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A B S T R A C T   

Enormous consumption of fossil fuel resources has risked energy accessibility in the upcoming 
years. The price fluctuation and depletion rate of fossil fuels instigate the urgent need for 
searching their reliable substitute. The current study tries to address these issues by presenting 
butanol as a replacement for gasoline in SI engines at various speeds and loading conditions. The 
emission and performance parameters were ascertained for eight distinct butanol-gasoline fuel 
blends. The oxygenated butanol substantially increases engine efficiency and boosts power with 
lower fuel consumption. The carbon emissions were also observed to be lower in comparison with 
gasoline. Furthermore, the Artificial Intelligence (AI) approach was used in predicting engine 
performance running on the butanol blends. The correlation coefficients for the data training, 
validation, and testing were found to be 0.99986, 0.99942, and 0.99872, respectively. It was 
confirmed that the ANN predicted results were in accordance with the established statistical 
criteria. ANN was paired with Response Surface Methodology (RSM) technique to comprehend 
the influence of the sole design parameters along with their statistical interactions controlling the 
responses. Similarly, the R2 value of responses in case of RSM were close to unity and mean 
relative errors (MRE) were confined under specified range. A comparative study between ANN 
and RSM models unveiled that the ANN model should be preferred. Therefore, a joint utilization 
of the RSM and ANN can be more effective for reliable statistical interactions and predictions.  
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Nomenclature:  
AI Artificial Intelligence HC Hydrocarbon 
ANN Artificial Neural Network HRR Heat release rate 
ASTM American Society for Testing Materials ICP In cylinder pressure 
(A/F)stoic Stoichiometric Air to Fuel ratio LHV Latent heat of vaporization 
BP Brake Power MRE Mean relative error 
BSFC Brake Specific Fuel Consumption NOx Oxides of nitrogen 
BTE Brake Thermal Efficiency Ppm Parts per million 
CI Compression Ignition Psi Pound per square inch 
CR Compression Ratio RMSE Root Mean Square Error 
C/H Carbon to Hydrogen ratio RON Research Octane Number 
CO2 Carbon Dioxide RSM Response Surface Methodology 
CO Carbon Monoxide SI Spark Ignition 
EGA Exhaust Gas Analyzer VE Volumetric Efficiency 
EGR Exhaust Gas Recirculation WOT Wide Open throttle   

1. Introduction 

The advancements in human civilization and technology are happening at a tremendous pace. These advances come at the expense 
of significant energy consumption (14,243 Mtoe in 2020 to 17,487 Mtoe in 2040 an increase of 22.77 %) [1]. The human civilization is 
paying a steep price to fulfill energy requirements by using conventional fuels and power sources [2]. The projected timeframe for the 
depletion of fossil fuels is 50 years at the current rate of consumption [3]. The swift dwindling of conventional fuel reserves and 
alarming environmental threats emphasize serious efforts to search alternatives for gasoline. The pre-requisites in searching alter-
native fuels involve attention to such substitutes which are not only compatible with the engines but can also improve performance, 
reduce emissions, and are renewable in nature [4]. Biofuels are gaining significance owing to their renewable nature, biodegradable 
attributes, and ability to minimize air pollution [5]. As per estimates, 95 % of vehicles in the world meet their energy needs from fossil 
fuels and the transport sector contributes in 60–80 % of hazardous emissions [6]. The trend is rapidly shifting from conventional fuels 
to renewable fuels, as their share in the final energy consumption was 13 % in 2012, and projected to increase about 24 % in 2030 [7]. 
Biofuels mainly include alcohol, vegetable oils, and biodiesel. However, alcohols (oxygenated fuels) are widely used in IC engines 
owing to their ability to lower emissions (toxic and greenhouse), biodegradability, boost engine efficiency, and saving of fuel cost [8, 
9]. Alcoholic fuels are not only compatible with gasoline fuel but also used with diesel fuel as blended fuel. Seesy et al. [10] used 
methanol as blended fuel in diesel engine along with n-decanol as cosolvent in order to avoid fuel un-stability issues. Zhang et al. [11] 
employed n-butanol as co-solvent to improve mutual stability of ethanol and diesel fuel. Among other alcoholic fuels, butanol is less 
susceptible to moisture contamination (immiscible in water) and ensures phase stability. Butanol exhibits lower vapor pressure and 
latent heat vaporization (LHV) along with higher calorific value, as these characteristics responsible for its more viability in com-
parison with other alcoholic fuels [12]. Butanol has a longer carbon chain than both methanol and ethanol. This structural difference 
can lead to improved combustion characteristics and better compatibility with the existing engines, making it an attractive option for 
automotive applications [13]. Moreover, butanol is less toxic than methanol, which can be hazardous if ingested or inhaled. The lower 
toxicity enhances its usage and favor its choice in certain applications [14]. Many studies suggested that butanol produced the least 
CO2 and NOx emissions, higher brake thermal efficiency and lower fuel consumption in comparison to other alcoholic fuels [14–19]. 

The higher flash point and boiling temperature of butanol make it secure for storage and transportation [20]. The butanol is 
projected to be a viable and sustainable alternative fuel after series of investigations over the past years [21]. Butanol blends create 
positive impact on HC and CO emission owing to higher oxygen to fuel ratio while lower C/H and (A/F)s ratios and fast flame speed in 
case of butanol [22,23]. It can be deduced that operating conditions such as A/F ratio, engine speed, loading, ignition timing 
significantly affect carbon emissions. Mixed literature exists for NOx emissions when engine fueled with butanol blends. The increase 
in NOx contents for butanol blends credited to their higher anti-knock ability, oxygen content and quicker flame propagation. The 
factors like spark timing, EGR rate, temperature (cylinder and ambient), engine speed, load and A/F ratio impact NOx emission [23, 
24]. While in some cases, NOx emission decreases for butanol blends. This decline in the NOx emission can be reasoned with the higher 
lower heating value (LHV) and hydroxyl (OH) group that reduced the CH radicals [25]. The higher LHV of butanol is responsible for a 
higher volumetric efficiency (VE) and mean effective pressure, which as consequence increases the output torque and power [26,27]. 
Butanol possesses lower calorific value in comparison with the gasoline which mainly responsible for higher brake specific fuel 
consumption (BSFC) [23]. But in many cases, compression ratio, brake torque and spark timing are mainly responsible for the lower 
BSFC in case of butanol [20]. Elfasakhany [28] observed that at lower engine speed hydrocarbon (HC), carbon dioxide (CO2) and 
carbon monoxide (CO) emission for the butanol blends were 26 %, 43 % and 32 % decremented than of gasoline. While at higher 
engine speed CO2 for the blended fuel increased by 27 %, but the CO and HC emission declined by 6 and 11 %, respectively. Yusuf et, al 
[29]. recorded that BSFC gradually declined by 3.79 % for the butanol blended fuel, resultantly the combustion rate improved by 50 % 
and reduced ignition delay with rise in in-cylinder pressure (ICP) and heat release rate (HRR). Huynh [30] found that BSFC for B20 
declined by 3.6 % and 8.4 % for 2250 rpm and 4250 rpm under 30 % wide open throttle (WOT) condition. At 70 % WOT condition, it 
declined by 1.5 and 4.3 % for B20 at 2250 and 4250 rpm respectively. Furthermore, the NOx emission for the B25 increased by 22 and 
57 % for 2250 and 4250 rpm condition, respectively under 30 % WOT condition. While at 70 % WOT condition, the NOx increased by 
33 and 52 % at 2250 and 4250 rpm respectively. Hussain et al. [31] conducted experiment to evaluate engine performance for the B6 
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and B12 fuel blends. They observed a 7.50 and 12.45 % increase in torque for the B6 and B12 fuel blends as compared to gasoline (B0). 
Also, the brake thermal efficiency (BTE) increased by 2.12 % and 3.25 % for B6 and B12 respectively in comparison with B0. While B12 
demonstrated a 12.5 % rise in brake power (BP) in contrast with base fuel. 

On the other hand, the utilization of artificial intelligence techniques to predict experimental results is growing very quickly due to 
cost and time associated with experimentation. Response surface methodology (RSM) and Artificial neural network (ANN) approaches 
are effectively replaced classical modeling approaches for solving engineering problems. The predictability of ANN model depends on 
the experimental data training followed by testing and validation. If predicted data is undesirable, then ANN may re-train data to 
improve performance. On this note, the ANN models have been extensively used in predicting the IC engines parameters. Ahmed et al. 
[32] compared experimental results with the ANN predicted model for methanol blended fuels. The mean relative error (MRE) was 
obtained in between 1.2 and 2.4 % and regression correlation coefficient (R) was obtained in between 0.9910 and 0.9983. Sayin et al. 
[33] attained R in range of 0.983–0.99 through ANN modeling of engine. Similarly, Kiani et al. [34] found R value in between 0.71 and 
0.99 for the ethanol blended fuels. Kapusuz et al. [35] also predicted engine performance for the ethanol-methanol blends and deduced 
that best performance achieved for blend M11E1 (Methanol 11 %, Ethanol 1 %) and the R was in between 0.931 and 0.990. Likewise, 
RSM is a statistical regression technique to predict and optimize results. RSM was used by Ardebili [36] to examine the performance of 
SI engines running on different alcoholic fuel blends (0–100 % with a gap of 25 %) under various loading situations (20 %, 40 %, 60 %, 
80 %, and 100 %) at a fixed speed of 2500 rpm. The optimization findings suggest a 47.21 % engine load and a 25 % fusel oil level. At 
these optimum operating circumstances, the torque (16.49 N-m), CO (0.88 %), HC (165.49 ppm), BSFC (326.02 g/kWh), and NOx 
(568.3 ppm) were measured. Along with significantly reduced in-cylinder temperatures, the BTE and torque decreased. For alcoholic 
concentration rose from 20 to 100 %, 41 % decline in NOx contents, and 22 % rise in CO, and 39 % rise in HC contents were achieved. 
Usman et al. [37] conducted experiment on diesel-HHO mixture by employing ANN coupled with RSM to predict BTE and BSFC. In the 
case of BTE, the RSM and ANN predicted MRE was 2.26 and 1.91 % respectively. However, the RSM and ANN predicted MRE in case of 
BSFC was 2.64 and 2.94 %. Likewise, root mean square error (RMSE) by RSM and ANN in case of BSFC were 0.088 and 0.012 kg/kWh 
respectively. 

In the pursuit of improving engine performance and mitigating emissions, researchers have explored the intriguing domain of fuel 
blends incorporating butanol and gasoline. This innovative study aims to unravel the intricate dynamics between butanol and gasoline 
when utilized as a blended fuel in internal combustion engines. The investigation is made to shed light on the potential synergies that 
could redefine the landscape of sustainable fuel solutions. It can be observed from the literature that ANN assisted RSM model has not 
yet been developed for butanol-gasoline blends. The current study integrates cutting-edge techniques such as Artificial Neural Net-
works (ANN) and Response Surface Methodology (RSM) for the optimization of engine performance. ANN predicted results than 
optimized by RSM followed by the validation through experimentation. The ANN predicted results used as input data to RSM and then 
RSM provide optimized results which are then validated through experimentation. The absolute percentage error turned to be below 4 
% which is an indicator of the authenticity of RSM. This groundbreaking approach harnesses the power of artificial intelligence and 
statistical modeling to unlock the full potential of butanol-gasoline blends while paving the way for the cleaner and more efficient 
combustion processes. As the automotive industry stands at the cusp of transformation, this study stands as a beacon, illuminating the 
path towards greener and more sustainable transportation solutions. 

2. Methodology 

In current work, the SI engine (HONDA GP160) operated on four strokes with air cooling mechanism was used to ascertain its 
performance and emissions when operated on different butanol-gasoline blends. Table 1 represents characteristics of engine used in 
the current study. 

2.1. Test fuels 

A gasoline as base fuel (B0) was attained from Pakistan State Oil (PSO). While the Butanol (B100) was attained from the Merck 
chemicals. The gasoline and butanol were blended according to percent by volume (%v) like 3 % butanol blended in 97 % gasoline 
(B3), 6 % butanol blended in 94 % gasoline (B6), 9 % butanol blended in 91 % gasoline (B9), 12 % butanol blended in 88 % gasoline 

Table 1 
SI engine attributes.  

Parameters Units Characteristics 

Bore m 0.0068 
Displacement cm3 163 
Max torque N-m 10.3 
Number of vales – 2 
Stroke m 0.0045 
Net power kW 3.6 
Fuel tank storage L 3.1 
Compression ratio – 8.5/1 
Engine operating hours prior experiment h 170 
Lubricant oil storage L 1.6  
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(B12), 15 % butanol blended in 85 % gasoline (B15), 18 % butanol blended in 82 % gasoline (B18) and 21 % butanol mixed in 79 % 
gasoline (B21), with the objective to determine the performance and exhaust emission parameters of the SI engine. Both gasoline and 
butanol were primarily blended in measuring chamber with reference to their %v, then the blended fuels were allowed to be mixed 
simultaneously with the help of magnetic stirrer for 45 min to ensure homogenous mixing of the test fuels. The titration method 
guarantees the perfect composition of blends in the magnetic stirrer. After magnetic stirring, the fuel blends were filled in a container 
for two days to allow homogenous mixing of fuel blends before being employed into the engine. Furthermore, the fuel storage con-
tainers are kept in the moisture free zone to avoid any phase separation owing to moisture. The eight test fuels (B0, B3, B6, B9, B12, 
B15, B18 and B21) were fueled into engine intake manifold through 500 mL transparent measuring cylinder. The measuring cylinder 
has the least count of 1 mL for fuel flow rate calculation. Eight samples of test fuels, with distinct ratios of butanol in gasoline as blend 
with attributes as stated in Table 2 were employed. 

2.2. Experimental setup 

Fig. 1 explains schematic arrangement of all the components used in experimentation. The engine is connected with dynamometer, 
emission analyzer and fuel intake gauge as depicted in Fig. 1. An experiment was accomplished on a 4 stroke, carburetor type SI engine 
having single cylinder and 163 cm3 displacement. The fuel from fuel intake gauge and air from intake manifold mixed in carburetor 
and then the mixture delivered into engine cylinder for burning. All the eight test fuels were filled into the engine via transparent 

Table 2 
Physicochemical attributes of eight test fuels.  

Fuel 
characteristics 

Density Calorific 
value 

Oxygen 
content 

(A/F) stoic LHV Octane 
rating 

Kinematic viscosity at 20 ◦C 

Units kg/m3 MJ/kg % v/v kg/kg kJ/kg – mm2/s 
Standard ASTMD1298 ASTM D240 ASTM D5622 SAE J1829- 

201503 
ASTM 
D323 

ASTM D2699 ASTM D445 

B0 731 44.04 0 14.7 300 92 0.76 
B3 734 43.59 0.64 14.5 308.4 92.15 0.82 
B6 737 43.14 1.29 14.4 316.9 92.28 0.87 
B9 740 42.70 1.94 14.38 325.3 92.39 0.93 
B12 743 42.25 2.59 14.2 333. 8 92.48 0.98 
B15 746 41.81 3.24 14.1 342.3 92.63 1.04 
B18 749 41.36 3.88 14.0 350.7 92.75 1.16 
B21 752 40. 92 4.53 13.9 359.2 92.87 1.23 
B100 831 29.2 21.6 11.2 582 96 2.51  

Fig. 1. Experimental setup.  
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measuring gauge of 500 mL capacity with least count of 1 mL for the measurement of fuel consumption. The BSFC was measured 
through the ratio between the mass of fuel supplied and the brake power obtained through the burning of a particular fuel blend. The 
mass of fuel supplied is determined by calculating the time for the 300 mL consumption of fuel and then multiplied with the specific 
gravity of the particular fuel blend. On the other hand, the brake torque was evaluated by water brake dynamometer of Dynomite 
company by varying speed according to SAE J1349 standard. The laptop installed with DYNO-MAX 2010 software was turned to be 
data acquisition system. The exhaust gases (HC, CO, NOx, and CO2) were recorded through an exhaust gas analyzer modeled as EMS- 
5002. The 1 horsepower (hp) pump was linked with dynamometer, used to vary water pressure which ultimately varies load on engine. 
The dynamometer receives water from pump through load control valve, the water lashes around tiny toroidal pockets inside the 
casing. The shear forces in pressurized water directed tangential to housing radius in opposite direction of engine shaft motion, ul-
timately act as load. 

2.3. Test scheme 

The test scheme designed for current investigation is stated in Table 3. Before experimentation, the engine was allowed to warm up 
for 15 min and engine seals were examined to prevent any leakage, while fresh air filters were employed for proper oil and air supply. 
Tests were initiated at 1300 rpm and terminated at 3700 rpm with an equal gap of 300 rpm at each stage. The emission parameters 
along with engine performance were evaluated at distinct nine engine speeds, two different loads and eight different fuel blends. 
Accounting each feasible combination of constantly fluctuating factors, 144 distinct experimental readings were noticed. The fuel 
consumption was ascertained by gauging fuel decline with reference to time elapsed at each speed and loading condition. EMS-5002 
probe was introduced in exhaust pipe and allowed to be there for 1 min at each loading and speed condition. Finally, the engine 
performance was modeled as predicted through ANN. The engine performance than optimized through RSM technique along with 
desirability aspect of each response parameter. 

2.4. Uncertainty analysis 

The Uncertainty analysis allows for determining the accuracy of measured parameters and provides information about the 
magnitude of error associated with each measurement in the experimental setup. Table 4 entails the accuracy, range and uncertainty 
linked with the measured parameters. The overall uncertainty of experimental setup (Uexp) is determined with the following equation 
[32]. The overall uncertainty turned out to be 2.34 %, so the engine performance is believed to be accurate within ±3 %. 

Uexp =
[
(UHC)

2
+
(
USpeed

)2
+ (UNOx)

2
+ (UPower)

2
+ (UCO)

2
+ (UCO2)

2
+ (UFC)

2
]1/2  

Uexp =
[
(1)2

+ (0.5)2
+ (1)2

+ (1)2
+ (1)2

+ (1)2
+ (0.5)2]1/2  

Uexp = 2.34%  

Table 3 
Comprehensive experimental scheme.  

Testing parameters Details 

Speed range 1300:300:3700 rpm 
Fuel B0: B3: B21 
Loading conditions 15 and 30 psi 
Performance parameters Torque, BTE, BP, and BSFC 
Emission parameters CO2, NOx, CO, HC, 
Atmospheric temperature 22 ◦C 
Ambient pressure 101325 Pa  

Table 4 
Accuracy and range of instruments for measured parameters.  

Measured parameters Accuracy Range Uncertainty (%) 

NOx ±1 ppm 0–5000 ppm ±1 
Speed ±5 rpm 0–8000 rpm ±0.5 
CO ±0.01 % 0–18 % ±1 
Fuel consumption ±0.1 mL 0–500 mL ±0.5 
HC ±1 ppm 0–5000 ppm ±1 
Power ±0.05 kW 0–50 kW ±1 
CO2 ±0.1 % 0–18 % ±1 
Torque ±0.1 N-m 0-45 N-m ±1  
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2.5. Artificial neural network 

The artificial neural network (ANN) comprises an intersecting collection of artificial neurons, employing the connectionist method 
to process information [38]. Through this approach, the ANN establishes an analytical model to address projection and decision 
making challenges [39]. Each neuron receives input values to produce a conforming output behavior, which is stored in networks [33]. 
This behavior of neuron is then conveyed via interconnections to other neurons as input signals. The arrangement of the neural 
network, along with interpretation, regularization of the data, and output responses; significantly influences the effectiveness and 
functioning of the training of neural network [40]. In the conventional sense, ANN model consists of few mandatory layers: input, 
hidden, and the output layers. The role of first layer is to apply the target data, while the subsequent output data is obtained by output 
layer [39]. Neural operator learning occurs through a relationship among a specific set of input and output data in the hidden layer. 
This study utilized a feed-forward backpropagation (FFBP) network, where neurons are organized in layers, sending signals forward, 
but errors are propagated backward [38]. Neural networks acquire target data from the input layer, along with the output obtained 
from the output layer [41]. The FFBP algorithm is employed for controlling learning rate and to estimate errors [42], representing the 
change amid experimental (Ev) and predicted (Pv) values. The general ANN-FFBP network model in the present investigation is shown 
Fig. 2. Evaluation of the neural network involves minimizing the error, and training and testing are essential steps in this investigation. 
MATLAB/Simulink R2021a was used for the neural network training, specifically employing the ’nntool’ module to predict com-
bustion engine process parameters fueled with gasoline and butanol blended fuels. Input parameters include fuel blend, engine load, 
and speed, while torque, BP, BSFC, BTE, NOx, CO2, HC, and CO serve as output responses for training the neural networks. The weights 
between input and output layers, as well as between hidden and output layers, are randomly generated based on the designated to-
pology of the neural network [38]. 

2.6. Response surface methodology 

In the current work, the design of expert 11 is employed to construct a regression model. Within this framework, Response Surface 
Methodology (RSM) is utilized to finely optimize cutting factors [40]. The RSM model’s validity is substantiated by a probability value 
(p-value) < 0.0001. A three-dimensional surface plot based on the effects of input control factors (fuel blend, engine load, and speed) 
and subsequent output factors (Torque, BP, BSFC, BTE, NOx, CO2, HC, and CO) is generated. In this investigation, the RSM is applied to 
optimize engine load and speed, aiming to achieve favorable engine characteristics for the gasoline engine fueled with the recom-
mended butanol-blended fuels. The resulting model undergoes Analysis of Variance (ANOVA), and a regression analysis is conducted 
to derive coefficients and mathematical relationships that can predict output responses from experiments. The significance of a 

Fig. 2. Feedforward back propagation ANN.  

Fig. 3. (a) Torque, and (b) BP variation wrt engine speed and load for butanol-gasoline fuel blends.  
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parameter is determined by evaluating its ’P’ value, with a value below 0.05 indicating a 95 % confidence level [42]. Exploring the 
interactive impacts of engine operating factors and output responses involves employing statistical Design of Experiments (DOE) 
techniques [41]. Ultimately, input variables are optimized using the Desirability consideration within RSM, whereas solution com-
bination having highest desirability is chosen as the optimal combination. 

3. Results and discussion 

The experimental data is first displayed as line graphs, then these experimental results are exported to the MATLAB/Simulink 
platform for the Artificial Neural Network prediction. These ANN predicted results compared with experimental results. Further, ANN 
predicted results exported to Design Expert software for the implementation of RSM. The predicted results (RSM) are then validated by 
experimentation. 

3.1. Experimental results 

Torque is the keen factor that defines the operation ability of an engine under higher loading conditions. The change in torque for 
the distinct gasoline-butanol blends can be observed from Fig. 3(a). It is apparent that torque is significantly increased for the butanol 
blended fuels as compared to gasoline. This increased torque can be reasoned out with additional oxygen content and quicker 
propagation of laminar flame in case of alcoholic oils [43]. It is clear from Fig. 3(a) that generally torque first rises when reached at 
maximum level then decline after that maximum point. This behavior can be accredited with the reason that when the speed is less 
then explosions due to burning of fuel are also less, which create less impact on piston to push it down and less force applied on the 
connecting rod, which might be responsible for less turning effect around the crankshaft. With the progression in engine speed, the 
optimum range was then reached with the peak efficiency transforming more energy from the fuel to generate higher torque. Further 
progression in speed resulted in weaker explosions due to engine breathing issues at higher speeds. The volumetric efficiency drop for 
all test fuels as speed increases, due to choking in flow and frictional losses at intake [44]. This drop in volumetric efficiency is mainly 
responsible for the decline in torque after certain rpm (3100). At 15psi loading condition B3 to B21 produced 8.11 %, 11.48 %, 16.72 
%, 21.58 %, 32.64 %, 38.09 %, and 41.93 % respectively. At 30 psi loading condition B3, B6, B9, B12, B15, B18 and B21 produced 2.62 
%, 7.49 %, 9.49 %, 12.45 %, 15.51 %, 18.54 %, 35.60 %. The blends B0:B3:B21 at higher loading condition produced 46.16 %, 38.73 
%, 40.95 %, 37.09 %, 35.18 %, 27.27 %, 25.46 %, and 25.51 % more torque than B0:B3:B21 at lower loading condition. The 
augmented latent heat of vaporization for butanol blended fuel is responsible for the temperature drop of incoming charge and also in 
combustion chamber owing to evaporation. As a consequence, higher charge density engendered higher engine torque [45]. It is 
apparent from Fig. 3(b) that butanol blended fuels generated more brake power as compared to gasoline. Both fuels showed a similar 
growing trend in brake power as speed increases. The increased latent heat of vaporization when fusel oil is used in an engine ensured 
the incoming air into the engine cylinder cools down which resulted into higher charge densities, volumetric efficiencies, and power 
output [46,47]. The higher brake power for butanol blended fuels can be attributed to more laminar flame and octane rating of butanol 
[48]. At 15psi loading condition, B3 to B21 produced 1.40 %, 4.47 %, 8.30 %, 12.04 %, 22.16 %, 27.44 %, and 30.62 % more brake 
power than B0 respectively. At 30 psi loading condition B12, B15, B18 and B21 produced 2.24 %, 4.73 %, 7.27 % and 10.15 % more 
brake power than B0 respectively. But B3, B6, B9 produced 6.67 %, 1.96 %, 0.18 % less brake power than B0 respectively. The reasons 
behind the lower brake power in the case of B3, B6, and B9 compared to B0 at higher loading conditions may be due to the lower 
calorific value of butanol, higher octane rating of butanol which sometimes slower combustion rates, and lower flame speed. The 
blends B0:B3:B21 at higher loading condition produced 50.22 %, 38.72 %, 40.99 %, 37.09 %, 38.46 %, 37.08 %, 28.79 %, and 26.44 %, 
more brake power than B0:B3:B21 at lower loading condition. Butanol comprises of 21.6 % oxygen by mass and this attribute mainly 
responsible for lean mixture which in consequence improves combustion process and ultimately higher power obtained [49]. 

It can be observed from Fig. 4(a) that the general trend of BSFC remains the same for all test fuels. The BSFC remains higher at the 

Fig. 4. (a) BSFC, and (b) BTE trends wrt engine speed and load for butanol-gasoline fuel blends.  
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start but gradually declines. At a certain point (2800 rpm), the BSFC exhibits minimum value and then starts increasing as the 
experiment proceeds further. Precisely, the more fuel is utilized by engines at the beginning to overcome inertial effects and to attain 
running state. The heat loss was more at lower engine rpm which mainly responsible for higher fuel consumption to recompense these 
losses [50,51]. The lowest BSFC at certain engine speed depicts stoichiometric combustion [50]. The BSFC starts rising as engine speed 
increases to compensate for higher power needs. The butanol-gasoline blends depict lower BSFC in comparison with gasoline due to 
higher fuel density and BMEP and ultimately resulting an increase in BTE [52,53]. At 15psi loading condition, B3, B6, B9, B12, B15, 
B18 and B21 produced 8.31 %, 7.84 %, 7.32 %, 6.83 %, 6.43 %, 6.11 %, and 5.82 % less BSFC than B0 respectively. At 30 psi loading 
condition B3, B6, B9, B12, B15, B18 and B21 produced 17.43 %, 17.80 %, 18.47 %, 19.07 %, 19.55 %, 20.18 % and 20.64 % more BSFC 
than B0 respectively. The blends B0:B3:B21 at higher loading condition exhibit 33.72 %, 15.11 %, 15.28 %, 15.26 %, 15.29 %, 15.31 
%, 15.15 %, and 15.09 % lower BSFC than B0:B3:B21 at lower loading condition. The more BSFC at higher loading conditions owing to 
more fuel consumption to meet higher power requirement. BTE represents fraction of BP produced by engine with respect to input fuel 
energy. An overall BTE trend for all the eight test fuels is demonstrated in Fig. 4(b), which discloses that the BTE initially rises to max 
level, then the BTE eventually fell down. The BTE first rises as engine speed approaches towards 2800 rpm owing to lean mixture 
formation. At higher engine rpm, BTE declines swiftly due to abrupt combustion [54]. The thermodynamic second law postulates that 
the engine efficiency will increase if heat losses from engine decrease. Furthermore, the BTE possess inverse relation with calorific 
value and BSFC, therefore, any decline in heat loss and lower calorific value can boost the engine efficiency [55]. The increase in power 
along with effective fuel burning were among the significant aspects in augmenting the BTE in case of butanol blended fuels. At the 
15psi loading condition, B3, B6, B9, B12, B15, B18 and B21 produced 0.97 %, 1.11 %, 1.26 %, 1.36 %, 1.51 %, 1.76 %, and 1.91 % 
more BTE than B0 respectively. At 30 psi loading condition B3, B6, B9, B12, B15, B18 and B21 produced 3.42 %, 3.27 %, 3.17 %, 3.06 
%, 2.92 %, 2.79 % and 2.64 % less BTE than B0 respectively. The blends B0:B3:B21 at higher loading condition exhibit 7.71 %, 3.32 %, 
3.33 %, 3.29 %, 3.30 %, 3.29 %, 3.17 %, and 3.16 % more BTE than B0:B3:B21 at lower loading condition. Higher latent heat of 
evaporation of blended fuel aids in vaporizing the fuel in compression stroke. In consequence, fuel captivates heat from cylinder walls 
and evaporates along with compression, thus boosting BTE [56]. Moreover, oxygen content in butanol aids in improving combustion 
and thermal efficiency [26]. 

CO is noxious gas which emanates as exhaust from engine owing to inappropriate proportion of air in air-fuel mixture [57]. Fig. 5 
(a) indicates variation in CO emissions for eight test fuels at nine speeds and two loading condition. It was noticed that mixing butanol 
in primary fuel results in a reduction in CO emissions. As, butanol is oxygenated fuel which mainly responsible for the leaning effect 
during fuel combustion [58]. At the 15psi loading condition, B3, B6, B9, B12, B15, B18 and B21 produced 2.01 %, 6.66 %, 19.99 %, 
33.99 %, 42.78 %, 50.78 %, and 57.98 % less CO emission than B0 respectively. At 30 psi loading condition B3, B6, B9, B12, B15, B18 
and B21 produced 12.66 %, 25.65 %, 28.10 %, 30.77 %, 33.52 %, 35.54 % and 37.09 % less CO emission than B0 respectively. The 
blends B0, B3, B6, B9, B12 and B15 at higher loading condition produced 14.15 %, 23.45 %, 31.61 %, 22.85 %, 9.95 % and 0.25 % less 
CO emission than B0, B3, B6, B9, B12 and B15 at lower loading condition. While B18 and B21 at higher loading condition produced 
12.45 % and 28.55 % higher CO emission under lower loading condition. The lower CO emissions for the butanol-gasoline blends 
results coincides with the previous studies [24,59,60]. The combustion products under stoichiometric condition only comprised of CO2 
and H2O. Owing to insufficient combustion and undesired substances fuel and air during their induction, there are other emissions as 
well. CO2 emission is directly associated with thermal efficiency, fuel consumption and torque. CO2 emission for eight test fuels under 
two distinct loading condition and various speeds is exhibited in Fig. 5(b). As observed from Fig. 5(b), the butanol blended fuels 
produced more CO2 emission than gasoline. The higher CO2 production can be reasoned out with more fuel consumption in case of 
blends, the presence of more carbon and oxygen produced more CO2 [61]. At 15psi loading condition, B3, B6, B9, B12, B15, B18 and 
B21 produced 17.14 %, 23.13 %, 35.95 %, 50.23 %, 59.92 %, 69.58 %, and 77.84 % higher CO2 emission than B0 respectively. At 30 
psi loading condition B3, B6, B9, B12, B15, B18 and B21 produced 2.99 %, 7.40 %, 19.12 %, 30.04 %, 38.35 %, 46.61 % and 51.14 % 
less CO2 emission than B0 respectively. The blends B0, B3, B6 and B9 at higher loading condition produced 82.12 %, 50.81 %, 36.96 %, 

Fig. 5. (a) CO, and (b) CO2 variation wrt engine speed and load for butanol-gasoline fuel blends.  
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and 8.35 % higher CO2 emission than B0, B3, B6, and B9 at lower loading condition. While B12, B15, B18 and B21 at higher loading 
condition produced 15.19 %, 29.79 %, 42.66 % and 50.21 % lower CO2 emission than B12, B15, B18 and B21 at lower loading 
condition. 

HC emission for all test fuels under distinct loading condition and speed range from 1300 to 3700 rpm can be observed from Fig. 6 
(a). HC emission generally declines with the rise in speed as depicted in Fig. 6(a). The general declining trend might be due to higher 
combustion rate [62]. The significant factors that impact the HC emission comprised of the exhaust valve leakage, engine misfire, 
unburned fuel accretion in crevices along with fuel state in the course of engine warmup [63,64]. The overall declining behavior of the 
HC emission obtained for blended fuels. It is credited to quicker flame propagation along with higher oxygen proportion in blended 

Fig. 6. (a) HC, and (b) NOx variation wrt engine speed and load for butanol-gasoline fuel blends.  

Fig. 7. ANN model.  
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Fig. 8. Combined working of ANN and RSM for accepted models.  

Fig. 9. R values for (a) training, (b) validation, (c) testing data, and (d) all empirical results.  
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fuels [65]. The physicochemical properties of butanol blends aid in appropriate combustion and result decline in HC emissions [66]. 
Moreover, the accumulation of butanol decreases hydrocarbon proportion in fuel and eventually decrements HC emission [24]. At 
15psi loading condition, B3, B6, B9, B12, B15, B18 and B21 produced 7.42 %, 15.04 %, 25 %, 35.56 %, 44.52 %, 51.79 % and 59.36 % 
lower HC emission than B0 respectively. At 30psi loading condition, B3, B6, B9, B12, B15, B18 and B21 produced 9.93 %, 16.14 %, 
28.17 %, 37.81 %, 48.38 %, 60.51 % and 73.23 % lower HC emission than B0 respectively. The blends B0:B3:B21 at higher loading 
condition produced 14.24 %, 16.57 %, 15.36 %, 17.86 %, 17.23 %, 25 %, 29.75 %, 43.50 % lower HC emission than B0:B3:B21 at 
lower loading condition. The major proportion of air includes nitrogen and oxygen, therefore the oxides of nitrogen become significant 
during burning of air fuel mixture. Fig. 6(b) shows the NOx emission for all the eight test fuels at designated speeds and loading 
condition. Fig. 6(b) depicts that butanol blends produced more NOx emission than gasoline. This behavior can be reasoned with higher 
temperature, higher oxygen contents, and more air settling time in cylinder [67]. NOx emission usually rise with progression in load 
and speed due to higher fuel combustion and higher flame speed in order to meet higher power requirement [53,62]. At 15psi loading 
condition B3, B6, B9, B12, B15, B18 and B21 produced 7.75 %, 13.32 %, 24.39 %, 35.15 %, 57.81 %, 56.44 % and 66.85 % higher NOx 
emission than B0 respectively. At 30psi loading condition, B3, B6, B9, B12, B15, B18 and B21 produced 9.93 %, 16.14 %, 28.17 %, 
37.81 %, 48.38 %, 60.51 % and 73.23 % lower HC emission than B0 respectively. The blends B3, B6, B9, B12, B15 and B18 at higher 
loading condition produced 12.77 %, 21.95 %, 15.11 %, 9.48 %, 5.59 % and 1.42 % higher NOx emission than B3, B6, B9, B12, B15 and 
B18 at lower loading condition. While B0 and B21 at higher loading condition produced 7.77 % and 2.02 % lower NOx emission than 
B0 and B21 at lower loading condition. The oxygenated fuel (butanol blends), makes fuel mixture lean and results to higher NOx 
emissions [68]. 

3.2. ANN model 

ANN model is mainly a statistical tool having a strong relevance with human brain processing system [37]. ANN is potent tool for 
analyzing, optimizing, and forecasting of non-linear data results. The ANN model has extensive applications in the automotive sector 
with most accurately estimated performance characteristics. Generally the ANN exhibits three distinct layers (input, hidden and output 
layer) comprised of processing neurons, but the number of layers can be increased depending upon intricacy of data [69,70]. Neurons 
carry information from one layer to other through connection weights and interlinked structure of weighted biases [71]. ANN model 

Fig. 10. Analysis of ANN predicted and empirical results of (a) Torque, (b) Brake Power, (c) BSFC, and (d) BTE for each test case.  
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depends on experimental data which then trained, tested, and validated for output prediction under distinct situations. An activation 
function served as a function amid layers to predict response through trained data set. The conception of learning process comprised of 
the RMSE and MRE which is employed to enhance accuracy. The input layer comprised of the user-defined entities (experimental 
data). The ANN predicted variables generated after neuron processing through certain activation function. The data training involves 
iterations for error reduction, once the error reaches to desired level of tolerance, training of data finally completed [34]. In the present 
study, the fuel blend, engine speed and loading conditions were selected as input factors of the input layer. The performance and 
emission characteristics (Torque, BP, BSFC, BTE CO, CO2, HC, and NOx) were devoted to output layer. Total experimentally recorded 
observations were 144, which served as a dataset. The proposed ANN network structure is presented in Fig. 7. The ANN model 
comprised of three input nodes: fuel blend, engine speed and load, with sole hidden layer comprised of ten nodes, and output layer 
comprised of eight nodes (one neuron against each response). The model was created using the MATLAB NN Toolbox, which separated 
the input into three sets at random such that 70 % includes training, 15 % includes validation, and 15 % includes testing. 

The feedforward backpropagation network in the ANN modelling was used due to its indispensable impact in the system modelling, 
data signal processing with accuracy and non-linear behavior [72]. The tansig transfer function is highly suitable for larger dataset 
with higher efficiency rate and quick learning rate. The LEARNGDM learning function was opted for reducing errors. The quantity of 
the neurons in hidden layer are crucial for an ANN model to function effectively; otherwise, there may be insufficient correlation 
among anticipated responses and input variables, leading to an inconsistent model [69,73]. The optimized model was selected based 
on least MRE between empirical and predicted responses, expressed in equation (1). The correlation coefficient (R) nearest to positive 
unity is usually attained for the best-predicted responses. It signifies the linearity among empirical and predicted response as positive 
and indicates highly accurate results [74]. As per set criterion, the training was stopped when validation error limit was surpassed. The 
current research utilizes 10 neurons, which is backed by extensive literature review. The criterion of the neurons however comes with 
uncertainty due to results which may be undesirable. The inappropriate selection of the learning conditions results in significant error 
difference between training and testing due to overfitting of trained ANN model. The comprehensive network architecture for both 
ANN and RSM operations is depicted in Fig. 8. The schematic chart in Fig. 9 illustrates the ANN operation. The various stages of ANN 
model show the specifications of input (1st stage), network training on parameters for curtailing discrepancies (2nd stage) and result 
validation based on input characteristics (3rd stage). R and MRE values served as key indicators to estimate results statistically. The 

Fig. 11. Analysis of ANN predicted and empirical results of (a) CO, (b) CO2, (c) HC, and (d) NOx for each test case.  
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benchmark of R greater than 0.99 and MRE less than 3 % was fixed as a key indicator for successful ANN model. In case, the set 
benchmark was not attained during thousand iterations for any response, an adaptation rate was then changed. The learning rate was 
fixed in between the step rise of 1.1 and step decline of 0.9. The responses of ANN model were tested through statistical measures of 
MRE, RMSE, and R2, as expressed in equations (1)–(3): 
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The prediction of the SI engine parameters for the distinct butanol blends using ANN model proved extremely successful. The first 
ANN model with overall regression graphs for all parameters is portrayed in Fig. 9(a–d). The ANN generated model produced highly 
precise results against each factor. The comparative assessment of empirical results with predicted responses produced an overall R 
value of 0.99965 and MRE less than 3 %. The R values for training, validation and testing were found to be 0.99986, 0.99942 and 
0.99872 respectively. ANN predicted results met statistical criteria as demarcated in previous segments. After the success of the first 
ANN model, the ANN model then developed for the individual outputs for comprehensive prediction of values. The feed-forward back 
propagation algorithm and network structure generated satisfactorily adequate outcomes. 

The comparative assessment for empirical and predicted engine parameters are demonstrated in Fig. 12(a–d). The R value for 
predicted torque, BP, BSFC and BTE were 0.9969, 0.9981, 0.9908 and 0.9903 respectively. MREs were evaluated as 1.98 %, 2.13 %, 
1.72 % and 1.83 % for torque, BP, BSFC and BTE respectively. The RMSEs were 0.1183 N-m, 0.044 kW, 0.0096 kg/kWh and 0.3959 % 

Fig. 12. Comparison between ANN predicted and empirical results of (a) Torque, (b) Brake Power, (c) BSFC, and (d) BTE.  
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for torque, BP, BSFC and BTE respectively. The ANN predicted SI engines parameters for different butanol blended fuels produced 
extremely precise outcomes. ANN model prediction with MRE within range of 1.83–2.13 % and R values within 0.9903–0.9981 for all 
performance parameters. Likewise, the RMSE values were quite low for performance parameters of the engine. It signifies that the SI 
engines parameters can be precisely simulated through suitable ANN modelling. Fig. 10(a–d) denotes the comparison between the 
empirical and ANN predicted responses against 144 test cases for performance parameters. The comparative assessment for empirical 
and ANN predicted emission characteristics is demonstrated in Fig. 13(a–d). The R values for predicted CO, CO2, HC, and NOx were 
0.9996, 0.9985, 0.9987 and 0.9988 respectively. MREs were calculated as 2.91 %, 2.25 %, 2.96 % and 2.45 % for CO, CO2, HC, and 

Fig. 13. Comparison between ANN predicted and empirical results of (a) CO, (b) CO2, (c) HC, and (d) NOx.  

Table 5 
Input factors with levels.  

Factors Units Levels L [1] L [2] L [3] L [4] L [5] L [6] L [7] L [8] L [9] 

Fuel blend % 8 0 3 6 9 12 15 18 21  
Load psi 2 15 30        
Engine speed rpm 9 1300 1600 1900 2200 2500 2800 3100 3400 3700  

Table 6 
Torque and Brake power fit summary.  

Source Torque fit summary Brake power fit summary 

p-value Adjusted R2 Predicted R2 p-value Adjusted R2 Predicted R2 

Linear <0.0001 0.9210 0.9177 <0.0001 0.9622 0.9604 
2FI <0.0001 0.9421 0.9374 <0.0001 0.9869 0.9856 
Quadratic <0.0001 0.9747 0.9728 0.0051 0.9877 0.9862  
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NOx respectively. The RMSEs were 0.0876 %, 0.1910 %, 3.67 ppm and 19.52 ppm for CO, CO2, HC, and NOx respectively. The ANN 
predicted SI engines parameters for different butanol blended fuels produced extremely precise outcomes. ANN model prediction with 
MRE within range of 2.25–2.96 % and R values within 0.9985–0.9996 for all emission parameters. Likewise, RMSE values were quite 
low for emission parameters of engine. It signifies that SI engines parameters can be precisely simulated through suitable ANN 
modelling. Fig. 11(a–d) denotes the comparison between empirical and ANN predicted responses against 144 test cases for CO, CO2, 
HC, and NOx respectively. 

Table 7 
BSFC and BTE fit summary.  

Source BSFC fit summary BTE fit summary 

p-value Adjusted R2 Predicted R2 p-value Adjusted R2 Predicted R2 

Linear <0.0001 0.4861 0.4623 <0.0001 0.4785 0.4561 
2FI 0.0173 0.5122 0.4674 0.0365 0.4991 0.4610 
Quadratic <0.0001 0.9058 0.8922 <0.0001 0.8948 0.8835  

Table 8 
CO and CO2 fit summary.  

Source CO fit summary CO2 fit summary 

p-value Adjusted R2 Predicted R2 p-value Adjusted R2 Predicted R2 

Linear <0.0001 0.9330 0.9303 <0.0001 0.3877 0.3617 
2FI <0.0001 0.9634 0.9610 <0.0001 0.8072 0.7943 
Quadratic <0.0001 0.9737 0.9716 <0.0001 0.9144 0.9077  

Table 9 
HC and NOx fit summary.  

Source HC fit summary NOx fit summary 

p-value Adjusted R2 Predicted R2 p-value Adjusted R2 Predicted R2 

Linear <0.0001 0.9090 0.9046 <0.0001 0.9597 0.9577 
2FI <0.0001 0.9373 0.9320 <0.0001 0.9788 0.9771 
Quadratic <0.0001 0.9767 0.9741 <0.0001 0.9827 0.9808  

Table 10 
ANOVA for torque.  

Source Sum of Squares df Mean Square F-value p-value 

Model 243.90 7 34.84 775.47 <0.0001 
A-Fuel Blend 31.50 1 31.50 701.07 <0.0001 
B-Load 96.75 1 96.75 2153.38 <0.0001 
C-Speed 105.11 1 105.11 2339.44 <0.0001 
AB 0.6816 1 0.6816 15.17 0.0002 
AC 0.3854 1 0.3854 8.58 0.0040 
BC 4.06 1 4.06 90.28 <0.0001 
C2 5.41 1 5.41 120.40 <0.0001  

Table 11 
ANOVA for Brake power.  

Source Sum of Squares df Mean Square F-value p-value 

Model 76.12 6 12.69 1469.86 <0.0001 
A-Fuel Blend 1.34 1 1.34 155.68 <0.0001 
B-Load 7.92 1 7.92 917.47 <0.0001 
C-Speed 64.99 1 64.99 7529.13 <0.0001 
AB 0.1509 1 0.1509 17.48 <0.0001 
BC 1.64 1 1.64 190.36 <0.0001 
A2 0.0780 1 0.0780 9.04 0.0031  

M.A.I. Malik et al.                                                                                                                                                                                                     



Heliyon 10 (2024) e29698

16

Table 12 
ANOVA for BSFC.  

Source Sum of Squares Df Mean Square F-value p-value 

Model 0.6442 7 0.0920 172.16 <0.0001 
A-Fuel Blend 0.0100 1 0.0100 18.79 <0.0001 
B-Load 0.2530 1 0.2530 473.30 <0.0001 
C-Speed 0.0570 1 0.0570 106.67 <0.0001 
AB 0.0173 1 0.0173 32.43 <0.0001 
AC 0.0057 1 0.0057 10.65 0.0014 
BC 0.0076 1 0.0076 14.28 0.0002 
C2 0.2934 1 0.2934 548.97 <0.0001  

Table 13 
ANOVA for BTE.  

Source Sum of Squares Df Mean Square F-value p-value 

Model 1039.34 8 129.92 151.64 <0.0001 
A-Fuel Blend 1.26 1 1.26 1.47 0.2281 
B-Load 511.16 1 511.16 596.64 <0.0001 
C-Speed 36.47 1 36.47 42.57 <0.0001 
AB 27.72 1 27.72 32.36 <0.0001 
AC 10.03 1 10.03 11.70 0.0008 
BC 3.21 1 3.21 3.74 0.0552 
A2 3.17 1 3.17 3.70 0.0565 
C2 446.33 1 446.33 520.97 <0.0001  

Table 14 
ANOVA for CO emission.  

Source Sum of Squares df Mean Square F-value p-value 

Model 762.30 7 108.90 795.94 <0.0001 
A-Fuel Blend 74.84 1 74.84 547.01 <0.0001 
B-Load 7.02 1 7.02 51.28 <0.0001 
C-Speed 646.85 1 646.85 4727.77 <0.0001 
AB 10.27 1 10.27 75.03 <0.0001 
AC 14.50 1 14.50 105.99 <0.0001 
A2 0.9251 1 0.9251 6.76 0.0103 
C2 7.91 1 7.91 57.78 <0.0001  

Table 15 
ANOVA for CO2 emission.  

Source Sum of Squares df Mean Square F-value p-value 

Model 868.72 6 144.79 257.40 <0.0001 
A-Fuel Blend 9.20 1 9.20 16.36 <0.0001 
B-Load 1.17 1 1.17 2.07 0.1521 
C-Speed 378.56 1 378.56 673.00 <0.0001 
AB 385.30 1 385.30 684.98 <0.0001 
AC 4.34 1 4.34 7.71 0.0063 
C2 90.15 1 90.15 160.27 <0.0001  

Table 16 
ANOVA for HC emission.  

Source Sum of Squares df Mean Square F-value p-value 

Model 6.771E+05 7 96724.79 801.42 <0.0001 
A-Fuel Blend 2.804E+05 1 2.804E+05 2323.39 <0.0001 
B-Load 34443.32 1 34443.32 285.38 <0.0001 
C-Speed 3.168E+05 1 3.168E+05 2624.98 <0.0001 
AC 17284.80 1 17284.80 143.21 <0.0001 
BC 1906.10 1 1906.10 15.79 0.0001 
A2 360.91 1 360.91 2.99 0.0860 
C2 25851.87 1 25851.87 214.20 <0.0001  
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3.3. RSM based optimization 

Process optimization aims to attain maximum output by maneuvering controlled variables. The numerical constraints play a key 
role in maximizing or minimizing the response variables in any optimization problem. The RSM is an eminent statistical technique 
employed for optimizing empirical data for solving simultaneous equations. The accurate response prediction through the RSM serves 
as the main reason for its use in the engineering sector. In the selected model, the performance and emission parameters of the test 
engine were designated as response variables. The goal was to enhance performance except BSFC and curtail exhaust emissions. The 
design factors accounted for optimization of engine performance were fuel blend (%), engine speed (rpm) and engine load (psi). Design 
Expert software was used for generating model and response surfaces. With the help of historical data characteristics, a multilayer 
design for a pre-defined empirical investigation was established. Table 5 includes three input factors, engine speed (nine levels), fuel 
blend (eight levels), and load (two levels). The levels of these numeric factors served as model classifying characteristics. 

Table 17 
ANOVA for NOx emission.  

Source Sum of Squares df Mean Square F-value p-value 

Model 2.271E+07 7 3.244E+06 1226.31 <0.0001 
A-Fuel Blend 2.132E+06 1 2.132E+06 806.22 <0.0001 
B-Load 1.107E+05 1 1.107E+05 41.84 <0.0001 
C-Speed 1.996E+07 1 1.996E+07 7546.96 <0.0001 
AC 3.963E+05 1 3.963E+05 149.83 <0.0001 
BC 10279.44 1 10279.44 3.89 0.0507 
A2 44269.42 1 44269.42 16.74 <0.0001 
C2 49446.37 1 49446.37 18.69 <0.0001  

Fig. 14. (a) Response surface for torque at lower load, (b) Response surface for torque at higher load, (c) Residual versus run graph for torque, and 
(d) Predicted versus actual graph for torque. 
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3.4. Empirical model selection 

The fit summaries of performance and emission parameters are detailed in Tables 6–9. Usually, the choice of suitable model de-
pends on (i) p-value, (ii) predicted R2, and (iii) reasonable compliance between predicted and adjusted R2 [75]. Depending upon the 
stated parameters, linear and 2FI models possess smaller R2 values. But the quadratic model exhibits the best fit, due to p-values less 
than 0.0001 and R2 considerably near to 1. Depending on the review of previous literature, complex engine combustion process can be 
appropriately explained through quadratic model [76]. That’s why the quadratic model was opted for optimization setup. 

3.5. Analysis of Variance (ANOVA) 

ANOVA is a statistical technique for evaluating interaction between factors along with the statistical significance of the model. It 
gives a comprehensive understanding of the regression models in order to comprehend the interactions between factors and responses. 
Tables 10, 11, 12, 13, 14, 15, 16 and 17 depict ANOVA for quadratic models in the case of performance and emission parameters. The F 
values of 775.47, 1469.86, 172.16, 151.64, 795.94, 257.40, 801.42, and 1226.31 for torque, BP, BSFC, BTE, CO, CO2, HC, NOx 
indicate the significance of models. The terms in the model were coded as A for fuel blend, B for load, and C for engine speed. The p 
values lower than 0.0860 also highlight that model terms are significant. 

For torque, the F-value of 775.47 and p-value lower than of 0.0500 depict that model as significant. In this case A, B, C, AB, AC, BC, 
C2 are significant model terms. In the case of numerous insignificant model terms except those which support hierarchy, model 
reduction can improve the model. For brake power, the F-value of 1469.86 and p-value lower than of 0.0500 depict that model is 
significant. In this case A, B, C, AB, BC, A2 are significant model terms. For brake specific fuel consumption, the F-value of 172.16 and 
p-value lower than of 0.0500 depict that model is significant. In this case A, B, C, AB, AC, BC, C2 are significant model terms. For brake 
thermal efficiency, the F-value of 151.64 and p-value lower than of 0.0500 depict that model is significant. In this case B, C, AB, AC, C2 

are significant model terms. In case of CO emission, the F-value of 795.94 and p-value lower than of 0.0500 depict that model is 
significant. In this case A, B, C, AB, AC, A2, C2 are significant model terms. In terms of the CO2 emission, the F-value of 257.40 and p- 
value lower than of 0.0500 depict that model is significant. In this case A, C, AB, AC, C2 are significant model terms. For HC emission, 

Fig. 15. (a) Response surface for brake power at lower load, (b) Response surface for brake power at higher load, (c) Residual versus run graph for 
brake power, and (d) Predicted versus actual graph for brake power. 
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the F-value of 801.42 and p-value lower than of 0.0500 depict that model is significant. In this case A, B, C, AC, BC, C2 are significant 
model terms. In terms of NOx emission, the F-value of 1226.31 and p-value lower than of 0.0500 depict that model is significant. In this 
case A, B, C, AC, A2, C2 are significant model terms. 

The adequacy of the considered models has been affirmed through residual versus run plots and diagnostic predicted versus actual 
as depicted in Figs. 14–21 (c and d). Likewise, Figs. 14–21 (a and b) depict the RSM predicted responses are close to ANN values, 
depicted by colored data points located near to linearly inclined line. The difference between RSM and actual (ANN) values was in 
between residual range of [− 3.67, +3.67], as portraying Figs. 14–21 (d). The uniform distribution at top and bottom of reference axis, 
for all parameters, indicates statistical significance of all (performance and emission parameters) RSM models. Response surfaces of 
torque, BP, BSFC, BTE, CO, CO2, HC and NOX against engine speed, fuel blend, and load are portrayed in Figs. 14–21 (a and b) 
respectively. It is evident that each design factor has a prominent impact on responses. The light and dark points on response surfaces 
indicates design points lower and higher than the forecasted values respectively. Regression equation (2nd order) associating the input 
factors and responses to evaluate performance and emissions are indicated by coded equations from 4 to 11. The coded alphabets A, B, 
and C represent the fuel blend, loading condition, and engine speed respectively. The equation including three coded input factors 
predicts the response against designated levels. As a default setting, factors with higher levels are represented as +1 and factors with 
low levels are represented as − 1. The coded equation is beneficial for classifying relative effect of each factor through comparison 
between coefficients. 

Torque= 5.82 + 0.7144A + 0.7144A + 0.8197B + 1.32C – 0.1051AB – 0.1224AC + 0.2600BC –0.5301C2 (4)  

Brake power= 1.53 + 0.1476A + 0.2345B + 1.04C – 0.0494AB + 0.1655 BC + 0.0622 A2 (5)  

BSFC= 0.4062 + 0.0128A –0.0419B – 0.0308C + 0.0168AB + 0.0149AC + 0.0113BC + 0.1235C2 (6)  

BTE= 20.30 + 0.1427A + 1.88B + 0.7796C – 0.6702AB – 0.6244AC + 0.2311BC + 0.3967A2 – 4.82C2 (7)  

CO= 2.85 – 1.10A – 0.2207B + 3.28C + 0.4078AB – 0.7509 AC + 0.2143 A2 + 0.6408C2 (8) 

Fig. 16. (a) Response surface for BSFC at lower load, (b) Response surface for BSFC at higher load, (c) Residual versus run graph for BSFC, and (d) 
Predicted versus actual graph for BSFC. 
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CO2 = 8.59 – 0.3861A – 0.0900B + 2.51C – 2.50 AB – 0.4107AC – 2.16 C2 (9)  

HC= 157.33 – 67.41A – 15.47B – 72.67C + 25.93AC + 5.64 BC – 4.23 A2 – 36.65 C2 (10)  

NOx= 775.48 + 185.89A + 27.27B + 576.80C + 124.15AC + 13.09 BC – 46.87 A2 + 50.68 C2 (11)  

3.6. Optimization and validation of results 

The purpose of employing RSM in current investigation was to spot the optimum operating conditions for experimentation. The 
three design factors (fuel blend, engine speed and loading condition) were considered as input, and ANN predicted data (torque, BP, 
BSFC, BTE, CO, CO2, HC, and NOx) were used as response. An optimization function in design expert software requires optimal 
constrictions to be clear for design factors along with output responses. Table 18 depicts the designed constraints along with opti-
mization setup. The objective was the optimization of the engine through maximizing its performance and minimizing exhaust 
emissions while setting the criteria of within range for study factors. 

The most optimum operating condition came out to be 2000 rpm, B21, and 30psi loading condition. The performance charac-
teristics against this optimum condition are 6.576 N-m torque, 1.437 kW brake power, 0.416 kg/kWh BSFC, 21.114 % of BTE, 1.237%v 
of CO emission, 4.421%v of CO2 emission, 80.840 ppm HC emission and 662.516 ppm NOx emission. The composite desirability (D) is 
a unitless quantity which varies from zero to one. The value closer to 1, the more effective optimization takes place. As the D was 
perceived to be 0.7381 (Fig. 22). A value adequately near to 1 proves the effectiveness of employed RSM models in predicting the 
optimum design factors for SI engine. The RSM based optimization can also be validated through empirical runs. The empirical 
findings of performance and emission parameters were noted consistent to optimized speed, fuel blend, and loads. The minimum and 
maximum individual desirability were observed for NOx emission (0.6553) and CO emission (0.8658). These numeric values indicate 
that varying CO emission will create max impact and varying NOx emission will create least impact on the setting as whole. The 
experimental observations indicate sufficient compliance with RSM optimized values with absolute percentage error (APE) below 4 % 

Fig. 17. (a) Response surface for BTE at lower load, (b) Response surface for BTE at higher load, (c) Residual versus run graph for BTE, and (d) 
Predicted versus actual graph for BTE. 
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for all the performance and emission parameters (see Table 19). The lower APE between RSM predicted and experimental values 
depicts that the RSM is practically viable. 

3.7. ANN and RSM model comparison 

The statistically dependent predicting models of performance parameters (Torque, brake power, BSFC and BTE) and emission 
parameters (CO, CO2, HC, and NOx) apparently exhibit alike efficiency and reliability. However, owing to general linkages of methods 
root task to similar domains, the comparative evaluation of these two models can be a perfect approach. A comprehensive comparison 
between the ANN and RSM models in terms of MRE and RMSE is exhibited in Table 20. It reveals that ANN model predicts engine 
characteristics more efficiently owing to lower values of RMSE and MRE. 

4. Compliance with Sustainable Development Goals (SDGs) 

The exponential growth of industry and rapid utilization of resources without future planning has resulted in environmental havoc 
for all living beings. No field of science can remain insensitive towards the present climate challenges. Ignorance towards the envi-
ronment has led to catastrophic change in climate. Different initiatives are taken by governments to preserve the climate. The 
American government has introduced a scrappage policy to encourage the customers to replace old and emission causing vehicles [77]. 
The ideology of the present study is in line with four points of the 2015 United Nation 17-point agenda of the Sustainable Development 
Goals (SDGs). It will also inspire the masses to responsibly produce and consume the resources to minimize emissions. The efforts of 
pollution reduction would help to preserve climate and sea life (13th SDG). The implementation of butanol as fuel in vehicles is directly 
under compliance with SDGs 7 (Affordable and Clean Energy) and 13 (Climate Action), which involve adoption of sustainable and 
clean energy sources to cope with climate change. SGD 7 signifies the need to switch from conventional petroleum sources to 
renewable sources by assisting the balance between climate change and industrialization promoting economic growth, and fulfilling 

Fig. 18. (a) Response surface for CO emission at lower load, (b) Response surface for CO emission at higher load, (c) Residual versus run graph for 
CO emission, and (d) Predicted versus actual graph for CO emission. 

M.A.I. Malik et al.                                                                                                                                                                                                     



Heliyon 10 (2024) e29698

22

energy demands [78,79]. The outcomes of the current study including both performance and exhaust emissions from the SI engine 
fueled with butanol blends are following SDGs 7 and 13. The unique combination of RSM and ANN for optimizing and predicting 
engine performance inspires effective resource utilization and sustainable production along with the establishment of better infra-
structure facilities in order to harness natural sources. This approach is in alliance with SDGs 9 and 12 to promote inclusive and 
sustainable industrialization, and foster innovation along with sustainable consumption and production patterns. Fig. 23 represents 
the link between current study with SDGs under United Nations vision 2030. 

5. Conclusions 

The current study not only investigated the performance and emission characteristics of the SI engine fueled with butanol-gasoline 
blends, but also presented the comparative assessment of the ANN and RSM predicted results. The ANN and RSM techniques were 
subsequently employed for the performance and emissions prediction followed by optimization. The research outcomes are briefly 
explained as follows.  

• The higher loading condition proved valuable in the experiment for assessment of engine performance parameters. The blends B0: 
B3:B21 at higher loading condition produced 50.22 %, 38.72 %, 40.99 %, 37.09 %, 38.46 %, 37.08 %, 28.79 %, and 26.44 %, more 
brake power than B0:B3:B21 at lower loading condition. The blends B0:B3:B21 at higher loading condition exhibit 7.71 %, 3.32 %, 
3.33 %, 3.29 %, 3.30 %, 3.29 %, 3.17 %, and 3.16 % more BTE than B0:B3:B21 at lower loading condition.  

• The blends B3 to B21 produced 7.42 %, 15.04 %, 25 %, 35.56 %, 44.52 %, 51.79 % and 59.36 % lower hydro-carbon emission than 
B0 respectively. While the blends B3, B6, B9, B12, B15, B18 and B21 produced 7.75 %, 13.32 %, 24.39 %, 35.15 %, 57.81 %, 56.44 
% and 66.85 % higher NOx emission than B0 respectively.  

• The correlation coefficients for training, validation and testing were found 0.99986, 0.99942 and 0.99872 respectively. ANN 
predicted responses were in accordance with statistical criterion. The R2 of torque, BSFC, BP, and BTE were 0.9969, 0.9908, 0.9981, 

Fig. 19. (a) Response surface for CO2 emission at lower load, (b) Response surface for CO2 emission at higher load, (c) Residual versus run graph for 
CO2 emission, and (d) Predicted versus actual graph for CO2 emission. 
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and 0.9903 respectively. MREs were ascertained as 1.98 %, 1.72 %, 2.13 %, and 1.83 % for torque, BSFC, BP, and BTE respectively. 
The RMSEs were 0.1183 N-m, 0.044 kW, 0.3959 %, and 0.0096 kg/kWh against torque, BP, BTE and BSFC respectively.  

• While the correlation coefficient (R2) for predicted results of CO, CO2, HC, and NOx were 0.9996, 0.9985, 0.9987 and 0.9988 
respectively. The MREs were calculated as 2.91 %, 2.25 %, 2.96 % and 2.45 % and RMSEs were 0.0876 %, 0.1910 %, 3.67 ppm and 
19.52 ppm for CO, CO2, HC, and NOx respectively.  

• A multi-response optimization signified suitable optimization setting with D value of 0.7381. RSM predicted optimum condition of 
fuel blend (B21), engine speed (2000 rpm) and loading condition (30psi). The deviation between experimental results and RSM 
predicted results was below 4 %.  

• The ANN predicted values for engine performance fueled with butanol blended fuel generated accurate results. ANN technique 
proved more accurate than RSM technique with MRE less than 3 % for all performance and emission parameters.  

• The ability of ANNs to learn complex patterns and relationships from data can provide a competitive advantage in decision-making 
and automation. Developing and implementing robust neural network models may require substantial investment in terms of 
skilled personnel, computational resources, and data. However, the potential benefits in terms of improved efficiency, accuracy, 
and decision-making can outweigh the costs.  

• RSM to systematically improve processes, reduce variability, and optimize product formulations. This can lead to cost savings, 
improved product quality, and increased efficiency in manufacturing. Implementing RSM may involve investments in experi-
mentation, data collection, and statistical analysis. However, the potential return on investment comes from the improved un-
derstanding and control of processes, leading to more reliable and cost-effective production. 

Fig. 20. (a) Response surface for HC emission at lower load, (b) Response surface for HC emission at higher load, (c) Residual versus run graph for 
HC emission, and (d) Predicted versus actual graph for HC emission. 

M.A.I. Malik et al.                                                                                                                                                                                                     



Heliyon 10 (2024) e29698

24

Thus, the blending of butanol into gasoline proved extremely valuable to enhance engine performance with lower emission levels. 
The statistical valuation means (R, MRE and RMSE) disclosed that the engine parameters (performance and emissions) can be precisely 
predicted by employing the ANN and RSM models. Categorically, butanol addition to gasoline is enviable for improved engine per-
formance and to reduce dependency on fossil fuels. The blending can also be further optimized through Artificial Intelligence and 
statistical procedures. The current study has tried to evaluate the effect of the butanol blends on engine performance, but in the future 
their impacts on the lubricant oil inside engine with a stepwise increment in speed and load can be assessed through the ANN models 
with help of distinct training functions and algorithms. This will not only save time but also save a lot of money which will otherwise be 
spent on getting deteriorated lubricant oil for testing after specified hours of engine running. In summary, both ANN and RSM have 
commercial value in different domains. ANNs are powerful tools for complex pattern recognition and prediction tasks, while RSM is 
valuable for optimizing processes and improving outcomes in fields where experimentation and systematic analysis are critical. 
Integration of ANN and RSM with other emerging technologies like reinforcement learning, transfer learning, and quantum computing 

Fig. 21. (a) Response surface for NOx emission at lower load, (b) Response surface for NOx emission at higher load, (c) Residual versus run graph 
for NOx emission, and (d) Predicted versus actual graph for NOx emission. 

Table 18 
Optimization setup.  

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance 

A: Fuel Blend is in range 0 21 1 1 3 
B: Load is in range 15 30 1 1 3 
C: Speed is in range 1300 3700 1 1 3 
Torque maximize 2.4372 8.323 1 1 3 
Brake power maximize 0.34903 3.1245 1 1 1 
BSFC minimize 0.3019 0.7389 1 1 3 
BTE maximize 11.3916 25.7658 1 1 3 
CO minimize 0.1092 8.5135 1 1 3 
CO2 minimize 1.7343 13.0983 1 1 3 
HC minimize 15 289.908 1 1 3 
NOx minimize 106.694 1719.01 1 1 3  
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may shape the future landscape of AI, making systems more adaptive and capable. 
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