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A B S T R A C T   

Bird-scaring lines (BSLs) are an essential on-vessel bycatch mitigation device to reduce seabird interactions with 
fishing gear, such as the baited hooks of longline vessels. To ensure compliance with the behaviours required to 
operate successful BSLs, Electronic Monitoring (EM) cameras installed on fishing vessels can facilitate monitoring 
of commercial fishing activities. This study proposes an Artificial Intelligence and Machine Learning (AIML) 
framework based on a state-of-the-art deep learning computer vision approach called Faster RCNN to detect BSLs 
using vessel Electronic Monitoring (EM) video footage. The experiments include comprehensive analysis for 
detecting BSLs during daytime and night-time using footage from tuna longline vessels, under various weather 
conditions. Results show that a detection precision of 0.87 can be achieved. This valuable AIML tool can 
significantly reduce the time and costs associated with reviewing human EM footage, expand coverage, and 
automatically identify events for compliance checks and endangered species monitoring.   

1. Introduction 

Seabirds are important components of marine ecosystems, where 
they fulfil a role as top predators and are well-established indicators of 
oceanic conditions (Montevecchi, 2023). Fishery discards often sup
plement their diets (Arata and Xavier, 2003), but at a risk of incidental 
bycatch and mortality. Fishery bycatch has been recognised as the 
greatest threat to seabirds globally, which affects 28 % of all seabird 
species, with half of these being threatened with extinction(Brothers, 
1991; Anderson et al., 2011; Phillips et al., 2016; Avery et al., 2017; 
Cooper et al., 2006; Montevecchi, 2023). Bycatch usually occurs from 
entanglement in gillnets, when baited hooks from longlines are pursued, 
or from striking warp cables of trawl vessels (Gales, 1998; Bull, 2007). 
Albatrosses and petrels are most imperilled, with significant declines in 
populations worldwide being directly attributed to high levels of 
bycatch in pelagic and demersal longline fisheries (Tuck et al., 2001; 
Baker et al., 2002; Croxall et al., 2012; Gilman et al., 2021; Montevecchi, 
2023). 

The adverse impacts of longline fishing on seabirds have been known 

since the early 1990s (Brothers, 1991; Junior, 1991; Weimerskirch et al., 
1997; Murray et al., 1993). Since then, various agreements, regulations 
and mitigation strategies have been established and implemented 
globally, all of which aim to significantly reduce seabird bycatch 
(Commonwealth of Australia, 2018; ACAP, 2021). For example, in 2004 
the Agreement for the Conservation of Albatrosses and Petrels (ACAP) 
was established to work with Regional Fisheries Management Organi
sations (RFMOs) and other relevant fisheries organisations to encourage 
the adoption of best-practice mitigation measures to reduce seabird 
mortality in fisheries. In Australia, the incidental catch of seabirds 
during longline fishing was listed on ‘Schedule 3 Key Threatening Pro
cesses’ of the Endangered Species Protection Act 1992 and many species 
of seabirds have been listed as threatened species under the EPBC Act 
(1999). The significance of these listings means that the mitigation of 
bycatch of seabirds on longliners is coordinated and implemented 
through a Threat Abatement Plan (TAP) for the bycatch of seabirds from 
oceanic longline fishing operations (Commonwealth of Australia, 2018). 
In Australian waters, bycatch rates are generally required (by the TAP) 
to be below either 0.01 or 0.05 birds per 1000 hooks. Considerable 
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success in meeting these criteria has been achieved, with estimated 
bycatch rates well below these requirements (Baker and Robertson, 
2018), in part due to the implementation of BSLs (Commonwealth of 
Australia, 2018). Continued success of mitigation programs in Australia 
and globally will require mechanisms in place to ensure ongoing 
compliance and that reviews of compliance are accurate, timely and cost 
effective. 

Globally, several mitigation devices and operational measures have 
been mandated or recommended for use in longline fisheries, including 
BSLs (also known as tori lines), line weighting, hook shielding devices, 
night setting and managing offal discharge (Lawrence et al., 2006; Bull, 
2007; Melvin et al., 2013; Commonwealth of Australia, 2018; AFMA, 
2023; ACAP, 2021). BSLs are one of the most effective and economical 
mitigation measures used to reduce seabird bycatch. In general, BSLs 
consist of a single mainline (or backbone) which is attached to a high 
point on the stern and extends into the water. A towed object (e.g. buoy) 
attached to the end of the line creates drag which keeps the line taut and 
ensures that a section of it remains above the water surface. Several 
brightly coloured streamer lines dangle vertically from the aerial section 
of the backbone to create a physical barrier and visual deterrent to 
seabirds (e.g.Fig. 1). The colour, movement and placement of the 
streamer lines deter the birds from accessing submerged baited hooks 
(Bull, 2009; Sato et al., 2016; Gilman et al., 2021; ACAP, 2021). Properly 
designed and deployed BSLs are effective at reducing seabird bycatch, in 
particular for longline vessels, with many studies demonstrating sig
nificant reductions, by more than 90 % in some cases, and for several at 
risk species, across multiple regions (Klaer and Polacheck, 1998; 
Løkkeborg and Robertson, 2002; Otley et al., 2007; Sato et al., 2013; 
Melvin et al., 2013; Maree et al., 2014; Melvin et al., 2014; Avery et al., 
2017; Paterson et al., 2019; Jiménez et al., 2020; Da Rocha et al., 2021; 
ACAP, 2021). 

To monitor compliance with, and effectiveness of, mitigation mea
sures, fisheries management authorities collect data through fisher- 
dependent reports such as the Threatened, Endangered and Protected 
(TEP) species interaction reports and bycatch records, and independent 
means. Human observers on vessels have been the primary source of 
independent at-sea fisheries data, but the need to increase coverage 
coupled with the increasing cost and risk of using observers has cata
lysed the use of Electronic Monitoring (EM). EM uses cameras and 
associated hardware components (e.g. sensors, communication and 
geolocation devices) deployed on-vessel to record and collect video of 
fishing activities (Gilman et al., 2019; van Helmond et al., 2020). The 
EM video is used to manage and monitor fishing activities, including 
compliance with regulations such as the deployment of BSLs and to 
verify fisher-dependent data (e.g. logbooks) (Brown et al., 2021). 

One of the major challenges with EM programs worldwide is that the 
quantity of video data collected far exceeds the capacity to manually 
review it (Gilman et al., 2019; Emery et al., 2019). As a result, only a 
subset of EM footage is reviewed due to the associated time and costs of 
human review (Emery et al., 2019). For example, in Australia, EM sys
tems are deployed on all tuna longline vessels, with a subsequent min
imum of 10 % footage reviewed. Developments in Artificial Intelligence 
and Machine Learning (AIML) technologies that automate video analysis 
tasks (e.g. estimate fish counts) have the potential to enable more effi
cient and timely review of EM footage (Qiao et al., 2021; Khokher et al., 
2022), and increase data collection and review coverage for key activ
ities (e.g., TEP species interactions; BSL deployment). Compared to 
other application areas of object detection, for instance in CCTV camera 
images, the application of AIML technology to EM data is however 
complicated by the need for large volumes of human-labelled images, 
the inherent variability of EM footage quality due to lighting and 
weather conditions, infrastructure occlusion, the presence of lens arte
facts (e.g. water droplets), and the variability between camera posi
tioning and appearance of different vessels. 

In this study, we use a deep learning-based object detection frame
work (Faster R-CNN; Ren et al., 2015) to train and test an algorithm for 

the automatic detection of BSLs in EM footage on tuna longline vessels in 
Australia. We conduct experiments using EM footage of variable quality 
(e.g. water droplets on lens), from multiple vessels and conditions (e.g. 
dawn, day, dusk and night) to develop a scaled algorithm which is robust 
to variations in imagery. Automated detection of BSL deployment is a 
valuable AIML tool which can be used to reduce the time and costs of 
human EM footage review, increase coverage, and automatically flag 
events for compliance checking and TEP species monitoring. 

2. Methods 

This study used EM footage from three Australian tuna longline 
vessels collected during day and night in 2018 and 2019. Video footage 
from the EM camera mounted to view aft of the vessel’s stern was 
analysed to detect the deployment of fishing lines and BSLs. The location 
of the EM cameras often means that they are placed in exposed areas 
subject to extreme variations in lighting (daylight vs. bright deck lights 
used at night) and weather (e.g., rain) conditions. Light can strike the 
lens, and water droplets and condensation can settle on the camera lens, 
causing artefacts in the video footage, such as reflection and image blur. 
Similarly, general weather conditions such as rain and fog can affect the 
quality of EM footage, and the viewpoint of the EM camera is slightly 
different for each vessel. Hence, the view of BSLs and the spatial 
arrangement of each vessel’s deck are unique. 

The framework as shown in Fig. 2 was trained using a deep learning- 
based object detector called Faster R-CNN (Ren et al., 2015) on human- 
labelled EM footage data from a single vessel that was used as a starting 
point for training and detecting BSLs in day/night settings during 
various weather conditions. While the framework can detect BSLs on 
one vessel, it is also desirable that the framework can generalise well on 
unseen vessel data without fine-tuning for each vessel. Therefore, we 
also investigated the data requirements of the framework to assess 
detection over different vessel structures and viewpoints. 

2.1. Datasets 

The EM data comprise images captured from three vessels in diverse 
weather and lighting conditions. Table 1 summarizes the dataset details. 
The experimental results along with distinct camera viewpoints are 
presented in Section 3.2. The EM data are confidential and private; 
consequently, we have redacted all vessel information and obscured all 
human faces. Across all three vessels, the quality of the EM footage was 
generally of low resolution (1360 × 768 compared to 3840 × 2160 or 4 
K resolution for most modern surveillance cameras) and often blurry due 
to lens artefacts (e.g., water droplets). Despite this, the bright red/pink 
colour of the BSL streamers was visible even in rough seas at night due to 
their vertical orientation, movement and colour being highlighted by 
vessel lighting. 

The video footage was divided into individual frames and annotated 
with bounding boxes to facilitate object detection using the open-source, 
web-based software Computer Vision Annotation Tool (CVAT1). This 
platform employs the bounding box labelling technique, which enables 
the naming (classification) and locating of objects in the video frame 
required for machine learning-based object detection. The bounding 
boxes containing the BSL location and classification information are 
referred to as labels and are utilized for training the deep learning-based 
object detector, Faster R-CNN, for performing detection. We used CVAT 
to label 2063 images containing BSLs from three different vessels, each 
containing images recorded during the day and at night to train the 
Faster R-CNN model and split the total number of labelled images con
taining training (80 %), validation (10 %) and testing (10 %) for all 
experiments. This split ratio is a standard practice in the machine 
learning community for training deep learning models. There were very 

1 Available at: https://github.com/opencv/cvat. 
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few frames for each vessel where the BSL were absent, and they corre
sponded to the end of the fishing activities where the BSL were retracted. 
We trained Faster R-CNN on the training set and identified the best 
model during training using the validation set, where training refers to 
the use of human-labelled images to teach the Faster R-CNN model to 
detect BSLs. We then independently tested the model on the testing 
dataset that was not used for training. 

2.2. Object detection using deep learning 

Deep learning (LeCun et al., 2015) is a subset of the machine learning 
algorithms that are composed of multiple processing layers that learn 

the hierarchy of the high-dimension data automatically. In the last 
decade, deep learning has achieved state-of-the-art performance for 
many tasks including image recognition and classification, and has been 
applied to solve many challenging problems, where conventional ma
chine learning techniques perform poorly (LeCun et al., 2015). One of 
the most prominent application areas of deep learning is visual object 
detection. 

Object detection (Zou et al., 2023) is the process of localising objects 
of interest on the image and finds many practical applications including 
video surveillance, self-driving cars and healthcare. Object detection is a 
two-step process: object location followed by object classification. The 
first step is to identify whether any objects are present in the image or 

Fig. 1. A deployed Bird Scaring Line (BSL) present at the centre of the image has orange and yellow coloured streamer lines.  

Fig. 2. The framework of the proposed approach where we detect the BSLs with deep learning-based object detector and perform the accuracy evaluation. The BSL 
detection approach utilized the Faster R-CNN framework, which comprises a convolutional neural network (CNN), specifically ResNet-50, to extract features from the 
entire image. These features were then used by a region proposal network to generate regions of interest where the object may be located within the image. Following 
this, object localization and classification were performed based on the proposed regions and the extracted image features. 

Table 1 
Summary of the labelled images from three different vessels 1–3. Vessel 3 data (V3-2019-DN) was not used for training any model and was explicitly used for testing 
inter-vessel detection generalization.  

Vessel number Vessel name Year Day Night BSL present BSL absent 

1 V1-2018-D 2018 447 –  959  19 
1 V1-2019-D 2019 75    
1 V1-2019-N 2019  456   
2 V2-2019-DN 2019 407 513  903  17 
3 V3-2019-DN 2019 80 85  152  13 
Total labelled images: 2063       
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not. Usually, an object detector identifies several hundreds of such ob
jects in a single image as potential candidates for the object of interest. 
In the second step, the object detector ‘classifies’ those detections as 
whether the detected object is actually the object of interest (BSL in this 
case). After the classification, the precision is calculated based on the 
overlap of the bounding boxes as predicted by the object detector by 
comparing it with the bounding box annotation performed by a ‘human 
expert’. This means that not only do we see whether the object is 
correctly classified as BSL or not, but we also see whether it is located 
correctly on the image. The higher deviation between the predicted 
location and the human-annotated location of the BSL can be considered 
an error. The error is usually defined in terms of the overlap of the 
predicted box and the human-annotated box, and if it is over 50 %, we 
consider it as a correct detection. This overlap is often referred to as the 
Intersection over Union (IoU). 

Faster R-CNN (Ren et al., 2015) is a popular object detection 
framework that has been widely used in the computer vision community 
for many challenging tasks. Faster R-CNN utilizes a deep Convolutional 
Neural Network (CNN) architecture, as depicted in Fig. 2. CNNs are 
another form of deep learning algorithms that are inspired by the visual 
cortex of the human brain and contain several layers that can under
stand complex image features, and they are successfully applied for 
several image classification tasks. Each layer contains learnable 
‘weights’ for the filters that convoluted the whole image and generate a 
‘feature map’, which is essentially a vector containing the output of the 
convolutions. These feature maps are input to the deeper layers. This 
architecture helps the CNNs understand the increasing complexity of the 
image data and the high-level context of the objects in the images. 

Unlike earlier methods that employed CNNs only for classification, 
Faster R-CNN predicts objects in images through a Region Proposal 
Network (RPN), which is a two-layered network built on the top of the 
convolutional feature map. The RPN uses a sliding window placed over 
the feature map, anchored at multiple scales with varying aspect ratios 
to capture objects of different sizes. The multi-scale approaches consider 
the image features of the same image at different scales for adding more 
context to image understanding. The anchor boxes are centred on the 
sliding window and generate region proposals at different spatial loca
tions, which are projected onto the corresponding spatial part of the 
feature map. The regions are then extracted using Region of Interest 
(ROI) pooling, and the regression provides more precise localization 
relative to the sliding window position. The RPN does not add to the 
overall computation of the network. 

2.3. Implementation details 

For the detection experiments, we employed a Faster R-CNN model, 
which utilized a ResNet50 backbone pre-trained on the COCO (Lin et al., 
2014) dataset. We utilized PyTorch2 deep learning libraries to train it on 
a high-performance computing workstation that hosted an NVIDIA 
TESLA P100 Graphics Processing Unit (GPU) with 16 GB of RAM. The 
training took approximately an hour for the largest dataset that was used 
in Experiment 3. NVIDIA is the leading manufacturer of GPU cards 
worldwide, and TESLA is a GPU product manufactured by NVIDIA for 
high-performance computing. 

2.4. Detection evaluation 

The evaluation of multi-class object detection performance typically 
employs the metrics of “precision” and “recall,” as the detector must not 
only correctly classify objects but also accurately locate them within the 
image. However, in the specific case of detecting BSLs, which typically 

involves the detection of a single object, we utilized solely the precision 
of predicted bounding boxes to assess prediction accuracy. Fig. 3 pre
sents the procedure for evaluating the accuracy of predicted bounding 
boxes generated by an object detector. In particular, a predicted box 
must possess an IoU of over 50 % to be considered a true positive, 
whereas an IoU below this threshold is classified as a false positive. 
Thus, precision can be calculated as follows: 

Precision =
true positives

true positives + false positives
(1)  

3. Experiments and results 

3.1. Experiments 

Vessel 1 comprises day footage obtained over multiple years (2018 
and 2019), along with night footage from a single year (2019). Mean
while, Vessel 2 and Vessel 3 contain day and night data from a single 
year (2019), see Table 1. To gain insights into the performance of the 
trained models in various scenarios, we conducted four experiments 
involving training the Faster R-CNN model with different datasets and 
assessed the precision of the trained models in each case. We elucidate 
these experiments in the following section. Table 2 summarizes the ex
periments and their results, while Fig. 4 displays the detection outcomes 
for different vessels in these experiments. 

3.1.1. Experiment 1 
For this experiment, a Faster R-CNN model was trained with Vessel 1 

day data from 2018 (V1-2018-D) and tested with Vessel 1 day and night 
data from 2019 (V1-2019-D and V1-2019-N). The trained model per
formed exceptionally well on V1-2019-D data, with a precision of 0.88 
as shown in Table 2. Notably, the model also achieved a high precision 
of 0.76 while testing with night-time data from V1-2019-N. These 
findings demonstrate the model’s robustness to weather and illumina
tion changes for the same vessel. 

However, when the same model was tested on data from a different 
vessel (Vessel 2: V2-2019-DN) containing day and night images, a 
decrease in precision was observed (0.64). Although the model trained 
with V1-2018-D data was robust to weather and illumination changes, it 
was sensitive to the viewpoint of the camera on another vessel. This is 
illustrated in Fig. 4, where the camera viewpoint difference between the 
two vessels resulted in more of the deck being visible in Fig. 4(b) than in 
Fig. 4(a). This limits the generalizability of the algorithm since there will 
be a significant drop in detection accuracy for different vessels. Addi
tionally, Fig. 4 shows that the detector was less confident while making 
predictions during the night compared to the day (as evidenced by the 
confidence scores on the top of the figure). Thus, the subsequent ex
periments aim to explore methods to improve the detections when using 
other vessels. 

3.1.2. Experiment 2 
In this experiment, we explored whether the Faster R-CNN model 

trained with data from only one vessel (day and night-time) performed 
better than the model trained with only day data. The test data for this 
experiment is completely unseen and untrained data was acquired from 
a different vessel. For this experiment, we trained a Faster R-CNN model 
with day and night data from Vessel 1 for both years by merging V1- 
2018-D, V1-2019-D and V1-2019-N datasets containing 920 images. 
We tested this Faster R-CNN model with day and night data of Vessel 2 
(V2-2019-DN) and observed that the Faster R-CNN model trained on the 
combined Vessel 1 dataset for both years performed better than the 
model trained with only V1-2018D data (Experiment 1). The improved 
precision (0.70 vs 0.64) indicates that including night data for training 
does improve the detection accuracy while being tested with data from 
another vessel, i.e., V2-2019-DN. However, the achieved precision is low 
compared to the precision observed in Experiment 1 (0.88 and 0.76) for 

2 PyTorch is a deep learning framework consisting of several libraries for 
image processing and classification. We used mmdetection public repository 
available at https://github.com/open-mmlab/mmdetection. 
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the Faster R-CNN model trained and tested with the same vessel data. 
We believe the lower precision results from a lack of data diversity, 
where the Faster R-CNN model has only “seen” images of Vessel 1. 

3.1.3. Experiment 3 
We investigated whether training a Faster R-CNN model with data 

from multiple vessels could improve detection precision when tested on 
completely unseen data from another vessel. 

To accomplish this, we created a combined dataset by merging 
Vessel 1 and Vessel 2 data (V1-2018-D + V1-2019-D + V1-2019-N + V2- 
2019-DN), resulting in a more diverse dataset of day and night images 
captured in different conditions and viewpoints containing 1898 im
ages. This diverse dataset contained multiple scenes, illuminations, 
weather conditions, and day and night conditions. We trained a Faster R- 
CNN model using this combined dataset and tested its performance on 
Vessel 3 data (V3-2019-DN), which contained day and night data that 
were not used in any training and were solely used for testing purposes. 

Fig. 3. The accuracy evaluations of predicted bounding boxes in relation to the “ground-truth” bounding box, where ground-truth refers to the correct position of the 
bounding boxes. On the left, the precision of the bounding boxes is defined as the “intersection over union” (IoU), which is the ratio of the “area of intersection” to the 
“area of union” between the predicted and ground-truth bounding boxes, and is widely regarded as the accepted standard in object detection (Ren et al., 2015). The 
blue regions in the numerator and denominator represent the areas of intersection and union, respectively. When the IoU ratio is greater than 50 %, the predicted box 
is considered a true positive; otherwise, it is a false positive. On the right, the green, orange, and red boxes represent the ground-truth, true positive, and false 
positive, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
The training and testing cases for object detection with Faster R-CNN and their 
respective precisions.  

Exp Faster R-CNN train dataset vessel by 
year, 
Day/ Night (no. in brackets) 

Test dataset - vessel by 
year, Day/ Night 

Precision  

1 V1-2018-D (447) V1-2019-D  0.88 
V1-2019-N  0.76 
V2-2019-DN  0.64  

2 V1-2018-D + V1-2019-D + V1- 
2019-N (920) 

V2-2019-DN  0.70  

3 V1-2018-D + V1-2019-D + V1- 
2019-N + V2-2019-DN (1898) 

V3-2019-DN  0.87  

4 V1-2018-D + V1-2019-D + V1- 
2019-N + V2-2019-DN (950) 

V3-2019-DN  0.82  

Fig. 4. BSL detections during the day and night. Visualisation of BSL detections by the Faster R-CNN model for (a) Vessel 1 (2019) Night (b) Vessel 2 (2019) Night 
and (c) Vessel 3 (2019) Day. The bounding boxes show the confidence score of the detection (between 0 and 1). 
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Our findings reveal that the Faster R-CNN model, which was trained 
with the combined data (V1-2018-D + V1-2019-D + V1-2019-N + V2- 
2019-DN), achieved a precision of 0.87. This means the model out
performed the Faster R-CNN model trained with the combined data of 
Experiment 2 containing only V1-2018D + V1-2019-D + V1-2019-N 
data (precision 0.70). Moreover, the precision of the Faster R-CNN 
model trained with the combined data (V1-2018D + V1-2019N + V2- 
2019-DN) in this experiment was comparable to the precision of the 
model trained and tested with only day-time data from the same vessel 
(training with V1-2018-D and testing with V1-2019-D images) in 
Experiment 1, which achieved a precision of 0.88. It is noteworthy that a 
precision of 0.88 is considered highly accurate. For comparison, 
Khokher et al. (2022) reported the best average precision of 0.81 for 
detecting the ‘Sting Ray’ class using the Cascade R-CNN object detector 
for performing multi-class fish detection from EM videos, where Cascade 
R-CNN is another popular multi-stage object detection framework. 
Taken together, the results of our experiments indicate that the addi
tional images and diverse scenes from Vessel 2, which contained 920 
images of both day and night, helped train a Faster R-CNN model that is 
robust to viewpoint changes and is not susceptible to changes in 
surroundings. 

3.1.4. Experiment 4 
The combined dataset (V1-2018-D + V1-2019-D + V1-2019-N + V2- 

2019-DN) contained approximately twice the number of images (1898) 
compared to the number of images used in Experiment 2 (920). There
fore, to investigate whether the improved precision was a result of the 
increased number of images from the second vessel, or it was a result of 
using the image diversity sourced from the two vessels, we created a 
subset of the combined dataset (V1-2018-D + V1-2019-D + V1-2019-N 
+ V2-2019-DN) by picking 950 images randomly from the set of all 
images. This data subset contained an approximately equal number of 
images from both vessels and a comparable number of images with 
Experiment 2. We trained another Faster R-CNN model with the reduced 
number of images and tested it with Vessel 3 data, and we report the 

results in Table 2. The results indicate that a precision of 0.82 can be 
achieved with 950 images from two vessels when being tested on the 
third vessel, indicating that data diversity is a more important factor 
compared to the additional number of training images. 

3.2. Error analysis 

We have identified several instances where the object detector 
exhibited poor performance, as depicted in Fig. 5. In these instances, the 
detector failed to detect a BSL that was present. Most of the training data 
consisted of images in which the BSLs were clearly visible, appearing 
vertically and grouped. It is noteworthy that the trained model has not 
detected a BSL in a test image where the BSL is underwater, as seen in 
Fig. 5(a), while during the manual annotation the BSL was labelled as a 
BSL, as seen in the green dotted line. 

In addition, some false positives were detected. For example, BSLs 
were detected when there was no BSL present due to light reflection 
caused by droplets on the camera lens (Fig. 5(b)) or because of the 
similarity of the BSL streamers with other fishing gear on the fishing 
deck (Fig. 5(c)). A further false positive occured from the detection of 
containment barriers with vertical strings resembling a group of straight 
streamer lines. Moreover, some of the BSLs that were barely visible were 
not detected because of the lack of contrast with the background. In fact, 
to create ground-truth annotations (i.e., labelled images) of such faint 
BSLs, we had to consult adjacent images since identifying them from an 
independent frame was impossible. 

4. Discussions 

When deployed properly and consistently BSLs can markedly reduce 
seabird bycatch (Yokota et al., 2011). In fisheries such as trawls for 
which BSLs are not as effective, compliance with alternative methods of 
seabird deterrent (such as bafflers; Koopman et al., 2018) remains an 
important fishery regulatory requirement, and the detection methods 
advocated in this paper could equally be applied to these devices. While 

Fig. 5. Examples of incorrect BSL detections. (a) Missed detection near the middle right of the image (Vessel 1 (2019) Day) shown in green dotted line, (b) False 
positives due to bias towards orange colour (shown in orange) and the correct detection (shown in red), and (c) False positive due to similarity of other fishing gear 
with BSLs (shown in orange) and the correct detection (shown in red). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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EM cameras have the potential to replace human on-board observers, 
thousands of hours of footage from multiple cameras are generated. A 
thorough review of EM footage through manual human viewing is 
expensive and time-consuming. The continued success of EM will likely 
depend on systems that provide a cost-efficient review of video footage, 
with minimal manual handling and auditing, without compromising 
management objectives. Computer vision and deep learning techniques 
for object detection, in addition to the availability of enormous volumes 
of video footage from EM, provide the opportunity to achieve both cost 
efficiency and robust review. 

Deep learning models require a large volume of images for training. 
However, when training data is scarce, the model can be trained with a 
publicly available dataset that learns most of the pattern of the data. This 
process is referred to as pre-training. Subsequently, a pre-trained model 
is further trained on a smaller dataset to adapt to the specific task, which 
is referred to as fine-tuning. Since the number of annotated images was 
low (approximately 2000), we used a pre-trained network and fine- 
tuned it for BSL identification. The BSL detection and prediction ex
periments using the Faster R-CNN object detection neural network show 
that inter-vessel detection with a precision of 0.87 can be achieved, even 
with a small number (approximately 2000) of diverse images. Despite 
these shortcomings, the final trained model contains no image infor
mation and is not restricted to open use due to privacy concerns. 

The results in this paper demonstrate that deep learning for EM is a 
powerful machine learning technique that can automatically detect the 
presence of a BSL, contributing to compliance checking and improved 
fleet management. Our model performs well on day and night data from 
multiple vessels, promising scalability of use across commercial longline 
fleets. Automatic review not only provides a secure way to use sensitive 
fisheries video data but also provides assurance on the effective use of 
EM cameras and footage. Therefore, to enhance and encourage sus
tainable fisheries, we recommend that fisheries management should 
leverage AIML approaches to improve detections and compliance across 
more vessels and fisheries. Some more experimentation is required as a 
part of future work for creating an operational system, suggesting we are 
at the start of the Technology Demonstration Stage. 

Although the system achieves a commendable (87 %) precision, 
there might still be a requirement for manual observers to review the 
footage from time to time, especially for the cases where the BSLs are not 
being detected during fishing operations. However, cases where the 
BSLs are wrongly detected when they are not in use pose a risk since the 
manual observer will not be asked to review the footage in such cases. 
One of the easiest ways to tackle this challenge will be to use the con
fidence scores of the predictions. In addition to detecting the BSLs, the 
model also provides an estimate of how confident it is for a particular 
detection. Currently, we have not used the confidence values for further 
analysis. We also observe that in the false positive cases (5(b) - (c)), the 
confidence of the model is low, in the range of 0.65–0.7. This is also the 
case for some of the challenging correct predictions. By using a fixed 
score (for instance greater than 0.9 confidence), we could reduce the 
false positives significantly. This operation will increase some false 
negatives which can then be reviewed by human reviewers. Addition
ally, restricting the search space of the BSLs to the water and excluding 
the deck is likely to reduce incorrect detections, and image segmentation 
using deep learning models can be performed in parallel to reduce false 
positives. 

Studies in other domains (Huang et al., 2019; Sheng et al., 2020; Li 
et al., 2017) which used a similar number of images (1000− 2000) for 
training, reported a similar average precision (in the range of 46–90 %, 
depending upon the complexity of the task). However, there are some 
studies that have achieved higher average precision with more images. 
For instance, Chen et al. (2015) reports an average precision of 93 % on 
an easy car detection dataset (KITTI) containing approximately 6000 
images (including training and testing images). The structural differ
ences between the vessels are significant, and combined with illumi
nation variances, different practices of the fishers, and several other 

environmental factors, the appearance of the BSL and the background 
can vary largely. The results of the experiments show that using images 
of three different vessels adds to the diversity of the dataset and explains 
the improvement in precision. 

We believe the overall precision of the deep learning model can be 
improved by using additional images, especially coming from many 
more vessels. In fact, instead of using pre-trained deep learning models, 
we can consider training the CNNs entirely on EM video data to make it 
more robust to noise. While the collection of additional images of 
different vessels can be challenging due to privacy concerns, a viable 
future research question is to explore whether increasing the number of 
training images with more vessels (thereby adding more diversity) will 
improve the detection precision. 

Differently, to increase the diversity of BSL image datasets, diffusion- 
based image generation is a promising area of future applications. This 
method can generate images of challenging-to-obtain objects (Rombach 
et al., 2022) by iteratively transforming an initial random noise image 
into a coherent image that more accurately reflects the underlying 
structure of the object being detected. This technique may be combined 
with machine learning algorithms to improve the accuracy of BSL 
detection. 

An additional constraint is the low-resolution and quality of the 
video footage. While high-resolution and uncompressed images are 
preferred for tasks such as BSL detection, they come with several chal
lenges. Currently, in Australia, the video data from Electronic Moni
toring is used to independently verify fishers’ logbook information to 
perform stock assessment and surveillance (AFMA, 2024). The most 
cost-effective infrastructure of the video cameras is in operation for this 
task which limits the resolution of the image capture. While some 
camera infrastructures might allow the capture of high-resolution im
ages, the framerate (rate of image capture per second) of the videos is 
reduced significantly, making it unfit for the task (van Helmond et al., 
2020). Hardware that can handle such large image sizes at acceptable 
framerates is expensive and will require higher-capacity devices for 
storing the data. 

Another observation is that the footage without BSL is limited to the 
start and end of the sequence. The process of retraction of the BSLs is 
exactly opposite to the deployment. We believe this condition will not 
affect the overall performance of the system, although, during the 
transition, there might be some ambiguity, both during manual anno
tation of the images and during the detection using the CNN. The BSLs 
are expected to be detected after they are deployed, and conversely, they 
are expected not to be detected after their retraction. We can use this fact 
to further resolve the ambiguities. 

The trained Faster R-CNN model can be used out-of-the-box on 
servers for offline processing of the EM video data. For real-time oper
ation on the boat, the proposed framework can be deployed directly on 
vessels and run in near real-time on Edge AI GPU platforms, such as 
NVIDIA Jetson (the leading platform for autonomous machines and 
embedded applications with onboard GPUs). There are several examples 
of the application of Edge AI technology, for instance in real-time 
parking surveillance (Ke et al., 2020) and real-time Shark detection 
(Sharma et al., 2022). These hardware solutions are readily available, 
are cheap and would not hamper the day-to-day operations of the fishing 
vessels. This would enable a wide range of future applications that 
include automated alerts to crew and on-land regulators to ensure BSLs 
are deployed. These facilities would improve the implementation of 
successful real-time vessel compliance monitoring systems, thus 
improving crew confidence that they are adhering to regulations in situ, 
and consequently increasing community confidence in fisheries. 
Currently, a logbook is maintained by the fishing operators which is then 
tallied manually with the video footage for fish stock management 
purposes. Therefore, the proposed camera-based Edge AI warning sys
tems will not eliminate the requirement of storing and transferring video 
footage due to surveillance and regulation purposes. The advantages of 
these camera-based Edge AI warning systems include the real-time 
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operation, the compactness and the low cost of these systems. On the 
contrary, these systems will need additional infrastructure, which needs 
to be installed and maintained. Also, the trained deep learning models 
need to be deployed on these systems. 

Moreover, further research could investigate the efficacy of BSLs in 
deterring seabirds during particular fishing activities. This could be 
achieved by comparing bird counts (either by human observers or AIML 
algorithms, such as the work of Akçay et al. (2020)) before, during and 
after BSL deployment. 

Several other recent advancements in deep learning can be utilized 
to tackle additional known challenges. For instance, the present domain 
adaptation approaches that enhance the generalization of object detec
tion on novel data from other vessels can be explored. Furthermore, 
Generative Adversarial Networks (GANs) can be employed to eliminate 
the effects of haze, noise, and blurring caused by water droplets on the 
camera lens (Ren et al., 2019; Uricar et al., 2021) or to compensate for 
the lack of contrast in low-light environments (Lore et al., 2017). GANs 
(Goodfellow et al., 2014) are a kind of unsupervised deep learning al
gorithms that can automatically learn the patterns of data in a way that 
can be used to generate novel example data that is very close to the 
original data, and find many applications for image-to-image translation 
tasks. Another viable research direction related to deep learning models 
would be exploring alternative state-of-the-art object detectors for 
evaluating their detection accuracy and applicability for the task. 

5. Conclusion 

In this study, we performed BSL detection using a deep learning 
object detector called Faster R-CNN on complex EM data from longline 
fishing vessels. The EM footage was obtained from multiple vessels 
under variable conditions. The evaluation of BSL detection concludes 
that the object detector can be used to detect BSLs with a precision of 87 
% under various test conditions. The results reveal the promising future 
of automated detection tools using AIML and fishery EM video data that 
can provide timely and accurate information on mitigation device use, 
and thereby ensure fisheries are managed in a cost efficient and sus
tainable manner. 
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