter
max_iter +1)/2).

Testing. We utilize a sliding window technique for image prediction. Specifically, eight

overlapping patches of dimensions 128×128×128 are extracted, and the final predic-

tions are achieved by amalgamating these patch-level predictions. At the testing phase,

augmentation is applied through mirroring along all axes. Our methodology includes a

post-processing step to minimize false alarms by suppressing minor components in the

predictions. Specifically, brain tumors do not always contain enhancing areas. When the

count of pixels predicted to be part of an enhancing tumor is very low (i.e., fewer than

100), we treat these pixels as non-enhancing tumors, considering it as a false alarm.
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Table 4.3: Quantitative segmentation results on BRATS2020 in barely-supervised incom-
plete brain tumor segmentation.

Dice (%) ↑
2 Labels / 267 Unlabels 4 Labels / 265 Unlabels 6 Labels / 263 UnlabelsMethods

Whole Core Enhancing Avg Whole Core Enhancing Avg Whole Core Enhancing Avg
Fully supervised 86.05 76.77 60.74 74.52 86.05 76.77 60.74 74.52 86.05 76.77 60.74 74.52
SASSNet [106] 30.24 8.37 11.78 16.80 39.72 18.93 20.62 26.42 42.08 20.51 23.37 28.65
UA-MT [213] 35.80 21.63 18.91 25.45 39.59 18.34 20.67 26.20 40.50 21.76 23.47 28.58
DTC [127] 37.56 13.17 17.90 22.88 41.20 17.82 21.55 26.86 42.23 22.67 23.36 29.42
URPC [128] 48.61 26.56 22.31 32.49 52.88 36.16 27.76 38.93 53.33 35.04 29.33 39.23
CPS [29] 43.71 28.64 24.01 32.12 44.20 30.66 27.82 34.22 41.44 30.93 28.10 33.49
CLD [116] 38.65 21.49 21.94 27.36 38.38 23.40 23.41 28.40 39.37 22.51 23.75 28.54
ComWin [198] 42.26 27.12 26.00 31.79 41.04 26.64 26.92 31.53 42.30 27.35 27.47 32.37
RobustSeg [23] 47.62 26.63 26.83 33.69 59.28 35.09 29.46 41.28 61.97 39.89 33.72 45.19
RFNet [45] 61.69 36.72 31.99 43.47 70.24 46.94 37.87 51.68 72.25 49.77 41.61 54.54
BarelySAM(Ours) 83.65 64.10 53.18 66.98 83.78 66.09 51.98 67.28 84.39 68.69 54.11 69.06

Table 4.4: Quantitative segmentation results on BRATS2015 in barely-supervised incom-
plete brain tumor segmentation.

Dice (%) ↑
2 Labels / 252 Unlabels 4 Labels / 250 Unlabels 6 Labels / 248 UnlabelsMethods

Whole Core Enhancing Avg Whole Core Enhancing Avg Whole Core Enhancing Avg
Fully supervised 84.47 77.93 55.96 72.79 84.47 77.93 55.96 72.79 84.47 77.93 55.96 72.79
SASSNet [106] 36.26 16.18 14.41 22.28 38.56 25.76 26.40 30.24 49.17 29.75 26.98 35.30
UA-MT [213] 37.02 19.59 17.06 24.56 41.24 26.20 20.88 29.44 47.66 33.26 27.83 36.25
DTC [127] 39.98 17.01 19.75 25.58 44.43 29.38 25.06 32.97 45.90 28.03 26.27 33.40
URPC [128] 50.63 35.01 27.37 37.67 50.30 37.57 30.62 39.50 52.77 40.84 31.53 41.71
CPS [29] 42.29 38.39 24.16 34.95 42.30 38.71 26.93 35.98 39.01 45.03 30.74 38.26
CLD [116] 36.68 22.66 20.38 27.24 40.95 25.61 22.45 29.67 36.13 25.20 22.20 27.85
ComWin [198] 37.17 27.06 24.48 29.57 41.32 28.70 26.19 32.07 42.14 30.70 26.67 33.17
RobustSeg [23] 46.86 30.92 27.22 35.00 53.65 34.79 24.73 37.72 53.14 36.57 30.72 40.14
RFNet [45] 61.64 38.55 44.07 48.09 67.56 43.52 34.52 48.53 71.07 47.75 40.57 53.13
BarelySAM(Ours) 78.97 55.62 46.31 60.30 79.28 55.66 46.52 60.49 79.92 58.93 48.39 62.41

4.3 Experiments

Dataset. We evaluate our method on two brain tumor segmentation benchmarks [136],

i.e., BRATS2020 and BRATS2015. BRATS20201contains 369 training samples which

are randomly split into 269/100 samples for training/testing. BRATS2015 contains

274 training samples, among which 254/20 samples are adopted for training/testing

respectively.

Evaluation Metric. Dice coefficient [39], Sensitivity, Specificity, and Hausdorff Distance

1Since the annotations of the validation and test sets are held by the challenge organizer, following
[23, 45], we leverage the training subjects only.
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Table 4.5: Ablation study. SAM denotes the SAM-based pseudo label generation.

Dice (%) ↑
Methods

2 Labels / 267 Unlabels 4 Labels / 265 Unlabels 6 Labels / 263 Unlabels
MDM SAM Whole Core Enhancing Avg Whole Core Enhancing Avg Whole Core Enhancing Avg
Label only 74.69 53.52 60.20 62.80 78.44 59.80 63.98 67.41 80.94 65.26 69.80 72.00

78.61 58.49 67.07 68.06 86.07 68.37 72.25 75.56 86.87 69.21 72.24 76.11
✓ 88.02 72.54 71.69 77.42 88.99 74.68 73.82 79.16 89.37 80.59 75.45 81.80

✓ 87.56 74.37 74.64 78.86 88.82 75.77 76.88 80.49 89.45 80.79 77.08 82.44
✓ ✓ 88.48 77.58 74.90 80.32 89.70 78.38 76.37 81.48 89.92 81.80 77.85 83.19

Table 4.6: Quantitative segmentation results under three other testing criteria, i.e.,
Sensitivity, Specificity and Hausdorff Distance 95% (HD95).

Sensitivity (%) ↑ Specificity (%) ↑ HD95 (mm) ↓
Methods

Whole Core Enhancing Avg Whole Core Enhancing Avg Whole Core Enhancing Avg
Fully supervised 90.22 85.31 85.10 86.88 99.82 99.90 99.93 99.88 4.42 4.52 2.61 3.85
SASSNet [106] 55.37 24.25 50.31 43.31 99.36 99.50 99.36 99.41 38.39 42.02 51.16 43.86
UA-MT [213] 82.35 74.92 74.52 77.26 98.65 98.45 99.57 98.89 47.51 54.33 45.15 49.00
DTC [127] 66.56 24.22 55.48 48.75 99.77 99.94 99.94 99.88 17.94 28.28 20.55 22.26
URPC [128] 79.48 62.95 65.68 69.37 99.45 99.59 99.88 99.64 33.02 37.69 25.00 31.90
CPS [29] 76.41 52.42 67.92 65.58 99.50 99.85 99.91 99.75 32.36 30.81 22.98 28.72
CLD [116] 77.86 60.60 62.66 67.37 99.68 99.61 99.94 99.74 23.41 26.22 15.67 21.76
ComWin [198] 79.08 74.85 78.22 77.39 99.86 99.62 99.93 99.80 11.15 15.69 7.97 11.60
BarelySAM(Ours) 91.60 77.24 84.35 84.40 99.66 99.89 99.90 99.82 8.36 9.12 6.75 8.08

(HD) are used to measure the performance of segmentation predictions, defined as:

Dice= 2 · |P ⋂
Y |

|P|+ |Y | ,

Sensitivity= |P ⋂
Y |

|Y | ,

Specificity= |(1−P)
⋂

(1−Y )|
|1−Y | ,

HD=max{ sup
p∈∂P

inf
y∈∂Y

∥p− y∥2, sup
y∈∂Y

inf
p∈∂P

∥p− y∥2},

(4.9)

where P and Y denote predictions and the corresponding ground truth, respectively.

Barely-supervised Setting. Our experiments are conducted under three varying

situations, with 2, 4, and 6 labeled samples. In each situation, we use three distinct

training and testing splits to ensure robustness. We choose to annotate an even number

of images because brain tumors usually have two stages, i.e., HGG and LGG, which have

different characteristics and thus need to be considered simultaneously.
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4.3.1 Comparisons with the State-of-the-art

Barely-supervised Brain Tumor Segmentation. Table 4.1 and Table 4.2 compare our

method with five semi-supervised state-of-the-art methods, i.e., SASSNet [106], UA-MT

[213], DTC [127], URPC [128], and CPS[29], and two barely-supervised state-of-the-

art methods, i.e., CLD [116] and ComWin [198]. As shown in Table 4.1, our method

yields remarkable performance on barely-supervised segmentation on BRATS2020, e.g.,
surpassing the previous SOTA, i.e., ComWin [198], by 6.55%/5.45%/5.57% in terms of

average Dice score under all three barely-supervised scenarios. Table 4.2 further confirms

the exceptional performance of our method on BRATS2015. This demonstrates the

effectiveness of our method in exploiting multiple modalities and unlabeled data. Besides,

we also observe that, as the number of labeled samples increases, the segmentation

accuracy for three tumor regions improves, though the "Whole" tumor region sees a lesser

improvement. The lesser improvement might be because "Whole" tumors are simpler to

segment, requiring only a minimal amount of labeled images for high accuracy. Moreover,

as shown in Table 4.1, our method using as few as 6 labeled images nearly matches the

performance of fully-supervised segmentation, showing a minimal Dice score reduction

of 1.09%/4.22%/2.85% across three tumor areas.

Barely-supervised Incomplete Brain Tumor Segmentation. To validate that our

method can also deal with missing modality situations in the barely-supervised regime,

we also compare our method with the state-of-the-art methods in regard to Barely-

supervised Incomplete Brain Tumor Segmentation (BIBTS), as illustrated in Table 4.3

and Table 4.4. In BIBTS, a network needs to consider all fifteen modality combinations

from four-modality subjects according to limited labeled training samples, and the

averaged accuracy is leveraged to compare. In this fashion, BIBTS methods are able

to handle both the missing modality problem and the insufficient annotation problem

and thus are more easily deployed in clinical practice. In Table 4.3 and Table 4.4, two

incomplete brain tumor segmentation methods, i.e., RobustSeg [23] and RFNet [45], are

used for better comparison. As seen in the tables, our method significantly outperforms

current state-of-the-art techniques. For instance, on BRATS2020, our method exceeds

RFNet by 23.57%/15.60%/14.52% in all three barely-supervised scenarios, showcasing its

effectiveness in handling incomplete brain tumor segmentation under limited supervision.
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Figure 4.4: Impact of numbers of labeled samples.

Table 4.7: Analysis of the impact of SAM prompts.

Dice (%) ↑
Method

Whole Core Enhancing Avg
w/o SAM 88.02 72.54 71.69 77.42
w/o point prompt 87.95 74.98 73.45 78.79
w/o box prompt 88.21 75.60 74.10 79.30
w/o contrastive point selection 88.35 76.20 74.13 79.56
Ours 88.48 77.58 74.90 80.32

4.3.2 Diagnostic Experiments

To rigorously test our key components, we perform a series of ablative studies on

BRATS2020. The reported results are built under “2 Labels/267 Unlabels” situation

unless otherwise specified.

Effectiveness of SAM and MDM. As shown in Table 4.5, employing SAM and MDM

individually enhances segmentation accuracy in all barely-supervised scenarios. For

example, incorporating SAM into the baseline improves the average Dice score by 10.80%,

4.93%, and 6.33% across three scenarios. Additionally, we observe that combining SAM

and MDM further increases accuracy. This demonstrates the effectiveness of SAM and

MDM in boosting tumor segmentation under limited annotation situations.

Impact of Number of Labeled Samples. In Fig.4.4, we evaluate our method under the

scenarios with 2, 4, 6, 10, 20, 40, 80, and, 269 (full-supervised) labeled samples. As seen,

the performance exhibits large improvement as the labeled number increases from 2 to

6, but the gain becomes negligible when exceeding 6. We also observe that our method

with 6 labeled images can already achieve performance nearly on par with that of the

fully-supervised situation.

Impact of SAM Prompts. SAM in this work generates predictions according to the
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Figure 4.5: Qualitative comparisons on BRATS2020 with 2, 4 and 6 labeled samples.
Multi-modal samples and the corresponding segmentation results from state-of-the-art
methods are shown.

input prompts, i.e., point prompt and box prompt. Table 4.7 analyzes the impact of

these two prompts by applying them separately. As seen, applying point or box prompts

solely leads to performance improvement. This demonstrates that incorporating SAM

could provide additional knowledge for network training. An additional observation is

using point prompts can bring more performance improvement than box prompts. This

may be because point prompts would provide more detailed information and help SAM

generate more accurate pseudo labels. Besides, Table 4.7 validates the effectiveness of

the contrastive point selection, as the method without it achieves worse segmentation

accuracy. Finally, Table 4.7 illustrates that combining box and point prompts will lead to

further improvement as these two prompts would bring more information.

Impact of the Number of Points in SAM. For point prompts in SAM, we randomly

select 5 points for each class. For each class, we assign the corresponding 5 points as

43



CHAPTER 4. BARELY-SUPERVISED BRAIN TUMOR SEGMENTATION VIA
EMPLOYING SEGMENT ANYTHING MODEL

Table 4.8: Analysis of the impact of number of points in SAM.

Dice (%) ↑
# Points

Whole Core Enhancing Avg
0 88.21 75.60 74.10 79.30
1 88.42 75.52 75.64 79.86
3 88.10 76.82 74.75 79.89
5 88.48 77.58 74.90 80.32
8 88.67 76.78 75.68 80.38
10 88.59 77.61 74.69 80.30

Table 4.9: Analysis of the probability of partial modal combinations ps.

Dice (%) ↑ps
Whole Core Enhancing Avg

0.0 87.56 74.37 74.64 78.86
0.2 88.48 77.58 74.90 80.32
0.4 88.95 78.21 73.33 80.16
0.6 88.28 74.76 72.73 78.59
0.8 88.57 74.24 72.49 78.43
1.0 81.08 47.51 47.90 58.83

positive points and points of other classes as negative points. We have conducted an

ablation study on the number of selected points in Table 4.8. As seen, the performance

exhibits large improvement as the point number increases from 0 to 5, but the gain

becomes negligible when exceeding 5.

Impact of Partial Modality Combination Probability ps. We investigate the impact

of ps (described in Sec. 4.2.2) in Table 4.9 by reporting results with various ps (from 0.0

to 1.0). Table 4.9 shows that our model attains comparable segmentation accuracy across

different values of P, namely 0.2 and 0.4. This observation highlights the robustness

of MDM to variations in ps. Consequently, we set ps to 0.2 in our experimental setup.

Furthermore, it is worth noting that our model exhibits inferior performance when P
is set to 0.0 (that is, without MDM), indicating the effectiveness of the MDM module.

Additionally, in Table 4.9, we observe a substantial decrease in accuracy when ps is set

to 1.0. The decline can be attributed to the potential limitation of leveraging partial

modality combinations throughout the entire training process, hindering the network’s

effective utilization of information from the complete set of modalities.

Comparisons under Other Criteria. In Table 4.6, we additionally use three testing

criteria, i.e., Sensitivity, Specificity, and Hausdorff Distance 95% (HD95), to strengthen

the comparison. As shown in Table 4.6, our method achieves better accuracy in Sensitivity

(77.39% → 84.40% in Sensitivityavg) and HD95 (11.60% → 8.08% in HD95avg). This
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demonstrates our method is better at locating tumor regions. While for Specificity,

several previous methods tend to predict foreground as background and thus achieve

better Specificity (even better than fully supervised training), their Sensitivity is lower.

Qualitative Comparisons. Figure 4.5 illustrates segmentation predictions from our

method and the state-of-the-art methods on BRATS2020 under all three barely-supervised

settings, i.e., 2 Labels, 4 Labels, and 6 Labels. As seen in the figure, our method predicts

more accurate segmentation maps.

4.4 Conclusion

This chapter introduces the proposed training framework, named BarelySAM, for barely-

supervised brain tumor segmentation. BarelySAM first incorporates Segment Anything

Model (SAM) into training to compensate for the lack of labeled images. Specifically,

BarelySAM exploits the pre-trained knowledge from SAM via the pseudo-labeling tech-

nique, thus assisting network training and improving segmentation performance. In

addition, BarelySAM devises Multi-modality Dependency Minimization (MDM), which

considers partial modality combinations from multi-modal samples. In this fashion,

MDM prevents networks from overly relying on specific modalities and encourages the

effective exploitation of each modality. Furthermore, BarelySAM introduces consistency

supervision based on MDM to fully use unlabeled data, thereby further enhancing

network performance. Extensive experiments reveal the superiority of BarelySAM.

This chapter (§4) introduces BarelySAM and provides another way for the insufficient

annotation challenge. Therefore, this chapter supplements §3. To be specific, BarelySAM

addresses lesion segmentation, such as brain tumor segmentation, thus compensates

for the inability of §3 to process lesion areas. Furthermore, §3 and §4 facilitate the full

exploitation of unlabeled data and achieve improved segmentation performance, thus

helping the deployment of the medical image segmentation system (§6).
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5
INCOMPLETE MULTI-MODAL SEGMENTATION WITH

REGION-AWARE FUSION NETWORK

5.1 Introduction

Brain tumor segmentation, aiming to segment different brain tumor regions, is vital for

clinical assessment and surgical planning. In order to improve the segmentation accuracy,

most existing methods [24, 53, 79, 84, 171, 222, 233] use four modalities simultaneously,

namely T1-weighted (T1), Fluid Attenuation Inversion Recovery (Flair), T2-weighted

(T2), and contrast-enhanced T1-weighted (T1c). However, the missing modality problem

often happens in clinical practice because of various patient conditions and scanning

protocols. Therefore, these standard methods fail to perform well in practice.

Incomplete multi-modal brain tumor segmentation approaches [23, 48, 66, 237] have

been proposed to deal with various missing situations. Havaei et al.[66] and Dorent

et al.[48] compute the mean and variance across accessible multi-modal features as

fused features. However, this fusion treats each modality equally regardless of different

missing scenarios and thus may fail to aggregate features effectively. Later, Chen et
al.[23] and Zhou et al.[237] leverage attention mechanisms to emphasize contributions

from different accessible modalities. However, they do not fully exploit the relations

between tumor regions and image modalities. In particular, different modalities exhibit

This chapter is based on joint work [45] with Xin Yu and Yi Yang, presented primarily as it appears
in the ICCV 2021 proceedings.
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Flair T1c T2T1 Labels

Figure 5.1: Illustration of different sensitivities of modalities to different brain tumor
regions. From left to right: Images of four modalities, i.e., Flair, T1c, T1 and T2, and the
corresponding labels of three patients are shown. In the segmentation results, different
colors denote different brain tumor regions.

unique appearances and, as a result, have varying sensitivities to different tumor regions.

For example, as visible in Fig. 5.1, T1c is more sensitive to the red and blue tumor areas,

while Flair and T2 provide more information for the green tumor area. This observation

suggests that we should focus differently on various modalities and regions to achieve

accurate brain tumor segmentation,

Taking the relations between modalities and regions into account, we propose a

Region-aware Fusion Network (RFNet) to aggregate various accessible multi-modal

features from different regions adaptively. Our RFNet is constructed by an encoder-

decoder architecture, where four encoders are employed to extract features from different

modal images. In order to establish the relations between image modalities and tumor

regions, we introduce a Region-aware Fusion Module (RFM) into our RFNet. RFM first

divides modal features into different regions (i.e., tumor sub-structure) via a learned

probability map. The probability map indicates the probabilities of tumor regions at each

pixel. Then, RFM generates corresponding attention weights in each region to adaptively

control the contributions of different image modalities.

Since brain tumors usually occupy a small part of the brain, we introduce a region-

norm pooling operation to obtain a normalized global feature from each region. Thereby,

we prevent the global feature from being numerically too small. Then, we use two fully

connected layers followed by a sigmoid activation to obtain attention weights from the

global feature for image modalities and tumor regions. In this fashion, RFM will generate
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larger weights for the modalities that are more sensitive to certain tumor regions, thus

leading to discriminative fused features for accurate segmentation.

Due to the missing hetero-modal data, RFNet will face the problem of unbalanced

training. To be specific, RFNet might try to seek the easiest way to segment brain tumors

from the multi-modal data. In other words, the network segments each region mainly by

exploiting the modalities that are sensitive to the region rather than all the modality

information. However, this will lead to poor segmentation accuracy when some modalities

are missing. To tackle this problem, we develop a segmentation-based regularizer. In

particular, a weight-shared decoder is employed to segment each modality individually.

This approach compels each modal encoder to learn distinctive features for all tumor

regions. Therefore, RFNet can segment different regions well even when some modalities

are missing. Benefiting from the proposed fusion module and regularizer, RFNet achieves

superior segmentation performance on BRATS2020, BRATS2018 and BRATS2015. This

demonstrates the superiority of our method.

Overall, our contributions are threefold:

• We propose a novel Region-aware Fusion Network (RFNet) to solve the missing

modality problem. In particular, we devise a novel Region-aware Fusion Module

(RFM) by explicitly taking the relations between regions and modalities into

account. With the help of RFM, RFNet effectively aggregates diverse combinations

of modal features and produces discriminative fused features for segmentation.

• To address the unbalanced training problem of RFNet, we propose a segmentation-

based regularizer. The proposed regularizer enforces each modal encoder to produce

discriminative features for segmenting all the tumor regions, thus further improv-

ing the discriminativeness of the fused features.

• Taking advantage of the proposed fusion module and regularizer, RFNet achieves

superior segmentation accuracy on the widely used benchmarks.

5.2 Proposed Method

In this work, we design RFNet for incomplete multi-modal brain tumor segmentation. In

particular, we develop an RFM module to take advantage of available modalities effec-

tively during feature fusion. In addition, we propose a segmentation-based regularizer to

improve the feature representations of each modal encoder further, thus facilitating the

final segmentation performance. In this section, we will introduce our designed RFNet

as well as the proposed regularization term in detail.
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Figure 5.2: Illustration of our proposed RFNet. Four encoders, i.e., EFlair, ET1c, ET1
and ET2, are employed to extract features from four modalities individually. Dsep is our
segmentation-based regularizer network, while Dfuse with the designed RFM is used to
attain the final segmentation predictions. δm simulates different missing scenarios.

5.2.1 Task Definition

Incomplete multi-modal brain tumor segmentation focuses on three brain tumor areas

segmentation, i.e., the whole, core and enhancing tumor, from various combinations of

multi-modal MRI images, including Flair, T1c, T1 and T2. The whole tumor is composed of

all three tumor sub-regions, i.e., the necrotic and non-enhancing tumor core (NCR/NET),

the peritumoral edema (ED), and the GD-enhancing tumor (ET). The tumor core consists

of NCR/NET and ET, while the enhancing tumor involves ET. Figure 5.1 illustrates

NCR/NET, ED and ET in red, green and blue, respectively.

To assess our method’s resilience in different situations of missing data, we evaluate

its segmentation results on all combinations of modalities, and the average score is

reported for comparison. During training, all modalities and labels are available, and we

simulate missing scenarios by setting missing modal features to zero.

5.2.2 Architecture Overview

We adopt a 3D U-Net [33] architecture with a late fusion strategy to construct our

RFNet. As shown in Fig. 5.2, four encoders, i.e., {Em}m∈{Flair,T1c,T1,T2}, are employed to

extract features from four modalities separately. The decoder Dsep is designed to segment

each modality separately, thus assisting our four encoders in learning representative

region features. Furthermore, Dsep shares weights for the four image modalities, so that

four modal features can be projected into a shared latent space. This also significantly
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facilitates the later feature aggregation and fusion.

The decoder Dfuse is designed to obtain the final segmentation results from the

aggregated features, as visible in Fig. 5.2. In each stage, the encoder features are fused

by the designed RFM. Note that, RFM takes not only four encoder features but also the

features from the prior layer as input. This is because that the previous layer features

can be used to embed semantic information of tumor regions, thus making RFM region-

aware. In the bottleneck (i.e., the fourth stage S4), there are no previous layer features

available for RFM. Therefore, we leverage an additional convolutional layer to embed

the encoder features into semantic features for the fusion module in Fig. 5.2.

5.2.3 Region-aware Fusion Module

Considering different sensitivities of image modalities to different regions, as shown in

Fig. 5.1, our RFNet aims to pay different attention to different modalities in each region.

In this fashion, discriminative features for tumor regions can be obtained, leading to

the improvement of segmentation accuracy. To this end, we develop an RFM module

that is designed to fuse available modal features in a region-aware fashion, as visible in

Fig. 5.3. RFM mainly consists of two parts: probability map learning and region-aware

multi-modal feature fusion.

Probability Map Learning: To achieve the region-aware characteristics, our RFM

first learns a probability map that indicates the probabilities of brain tumor structure

(including healthy brain regions) at each location. As shown in Fig. 5.3, the probability

map is obtained from the decoder feature of the previous layer f de and the available

encoder features ©m∈Ω [ f m·δm]. Employing the encoder features in RFM is because they

offer more detailed spatial information and can improve the accuracy of the probability

maps. © denotes the concatenation operation while Ω denotes the modality set, including

Flair, T1c, T1 and T2. δm is set to either 0 or 1, indicating whether the m modality is

missing or not. The probability map learning procedure is defined as:

(5.1) ŷpm
i, j =

exp(φ j( f pm
i, j ;θ j))∑

k∈K exp(φ j( f pm
i, j ;θ j)k)

,

where f pm
i, j represents the features from f de

i, j and ©m∈Ω
[

f m
i, j·δm

]
. i and j denote the i-th

subject and the j-th stage/level of the network, respectively. ŷpm
i, j is the learned probability

map. φ j denotes the region classifier in the j-th stage and θ j is the corresponding

parameters. K denotes four brain tumor regions which need to be segmented, including

BG (background), NCR/NET, ED and ET.
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Figure 5.3: Illustration of our region-aware fusion module (RFM). The probability map is
first learned to divide multi-modal features into different regions. Then, an attention
mechanism is designed to aggregate features in a region-aware manner.

The probability map (shown in Fig. 5.4) is learned under the supervision of the ground

truth by a weighted cross-entropy loss LWCE [23] and a Dice loss LDL, expressed as:

(5.2) Lpm =
N∑

i=1

Snum∑
j=1

(
LWCE(ψ j( ŷpm

i, j ), yi)+LDL(ψ j( ŷpm
i, j ), yi)

)
,

where N and Snum denote the number of training data and stages. ψ j denotes the up-

sampling operation in the j-th stage, aiming to match the resolution of the probability

map ŷpm
i, j and the ground-truth mask yi. LWCE is formulated as:

(5.3) LWCE( ŷ, y)= ∑
k∈K

∥−αk · yk · log( ŷk)∥1

H ·W ·Z ,
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where ∥ ·∥1 denotes the L1 norm, and W, H and Z denote the length, width, and height of

the 3D volumes, respectively. αk is the weight for the region k and αk = 1− ∥yk∥1∑
k′∈K ∥yk′∥1

.

LDL is formulated as:

(5.4) LDL( ŷ, y)= 1− ∑
k∈K

2 · ∥ ŷk
⋂

yk∥1

Knum · (∥ ŷk∥1 +∥yk∥1)
,

where
⋂

denotes the overlap between predictions and ground-truth masks, and Knum

denotes the number of regions in K .

Region-aware Multi-modal Fusion: With the help of the probability map, RFM has

managed to divide multi-modal features into different regions. Thus, the region-aware

fusion is conducted on the divided features in each region.

The feature division is implemented by multiplying features with the probability

map, written as:

fk =©m∈Ω
[
f m·δm] · ŷpm

k ,(5.5)

where fk
1 denotes the divided features of the available modalities in the tumor region k

and f m denotes the encoder feature of the modality m.

As shown in Fig. 5.3, after feature division, modal-wise attention weights are learned

individually in different regions to aggregate the corresponding features. Figure 5.5

illustrates the generation procedure of the attention weight in the region k. Specifically,

the global feature of the region k is obtained via an average pooling operation and is

then normalized by the probability map ŷpm
k . Employing this region-norm pooling can

prevent the averaged global feature from being numerically too small, given the fact

that brain tumors usually occupy only a small area in a brain. Then, two fully connected

layers, along with a Leaky ReLU layer and a sigmoid activation, are adopted to embed

the normalized feature into a modal-wise attention weight. As shown in Fig 5.5, the

generated attention weights are then applied to the divided feature fk to adjust the

contributions from available modalities to obtain discriminative fused features.

Considering the distinct sensitivities of different modalities in various regions, RFM

employs separate attention modules for each region to generate corresponding attention

weights, as shown in Fig. 5.3. By paying more attention to more sensitive modalities,

RFM is able to generate more representative features for each region. To feed these

region features to the decoder, in Fig. 5.3, RFM adopts a concatenation operation followed

by a convolutional bottleneck. A shortcut connection is also employed, similar to the

residual learning [67].
1For simplicity, we omit the subscripts i and j without causing any confusion.
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Figure 5.5: Illustration of the attention module. The region-norm pooling normalizes the
global feature of fk by the average probability of ŷk to obtain the features to generate
the attention weights.

5.2.4 Segmentation-based Regularizer

The phenomenon of missing multi-modal data usually introduces unbalanced training

issues [191]. To be specific, deep neural networks usually opt to segment tumor regions

mainly based on discriminative modalities. Therefore, some modal encoders are well-

trained to be able to identify the corresponding tumor regions, while other encoders are

not. This would lead to severe accuracy degradation in tumor segmentation when the

discriminative modalities are missing.

To solve this problem, we propose a segmentation-based regularizer. As illustrated

in Fig. 5.2, RFNet adopts a weight-shared decoder Dsep to segment each modal image
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ties. Right: Estimated probability maps from different combinations of image modalities 
in different stages/levels of our network and the corresponding ground truth.
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Table 5.1: Quantitative segmentation results on BRATS2020. “Complete”: the whole
tumor, “Core”: the tumor core , and “Enhancing”: the enhancing tumor. All the results
are reproduced by using the authors’ codes.

Modalities
Dice scores (%)

Complete Core Enhancing
F T1 T1c T2 [66] [48] [23] Ours [66] [48] [23] Ours [66] [48] [23] Ours
# # #  79.85 80.75 82.20 86.05 54.22 57.43 61.88 71.02 31.43 28.70 36.46 46.29
# #  # 64.58 68.54 71.39 76.77 69.41 73.01 76.68 81.51 63.24 66.59 67.91 74.85
#  # # 63.01 54.93 71.41 77.16 42.42 36.73 54.30 66.02 16.53 12.33 28.99 37.30
 # # # 52.29 82.69 82.87 87.32 24.97 51.15 60.72 69.19 9.00 20.87 34.68 38.15
# #   84.45 83.37 85.97 87.74 77.60 77.85 82.44 83.45 70.30 68.74 71.42 75.93
#   # 72.50 71.58 76.84 81.12 75.59 76.49 80.28 83.40 70.71 67.82 70.11 78.01
  # # 65.29 85.01 88.10 89.73 41.58 55.10 68.18 73.07 13.99 22.53 39.67 40.98
#  #  82.31 81.58 85.53 87.73 56.38 59.29 66.46 73.13 28.58 28.73 39.92 45.65
 # #  81.56 87.40 88.09 89.87 55.89 61.87 68.20 74.14 28.91 30.48 42.19 49.32
 #  # 69.37 86.13 87.33 89.89 70.86 76.86 81.85 84.65 68.31 69.53 70.78 76.67
   # 73.31 87.10 88.87 90.69 75.07 79.51 82.76 85.07 70.80 71.32 71.77 76.81
  #  83.03 88.07 89.24 90.60 57.40 63.46 70.46 75.19 29.53 30.60 43.90 49.92
 #   84.64 88.33 88.68 90.68 77.69 78.68 81.89 84.97 71.36 69.84 71.17 77.12
#    85.19 84.27 86.63 88.25 79.05 79.99 82.85 83.47 71.67 69.74 71.87 76.99
    85.19 88.81 89.47 91.11 78.58 80.40 82.87 85.21 71.49 70.50 71.52 78.00

Average 75.10 81.24 84.17 86.98 65.45 67.19 73.45 78.23 47.73 48.55 55.49 61.47

separately. The corresponding weighted cross-entropy loss and Dice loss are employed as

the regularization term, written as:

(5.6) Lreg =
N∑

i=1

∑
m∈Ω

(
LWCE( ŷsep

i,m , yi)+LDL( ŷsep
i,m , yi)

)
,

where ŷsep
i,m denotes the predicted segmentation mask of the i-th subject from the modality

m. The segmentation-based regularizer enforces each modal encoder to be discriminative

to each tumor region. In this manner, RFNet is able to obtain representative encoder

features, thus improving the segmentation performance.

5.2.5 Overall Loss

As shown in Fig. 5.2, Dfuse is employed to predict the final segmentation mask from

the fused features. The weighted cross-entropy loss and Dice loss are used to align the

predictions to the corresponding ground-truth segmentation maps, expressed as:

(5.7) L f use =
N∑

i=1

(
LWCE( ŷ f use

i , yi)+LDL( ŷ f use
i , yi)

)
,
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where ŷ f use
i is the predicted segmentation mask from the i-th subject. Therefore, the

overall loss of our RFNet is defined as:

(5.8) L =Lpm +Lreg +L f use.

5.3 Experiments

5.3.1 Implementation Details

RFNet adopts 3D-Unet [33] with four-stage encoders ({Em}m∈Ω) and decoders (Dsep and

D f use). In the data preprocessing phase, images undergo skull stripping, co-registration,

and adjusting the resolution to 1mm3 per voxel. Building upon the methods of previous

studies [23, 48], we additionally eliminate the surrounding black areas of brains and

normalize the brain area with a mean of zero and variance of one for all MRI modalities.

In the training phase, images undergo augmentation, including random crop (80×
80×80), random rotations, brightness adjustments, and mirror flips. The network is

trained for 300 epochs, and the batch size is set to 2. Besides, we exploit Adam [90] with

β1 = 0.9 and β2 = 0.999 to optimized networks, and set weight decay to 1e−5. The “poly”

learning rate strategy is employed, adjusting learning rate as 2e−4 × (1− epoch
max_epoch )0.9.

Following the approach [23], we segment volumes in a patch-wise way. To be spe-

cific, we segment 80×80×80 patches, which slide over test volumes, and merge these

patch predictions to obtain final predictions. During the sliding process, 50% overlap

is ensured between adjacent patches. After prediction, we perform a post-processing

step to minimize false alarms by suppressing minor components in the predictions. To

be specific, brain tumors do not always have enhancing tumors. When the count of

pixels predicted as enhancing areas is below 500, we treat these pixels as non-enhancing

tumors, considering it as a false alarm.

5.3.2 Datasets and Evaluation Metric

Datasets: We assess RFNet using three datasets from BRATS [136], namely BRATS2015,

BRATS2018, and BRATS2020. Samples in these three datasets contain usually contain

four modalities, including T2, T1, T1c, and Flair.

BRATS2020 contains 219/50/100 for train/val/test. BRATS2018 comprises 199/29/57

for train/val/test. Additionally, for BRATS2018, we adopt a three-fold validation

using the same division lists as referenced in [48]. BTATS2015 has 242/12/20 for
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Table 5.2: Ablation study on RFNet. The average Dice scores of fifteen multi-modal
combinations are reported. “Reg”: the proposed segmentation-based regularizer, “RFM”:
the developed region-aware fusion module, “PostPro”: the post-processing technique.

Methods
Average Dice scores (%)

Complete Core Enhancing
Baseline 83.20 71.72 53.73
+RFM 85.07 75.91 56.78
+Reg 86.07 76.89 57.96
+Reg+RFM 86.98 78.23 59.05
+Reg+RFM+PostPro 86.98 78.23 61.47

Table 5.3: The necessity of our regularizer and RFM. “wi rec regularizer’: employing a
reconstruction-based regularizer rather than the segmentation-based regularizer. “modal-
wise” and “channel-wise”: applying modal-wise and channel-wise attention to the feature
maps instead of in a region-aware manner.

Methods
Average Dice scores (%)

Complete Core Enhancing
wi rec regularizer 85.38 75.50 59.64
channel-wise 85.81 76.36 60.11
modal-wise 85.87 77.02 61.01
RFNet 86.98 78.23 61.47

train/val/test. Given that BRATS2020 is the most recent and largest dataset, our

primary focus in this work is on BRATS2020.

Evaluation Metric: Dice coefficient [39] is employed in this work, as defined by:

(5.9) Dicek̄( ŷ, y)= 2 · ∥ ŷk̄
⋂

yk̄∥1

∥ ŷk̄∥1 +∥yk̄∥1
,

where k̄ represents various tumor classes. Dicek̄ refers to the Dice score for the tumor

class k̄. Higher Dice scores indicate greater similarity between predictions and the

ground truth, reflecting improved segmentation accuracy.

5.3.3 Comparisons to State-of-the-arts

In Table 5.1 and Fig. 5.6, RFNet is compared with three SOTA methods, including HeMIS

[66], U-HVED [48], and RobustSeg [23]. HeMIS [66] leverages the mean and variance

of available modal features as the aggregated feature for segmentation. U-HVED [48]

introduces multi-modal variational auto-encoders (MVAE) [199] to project different

incomplete multi-modal images into a shared latent space. RobustSeg [23] disentangles

content codes from appearance for segmentation and introduces a gated feature fusion to
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Figure 5.6: Visual comparison results. On the left are four image modalities. On the right,
segmentation masks from various methods under four different missing situations.

aggregate multi-modal features. These methods do not explicitly take advantage of the

relations between modalities and regions and neglect the unbalanced training problem.

As shown in Table 5.1, RFNet achieves superior segmentation performance. For in-

stance, compared with the second best method, i.e., RobustSeg [23], our RFNet improves

the average Dice scores by 2.81%, 4.78% and 5.98% in the whole, core, and enhancing

tumor, respectively. Moreover, RFNet outperforms the state-of-the-art methods on all

fifteen multi-modal combinations. This demonstrates the superiority of RFNet.

5.3.4 Ablation Study

Table 5.2 reports the ablation study of RFNet. The baseline model leverages a 3×3×3

convolutional layer to aggregate encoder features. As seen, the proposed region-aware

fusion module and the segmentation-based regularizer can both improve the network

significantly. For example, employing RFM increases the average Dice scores of three

tumor areas by 1.87%, 4.19% and 3.05%, respectively. This is because RFM manages to

effectively aggregate features and thus provides representative information for segmen-

58



5.3. EXPERIMENTS

Figure 5.7: Visual results of RFNet. On the left are four image modalities. On the right,
segmentation maps predicted by our RFNet under all missing situations.

Table 5.4: Quantitative segmentation results on BRATS2015. “†”: reproduced based on
the authors’ code.

Methods
Average Dice scores (%)

Complete Core Enhancing
HeMIS [66] 68.22 54.07 43.86

81.57 64.68 56.76U-HVED† [48]
RobustSeg [23] 84.45 69.19 57.33

86.13 71.93 58.98Ours
Ours+PostPro 86.13 71.93 64.13

tation. Moreover, since the proposed regularizer helps the modal encoders discriminative

to each region, applying the regularizer with RFM further improves segmentation re-

sults, as visible in Table 5.2. The post-processing technique is introduced to reduce

false alarms of enhancing tumors, thus improving the segmentation performance of

enhancing tumors. To demonstrate the effectiveness of the region-aware operation, we

apply modal-wise attention to each modal feature (i.e., a scalar for each modality) and

channel-wise attention to all the concatenated features. As shown in Table 5.3, the model

without the proposed region-aware operation yields inferior segmentation accuracy. This

is because applying the same attention weights, either modal-wise or channel-wise at-

tention, to the entire image does not enable a network to focus on the tumor regions.

In Table 5.3, a reconstruction-based regularizer is adopted to replace the proposed

segmentation-based regularizer but achieves inferior performance. This is because the

reconstruction-based regularizer mainly focuses on restoring brain appearances rather

than learning discriminative representations for tumor segmentation.
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Table 5.5: Quantitative segmentation results on BRATS2018. “∗”: provided by the au-
thors.

Methods
Average Dice scores (%)

Complete Core Enhancing
HeMIS [66] 78.60 59.70 48.10
U-HVED [48] 80.10 64.00 50.00
RobustSeg∗ [23] 84.37 69.78 51.02
Ours 85.67 76.53 54.15
Ours+PostPro 85.67 76.53 57.12

5.3.5 Comparisons in BRATS2015 and BRATS2018

In addition to BRATS2020, we also validate the superiority of RFNet on BRATS2015

and BRATS2018 in Table 5.4 and Table 5.5, respectively. Note that, U-HVED [48] and

RobustSeg [23] conduct experiments on only one dataset, e.g., BRATS2018 or BRATS2015.

Therefore, we obtain the BRATS2015 accuracy of U-HVED [48] with their official code

and attain the BRATS2018 results of RobustSeg [23] from the authors. As shown in

Table 5.4 and Table 5.5, our method improves the segmentation accuracy significantly

on both two datasets. For instance, the average Dice scores of the three tumor areas on

BRATS2018 are boosted by 1.30%, 6.75% and 6.10% by our RFNet. This validates the

superiority of our method.

5.3.6 Visualization

Visualization of the Segmentation Results: In Fig. 5.7, we illustrate the segmen-

tation masks from RFNet with all fifteen multi-modal combinations. Figure 5.7 demon-

strates RFNet’s capability to effectively segment brain tumors under various scenarios

of missing data. For instance, RFNet produces an accurate segmentation map using only

Flair and T1c modal images.

Visualization of the Attention Weights: In Fig. 5.8, we illustrate our generated

attention weights, which are employed to fuse available modalities adaptively in each

region. Since the deeper stage in RFNet encodes high-level semantic information, which

is vital for segmentation, we opt to visualize the attention weights at the fourth stage.

During inference, since missing modal features (zero tensors) provide no information, we

set the corresponding attention weights to zero. As shown in Fig. 5.8, T1c modality (in

red) receives more attention in NCR/NET and ET, while in ED, more attention is paid to

Flair (in blue) and T2 (in yellow) modalities. This finding aligns with the observation

in Fig. 5.1, which shows that the T1c modality is particularly sensitive to NCR/NET
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Figure 5.8: Visualization of the generated attention weights by our RFM at the fourth
stage. The four panels demonstrate different cases of missing modalities. In each panel,
attention weights (in numbers) are used to aggregate available modalities (in colors)
adaptively in diverse regions (in rows). Larger colored boxes denote larger attention
weights for the corresponding modality.

and ET regions, whereas the Flair and T2 modalities are more responsive to ED areas.

Therefore, RFNet is able to provide larger attention weights for the sensitive modalities

and thus obtains discriminative features for each region.

5.4 Conclusion

This chapter devises a region-aware fusion network (RFNet) for incomplete multi-modal

brain tumor segmentation. RFNet develops a region-aware fusion module (RFM) to

aggregate various available modalities effectively in a region-aware manner, thereby

achieving more representative features and better segmentation performance. Besides,

RFNet devises a segmentation-based regularizer, which not only improves each modal

encoder but also expedites network training. Extensive experiments show that RFNet

markedly surpasses the current state-of-the-art in performance. This chapter considers

the missing modality challenges in real-world practice, which can largely improve the

robustness of the medical image segmentation system (§6) to multi-modal images.
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6
CLUSTERING PROPAGATION FOR UNIVERSAL MEDICAL

IMAGE SEGMENTATION

6.1 Introduction

In the realm of medical imaging, the practice of precisely revealing anatomical or patho-

logical structure changes in a pixel observation holds the promise to substantially ad-

vance diagnostic efficiency[187]. Depending on the presence of user interactions, it can be

categorized into automatic or interactive medical image segmentation (AMIS/IMIS)[149],

with the latter involving active user engagement (e.g., click, scribble) throughout the

segmentation process[179, 239].

Benefiting from the rapid development of deep learning techniques, both AMIS and

IMIS have witnessed great progress in their respective field. For AMIS, the emerging

of seminal work [153] leads the research efforts towards developing stronger back-

bones [33, 140, 172], harnessing multi-scale features [84, 163, 243] or incorporating

attention mechanism [40, 144, 192, 196], etc. Conversely, IMIS centers its primary fo-

cus on effectively integrating user inputs into segmentation models[130, 181], yielding

remarkable performance. Nevertheless, such a tailored paradigm for each task greatly

diffuses the research endeavors, impeding the seamless transfer of advancement made

from one task to another due to the fundamental differences in model architecture and

This chapter is based on joint work [41] with LiuLei Li, Wenguan Wang, and Yi Yang, presented
primarily as it appears in the CVPR 2024 proceedings.
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Figure 6.1: (a-b) Existing volume-wise and slice-wise solutions. (c) Our slice-to-volume solution
that bridges distant slices by cluster center propagation and further unifies automatic/interactive
segmentation under the same model with 2D segmentation networks.

training strategy. Moreover, when working with the same dataset, current solutions

necessitate the development of two separate models for AMIS and IMIS, respectively.

This results in a duplication in terms of both training time and network parameters.

In this work, we aim to formulate a universal segmentation framework capable

of addressing both AMIS and IMIS within one unified model and a single training
session. Towards this, we first initiate a thorough exploration of the limitations com-

monly observed in current AMIS and IMIS solutions: i) the top-leading approaches for

volume segmentation rely heavily on 3D networks which suffer from slow inference[84]

and present significant challenges in deploying on hospital devices that usually exhibit

limited parallel computation capabilities, ii) they prove inefficient in bridging remote

slices due to the usage of sliding window inference to handle large memory consumption,

which further hinders the broadcast of user inputs to entire volumes, iii) current inter-

active solutions are limited to handling single foreground class, in contrast to automatic

approaches, which develop rapidly and excel in multi-class segmentation.

To solve the aforementioned limitations as well as reconcile AMIS and IMIS, we

proposed S2VNet. It draws inspiration from the clustering-based image segmentation

methods [112, 142, 215, 216] that utilize a set of learnable queries as cluster centers

to aggregate pixel features associated with target objects and update in an iterative

manner. This insightful approach prompts us to reformulate volumetric segmentation

by utilizing mere 2D segmentation models. Specifically, it is observed that objects in a

volume usually manifest identical representations across different slices. This inherent

consistency forms the basis for a novel slice-to-volume propagation method that centroids,
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after comprehensive updates in one slice, can be passed forward and serve as the initial

values for cluster centers in successive slices, facilitating effortless transfer of knowledge

retrieved in the prior segmentation process to the next round. This paradigm is simple

yet powerful, harnessing both the key principle of clustering-based methodologies and

the slice-wise structure of volumetric data. Moreover, this framework is readily adapted

to IMIS without architectural changes by initializing centroids from backbone features

at the position of user inputs, which clearly signify intended objects. Since there would be

multiple clicks for an identical object, we further design an adaptive sampling strategy

to reweight feature points when given new interactions. Finally, as the current pipeline

may be affected by outliers and face decaying awareness of prior cues after rounds

of propagation, we devise a recurrent centroid aggregation strategy to collect historic

centroids and fuse them into a single vector, which introduces nearly no additional cost

to deliver a more robust network inference.

Taking advantage of such a slice-to-volume propagation paradigm, S2VNet unveils

several compelling facets: First, it seamlessly accommodates AMIS and IMIS into a

unified model through a single training process, accomplished by initializing a subset

of cluster centers from user inputs while the others are left as random, enabling both

automatic and interactive segmentation learning. Second, in leveraging of reusing

centroids, S2VNet extends user inputs or slice cues throughout the entire volume with

2D networks, contributing to a significant alleviation in computational resource (i.e., 15

times faster inference speed and 48.2% memory reduction compared to 3D counterparts).

Third, S2VNet can simultaneously accept multiple classes of user inputs, with each

of them initializing one cluster center. This facilitates parallel refinement for multiple

instances of different classes in a single network forward pass, while prior work

could only handle one foreground class [121, 181, 238]. Fourth, given the universal

characteristic of S2VNet, we could build a diagnosis system that meets rigorous clinical

requirements. Concretely, S2VNet is able to provide coarse segmentation results for

multiple lesion/organ classes via AMIS. Physicians can then choose instances of interest

and conduct refinement with precise feedback, saving considerable time in the initial

search for lesions/organ areas.

We open a new avenue for medical image segmentation from the universal perceptive

and further provide a feasible solution via clustering-based slice-to-volume propagation.

To comprehensively evaluate our method, we experiment with S2VNet on three volu-

metric datasets, i.e., WORD [129], BTCV [97], and AMOS [80]. Our empirical findings

substantiate that S2VNet could consistently yield superior performance even compared
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to the specified solutions for each task through the utilization of only one single model.

Our implementation will be released upon acceptance.

6.2 Method

6.2.1 Preliminary: K-Means Cross-Attention

Inspired by DETR[20], contemporary query-based image segmentation methods[30, 31]

typically introduce a set of learnable embeddings as queries to collect pixel features

associated with specific objects via cross-attention:

(6.1) Ĉ =C+softmaxHW (Q(K)⊤)V ,

where C ∈RN×D represents N object queries with dimension size D, Ĉ denotes the

updated queries, Q∈RN×D , K∈RHW×D , V ∈RHW×D stand for the features for query, key,

and value. Here softmaxHW means to conduct softmax along the spatial dimension of

image features, i.e., computing the probability of affiliated to a unique query across

all pixels. It is crucial to note that this mechanism involves attending to a substantial

number of pixels. In contrast to above, [14] devise the k-means cross attention:

(6.2) Ĉ =C+argmaxN(Q(K)⊤)V .

Here, Eq. 6.2 compels Q to query pixel features belonging to a specific object, and

subsequently inspect which query embedding within C these features correspond to

by applying argmax along the query dimension N. Such process is similar to the k-
means[125] algorithm which proceeds by alternating between the assignment and update
two steps:

(6.3)
Assignment Step: Ĉ = AV ,

Update Step: Ĉ =C+ Ĉ,

where A = argmaxN(Q(K)⊤) is the assignment matrix (i.e., attention map) where each

element indicates whether a pixel feature is assigned to a particular cluster. As a results,

following the execution of a succession of Transformer decoder layers composed by k-
means cross attention, the query embeddings C can be regarded as the cluster centers,

which adeptly captures the representation of target objects.
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Figure 6.2: Our centroid propagation-driven universal segmentation framework (§6.2.2). (a)
S2VNet adapts multi-class interactive segmentation and refinement by iteratively initializing
cluster centers from user clicks and propagating to the entire volume. (b) Our proposed clustering-
based slice-to-volume propagation pipeline where the centroids are evolved during slice-level
segmentation and passed to the next slices.
6.2.2 Centroid Propagation-Driven Universal Segmentation

Framework

Motivation. Given a volume V ∈RC×H×W with a spatial size of H×W for C slices, volu-

metric image segmentation aims to group it into a set of segments with corresponding

semantic labels. This task is distinguished by the inherent structural property of vol-

umetric image data, i.e., anatomical or pathological regions of interest often spanning

across multiple consecutive slices and exhibiting consistent visual patterns. This prop-

erty allows the same class of targets in distinct slices to be compressed within a shared

object-centric representation. Given this context, we introduce the clustering-based

methodologies into volume segmentation. Specifically, our approach involves extending

the dynamic evolution of cluster centers C, which is originally conducted within the

image-level mask decoding process to volume-level by using the same collection of C
throughout the segmentation for all slices in V . As such, the separate slice-wise segmen-

tation for each individual slice is seamlessly integrated into a coherent segmentation

process, and iteratively delivering intermediate output for each slice.

Slice-to-Volume Cluster Center Propagation. Denoting F as the feature encoder, N
cluster centers {Ct

n}N
n=1 are employed to extract the object-centric representation for each

class within the given slice Vt by:

(6.4) {Ĉt
n}N

n=1 =D(F (Vt), {Ct
n}N

n=1),

where D is the Transformer decoder composed of k-means cross attention[216]. In the

context of automatic volumetric image segmentation, the segmentation often begins

from the first slice along the z-axis of the volume, which typically contains no foreground
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objects. It is common for these foreground objects to appear in the middle part of the vol-

ume. To address the challenge that all cluster centers collect features of the background

class and further impose negative impact to the segmentation of subsequent slices, only

cluster centers matched with foreground classes will be propagated to the next slice. To

achieve this, we perform one-to-one bipartite matching between the mask predictions

{Ŷ t
n}N

n=1 and the ground truth {Y t
k}K

k=1 by:

(6.5) θ̂ = argminθ∈ΘN

∑N
n=1 Lmatch(Yn, Ŷσ(n)).

Here θ̂ represents the optimal assignment among a permutations of N elements θ∈ΘN .

Based on θ̂, we select cluster centers {Ĉt
k}K

k=1 associated with foreground classes and pass

them to the next slice Vt+1 as the initial values:

(6.6) {Ct+1
k }K

k=1 = {Ĉt
k}K

k=1.

As such, these object-centric representations could encapsulate the coherent appearances

of regions across different slices, fostering a more compact and informative representation

for subsequent segmentation and analysis. Note that during the inference stage, we

keep elements in {Ĉn}N
n=1 only if the corresponding class {ĉt

n}N
n=1 is not identified as the

background class, and pass them to subsequent slices.

Interaction-Aware Cluster Center Initialization. In prior research[52, 178, 181],

the user input is conventionally represented as an binary mask M∈{0,1}H×W where the

foreground region signifies user guidance. Subsequently, M is combined with gray-scale

images as inputs to segmentation networks. Though achieving promising results, such

a paradigm suffers from several limitation: i) concatenating user inputs with images

introduces architectural modifications and disrupts the integration with automatic

segmentation into a unified framework, and ii) prior methods encounter challenges

when accommodating multiple semantic classes, thereby limiting the application to more

complex scenarios. To tackle the above limitations, instead of explicitly incorporating

user guidance as the input to networks, we harness the clustering-based property of

S2VNet. Specifically, denoting {Qk}K
k=1 = {(Pk, ck, tk)}K

k=1 as a set of user inputs where

each element Qk represents a click Pk associated for one semantic class ck annotated on

the slice Vtk , we initialize the cluster center C from user input by:

(6.7)
Ĉk = FFN(Ok),

Ok = Sample(F tk ,Pk),

where Sample indicates retrieving the point feature Ok from backbone features F tk of

slice Vtk according to the click position Pk, and FFN is a simple feed forward network
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to project Ok to the same size as C. Ĉk further serves to aggregate pixel features simi-

lar to the user-indicated regions and will be passed to subsequent slices. This realizes

user-guided segmentation across the whole volume by leveraging the above automatic

segmentation pipeline while introducing no modification to the network architecture.

Moreover, it can accommodate an arbitrary number of classes with each of them serv-

ing to initialize one cluster center, perfectly addressing all aforementioned limitations.

Notably, extending beyond these benefits, such a centroid initialization-based interactive

segmentation strategy offers several additional advantages: first, in contrast to prior

work treating user interactions and images equally by concatenating them as inputs,

which can not exercise the guidance ability of interactions to the fullest extent, our

interaction-aware centroid initialization implicitly guarantees predictions always con-

forming to user highlighted regions and enhances interpretability. Second, our method

enables unified learning for interactive/automatic segmentation, as the only difference

lies in the initial states of centroids. The input data, network architecture, and training

objectives remain consistent.

Adaptive Pixel Feature Sampling. Interactive segmentation commonly involves

multiple rounds of refinement to improve the precision of previously segmentation

results by incorporating newly provided user inputs. These iterative refinements yield

multiple instances of Qk associated with the same category label, thus calling for an

adaptive strategy to initialize cluster centers for a specific semantic category from

multiple user inputs. As the latest user input should play a more important role in

refinement compared to prior clicks, we adopt a weighted sum to combine the pixel

feature Or
k sampled from the user input at the current refinement round r with those

sampled from prior rounds by:

(6.8)
Ôr

k =Or
k +β1 ·Or−1

k +·· ·+βn ·O1
k,

=Or
k +β · Ôr−1

k ,

where Ôr
k is the weighted output controlled by the factor β∈[0,1]. Then Ôr

k at each round

of refinement is utilized to initialize a new cluster center, delivering a pair of prediction

{M̂r
k, ĉr

k} where M̂r
k ∈RC×H×W is the binary mask score for all C slices in volume V and

ĉr
k∈RC is the score for class ck. Consequently, multiple predictions are delivered for each

semantic class. To obtain the ultimate output, we first multiply ĉk with corresponding

M̂k and then retrieve the maximum value across all R rounds of predictions by:

(6.9) M̂k =max
R

(M̂0
k · ĉ0

k, · · · , M̂R
k · ĉR

k ).

It is crucial to emphasize that for all refinement rounds in S2VNet, the pixel features

associated with user inputs are sampled from the same backbone features which only
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Figure 6.3: Illustration of recurrent centroid aggregation (§6.2.2). After clustering within the
slice-wise segmentation for each slice, the centroids are recurrently merged with the historical
ones to assist in the initialization of centroids belonging to the subsequent slice.

need to be computed once. This stands in stark contrast to prior work[52, 179, 181] that

repetitively combines prior results with image data and conducts a full network pass at

each refinement round. This also contributes to accelerated inference and enhances the

efficiency of computer-aided diagnosis.

Recurrent Centroid Aggregation. Though the cluster centers undergo continuous

evolution during the mask decoding so as to effectively associate successive slices, they

tend to be drifted by outliers such as foreign objects and artifacts commonly encountered

in clinical practice [150] and lose track of distant structural cues with the slice-wise

segmentation process iterates. To deliver a robust inference and retain enduring cues of

remote slices, we propose to accumulate historic centroids of each slice and fuse them

into a consolidated entity in a recurrent manner. Specifically, denoting H t−1
k as the fused

vector for cluster center Ck covering its value from slice V0 to Vt−1. When given new

centroid Ĉt
k after mask decoding for slice Vt, we fuse it with H t−1

k :

(6.10) H t
k = FFN(SelfAttn([H t−1

k ; Ĉt
k])),

where [; ] means concatenation. Here SelfAttn is employed to identify the most relevant

information within the concatenated vector [H t−1
k ; Ĉt

k], and FFN is subsequently used to

project it into the same dimension as Ĉt
k. In this way, rather than introducing a memory

bank that would impose additional GPU memory and computational time overhead, we

efficiently store historic structural cues by recurrently merging new centroids into the

existing one. Then, when initializing the centroid Ct+2
k for slice Vt+2, we incorporate not
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only the cluster center obtained after mask decoding at slice Vt+1 (i.e., Ĉt+1
k ), but also

query the centroids from the previous t slices stored in H t
k by:

(6.11) Ct+2
k = Ĉt+1

k +CrossAttn(Ĉt+1
k ,H t

k).

We adopt standard cross-attention here as H t
k can benefit multiple elements in Ĉt+1

k and

there is no need to enforce an exclusive relation via argmax in k-means cross attention.

6.2.3 Implementation Details

Network Configuration. S2VNet is constructed upon the clustering-based image

segmenter. Specifically, for the slice-wise segmentation, we adopt Mask2Former[30] and

integrate k-means cross attention[216] to replace the standard ones in the Transformer

decoder. Other setups remain consistent with the default configuration. In order to

align S2VNet with the most recent top-leading solutions[18, 64, 235] for medical image

segmentation that favor Transformer-based backbones, we employ Swin-B [124] for

feature extraction. For the weighted factor β utilized in adaptive pixel feature sampling,

we empirically set it as 0.8.

Interaction Simulation. To evaluate S2VNet under the interactive setup, we opt for

click as the primary mode of user interaction, which is generally more accessible and

can accommodate various input devices like mice, touchscreens, and styluses. Following

conventions[181, 204, 238], we adhere to the automatic evaluation pipeline wherein the

clicks are simulated based on ground truth and current segmentation results. Specifically,

the initial click is sampled near the center of the target object, while subsequent clicks

aimed at refinement are generated iteratively from the most significant error regions by

comparing the current prediction mask with the ground truth. The user clicks comprise

both positive and negative ones, with the former targeting foreground objects and the

latter being applied to the background.

Unified Segmentation Learning. To facilitate the slice-to-volume propagation learn-

ing, we randomly sample three slices from each volume and use clustering results

obtained in the previous slice to initialize centroids for the next slice. We designate 20

cluster centers for each semantic class, with each click serving as the trigger to initialize

one of them, i.e., allowing up to 20 clicks. Notably, for classes presenting in the inputs,

there exists a 50% probability that the cluster centers are initialized from simulated

user clicks, while the left are randomized initialized from empty, so as to enable both

automatic and interactive segmentation learning. Following prior work[64, 79, 181, 235],

the final learning target is the combination of the Cross Entropy loss and Dice loss.
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6.3 Experiments

6.3.1 Experimental Setup

Datasets. Our experiments are conducted on three datasets:

• WORD [129] is a large-scale real clinical abdomen benchmark, providing high-quality

annotations for up to 16 organs in the abdominal region. It contains 100/20/30 CT

images for train/val/test, respectively.

• BTCV [97] consists of 30 CT volumes which is divided into 24 and 6 volumes for train

and val. This dataset provides careful annotation for 13 organs, including 8 of them

from Synapse. Following existing work[64, 235], We report the DSC score on all 13

abdominal organs.

• AMOS [80] is a large-scale, diverse dataset collected from multiple centers and

provides voxel-level annotations for 15 abdominal organs. It covers CT and MRI

two modalities, with each of them containing 200/100/200 and 40/20/40 scans for

train/val/test.

Training. We train S2VNet for 20k iterations and set the batch size to 8. The AdamW [90]

optimizer with an initial learning rate 0.0002 and weight decay 0.02 is adopted. The

learning rate is scheduled following the step policy, i.e., decaying by 10 at 14K and 18K

steps, respectively. A learning rate multiplier of 0.1 is applied to the backbone, which is

initialized with ImageNet[37] pre-trained weights. After adapting the volumetric data

into 2D slices, we employ z-score normalization to rescale image intensities within the

range of 0 to 255. The remaining setups are determined following [25, 64, 79, 181, 238]

for fair comparison. Specifically, for data augmentation, we use standard large-scale

jittering (LSJ) augmentation with a random scaling sampled from range 0.5 to 1.75, fol-

lowed by a fixed-size crop of 512×512 for WORD[129], 256×256 for BTCV[97], 256×256

for AMOS[80]. Random horizontal flipping is also applied to enhance diversity.

Testing. The inference steps are tailored to optimize the usage of user inputs. Please

note that we adopt an identical network architecture and model weight for both two

tasks:

• Automatic. Inference starts from the first slice along the z-axis, proceeding sequen-

tially till the final slice.

• Interactive. Inference is initiated from the slice with user inputs and broadcast

bidirectionally throughout the entire volume, emphasizing the significance of user

interactions.
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Average
Methods

HD95 ↓ DSC ↑ Liv Spl Kid L Kid R Sto Gal Eso Pan Duo Col Int Adr Rec Bla Fem L Fem R

Automatic Setup
UNETR [64] 17.34 79.77 94.67 92.85 91.49 91.72 85.56 65.08 67.71 74.79 57.56 74.62 80.40 60.76 74.06 85.42 89.47 90.17
CoTr [203] 12.83 84.66 95.58 94.90 93.26 93.63 89.99 76.40 74.37 81.02 63.58 84.14 86.39 69.06 80.00 89.27 91.03 91.87
Swin UNETR [63] 14.24 84.34 96.08 95.32 94.20 94.00 90.32 74.86 76.57 82.60 65.37 84.56 87.37 66.84 79.66 92.05 86.40 83.31
ESPNet [135] 15.02 79.92 95.64 93.90 92.24 94.39 87.37 67.19 67.91 75.78 62.03 78.77 72.80 60.55 74.32 78.58 88.24 89.04
DMFNet [24] 7.52 85.10 95.96 94.64 94.70 94.96 89.88 79.84 74.10 81.66 66.66 83.51 86.95 66.73 79.62 88.18 91.99 92.55
LCOVNet [229] 9.11 85.82 95.89 95.40 95.17 95.78 90.86 78.87 74.55 82.59 68.23 84.22 87.19 69.82 79.99 88.18 92.48 93.23
SwinMM [194] 9.35 86.18 96.30 95.46 93.83 94.47 91.43 80.08 76.59 83.60 67.38 86.42 88.58 69.12 80.48 90.56 92.16 92.40
S2VNet (Ours) 4.64 87.36 96.72 96.01 95.84 95.93 91.80 82.96 77.28 85.10 67.07 86.19 88.46 72.40 83.27 91.73 93.30 93.75
Interactive Setup
iSegFormer† [119] - - - 92.14† 91.07† 93.86† - 72.01† 73.37† - 69.52† - - 69.91† 48.13† - - -
Mem3D† [239] - - - 94.88† 93.55† 93.96† - 77.38† 80.61† - 76.29† - - 74.57† 73.37† - - -
SwinMM† [194] - - - 95.78† 94.27† 95.11† - 82.26† 80.33† - 78.54† - - 72.96† 85.12† - - -
S2VNet (Ours) 3.28 91.41 96.91 96.37 96.15 96.22 94.79 87.23 86.32 88.51 83.91 90.50 91.17 77.73 90.73 94.35 95.85 95.82
†: An independent model is trained for each class as prior work can only handle binary segmentation.

Table 6.1: Quantitative segmentation results with comprehensive scoring for each organ on
WORD[129] test.

For fair comparison, we follow prior work[194, 235] to use the input resolution of 512×512

for all datasets[80, 97, 129].

Evaluation Metric. Following the standard evaluation protocol [2, 129, 235], We adopt

Dice Similarity Coefficient (DSC) [39], Hausdorff Distance (HD) [77] and normalized

surface dice (NSD)[80] to assess the performance under both automatic and interactive

setups. DSC quantifies the overlap between predictions and ground-truths, whereas

HD functions for measuring the 3D surface distance between them. To eliminate the

impact of outliers, we employ HD95, which captures the 95% distance of all points from

one surface to the other. For NSD, it scores the category-wise segmentation quality for

evaluating the precision of boundaries.

Reproducibility. S2VNet is implemented in PyTorch and trained on four NVIDIA Tesla

A100 GPUs. Evaluation for all methods is conducted on the same machine. Our full

implementation shall be related to guarantee reproducibility.

IMIS Comparison. As existing interactive approaches[100, 113, 119, 239] are limited

to binary segmentation with a single foreground class, we train an independent model for

each target class while considering remaining classes as background. To render a more

comprehensive comparison, we adapt the top-leading automatic work into the interactive

setup by concatenating user clicks and prior round predictions with image data. Given

this substantial workload, we only report performance for several representative classes

with relatively lower performance across each dataset.

6.3.2 Comparison to State-of-the-arts

WORD[129]. As shown in Table 6.1, S2VNet yields remarkable performance on the auto-

matic setup, i.e., surpassing SwinMM[194] by 1.18% in terms of DSC and outperforming
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Avg
Method

DSC
Gal Eso IVC PSV RAG LAG

Automatic Setup
TransUNet [25] 76.72 59.84 70.96 77.23 71.47 65.24 64.06
TransBTS [190] 81.31 68.38 75.61 82.48 74.21 67.23 67.03
UNETR [64] 76.00 58.23 71.21 76.51 70.37 66.25 63.04
Swin-UNETR [63] 80.44 65.37 75.43 81.61 76.30 68.23 66.02
nnFormer [235] 81.62 65.29 76.22 80.80 75.97 70.20 66.05
3D-UX-Net [101] 80.76 64.32 75.17 80.42 75.39 69.52 65.77
S2VNet (Ours) 83.81 65.63 78.29 84.41 79.77 68.38 72.28
Interactive Setup
iSegFormer† [119] - - 69.37† 72.78† - 64.40† 66.89†

Mem3D† [239] - - 74.84† 79.52† - 68.45† 67.88†

nnFormer† [235] - - 82.47† 83.65† - 70.41† 67.34†

S2VNet (Ours) 86.11 69.94 87.92 89.96 81.64 72.23 73.22
†: An independent model is trained for each target class.

Table 6.2: Quantitative segmentation results on BTCV[97] val.

all 3D solutions in terms of HD95 which emphasizes on the coherence of predictions

across slices. This demonstrates the effectiveness of our 2D slice-to-volume propagation

strategy in bridging distance cues. Under the interactive setup, S2VNet achieves a 4.05%
average improvement in DSC compared to the automatic setup, verifying the superiority

of our interaction-aware centroid initialization strategy. Especially, our approach boosts

the performance up to 83.91% for the class ‘Duo.’, surpassing both existing interactive

and adapted automatic approaches by a large margin.

BTCV[97]. Table 6.2 compares our method against several top-leading approaches on

BTCV[97] val. As seen, S2VNet achieves the best performance on both automatic and

interactive setups. In particular, compared with nnFormer[235], which is the previous

SOTA, our approach earns 2.19% improvement in terms of averaged DSC score for the

automatic setup. This indicates that S2VNet can generalize well to different datasets

with various challenging scenarios. We also provide detailed scores for six representative

organs with poor performance, where S2VNet gives 2%∼6% performance gain compared

to prior work.

AMOS [80]. Table 6.3 confirms again the exceptional performance of S2VNet in the

segmentation of both CT and MRI images. Specifically, our algorithm achieves an im-

provement of 0.52%/6.41% over 3D-UX-Net[101] in terms of DSC/NSD. Moreover, with

the incorporation of interaction-aware query initialization, S2VNet consistently sur-

passes existing methods across all modalities and metrics.
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Average CT MRI
Method

DSC↑ NSD↑ DSC↑ NSD↑ DSC↑ NSD↑
Automatic Setup
CoTr [203] 77.31 67.12 77.13 64.15 77.50 70.10
UNETR [64] 76.81 63.40 78.33 61.49 75.30 65.3
TransUNet [25] - - 85.05 73.86 - -
TransBTS [190] - - 86.52 75.49 - -
nnFormer [235] 83.12 74.07 85.63 74.15 80.60 74.00
Swin UNETR [63] 81.04 70.60 86.37 75.32 75.70 65.80
3D-UX-Net [101] - - 87.28 76.48 - -
S2VNet (Ours) 86.22 77.23 87.80 82.89 84.64 71.57
Interactive Setup
S2VNet (Ours) 88.75 80.94 89.65 85.27 87.84 76.61

Table 6.3: Quantitative segmentation results on AMOS[80] val.

#
S2V Interaction Adaptive Recurrent

HD95 ↓ DSC ↑
Propagation Initialization Sampling Aggregation

1 16.63 78.67
2 ✓ 5.03 86.19
3 ✓ ✓ 4.64 87.36
4 ✓ ✓ 4.30 89.70
5 ✓ ✓ ✓ 3.79 90.64
6 ✓ ✓ ✓ ✓ 3.28 91.41

Table 6.4: Analysis of essential component on WORD[129] test.

6.3.3 Qualitative Comparison Result

Fig.6.4 depicts visual comparison on WORD[129] test. As seen, S2VNet yields more

accurate results compared to SwinMM[194], and the interactive mode can handle various

challenging cases with small objects or distortions.

6.3.4 Diagnostic Experiments

To evaluate the core designs and gain further insights, we conduct a series of ablative

studies on WORD[129] test.

Key Component Analysis. We first examine the efficacy of each component in Table

6.4, where the row #1 indicates directly segmenting each slice using 2D networks

without any form of association. Upon the integration of clustering-based slice-to-volume

propagation (i.e., row #2), both DSC and HD95 exhibit noteworthy improvement, which

demonstrates the effectiveness of our design. For interactive segmentation, as seen in
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z-
ax
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GT SwinMM [194] Ours (AMIS) Ours (IMIS) GT SwinMM [194] Ours (AMIS) Ours (IMIS)

Figure 6.4: Visual comparison results on WORD[129] test. See §6.3.3 for detailed analysis.

Method Memory (G) ↓ Volume Per Minute ↑ HD95 ↓ DSC ↑
CoTr[203] 26 0.18 12.83 84.66
Swin UNTER[63] 23 0.21 14.24 84.34
SwinMM[194] 27 0.15 9.35 86.18
Baseline 11 2.69 16.63 78.67
S2VNet 14 2.33 4.64 87.36

Table 6.5: Comparison of running efficiency on WORD[129] test.

0 5 10 15 20
Interactive round

86

88

90

92

D
SC

 (%
)

S2VNet
w/o adaptive sampling

Figure 6.5: Convergence analysis on WORD[129] test. We report the DSC score with different
round of user interactions.

row #4, our interaction-aware centroid initialization strategy can bring up to 3.51%
performance gains in DSC. With adaptive pixel-feature sampling (i.e., row #5) to fuse

different rounds of user interactions, the performance further boosts to 90.64%. Finally,

after incorporating recurrent centroid aggregation, S2VNet obtains the best performance

on both setups (i.e., row #3 and #6), underscoring the general compatibility of this module.

Run-Time Analysis. Next, we probe the running efficiency of S2VNet during inference.

Here, ‘Baseline’ represents a 2D segmentation network without association. As evidenced

in Table 6.5, S2VNet achieves nearly 15 times faster inference speed in terms of FPS and

saves 48.2% memory usage compared to the previous state-of-the-art (i.e., SwinMM[194]).

Moreover, our association strategy incurs minor additional costs compared to the baseline

method while elevating the performance by an impressive 8.69% in DSC scores. All of
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Figure 6.6: Analysis of unified training on WORD[129] test.

the above confirms the urgency of shifting the traditional 3D segmentation paradigm to

a more efficient one, with S2VNet providing a pragmatic and effective answer.

Convergence Analysis. We study the correlation between the number of refinement

rounds and resulting DSC scores on WORD[129] val. As seen in Fig.6.5, the performance

of S2VNet exhibits a stable improvement as the rounds of refinement increase, and

consistently outperforms the variant without adaptive feature sampling to consider inter-

actions in prior rounds. To strike a balance between accuracy and efficiency, we constrain

the average class rounds to 15 from which there is no significant gain in performance.

Unified Training. We provide the network parameters and training time comparison

between task-specific models for automatic/interactive segmentation and the universal

model in Fig. 6.6. As seen, our universal model requires only half of parameters and

training times. Furthermore, the performance under such a unified training paradigm

even enjoys improvement compared to task-specific training strategies.

6.4 Conclusion

This chapter presents S2VNet, unifying automatic/interactive medical image segmen-

tation in one system via a slice-to-volume propagation manner. To be specific, S2VNet

makes use of clustering-based methods, wherein the knowledge pertaining to targets

is compressed within centroids and passed to the next slices to produce coherent and

robust predictions with merely 2D segmentation networks. On this basis, S2VNet real-

izes automatic segmentation via learnable cluster centers while achieving interactive

segmentation by initializing the cluster centers with respect to user guidance. This also

facilitates concurrent interaction across multiple classes, which overcomes the limitation
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of prior work confined to binary setups. Finally, to eliminate the impact of outliers and

enhance the awareness of preceding slice cues, a recurrent aggregation approach is

proposed to collect historic centroids. All of the above contributes to a flexible solution for

volumetric image segmentation characterized by remarkable speed and state-of-the-art

accuracy. This chapter presents a flexible medical image segmentation system. This

system enables basic predictions from automatic segmentation and manages to achieve

real-world accuracy requirements with the help of interactive segmentation. By adopting

techniques in §3, §4, and §5, this system can be robust to real-world data and requires

fewer annotations.
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FUTURE WORK

The thesis tackles major challenges in deploying medical image segmentation in

three directions: training with imperfect data, handling imperfect test data, and meeting

extremely high accuracy requirements. To be specific, §3 and §4 address the challenge

of insufficient annotations through one-shot and barely-supervised segmentation, res-

pectively. §5 focuses on the issue of missing modalities during testing and proposes

incomplete-modal medical image segmentation. §6 combines automatic and interactive

segmentation to create a system that meets strict accuracy requirements. Together,

these four components facilitate the effective deployment of medical image segmentation.

However, beyond these above challenges, several additional issues require attention and

will form the basis of my feature research.

7.1 Decentralized Data

As detailed in §1.1.2, the decentralization of data storage [134, 137], caused by privacy

regulations, impedes the ability of networks to achieve optimal accuracy. This chal-

lenge contains several sub-problems that need to be solved. Decentralized data sets

are typically biased and unbalanced, influenced by the variable patient conditions at

different collection sites. Data calibration may be one potential solution for this problem.

Furthermore, the separate annotation processes for decentralized data can lead to label

inconsistency. For instance, annotations may be present for one specific anatomical region

in datasets from one site but absent in others. For this inconsistency problem, techniques

79



CHAPTER 7. FUTURE WORK

for partial label learning need to be developed.

7.2 Universal Segmentation

The current landscape of medical image segmentation generally targets specific anatomi-

cal regions. This specificity can lead to inefficiencies, particularly in terms of training

expenditure and model storage costs. Therefore, there is a clear necessity to develop

a universal image segmentation model [15, 118]. Such a model would be capable of

processing various anatomical regions across different imaging scanners, potentially

improving resource utilization and operational efficiency.

7.3 Inefficient Training and Inference

Existing medical image segmentation methods often rely heavily on 3D networks which

suffer from slow inference and present significant challenges in the deployment on

hospital devices that usually exhibit limited parallel computation capabilities. As a po-

tential solution, §6 suggests the integration of 2D networks with slice-wise propagation

to reduce inference costs. Nonetheless, this method remains constrained by the trans-

former architecture, which is particularly resource-intensive during training, especially

for universal segmentation involving large-scale training images. Considering these

constraints, future work may explore more efficient architectures, such as the Mamba

framework [35], to reduce both training and inference costs effectively.
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