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Abstract

Semantic image segmentation has gained significant attention in computer vision due to its

wide range of applications, including visual understanding, medical image analysis, self-driving

vehicles, augmented reality, and video surveillance. While modern deep learning models have

achieved surprising performance on segmentation tasks, it relies heavily on a massive amount

of dense-labelled training data. However, abundant high-quality labeled data are not always

available in real-world scenarios due to privacy or ethical concerns and safety issues. This

research aims to reduce the reliance on data volume of segmentation tasks by introducing few-

shot learning (FSL) technology. This empowers deep learning models to accurately segment

unseen classes from only a few labeled images, thereby relieving researchers and engineers from

intensive data labeling works.

This research initially addresses the problem of few-shot semantic segmentation (FSS), which

requires segmenting the novel class objects in a test image on the condition of a few labeled data.

For the challenges of prototype bias and sub-optimal feature representation, we propose the

Masked Cross-image Encoding technique. This method captures shared information and mutual

dependencies between training data and testing data, enhancing the visual properties of novel

classes for improved prototype-feature matching. Then, we re-evaluate the standard binary

matching paradigm employed in FSS and identify its association with potential false-matching

and under-matching issues, which can significantly degrade segmentation performance. To

alleviate this issue, a Multi-Prototype Discrimination scheme is introduced to explicitly assign

each pixel-wise query features to a specific class, reducing class matching ambiguity present

in conventional FSS methods. Building upon the FSS task, we tackle a more practical and

challenging task known as Incremental Few-Shot Semantic Segmentation (iFSS). It requires a

deep learning model to continuously learn new classes with scarce annotated examples, while

retaining the knowledge learned from previously encountered classes. We consider a meta-
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learning-based approach that simulates the incremental learning evaluation protocol during the

base training stage. This training task alignment strategy encourages the model to learn how

to incrementally adapt to novel classes without forgetting previous ones.

The overall research contributes valuable insights and methodologies to enhance the effective-

ness of few-shot learning approaches for semantic image segmentation.
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Chapter 1

Introduction

1.1 Research Background

Semantic image segmentation is a core field in image processing and computer vision, focusing

on the task of classifying each pixel in an image into distinct categories. This pixel-level clas-

sification is fundamental in a wide array of applications, including but not limited to medical

image analysis for tumor identification and chest X-rays [1]–[3], Advanced Driver-Assistance

Systems (ADAS) in autonomous vehicles [4], [5], robotics [6], [7], environmental monitoring [8],

[9], and precision agriculture [10], [11]. The literature is rich with various algorithms devel-

oped for this purpose, ranging from traditional techniques like statistical region merging [12],

[13], k-means clustering [14], [15], and the use of conditional and Markov random fields [16],

to more advanced deep learning (DL)-based methods. These DL methods encompass Fully

Convolutional Networks [17], Encoder-Decoder [18] and Auto-Encoder architectures [19], Di-

lated Convolutional Models[20], and members of the DeepLab Family [21]. More recently,

transformer-based models [22]–[25] have gained prominence in the field of image segmentation,

demonstrating significant improvements in performance and achieving near-optimal accuracy

levels in tests conducted using publicly accessible datasets.

Nevertheless, fully-supervised DL models exhibit a heavy reliance on data, necessitating a

substantial volume of annotated training data to effectively train a model for a specific task.

Consequently, a natural inclination arises: can we devise a methodology to adapt a model to

novel classes in a more data-efficient manner? In other words, can we extract generalizable

features for new classes from a limited number of exemplars? In response to this query, a
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novel machine learning paradigm known as Few-shot learning (FSL) [26] has been proposed,

mirroring the manner in which human beings acquire knowledge. For example, a child can

easily identify an unfamiliar person from a multitude of photos after seeing only a few images

of that person.

FSL helps overcome the barrier of collecting data in some complex scenarios where images

with densely annotated information are hard or impossible to obtain due to privacy, security

or ethical issues. Especially, semantic image segmentation training data are all intensively

annotated at the pixel level, which requires a considerable amount of time annotating every

single example. FSL is one of the ideal strategies to reduce the data gathering and labeling

effort for segmentation tasks.

Driven by the goals of Few-shot Learning (FSL), a variety of machine learning approaches have

emerged, including meta-learning [27]–[29], embedding learning [30], [31], and generative mod-

eling [32]. Initially, these methods were primarily applied to solve basic computer vision tasks

like image classification, image retrieval, and object detection. It was not until 2017 [33] that

Few-shot and One-shot learning began to be explicitly applied to semantic image segmentation.

Few-shot segmentation (FSS), where the model is expected to learn to segment objects from a

very limited number of densely labeled examples, poses several unique challenges. Generalizing

from a few examples is inherently challenging, as the model needs to learn from a small sample

of data and make predictions on unseen data, which can be significantly different from the

training samples. This requires the model to capture the essence of the class from very few

examples, a task that is not trivial.

With a very limited number of examples, models are at a high risk of overfitting. Overfitting

occurs when the model learns patterns that are specific to the training set, rather than learning

generalizable features, leading to poor performance on unseen data. The quality and represen-

tativeness of the few examples are critical; if the selected examples are not representative of

the class, the model may learn incorrect or incomplete representations.

Objects belonging to the same class can have significant variations in appearance, pose, size,

and context, adding to the complexity of learning. Capturing this intra-class variability and

learning robust class representations from very few examples is a challenging task. Furthermore,

learning discriminative visual properties from a small number of examples is difficult as the

model must extract and leverage the most salient features from the constrained data.

3



To address FSS, a foundational framework was introduced by Amirreza and Shray [33]. This

framework, which builds upon the Siamese Network concept, includes two branches: a support

branch that processes an annotated image to generate vectorial parameters (termed as proto-

types), and a query branch that uses the support branch’s output along with a test image of

an unseen class to produce a segmentation mask. This structure, coupled with the ’Learning

to learn’ philosophy, has significantly influenced the development of FSS.

Dominant strategies in few-shot segmentation [34]–[39] focus heavily on prototype learning

within the support-query structure. Most of them apply methods like masked average pooling

or feature clustering to learn class vectors that capture essential segmentation cues from support

instances. This paradigm naturally faces several challenges from the following aspects: 1)

General feature embedding techniques fall short in addressing few-shot challenges, highlighting

the need for more sophisticated and resilient feature representation methods. 2) The interaction

between guiding maps and the guiding process in current models is not optimal for effective

segmentation. Enhancing models to better generalize and logically guide the segmentation

process is crucial in few-shot segmentation. This thesis aims to address these limitations,

offering a thorough understanding, detailed analysis, and effective solutions for training deep

learning models to achieve enhanced generalization and robustness in FSS.

Despite its potential, conventional few-shot segmentation faces significant challenges that limit

its applicability in real-world settings. This is because it often operates under the assumption

that the entire set of classes is known a priori, which is rarely the case in dynamic and evolving

environments.

To take a step further, this thesis tackles incremental Few-shot Segmentation (iFSS) as a more

practical and adaptive approach for efficient image semantic segmentation tasks. Unlike the

traditional FSS paradigm, which assumes a static set of classes, iFSS acknowledges the dynamic

nature of real-world environments where new classes can emerge over time. This task not only

leverages the minimal data available for each class but also adapts to the introduction of new

classes without forgetting the previously learned ones. This is crucial in scenarios where systems

continuously encounter novel categories and must adapt without extensive retraining or manual

annotation.

iFSS is still under-explored in the literatures which can be considered as a combination of

incremental learning and few-shot learning. It poses unique challenges, primarily the notorious
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problem of catastrophic forgetting, where integrating new knowledge erases previous learning.

Additionally, the model must maintain robust generalization capabilities, performing well on

both old and new classes, despite the scarcity of data.

Insights gleaned from the literature on incremental learning reveal that a direct and effective

strategy to address catastrophic forgetting is data replay [32], [40], which involves preserv-

ing and revisiting crucial data or features from prior classes, thereby reinforcing and main-

taining pre-existing knowledge while assimilating new information. In contrast, space-based

methods [41] focus on developing a feature space that can seamlessly incorporate new classes

without compromising the representation of existing ones, ensuring a balanced coexistence of

old and new knowledge. Alternatively, dynamically adjusting the network’s architecture [42],

[43]—either by expanding it with new neurons or by selectively activating specific sections of

the network based on the task at hand—can endow a more adaptive and resilient learning

ability to the model. Nonetheless, the practice of preserving a sample of past data to represent

previous classes can be unfeasible in situations involving numerous classes or data with high

dimensionality. Maintaining a feature space that is both distinctive and reflective of all classes,

both new and old, as the model progresses, poses a significant challenge. Moreover, while dy-

namic network methods provide adaptability and versatility, they tend to grow in complexity

and computational demands as the network expands, presenting scalability issues.

Grounded in the objectives of incremental few-shot segmentation and addressing the inherent

limitations of incremental learning, this thesis is dedicated to crafting deep learning models

that are efficient in terms of parameters and training process. These models are designed

to effectively tackle the iFSS challenge, ensuring they do not overfit to novel classes while

maintaining their segmentation prowess on classes encountered previously.

1.2 Research Objectives and Overview

This thesis delves into effective few-shot learning approaches for image semantic segmentation,

which disclose the exciting potential of deep learning models to revolutionize image understand-

ing. Training models on massive datasets consumes significant computational resources and

energy. Few-shot learning offers a potential solution by achieving comparable accuracy with

significantly less data, leading to more efficient and sustainable model development. FSS aims

to bridge this gap by enabling accurate segmentation with only a handful of labeled examples.
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This opens doors to applying semantic segmentation in diverse fields like medical imaging,

autonomous driving, and robotics, where data scarcity is often a hurdle. iFSS techniques em-

power model to learn and adapt quickly to new visual concepts, without forgetting old ones.

This flexibility is crucial for real-world applications where environments and objects can vary

significantly.

The specific research objectives of this thesis are:

1. Design novel FSS architectures capable of extracting rich semantic features from a limited

pool of labeled data. These architectures should leverage knowledge transfer across related

visual concepts to compensate for data scarcity.

2. Introduce strategies for guiding features that adeptly manage the variability within classes

and the distinction between different classes, thereby refining the models’ ability to gen-

eralize and intelligently navigate the segmentation process

3. Develop incremental FSS methods that enable models to continuously adapt to new

classes with minimal labeled examples while retaining their segmentation ability on pre-

viously encountered classes.

Chapter 2 provides a comprehensive review of literature related to image semantic segmen-

tation. It covers the spectrum of semantic segmentation, from foundational architectures in

conventional methods to few-shot and incremental learning. It deeply analyzes few-shot seman-

tic segmentation, discussing innovative strategies like meta-learning and data augmentation for

effective generalization from limited data. Additionally, it delves into the intricate task of in-

cremental few-shot segmentation, evaluating how these approaches skillfully balance learning

new information with preserving existing knowledge.

Chapter 3 introduces a novel masked cross-image encoding (MCE) approach to identify com-

mon visual representations of target objects within support and query images. Utilizing a

symmetric cross-attention framework, MCE capitalizes on bidirectional inter-image relations

across multiple feature levels. This not only infuses query features with significant details

from support object regions but also strengthens the support-query interaction, enhancing the

model’s feature representation capabilities for Few-Shot Segmentation (FSS).

Chapter 4 presents a comprehensive FSS approach aimed at addressing the inherent under-

matching and mismatching issues within the support-query prototype matching framework.
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Building upon the robust feature representation capabilities of MCE, as discussed in Chapter 3,

this chapter presents a multi-prototype matching approach. This approach aims to narrow the

semantic divide between support prototypes and query features, enhancing the differentiation

between similar novel and base classes effectively.

Chapter 5 delves into a pragmatic aspect of semantic segmentation, focusing on the incremental

learning of new classes from a limited set of examples. This chapter proposes a meta-learning-

based strategy specifically designed to optimize the network’s capacity for incremental learning

in a few-shot context. To mitigate the challenges of catastrophic forgetting and overfitting,

a novel prototype space re-distribution mechanism is introduced. This mechanism is respon-

sible for dynamically updating class prototypes throughout each incremental phase, ensuring

consistent learning progress.
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Chapter 2

Literature Review

As introduced in chapter 1, the labor-intensive nature of acquiring such large annotated datasets

has prompted a shift towards more data-efficient learning paradigms for semantic segmentation.

This literature review begins by providing a comprehensive overview of conventional semantic

segmentation which offers crucial insights into the foundational architectures and learning mech-

anisms that underpin semantic segmentation. Transitioning from fully-supervised paradigms,

the review then explores the realm of few-shot learning and semi-supervised learning methods.

Their principles and techniques are critical for understanding the underpinnings of few-shot

semantic segmentation.

The core of the review is dedicated to analyzing current methodologies in few-shot seman-

tic segmentation. This section scrutinizes the innovative approaches that enable models to

generalize effectively from limited examples, discussing various strategies like meta-learning,

metric learning, and data augmentation that are employed to overcome the challenges posed

by few-shot settings.

Furthermore, the review ventures into the more challenging task of incremental few-shot seg-

mentation. This section evaluates works on few-shot incremental learning and incremental

few-shot segmentation, examining how these methods balance the acquisition of new knowl-

edge with the retention of previously learned information.

2.1 Datasets and Metrics

Commonly used open-access datasets
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• PASCAL VOC dataset, referenced as VOC [44], has been a fundamental resource for

evaluating object detection and segmentation algorithms in computer vision research.

Despite its moderate size, consisting of approximately 20,000 images spanning around 20

object categories, VOC stands out for its well-defined classes and meticulously annotated

data. This dataset’s emphasis on high-quality annotations has positioned it as a crucial

benchmark for swiftly verifying ideas and exploring emerging research areas in the field

of computer vision. Its comprehensive evaluation has made it a cornerstone in the devel-

opment and assessment of segmentation techniques. Moreover, this dataset serves as the

primary dataset employed in the research conducted in this thesis.

• Microsoft COCO dataset (Common Objects in Context) [45] is a large-scale, richly an-

notated dataset designed for evaluating the performance of computer vision algorithms

in three key areas: object detection, image segmentation, and image captioning. The

dataset encompasses over 80 object categories, ranging from common objects like ”dog”

and ”car” to more specific ones like ”fire hydrant” and ”baseball bat.” For segmentation,

it provides pixel-wise annotations that define the exact shape and boundaries of each

object, enabling the training of image segmentation models that can classify every pixel

in an image according to its corresponding object class.

• ADE20K [46] dataset is a semantic segmentation dataset that contains more than 20K

scene-centric images exhaustively annotated with pixel-level objects and object parts

labels. There are totally 150 semantic categories, which include stuffs like sky, road,

grass, and discrete objects like person, car, bed. The dataset is used as the benchmark for

scene parsing and instance segmentation. The effect of synchronized batch normalization

is evaluated and it is found that a reasonably large batch size is crucial for the semantic

segmentation performance.

• Cityscapes [47] dataset is a semantic segmentation dataset that contains 5,000 high-

quality images of 50 different cities captured from a car-mounted camera. The dataset is

used for evaluating the performance of semantic segmentation algorithms on urban scenes.

The dataset includes pixel-level annotations for 30 classes of objects and stuffs such as

road, sidewalk, building, vegetation, person, car, etc. The dataset is widely used in the

field of computer vision and machine learning for developing and testing new algorithms

for semantic segmentation.
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• FSS-1000 [48] is a large-scale dataset specifically designed for training models in few-shot

segmentation tasks. Unlike prior datasets that focused on a limited number of well-

represented classes, FSS-1000 boasts a whopping 1,000 object classes. This allows models

to learn from a wider variety of objects. The dataset incorporates many objects not found

in previous segmentation datasets, such as tiny everyday items, merchandise, cartoon

characters, and logos. Each class only has 10 images with corresponding segmentation

masks. This aspect aligns with the few-shot learning paradigm where models need to

learn with minimal training data.

2.2 Evaluation Metrics

There are many evaluation matrics to measure the performance of image segmentation. This

section explain the main evaluation matrics most commonly used in measuring semantic seg-

mentation performance:

Pixel Accuracy: Pixel Accuracy is a widely used evaluation metric in the field of image seg-

mentation. It measures the accuracy of pixel-level classification by comparing the predicted

segmentation mask with the ground truth mask on a pixel-by-pixel basis. Pixel Accuracy cal-

culates the percentage of correctly classified pixels in the segmentation output. It provides a

straightforward assessment of the overall segmentation performance by considering both fore-

ground and background pixels. A pixel is considered correct if its predicted class label matches

the ground truth label. And mean Pixel Accuracy (mPA), calculates the average accuracy of

each class and provides insights into the segmentation performance.

PA =

∑k
j=1 njj∑k
j=1 tj

, mPA =
1

k

k∑
j=1

nij

tj
(2.1)

The njj in formula 2.1 denotes the total number of pixels both classified and labelled as class

j.

Intersection over Union (IoU) and mean Intersection over Union (mIoU) are mostly used eval-

uation metrics in image segmentation tasks.

Intersection over Union (IoU): Intersection over Union measures the overlap between the

predicted segmentation mask and the ground truth mask for a specific class. It is calculated

by dividing the intersection of the two masks by the union of the two masks. IoU provides
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a measure of how well the predicted mask aligns with the ground truth, with a value of 1

indicating a perfect match and lower values indicating less accurate segmentation.

Mean Intersection over Union (mIoU): It calculates the average IoU across all classes in

the dataset. It provides an overall measure of the segmentation performance by taking into

account the performance across multiple classes. mIoU is particularly useful when dealing

with imbalanced datasets where some classes may have more instances than others. The class-

averaged IoU, illustrates as:

mIoU =
1

k

k∑
j=1

nij

nij + nji + nij

, i ̸= j (2.2)

Foreground-Background Intersection over Union (FBIoU): This metrics is an evalua-

tion metric used in image segmentation tasks to specifically assess the accuracy of segmenting

the foreground (object) and background regions. It evaluates the overlap between the predicted

foreground and background segmentation masks with their respective ground truth masks. FB-

IoU is particularly relevant in tasks where differentiating between foreground objects and the

background is crucial, which is most frequently adopted matric for few-shot segmentation as the

predicted mask are binary mask for unseen classes. FB-IoU is often calculated as the average

of the Foreground IoU and the Background IoU as:FB − IoU = 1
2
(IoUF + IoUB).

2.3 Supervised semantic segmentation

Early approaches relied on hand-engineered features and classical machine learning algorithms.

Traditional image segmentation techniques, such as thresholding [49], [50], region growing [12],

[13], and clustering [14], [15], are employed to divide an image into meaningful regions. Thresh-

olding techniques, for instance, were used to separate objects from the background based on

pixel intensity values. Region-growing methods involved selecting seed points and then adding

neighboring pixels to the segment if they had similar properties. There are two main types of

clustering methods: hierarchical and partitional. Hierarchical methods create a tree-like struc-

ture of clusters by either merging smaller clusters into larger ones (agglomerative) or splitting

larger clusters into smaller ones (divisive). Partitional methods assign each pixel to one of the

predefined number of clusters, such as K-means, fuzzy C-means, or meta-heuristic methods.

To obtain pixel-level scene labels, various graphical models such as Markov Random Fields

(MRF) [16], Conditional Random Fields (CRF) [51], and forest-based methods [52] are com-
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monly utilized. These models leverage the relationships between neighboring pixels to infer

the scene labels, allowing for the incorporation of spatial dependencies in the segmentation

process. While deep learning methods have largely dominated the field of segmentation, graph-

ical models, particularly Conditional Random Fields (CRF), continue to serve a purpose in

recent approaches. They are often employed as a post-processing tool to refine and enhance

the semantic segmentation results obtained from deep learning models

With the development of powerful computation graphics processing units (GPUs), deep learning

has demonstrated remarkable success in addressing computer vision challenges. The evolution

of semantic segmentation is closely tied to advancements in neural networks, particularly Con-

volutional Neural Networks (CNN). In the early stage of deep learning, CNN was considered

a powerful feature extractor to replace hand-crafted descriptors. Many researchers were dedi-

cated to exploiting novel deep features for semantic segmentation [53], [54]. However, the fully

connected layers in CNN cause overfitting and computation-consuming problems as well as the

solid input size for the semantic segmentation tasks.

Fully Convolutional Networks. The concept of eliminating fully connected layers from

convolutional neural networks (CNN) led to the development of the Fully Convolutional Net-

work (FCN) by E. Shelhamer and J. Long [17]. This approach is considered a breakthrough

in DL-based semantic segmentation. In FCN, the conventional fully connected layers, which

discard spatial information, are replaced with convolutional layers. This architectural modifi-

cation enables classification to be performed at the pixel level. Notably, FCN also introduced

deconvolution layers, allowing it to process input images of any size and produce segmenta-

tion maps with identical resolution.By incorporating skip connections, the model leverages the

fusion of feature maps obtained from both high-level layers, which capture semantic informa-

tion at a coarse level, and low-level layers, which capture detailed appearance features. This

integration facilitates the generation of precise and comprehensive segmentations. Specifically,

the feature maps from the deeper layers of the model are up-sampled to the same resolution

as prior layer’s output and then fused with those feature maps from lower layers, enabling the

model to effectively combine semantic understanding with fine-grained visual details.

Encoder-Decoder Architecture. The encoder-decoder architecture is a fundamental frame-

work in the field of semantic segmentation, playing a crucial role in modern deep learning

approaches. This architecture is designed to effectively process and analyze visual data by
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capturing spatial hierarchies and semantic information. As demonstrated in 2.1, the encoder

part of the architecture is responsible for feature extraction. It typically consists of a series

of convolutional layers followed by pooling layers. As the input image progresses through

the encoder, it undergoes a series of transformations that reduce its spatial dimensions while

increasing the depth of feature maps. This process helps in capturing the context and under-

standing the content of the image at different scales. The encoder effectively captures high-level

semantic information; however, due to the pooling layers, there’s a loss of spatial resolution,

which is crucial for precise localization in segmentation tasks. The decoder’s primary function

is to transform abstract, high-dimensional feature representations learned by the encoder into

meaningful pixel-wise predictions, leading to accurate and detailed segmentation of objects in

the input image. It progressively recovers the spatial dimensions of the feature maps through

operations such as upsampling, deconvolution, or transposed convolution. The decoder also

utilizes skip connections from the encoder to the decoder layers. These connections help in

combining the high-level semantic cues and low-level geometric information, essential for accu-

rate segmentation. The final layer of the decoder typically involves a 1x1 convolution followed

by a softmax activation function to assign each pixel a predefined class label. Notably, Noh et

al. [55] introduced a seminal paper that utilized deconvolution-based architecture for semantic

segmentation. Several models based on the encoder-decoder framework have been proposed,

with U-Net [19] and SegNet [18] being notable examples. U-Net is particularly renowned in

medical image segmentation for its effective use of skip connections, while SegNet is recognized

for its efficient use of pooling indices to perform upsampling in the decoder. Variants and

improvements to this architecture, such as using atrous (dilated) convolutions [20], [56], feature

pyramid networks (FPN) [21], [57], and attention mechanisms [58], [59], have been developed

to enhance its performance in semantic segmentation tasks. In parallel, recent endeavors have

sought to bridge the gap between neural inductive learning and logic reasoning by integrat-

ing rich data and symbolic knowledge, as exemplified by LogicSeg [60]. Another innovative

direction involves considering the joint distribution of pixel features and class labels, as seen

in GMMSeg [61]. Additionally, pixel-wise contrastive learning techniques, as proposed in [62],

have emerged as a valuable tool for semantic segmentation in fully supervised settings.

Spatial Pyramid Pooling (SPP) [63] is a method incorporated into convolutional neural

networks to capture contextual features across multiple scales, significantly enhancing segmen-

tation performance. As illustrated in Figure 2.2, it addresses this issue by introducing a special
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Figure 2.1: Illustration of the Encoder-Decoder architecture. Adapted from [18]

Figure 2.2: The structure of Spatial Pyramid Pooling (SPP)

layer that pools the feature maps from the last convolutional layer into a fixed size, regardless

of the input image size. SPP creates a pyramid of levels, each with a different bin size (e.g.,

1x1, 2x2, 3x3). The idea is to capture features at various scales. For each level of the pyramid,

SPP applies pooling (usually max pooling) on the feature maps. Each bin pools a region of

the feature map into a single number, regardless of the region’s size. This results in a fixed

number of outputs per level. SPP can be integrated into encoder-decoder architectures for seg-

mentation. In such architectures, SPP is usually placed at the end of the encoder or before the

decoder. This allows the network to handle inputs of varying sizes and to capture multi-scale

features, improving the quality of the segmentation.

However, if the stride values of a pooling layer, positioned immediately before a decision layer,

are proportional to the input size, the resultant feature map of that layer will have a fixed

dimension. Li et al. [64] introduced a refined variant known as the Pyramid Attention Net-

work (PAN). PAN integrates an SPP layer with global pooling, aiming to enhance feature

representation learning by leveraging the combined strengths of both techniques.
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Dilated convolution [20], also known as atrous convolution, is another important technique

commonly employed in semantic segmentation for capturing contextual information at different

scales. Unlike traditional convolution, which uses a fixed-sized kernel, dilated convolution

introduces gaps or ”holes” within the kernel, thereby enlarging its receptive field without extra

unnecessary parameters. By adjusting the dilation rate, the receptive field can be effectively

expanded to incorporate larger contextual regions. This allows the model to capture object

boundaries and capture context across multiple scales, improving the accuracy and spatial

coherence of the segmentation results.

The DeepLab series [20], [21], [56] stands out as a landmark in the realm of semantic segmen-

tation models, introducing a host of groundbreaking innovations. Among its notable contribu-

tions is the integration of atrous convolutions and SPP into the feature fusion module known as

Atrous Spatial Pyramid Pooling (ASPP) module. By incorporating ASPP, DeepLabv3+ [20]

can effectively capture objects of varying sizes and their surrounding context within an image.

This leads to more accurate and robust semantic segmentation performance.

Transformer-based segmentation. Propelled by the success of natural language processing

(NLP), the Transformer [65] model has been adapted for the field of computer vision. A

pivotal adaptation is the Vision Transformer (ViT) [66], which dissects an image into patches,

transforms them into vectors, and feeds them into a transformer encoder. The encoder’s outputs

serve various vision-related tasks, including recognition, segmentation, and image generation.

Since then, many variants and extensions [67]–[70] of ViT have been proposed to improve its

efficiency, accuracy, and applicability to different vision tasks.

Talking to semantic segmentation task, SETR [71] is the pioneer in substituting the CNN

backbone with the ViT backbone, setting new benchmarks on the ADE20k dataset. After

SETR, researchers start to design more powerful vision transformers for segmentation task.

Typically, Segformer [22] is considered as a classic segmentation framework that combines

an efficient hierarchical Transformer encoder with a lightweight MLP decoder. Its encoder,

Mix Transformer encoder (MiT), captures multi-scale features through a pyramid structure,

while the simple decoder fuses these features to produce high-quality segmentation maps. To

improve parameter efficiency, SegViT [25] introduces a new component named Attention-to-

Mask (ATM), which creates pixel-level labels from the comparison between class tokens and

spatial features. It also uses query-based methods to lower and raise the resolution of ViTs,
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making them more efficient. With the success of ViTs, recent representative works [72], [73]

merge the global receptive field of transformers with the local feature extraction prowess of

U-Net [19]. TransUnet [72] transforms image patches into tokens and constructs the global

context. Then it increases the resolution of the encoded features using decoder, and merges

them with the detailed CNN features to achieve accurate localization. Swin-Unet [73] integrates

Swin Transformer [68] blocks that use shifted windows to capture local and global information,

achieving remakable performance on serveral medical image segmentation benchmarks.

Besides using a sophisticated transformer encoder, another approach to enhance the transformer

architecture is by focusing on the cross-attention mechanism. Segmenter [23] employs a class

query, which is a learnable vector that represents a class, to directly produce class-wise masks,

which are binary masks that indicate the presence of a class in each pixel. Segmenter is a pure

mask-based approach, which means it does not rely on intermediate representations such as

bounding boxes or instance centers. Pure mask-based approaches can generate more accurate

masks from high-resolution features. Max-Deeplab [74] is a model unifies semantic segmentation

and panoptic segmentation (PS). It is the first model to remove the box head, which is a

component that predicts bounding boxes for object instances, and design a pure-mask-based

segmenter for panoptic segmentation. It combines a CNN-transformer hybrid encoder and a

transformer decoder as an extra path, achieving stronger performance than box-based methods.

Meanwhile, MaskFormer [75] focuses on a per-pixel classification strategy, where each pixel is

associated with a set of learnable mask embeddings. It efficiently handles both semantic and

instance segmentation tasks by predicting masks and their corresponding classes, demonstrating

versatility across various segmentation challenges.

In parallel, recent endeavors have sought to bridge the gap between neural inductive learn-

ing and logic reasoning by integrating rich data and symbolic knowledge, as exemplified by

LogicSeg [60]. Another innovative direction involves considering the joint distribution of pixel

features and class labels, as seen in GMMSeg [61]. Additionally, pixel-wise contrastive learning

techniques, as proposed in [62], have emerged as a valuable tool for semantic segmentation in

fully supervised settings.

Each of these models represents a stride towards more accurate, context-aware, and efficient

segmentation, leveraging the transformer’s ability to model complex dependencies in visual

data. They embody the synergy of global and local processing, setting new standards in the
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field of image segmentation. Overall, whether utilizing CNN or Transformer architectures,

the encoder-decoder framework serves as a fundamental cornerstone for segmentation tasks.

Its capability to extract contextual features and convert them into pixel-wise classifications

renders it a pivotal tool for both Few-Shot Semantic Segmentation and incremental Few-Shot

Semantic Segmentation tasks in this thesis.

2.4 Few Shot Learning

Traditional machine learning paradigms often necessitate substantial amounts of labeled data

to attain satisfactory performance levels. However, the acquisition and annotation of such

datasets are frequently resource-intensive, time-consuming, and occasionally unfeasible for cer-

tain domains. Few-shot learning (FSL) emerges as a pivotal solution to mitigate these chal-

lenges inherent in conventional machine learning methodologies. By focusing on learning from

a limited set of labeled instances, few-shot learning endeavors to enhance the data efficiency

of models, thereby offering a promising avenue for addressing the constraints associated with

extensive data requirements in machine learning research and applications. Given that se-

mantic segmentation can be regarded as a pixel-wise challenge, numerous few-shot semantic

segmentation techniques draw inspiration from FSL methodologies.

Normally, the few-shot training set contains many classes, and each class has multiple samples.

In the training phase, C categories will be randomly selected from the training set, with K

samples for each category (a total of N ∗ K data), and a meta-task will be constructed as

the input of the model’s support set, then a batch of samples belonging to N classes from the

remaining data are picked as the model’s prediction object (batch set). That is, the model is

required to learn how to distinguish these N categories based on N ∗K data. Such a task is

called a N -way K-shot problem.

Building upon the setting, few-shot learning can be interpreted as an instantiation of meta-

learning within the realm of supervised learning. Meta-learning, often referred to as ’learning

to learn,’ operates by partitioning the dataset into distinct meta-tasks during the meta-training

phase, facilitating the acquisition of the model’s generalization capabilities amidst class vari-

ations. In the subsequent meta-testing phase, when encountering novel, unseen classes, the

model can execute classification tasks without necessitating alterations to its existing architec-

ture.
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During the training stage, each training task (episode) adopts different meta-tasks, in other

words, the training contains different combinations of classes. This mechanism allows the

model to learn the common ‘experiences’ of different meta-tasks, such as how to extract critical

features based on the similarity between samples and ignoring the specific task. The model

learned through this learning mechanism can also be better classified when facing new and

unseen meta-tasks. The subsequent sections delve into three primary strategies of few-shot

learning.

2.4.1 Meta-learners for Few-Shot Learning

One type is optimization-based methods. In order to quickly adapt to new tasks, most work

focuses on how to learn a good parameter initialization.

Model-agnostic Meta-Learning (MAML) [76] first proposed that the parameters of the model

can be generalized to new tasks with only a few gradient descents and a small amount of training

data. MAML uses a large amount of data to train a meta-model, and then fine-tunes it based

on limited labeled samples on new tasks to obtain the final model. Specifically, the process

of training the meta-model is to first randomly sample multiple tasks for training according

to the experimental setting of N -way K-shot. Since MAML is based on double gradients, as

depicted in Figure 2.3 , the original model will be copied first, and the gradient will be updated

based on the loss of each task on the copied model. This is the first gradient update. Then

the second gradient update is calculated based on the batch, and this gradient is applied to

the original model, thus completing the training process of the meta-model in MAML. When

fine-tuning is performed, the new model will directly load the initialization parameters of the

meta-model, and then update the model parameters based on the limited new sample to obtain

the final model. The idea of MAML is simple but very efficient. It is a representative work in

meta-learning based on optimization.

Latent Embedding Optimization (LEO) [31] is an improvement on MAML, which proposes

parameter updates in a low-dimensional latent space. LEO uses encoders and relational net-

works to map data to a low-dimensional latent representation space to obtain latent vectors,

and then decodes latent vectors to obtain high-dimensional model parameters for subsequent

loss calculations. The inner loop of LEO updates the parameters of the hidden vector, and

the outer loop updates the parameters of the encoder, relationship network, and decoder. In
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Figure 2.3: Demonstration of how Model-agnostic Meta-Learning determines the direction of

gradient updates. Adapted from [76]

addition, the initialization parameters of new tasks in LEO are sampled from the conditional

probability distribution related to the task, which is different from the random initialization

in MAML. LEO indirectly updates model parameters through low-dimensional space mapping,

decoupling gradient calculations from high-dimensional parameters of the model, which can

capture uncertainty in the data and perform parameter adaptation more effectively.

Figure 2.4: The process of Latent Embedding Optimization (LEO). Adapted from [31]

Reptile [77] is a first-order meta-learning method. Specifically, Reptile first initializes the

parameters of the model, and then performs N iterations. In each iteration, a task is randomly

sampled, and then the weight vector of the corresponding loss of the task is calculated, and

then the Adam or SGD optimizer is used to calculate the parameters after K times of gradient

descent. Finally, the current parameters are updated to the parameters after k updates and the

difference of the previous dimension parameter plus the previous dimension parameter. Unlike

MAML, Reptile does not perform second-order derivation and has achieved better results than

MAML on multiple data sets.

Meta-Learner LSTM [78] believes that gradient descent will fail when the sample size is small,
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so it is proposed to use LSTM to update the parameters of the classifier to simulate gradient

descent. In the meta-training phase, the parameters of both the LSTM and the classifier will

be updated. They each have a set of meta-parameters. The LSTM is trained to update the

parameters of the classifier. In the meta-testing phase, the parameters of the classifier are

fine-tuned through LSTM based on a small number of new samples.

MetaOptNet [79] proposes that discriminative linear predictors can provide better generaliza-

tion capabilities for small sample learning tasks, and its goal is to learn feature embeddings

for new classes with good generalization capabilities. MetaOptNet takes advantage of the two

properties of the implicit differentiation (KKT condition) of the optimization conditions of con-

vex problems in linear classifiers and the dual formula of the optimization problem. Specifically,

MetaOptNet uses linear support vector machines as classifiers instead of nearest neighbor clas-

sifiers to solve the optimization problem through differentiable quadratic programming. The

network diagram is shown in Figure 2.5, which shows a 3-way 1-shot classification task. The goal

of meta-learning is to learn the parameters of the feature extractor that can generalize between

different tasks. MetaOptNet found that regularized linear classifiers allow higher-dimensional

feature embedding to reduce overfitting, but at the same time have a higher computational cost

than nearest neighbor classifiers.

Figure 2.5: MetaOptNet. Adapted from [79]

2.4.2 Deep Metric Learning for Few-Shot Learning

The main idea of deep metric learning is to find a distance or similarity measurement between

pairs from support set(base set) and query set(novel set). Early works mainly focus on learning

discriminative feature embeddings for each category, which designs a task-agnostic model that
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is powerful enough to extract discriminative features and can generalize well to novel classes.

The Siamese Neural Network comprises two identical twin networks, which are jointly trained

to learn the relationship between pairs of input data samples. These twin networks share the

same weights and network parameters, effectively representing a single embedding network.

This embedding network is responsible for learning a compact and informative representation

that captures the relationship between pairs of data points. Koch, et al [80] introduced a

technique utilizing the siamese neural network for one-shot image classification. Initially, the

siamese network is trained on a verification task, determining whether two input images belong

to the same class. It outputs the probability of two images sharing the same class. During

testing, the siamese network evaluates all pairs of images between a test image and every image

in the support set. The ultimate prediction is based on the class of the support image with the

highest probability.

In contrast to the Siamese Neural Network, the Relation Network [81] does not rely on a simple

L1 distance in the feature space to capture relationships. Instead, it predicts the relationship

between pairs of inputs using a CNN classifier. The relation score between a pair of inputs is

obtained by concatenating their features and feeding them to a relation module to learn latent

relationships. Unlike binary classification, the objective function in Relation Network is Mean

Squared Error (MSE) loss. This choice reflects the focus of Relation Network on predicting

relation scores, akin to regression, rather than binary classification.

Matching Networks, introduced by Vinyals et al. [82], are a type of few-shot learning model

designed to learn from small datasets with limited labeled examples per class. The key idea

behind Matching Networks is to utilize a flexible attention mechanism to effectively compare

and classify new instances based on their similarity to a support set of labeled examples. A

bidirectional Long Short-Term Memory (LSTM) network is used for support set images. LSTMs

can process sequences, enabling the network to consider not only an individual image but also

its relationship with other images within the support set. This can be particularly beneficial

in few-shot learning where understanding the context of the limited data is crucial. For query

image, a regular LSTM network with an attention mechanism is used for query images. The

attention mechanism allows the model to focus on specific regions of the query image that are

most relevant to the support set, aiding in classification.

To effectively recognize an image, the visual characteristics of specific regions typically play a
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more significant role in feature representation. Consequently, various approaches aim to enhance

feature embedding methods by emphasizing local information within regions of interest. For

instance, D2N4 [83] addresses this challenge by combining the strengths of deep learning with a

nearest neighbor classification strategy. Instead of using a single, global image representation,

D2N4 extracts multiple local descriptors from an image. The classification process operates

at the image-to-class level. Local descriptors from support images belonging to the same class

are pooled together. For each query image’s local descriptor, K-Nearest Neighbors (KNNs) are

identified within each class pool. The total distance between the query image and a specific

class is then calculated by summing the distances between the query’s local descriptors and

their corresponding KNNs in that class pool. This method has proven particularly effective

on datasets involving fine-grained classification tasks, where distinguishing subtle differences

between similar objects is crucial.

Learning generalized class features from only a few images poses a significant challenge for

training effective classification models. LGM-Net [84] addresses this challenge by introducing a

meta-learning framework that learns to ”generate” matching networks suitable for specific few-

shot classification tasks. The network comprises two key modules: i) TargetNet: This module

serves as the actual classifier for the unseen few-shot task. It takes query and support set images

as input and outputs class probabilities. ii) MetaNet: This module plays a crucial role in meta-

learning. It takes training data containing multiple few-shot classification episodes as input.

Each episode consists of a support set and a query set for a specific class. The MetaNet learns

to generate the weights (parameters) for the TargetNet based on the information from these

training episodes. Essentially, the MetaNet learns a transferable representation that allows it

to adapt the TargetNet to new, unseen few-shot tasks efficiently.

Metric learning-based methods have proven effective in addressing data scarcity challenges.

However, these methods can be computationally intensive as early approaches like Matching

Networks directly comparing similarities between support and query high dimentional features.

To reduce the computational costs, researchers have proposed using class prototypes, which of-

fer compact and representative embeddings of class information, facilitating the classification

of new instances with limited training data. researchers have proposed using class prototypes,

which offer compact and representative embeddings of class information, facilitating the clas-

sification of new instances with limited training data.
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Figure 2.6: Prototypical Network computes mean embeddings of support images as class pro-

totypes. Adapted from [85]

A milestone method, called Prototypical Network [85], provide a powerful and efficient approach

for few-shot learning. By leveraging representative prototypes and efficient similarity measures,

it enables the model to learn effectively from limited labeled data. For each class, the network

averages the feature representations of all the images in its support set. This average embedding

serves as the class prototype, encapsulating the key characteristics of that class within the

feature space. When presented with a new, unseen image (query image), the network extracts

its features using the same feature backbone. The network then calculates the distance between

the query image’s features and the prototype of each class. The class associated with the closest

prototype (smallest distance) is considered the most likely class for the query image.

The Relation Network [81] is the first work of introducing a neural network to model the

similarity of feature embeddings in few-shot learning. It consists of an embedding module and

a relation module. The embedding module builds on convolutional blocks for mapping original

images into an embedding space, and the relation module consists of two convolutional blocks

and two fully-connected layers for computing the similarity between each pair of support and

query images. The learnable similarity measure enhances the model flexibility

Unlike traditional metric learning, semantic alignment metric learning (SAML) [86] focuses

on ensuring that the learned metric reflects the semantic relationships between different data

samples. As shown in Figure 2.7, two key modules work in tandem: the feature embedding

module and the semantic alignment module. The semantic alignment module is responsible

for ensuring that the learned metric aligns well with semantic concepts present in the data.

Following the computation of the relation matrix, it is passed through a Multilayer Perceptron

(MLP) network. The MLP network processes the relation matrix and produces a similarity

score that reflects the semantic similarity between the query instance and the support class.

This score represents how well the query instance aligns with the semantic characteristics of
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the support class.

Figure 2.7: Semantic Alignment Metric Learning SAML. Adapted from [86]

More recently, Transformer has shown great potential in FSL. CrossTransformer [87] first uses

self-supervised SimCLR [88] technology to enhance the discriminability of learned features,

and then builds a Transformer-based network to achieve local feature alignment. Specifically,

SimCLR is executed on 50% of the meta-tasks, data enhancement is performed on both the

support set and the query set samples, and optimization is performed according to the loss

function in SimCLR. Instance-level discriminative information is learned through SimCLR and

is robust to transformations such as cropping and color. CrossTransformer is improved based

on ProtoNet, but unlike ProtoNet, which calculates the mean value for each category to obtain

the category center, CrossTransformer wants to learn a category center specific to the query

set sample. Construct (q, k, v) triples to calculate attention, where q is the query set sample

used, k and v are support sets, and the attention map is obtained. The attention map is used

to weight the feature values of different images in the support set, and the features of similar

support set samples are added to obtain the prototype. Finally, after the query set samples are

mapped to the same dimensions as the prototypes, the distance between the query set samples

and each prototype is directly compared for classification.
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2.4.3 Data Augmentation in Few-shot Learning

Data augmentation has been shown effective for few-shot learning, it can avoid catastrophic

forgetting by reducing data scarcity. Current approaches can be roughly divided into two

categories: image-level and feature-level.

Standard image-level augmentation techniques such as flipping, rotating, transforming, adding

Gaussian noise, and so on are limited by the data itself and thus may be tough to obtain diverse

generations. MetaGAN [89] is a pioneering work that uses GANs to generate fake data in order

to force the classifier to learn sharper decision boundaries. IDeMe-Net [90] proposes to deform

images by linearly fusing image patches from probe and gallery images. Specifically, each image

is divided into nine patches and a deformation network is used to estimate the fusion weight of

each patch. By generating images via patch combination, semantic information can be better

preserved while sharpening the decision boundaries of the classifier.

Figure 2.8: Image deformation meta-networks (IDeMe-Net). Adapted from [90]

However, directly generating high-quality new images remains a significant challenge. Denoising

diffusion probabilistic models (DDPM) have recently emerged as powerful generators in the

few-shot scenario. Based on limited samples, it learns to create synthetic images that share

characteristics with the real examples from the limited dataset (support set). These generated

images essentially act as artificial data points, expanding the training set for the specific class.

2.5 Few-shot semantic segmentation

The few-shot semantic image segmentation (FSS) develops from few-shot classification, which

aims to accurately segment objects in an image given only a limited number of annotated

examples per class. The core problem revolves around the model’s ability to learn and generalize
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from a few examples, typically referred to as ”shots”, to perform segmentation tasks on unseen

images effectively. Unlike traditional machine learning methods that rely on extensive manual

annotation of training data, few-shot semantic segmentation tackles the problem of scarce data

availability by learning to achieve class-agnostic and generalization from a small set of annotated

images to segment previously unseen classes or objects.

As illustrated in Figure 2.9, a FSS dataset is split into two distinct subsets: meta-training and

meta-testing. Both subsets are comprised of ”support images” and ”query images.”. Support

images are a set of labeled images provided as examples for each class involved in the few-shot

learning task. Each support image is accompanied by its corresponding segmentation mask,

which precisely indicates the object or region of interest within the image. Support images

are used during the training phase to adapt the model to recognize and segment new objects

based on the provided examples. Conversely, a query image is an unlabeled image that the

model is tasked to segment. Unlike support images, the query image does not come with a

corresponding segmentation mask. The challenge for the model is to apply what it has learned

from the support images to accurately segment the query image. When the task involves using

K support images along with their corresponding masks for learning, this setup is referred to as

K-shot semantic segmentation. The remainder of this section goes through the problem setting

and typical FSS methods so far.

2.5.1 Datasets setting

PASCAL-5i Most of the existing works on few-shot semantic image segmentation adopt the

partition scheme proposed in OSLSM (One-Shot Learning for Semantic Segmentation) [33].

The dataset used in these works is based on PASCAL-5i, an extension of the PASCAL VOC

dataset combined with the SDS (Semantic Boundaries Dataset). The PASCAL VOC dataset

consists of 20 object classes. For the few-shot segmentation task, five classes are sampled and

considered as the test label-set and the remaining 15 classes data are utilized as the training

set Dtrain. To ensure consistency, the masks in Dtest are carefully chosen to ensure that classes

not belonging to Dtest are labeled as the background class.

COCO-20i. This dataset is derived from the MSCOCO [45] dataset, which comprises 80 object

classes and ground-truth segmentation masks of relatively lower quality compared to those in

PASCAL VOC. Similar to PASCAL-5i, the COCO-20i dataset is also divided into four folds for
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Figure 2.9: Illustration of Few-shot Semantic Segmentation problem

cross-validation purposes. For each fold, denoted as {fold0, fold1, fold2, fold3}, the COCO-20i

dataset samples 20 object classes as test classes from the pool of 80 classes in MSCOCO. The

remaining 60 classes are consisted of the training set.

FSS-1000 In contrast to previous general datasets, FSS-1000 is specifically tailored for train-

ing models in few-shot segmentation tasks. It comprises 1000 object classes, with each class

containing only 10 images. Adhering to the original FSS setting as outlined in [48], there is

no need for cross-validation to enhance the diversity of test classes. The dataset is partitioned

into train/validation/test sets with a distribution of 520/240/240 classes, respectively, ensuring

that all classes are disjoint from one another.

Table 2.1 and Table 2.2 reprots the detailed few shot semantic segmentation splits of PASCAL-

VOC and COCO datasets, respectively.

2.5.2 Few-shot semantic segmentation methods

The OSLSM (One-Shot Learning for Semantic Segmentation) method is a pioneering approach

that introduces the few-shot semantic segmentation challenge and proposes a base structure
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Sub Dataset Test classes

PASCAL-50 aeroplane, bicycle, bird, boat, bottle

PASCAL-51 bus, car, cat, chair, cow

PASCAL-52 dining table, dog, horse, motorbike, person

PASCAL-53 potted plant, sheep, sofa, train, tv/monitor

Table 2.1: Few shot semantic segmentation split of PASCAL dataset

Figure 2.10: Overview of the FSS meta framework

for addressing this task. Drawing inspiration from few-shot learning strategies, the OSLSM

method employs a two-branch architecture for support processing and query processing, re-

spectively. The architecture is visually depicted in 2.10. In the OSLSM method, the upper

branch, known as the Conditioning branch or Support branch, processes the support label-

image pairs to generates a series of conditional features (prototypes) as reference information.

These prototypes play a crucial role in guiding the segmentation process for the new class. The

button branch, referred to as the Segmentation branch, uses both the computed prototypes

from the support branch and an image of novel classes (query image) to produces a segmenta-

tion mask for the new class as the prediction. Unlike fine-tuning approaches commonly used in

few-shot learning, which often applies multiple iterations of stochastic gradient descent (SGD)

to learn optimize the network until convergence, the OSLSM method computes the prototypes

of the Conditioning branch in one inference. This brings several advantages to the approach.

Firstly, the single forward pass enables fast computation, enhancing efficiency. Secondly, the

differentiable nature of the method allows for joint training of the Conditioning branch and the

support branch within the model. Lastly, the number of guidance prototypes, denoted as θ, is
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COCO-50 COCO-51 COCO-52 COCO-53

1. Person 2. Bicycle 3. Car 4. Motorcycle

5. Airplane 6. Bus 7. Train 8. Truck

9. Boat 10. Traffic light 11. Fire hydrant 12. Stop sign

13. Parking meter 14. Bench 15. Bird 16. Cat

17. Dog 18. Horse 19. Sheep 20. Cow

21. Elephant 22. Bear 23. Zebra 24. Giraffe

25. Backpack 26. Umbrella 27. Handbag 28. Tie

29. Suitcase 30. Frisbee 31. Skis 32. Snowboard

33. Sports ball 34. Kite 35. Baseball bat 36. Baseball glove

37. Skateboard 38. Surfboard 39. Tennis racket 40. Bottle

41. Wine glass 42. Cup 43. Fork 44. Knife

45. Spoon 46. Bowl 47. Banana 48. Apple

49. Sandwich 50. Orange 51. Broccoli 52. Carrot

53. Hot dog 54. Pizza 55. Donut 56. Cake

57. Chair 58. Couch 59. Potted plant 60. Bed

61. Dining table 62. Toilet 63. TV 64. Laptop

65. Mouse 66. Remote 67. Keyboard 68. Cell phone

69. Microwave 70. Oven 71. Toaster 72. Sink

73. Refrigerator 74. Book 75. Clock 76. Vase

77. Scissors 78. Teddy bear 79. Hair drier 80. Toothbrush

Table 2.2: Few shot semantic segmentation split of COCO dataset

independent of the image resolution, ensuring scalability and avoiding any issues related to the

size of the images. This property allows the method to handle images of varying resolutions

efficiently and effectively.

In order to boost the performance of few-shot semantic image segmentation, several optimiza-

tions have been proposed that target the architecture components of the method. These com-

ponents include guidance feature extraction, which aims to extract relevant features from both

labeled support images; segmentation feature embedding, which aims to embed the features of

the unlabeled query images into a common space; and guidance strategies, which aim to guide
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the dense prediction challenge using the extracted and embedded support features. Based on

this support-query architecture, FSS methods can be categoried as:

1) Metric Learning-Based Approaches. Metric learning is crucial in addressing FSS chal-

lenges, with prototype network-based methods [34]–[36], [39], [91] leading the field. These

methods aim to learn a general distance function that assigns higher affinity scores to simi-

lar features and lower scores to distinct ones, regardless of the category. Unlike traditional

learning methods [24], [92], [93], which generate a class prototype as a rough optimal estimate,

few-shot techniques focus on creating class-specific prototypes. These prototypes, even if not

optimal, are effective if they convey object information and align query features with similar

semantic classes. Recognizing the limitations of representing a category with a single prototype

vector, some strategies [37], [94] aim to produce multiple prototypes per class. Furthermore,

some methods [95], [96] explore direct element-level dense matching between support and query

features as an innovative solution. These varied approaches are outlined below.

Early attempts [34], [35] focused on feature matching using a singular class descriptor. The

innovative approach in [33] sparked subsequent studies like [35], which accomplished binary

segmentation by measuring cosine distances between query feature vectors and class-specific

prototypes. To optimize support data usage, query samples and their predicted masks were

treated as additional support, enhancing the segmentation of original support samples.

Diverging from the fixed distance functions in [35], other methods [36], [39] employed learnable

neural networks, acting as adaptable distance metrics to gauge support and query feature

similarities. These methods merged target class support cues with query features, decoding the

amalgamated features for final segmentation. A prevalent fusion technique involved appending

query features with scaled prototypes [34], [39] or support feature maps across the channel

dimension. This process incorporated multi-scale features [36] and multi-class labels [91] to

refine query sample representations.

Beyond simple channel-wise concatenation [34], [39], alternative integration methods like element-

level addition [97], attention map re-weighting [98], and similarity guidance [99], [100] were

explored to merge support and query features effectively.

In the realm of dense matching, several innovative strategies have been developed to enhance

the interplay between support and query features: Pyramid Graph Network [101] introduces a

network to meticulously map the dense connections between support and query features across

30



various scales, ensuring a comprehensive multi-scale correspondence. Democratic Attention

Network [95] focuses on object-centric pixels, this network forges a resilient link between sup-

port and query images, prioritizing areas with object presence for enhanced correspondence.

Cross-Attention Mechanism [102] is also employed to assimilaterelevant pixel-level features from

support images into query images, enriching the feature landscape of the query images. Bi-

partite Graph with Graph Attention [103] Constructs a bipartite graph and integrates a graph

attention mechanism and a weight adjustment strategy to draw more target-object pixels into

the segmentation process of query images, enhancing the focus on relevant areas. By analysing

the dense foreground-background correlations, [104] delves into the dense relationships between

foreground and background, addressing the loss of information typically encountered in proto-

type learning and dense foreground feature matching. Each approach contributes uniquely to

refining dense matching, focusing on enhancing the precision and relevance of feature correla-

tions for more accurate segmentation outcomes.

2) Parameter Prediction-based Methods. Unlike metric learning-based methods that

focus on learning a powerful predictor transferable across tasks, parameter prediction-based

methods aim to create a unique predictor for each task. This is accomplished by devising a

parameter generator responsible for predicting the neural weights of the prediction layer.

A notable approach [105] utilize the modified logistic regression layer, pixel-wise semantic labels

are derived from the query features. This approach expands beyond support samples, incor-

porating query images in classifier weight generation. Instead of directly substituting classifier

parameters, another method dynamically adds weights to the classifier, enabling the model to

proficiently handle both base and novel categories [106]. This approach offers a more flexible

and adaptive way to accommodate a diverse range of classes without compromising the model’s

performance on previously learned categories.

3) Finetune-based methods for few-shot image semantic segmentation focus on utilizing

optimization algorithms to adjust the parameters of a pre-trained segmentation network, fa-

cilitating the learning of new, unseen categories. The process involves iteratively refining the

network by reducing the discrepancy between support predictions and their corresponding

masks [107]. This method of parameter refinement significantly mitigates performance drops

caused by differences in class characteristics between training (offline) and application (online)

phases.
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To enhance this process, an architecture combining an embedding network with a differentiable

linear classification model was introduced [108]. This configuration allows for more effective

updates to the linear classifier’s parameters while maintaining the embedding network’s ability

to generalize across various classes. Contrary to the episodic training used in [107] and [108], a

transductive inference approach was employed, leveraging standard supervised learning to de-

velop a feature extractor for base classes [109]. During inference, a linear classifier is fine-tuned

by minimizing a loss function that considers both labeled support images and the statistical

properties of unlabeled query images.

In addition to adapting across categories, these methods also address the distribution shift

between training and inference data, enhancing the model’s applicability and robustness in

real-world scenarios.

2.6 Few-Shot Class Incremental learning

Few-Shot Class Incremental Learning (FSCIL) is an emerging and challenging area in machine

learning, which extends both few-shot learning and classical incremental learning paradigm.

The core objective of FSCIL is to enable a model to learn new classes with very few examples

while retaining its performance on previously learned classes, a concept also known as ”learning

without forgetting.” This is particularly important in real-world scenarios where data can come

in streams, and it is impractical to retain all the data or continually retrain the model from

scratch. On top of that, this thesis aims to enhance the applicability of few-shot segmentation

methods by tackling the difficult and practical setting of few-shot semantic segmentation.

There are three key characteristics of FSCIL: 1) Class Incrementality, the model must adapt to

new classes that weren’t part of the original training set without needing to retrain from scratch.

2) Data Scarcity, only a few examples of the new classes are available for training, making it

a challenging problem compared to traditional machine learning settings where ample data is

typically available. 3) Catastrophic Forgetting, a significant challenge in FSCIL is avoiding

catastrophic forgetting of old knowledge when adapting to new classes.

The methods for FSCIL can be summarized into the following categories:

1) Meta Learning-Based Methods. This category involves methods that use meta-learning

principles to leverage prior knowledge and learning experiences to facilitate quick adaptation
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to new tasks and classes with limited data. Like FSL, one of the widely used technique should

be prototype learning, which learns a overall representation for novel classes given a few exam-

ples, and then leverage the similarity between the testing query and the examples to perform

classification or other visual tasks. However, using conventional prototype-based methods to

combine all the learned class prototypes may make some prototypes hard to tell apart. To

address this issue, [110] introduced a meta-learning class structure. The core idea is to learn a

notion of how classes should be distributed in the embedding space. This is achieved through

a meta-learning process where the model is trained on simulated incremental learning tasks.

These tasks involve learning to distinguish between a small set of new classes and previously

learned ones. The model learns to align each class with the class structure by moving it along

the base vectors of the subspace using an alignment kernel. This ensures that learned classes

are distinctive from each other within and across different learning sessions.

Beyond existing meta-learning methods, researchers are exploring ways to explicitly construct

the meta-learning process itself. This approach focuses on incorporating the trade-off between

adapting to new knowledge and retaining knowledge of previously learned classes.

One such method is MetaFSCIL [111], taking inspiration by the multi-task learning approach

MAXL [27]. MetaFSCIL formulates the challenge as a meta-objective, directly aiming to bal-

ance adapting to new knowledge while retaining knowledge of previously learned classes. It

achieves this by mimicking the meta-testing scenario during training, where the model is ex-

posed to a sequence of incremental tasks drawn from the base classes. Additionally, MetaFSCIL

introduces a bidirectional guided modulation mechanism that leverages meta-learning to auto-

matically adapt to new knowledge.

Another line of research by Zou et al. [112] focuses on the specific challenge of class-level over-

fitting that occurs when the model prioritizes easily learned patterns within a class during

training, neglecting the need for margins to separate different classes effectively. The method

utilizes a margin-based approach to handle the uncertainty associated with class boundaries

during incremental learning. It introduces a margin-based loss function that penalizes predic-

tions made with low confidence, aiming to improve the generalization performance of the model

across both base and novel classes. During incremental learning, the model leverages a support

set of examples from the base classes to adapt to new classes. By enforcing a margin-based

constraint on the feature space, the model learns to distinguish between classes effectively while
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minimizing the risk of overfitting to specific class instances.

2) Feature Space-Based Methods. Subspace representation is instrumental in improving

algorithm efficiency by reducing the dimensionality of data while preserving critical features.

In FSCIL, leveraging subspace representation involves mapping new classes from their original

space into a low-dimensional space defined by old classes. This facilitates better adaptation to

new classes.

In the study of cite[41], a novel method that operates on mixture of subspaces which allows

the model to dynamically allocate resources to different subspaces based on their relevance to

the current task. It leverages synthesized features to address the challenge of learning new

classes incrementally while avoiding catastrophic forgetting. At its core, the method represents

each class as a subspace in a high-dimensional feature space. During the incremental learning

process, the model synthesizes new features by combining existing ones in a principled manner,

enabling it to adapt to new classes without forgetting previously learned ones.

Akyürek et al. [113] presented a subspace regularization approach, prompting the weight rep-

resentation of novel classes to align with the subspace formed by existing old-class weights.

This regularization, user-friendly and simple, also allows for integrating additional prior infor-

mation. Viewing from the parameter feature space angle, [114] devised WaRP, amalgamating

F2M’s [115] proficiency in locating flat loss function minimums with FSLL’s [116] expertise

in parameter fine-tuning, creating a robust model for class adaptation.

3) Replay-Based Methods. These methodologies leverage the principle of revisiting pre-

viously acquired knowledge when faced with new tasks. These approaches encompass direct

replay [40], [117], which involves storing and reusing real samples from previous tasks, and

generative replay [32], [118], where a generative model is utilized to replicate the distribution

of data from previous tasks.

[117] proposed a three-part framework where the initial two stages independently train the

network on base and novel classes, employing a model parameter constraint technique to main-

tain memory of old classes. The final stage utilizes a limited collection of retained samples for

replay and fine-tuning of the classifier’s proficiency across all classes, encompassing both base

and novel categories. On the other hand, [40] introduced a semantic-aware knowledge distilla-

tion approach, preserving a select set of samples from prior classes. This method leverages word

embeddings as supplementary data and translates images into vector space, demonstrating the
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effectiveness of knowledge distillation within the context of FSCIL

In FSCIL, storing real past data (old data) might raise privacy concerns. To address this,

[32] suggests a method for creating substitute “old samples” without requiring real data. This

method relies on a generator network that creates uncertain examples close to decision bound-

aries. This approach is necessary because traditional data replay techniques used in continual

learning are not suitable for FSCIL due to the limited amount of data available.

[118] introduces Few-Shot Incremental Learning Generative Adversarial Network (FSIL-GAN),

capable of replicating the real data distribution with a limited amount of data. This is achieved

by aligning synthetic visual features, extracted from generated images, with their correspond-

ing semantic representations. The method ensures diversity and separability of the synthetic

features to prevent the model from becoming fixated on a limited set of generated examples.

4) Dynamic Network Structure-Based Methods. These approaches involve network ar-

chitectures that can dynamically adjust during runtime based on input data features. They are

designed to possess strong generalization capabilities and mitigate the risks of overfitting. For

instance, [42] introduced the Neural Gas (NG) network, which captures the topological layout

of the feature space across various categories, enhancing knowledge representation. The frame-

work ensures the stability of the NG’s topology, safeguarding against forgetting old categories.

It allows the NG network to dynamically expand, accommodating new samples and refining

the representation of few-shot new classes.

Subsequently, [43] developed the Learnable Expansion-and-Compression Network (LEC-Net),

which enhances feature representation by strategically expanding network nodes while mitigat-

ing feature drift through model regularization. Building on this, they introduced the Dynamic

Support Network (DSN) [119], a network capable of adaptive expansion. DSN employs com-

pressive network expansion to enhance feature representation with each incremental task and

dynamically tailors the feature space according to the old class distribution.

More recently, [120] investigated a masking-based approach within network structures. It em-

ploys non-binary masks to forge soft subnetworks from the primary network, striking a balance

between mitigating forgetting and preventing overfitting. During the base classes phase, the

model learns soft-subnetwork parameters and weight scores. In the incremental learning phase,

it updates select parameters of the subnetwork, ensuring a seamless transition and learning

continuity.
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2.7 Summary

This chapter comprehensively explores the evolving landscape of few-shot semantic segmenta-

tion, delving into methods ranging from supervised semantic segmentation to few-shot incre-

mental learning. Supervised semantic segmentation, serving as the foundation, utilizes exten-

sive labeled data to train models for pixel-level classification. Techniques like fully convolutional

networks (FCNs) and encoder-decoder architectures have set benchmarks in this domain. How-

ever, the dependency on vast annotated datasets limits their applicability in scenarios where

labeling is expensive or impractical.

Transitioning to few-shot learning, the review highlights methods that adapt to new tasks or

classes with minimal data. Meta-learning, or learning to learn, stands out by training models

to quickly adapt to new tasks using small datasets, effectively addressing the data scarcity

issue. Few-shot segmentation, a subset of few-shot learning, specifically targets the challenge of

segmenting images with few labeled examples. Techniques like prototype learning and metric

learning redefine feature space, enabling models to generalize from limited data by comparing

new instances with a learned metric or reference points.

The review further scrutinizes few-shot incremental learning (FSCIL), where the model con-

tinuously learns new classes without forgetting the previously learned ones. It underscores

the complexity of balancing the acquisition of new knowledge with the retention of previously

learned information, a phenomenon known as catastrophic forgetting. Strategies like replay,

where the model retrains on a mix of old and new data, and meta-learning approaches that

optimize the model’s ability to learn new tasks while retaining old knowledge, are pivotal. The

review also delves into advanced techniques like parameter prediction-based methods, which

dynamically adapt model parameters for new classes, and representation learning, which seeks

to encode data into a form where classes are inherently separable.

In conclusion, this review encapsulates the trajectory of few-shot semantic segmentation, high-

lighting the shift from data-intensive supervised methods to innovative few-shot techniques. It

underscores the significance of adaptability and knowledge retention in model evolution, laying

the foundation and conceptual framework for the thesis work on proficient few-shot learning

methods in image semantic segmentation.
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Chapter 3

Masked Cross-image Encoding for

Few-shot Segmentation

3.1 Introduction

As discussed in Chapter 2, semantic segmentation tackles the challenge of pixel-wise classifi-

cation, aiming to assign a class label to every pixel within an image. This task traditionally

demands a substantial volume of meticulously labeled images for effective supervised learning.

To address this challenge and reduce the annotation workload, few-shot semantic segmentation

(FSS) methods [33], [37], [94] have been proposed to learn segmenting previously unseen classes

with only one or a few labeled training images.

FSS learning methods generally follow the “learning to learn” paradigm, also known as meta-

learning [30], [121], to obtain generalized prototypes that can describe the classes of interest.

These methods typically apply a two-branch framework [33], [99], [122] with a shared frozen

pre-trained backbone, where a support branch is used to learn the object prototypes from very

few labeled images (support images) and a query branch is utilized to make predictions for a

query image on conditioned of the support prototypes. Under this framework, masked average

pooling (MAP) [35], [99], [122] and clustering-based aggregation methods [94], [123], [124]

are two popular approaches to learning the representations for support images. While both

prototype-based and metric-based approaches have shown promise for few-shot segmentation

(FSS), they primarily focus on capturing the overall visual properties of a class and do not

effectively incorporate contextual information from a spatial perspective. This can result in
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Figure 3.1: Comparison between conventional “fixed feature + decoder optimization” FSS

methods and the proposed learnable cross-image feature scheme. (a) Current FSS methods

independently learn object prototypes from support features and conduct coarse prototype

matching or fine “pixel-wise” feature guidance at the decoding stage. (b) The proposed joint

encoding scheme makes it possible to learn extra object context from other images before

decoding.

a failure to guide features that correspond to the local context of support images, leading

to decreased segmentation performance. To overcome this limitation, alignment schemes for

FSS employ ”features matching” and ”decoder optimization” strategies to learn the metric

similarities between support and query features extracted from the backbone. Specifically,

methods such as [36], [37], [124] calculate prior maps, or similarity metrics, based on the

query and support features to define their correlations. Other methods, including [102], [125],

[126], feed support and query features into a decoder (e.g., 4D convolution or transformer) to

perform local region matching between query and support images. However, as support and

query features are generated independently through a fixed backbone, these alignment methods

can still suffer from underdeveloped contextual information mining for support-query pairs that
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contain the same objects.

It is widely acknowledged that deep learning features extracted from different images of iden-

tical objects share similar representations compared to features of other objects. Humans are

good at recognizing new things by comparing specific details (like shapes, textures, or pat-

terns) with things they’ve seen before. This allows them to pick up on subtle differences and

categorize the new object even if they’ve only seen a few examples from that category. On

top of this observation, it is resonable and more effective to encode an image with features

from others that contain the same object when only a limited number of samples are pro-

vided. This approach enables better exploration of the semantic representation among features

across different image sources and preserves more detailed local contexts that aid in identify-

ing subtle targets. Notably, the FSS two-branch framework naturally provides different image

sources containing the same object, namely, the support images and the query image, whose

visual features were extracted separately in prior methods. Building on this insight, we observe

that self-attention in the Vision Transformer (ViT) [66] and cross-attention in [127] can be

utilized to capture contextual information of images during token dependency construction.

Consequently, we adopt a similar approach to consider joint learning between query and sup-

port features for FSS. Specifically, we model cross-image object semantic encoding to identify

discriminative local regions, as illustrated in Figure 3.1 (b). CRNet [128] also presented a

joint scheme. However, our method is focused on position-wise features, while CRNet encodes

overall support-query image-wise representations. CRNet leverages global average pooling to

extract overall statistics of the query-support features on a per-image basis and then fuses the

resulting branch vectors via element-wise multiplication. In addition, since the module uses

image-wise representation, it may miss important details, and element-wise vector multiplica-

tion only amplifies common features between the two feature maps. In contrast, our method

employs multi-head attention to analyze position-wise features across query and support image

features. This approach allows us to capture contextual information with fine-grained details

and enhance mutual support-query interaction without any fusion operation. As a result, our

method can provide a more comprehensive analysis of the features, leading to more accurate

results.

The overall framework of the proposed method is illustrated in Figure 3.2. The method aims

to capture the object semantic mutual relations across support and query images. Unlike

CyCTR [102] which employs Transformer blocks to pass support features to the query decoder,
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our approach emphasizes the importance of consistent mutual relations between query and

support features. To achieve this, we propose a symmetric cross-attention structure called

Masked Cross-Image Encoding (MCE), which is designed to assemble bidirectional inter-image

relations on multi-level features. The MCE incorporates the support segmentation mask to

restrict attention within the localized features of the target objects, thus enhancing the ability

to distinguish objects from backgrounds. Additionally, we utilize multi-level features of the

support-query images to calculate similarity score matrices, which provide a comprehensive

understanding of the correspondence between each position of query features and the support

object. Thus, these similarity score matrices help refine the pixel-wise classification accuracy

in FSS.

We evaluated the meta-learning ability of our model on two public FSS benchmarks, PASCAL-

5i [44] and COCO-20i [45]. The experimental results show that the proposed masked cross-

attention encoding helps enrich query features by attending support object regions mutually

and, therefore, obtains a strong meta-learning ability, surpassing the prior counterpart methods.

In summary, the main contributions of this work are as follows:

• We propose a masked cross-image encoding method to discover shared visual represen-

tations of the target objects in support and query features. By using a symmetric cross-

attention structure, MCE can attend to bidirectional inter-image relations on multi-level

features, which not only enriches the query features with information from the support ob-

ject regions but also enhances the support-query interaction, leading to a more favorable

meta-learning capability for FSS.

• We performed comprehensive experiments to explore various designs of cross-attention

schemes for FSS, aiming to identify the most effective scheme for the encoding module.

• We propose to calculate support-query similarity score matrices that reflect the likeli-

hood of a pixel in query features belonging to the foreground. These matrices are then

incorporated into our model along with multi-level cross-image features to facilitate final

segmentation.

• Extensive experiments on PASCAL-5i and COCO-20i benchmarks under 1-shot and 5-

shot settings demonstrate the effectiveness of the proposed MCE and similarity score

matrices. The proposed model achieves superior meta-learning performance across all

compared state-of-the-art methods.
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3.2 Methodology

3.2.1 Problem Definition

We normally follow the definition of few-shot semantic image segmentation in [129]. In this

scenario, a semantic segmentation dataset is split into a training set Dtrain and a testing set

Dtest . Unlike traditional semantic segmentation setups, there is no overlap between object

classes in the training and testing sets, denoted as {Ctrain} ∩ {Ctest} = ∅. Following the

two-branch framework, multiple episodic paradigm pairs are sampled from both sets, each

comprising a support set S = {(Is,M s)}k1 and a query image pair Q = (Iq,M q) sharing the

same class. If there are K annotated images in one support set, the target few-shot problem

is called K-shot. Our objective is to learn a mapping Hθ on the training set Dtrain, which can

precisely predict the query image segmentation mask M q from combined input (Is,M s, Iq).

Note that both the support masks {M s}k1 and query mask M q are available during the training

stage, while only the support masks are provided to perform segmentation during the testing

stage.

3.2.2 Model Architecture

We formulate the overall model architecture in Figure 3.2. Initially, multi-level features are

extracted from both the query image and support images using a pre-trained backbone network.

Specifically, the support features extracted from the intermediate layers of the network, along

with their corresponding masks, are used to derive a class-wise prototype vector Vs by Mask

Average Pooling (MAP). The query features and support features extracted from the deep

layer are utilized to calculate a similarity score matrix Asim. Simultaneously, all features

from the query image and support images are exploited to compute the multi-level cross-image

attention map fcross through the Masked Cross-image Encoding (MCE) module. The cross-

image encoding feature fcross, the prototype vector Vs, and the similarity score matrix mask

Asim, along with query feature fQ
l are concatenated and then fed to the decoder, which is

composed of an Atrous Pyramid Pooling (ASPP) module, a 3 × 3-convolution and a 1 × 1-

convolution for binary pixel-wise classification.

The followings present the main components of our cross-attention-based method. We first

illustrate the masked attention designed for support-query image pairs. Then, we elaborate on
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how the symmetric cross-image encoding architecture incorporates features from other images.

Finally, we introduce a feature enhancement scheme with feature fusion.

Figure 3.2: The proposed architecture consists of three distinct modules that take multi-level

support-query features f lS, f lQ obtained from the backbone network as input along with the

support mask to align features. The similarity matrix calculation module evaluates the pixel-

wise feature correspondences between the query and support features to derive a similarity score

matrix Asim. The Mask Average Pooling (MAP) computes a class-wise prototype Vs from the

support image and corresponding mask. Finally, the Masked Cross-image Encoding (MCE)

module leverages the support segmentation mask to confine attention within the localized

features of the target objects, thereby improving the ability to differentiate objects from the

background. These module outputs fcross, Vs and Asim, are then concatenated and fused to

generate rich features for final prediction.
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3.2.3 Masked Attention Encoding

The proposed masked attention encoding is inspired by the attention mechanism of the Vision

Transformer (ViT) [66] model, which first converts an image into a sequence of patches and

then linearly maps each patch into tokens with positional embedding. A transformer encoder

is composed of a sequence of blocks where each block contains multi-head self-attention (MSA)

with a multi-layer perceptron (MLP). Specifically, a scaled dot-product attention is formulated

as:

Attention = Softmax
(
QKT

√
d

)
V, (3.1)

where Q,K,V are the different views of input patch tokens, d is the dimension of each token.

The proposed model adopts a meta-learning scheme with a masked cross-image attention mod-

ule, which extracts the local features by constraining cross-attention to the foreground region

of support features. Specifically, we take multi-level intermediate visual feature represen-

tations from support and query images as input. For input feature maps fl ∈ RHl×Wl×C ,

Ql,Kl,Vl ∈ RHlWl×N are query-key-value tokens derived from flattened inputs through a pro-

jection head Gproj(·), and Hl and Wl are the spatial resolutions of features to attend. The

masked attention matrix is computed by:

Attention = Softmax
(
(Ml +Ql)K

T
l

)
Vl, (3.2)

where the segmentation mask Ml ∈ RHlWl×N at feature location (x, y) is calculated by:

Ml(x, y) =

0 if Ml(x, y) = 1;

−∞ otherwise.
(3.3)

Ml ∈ {0, 1}HlWl×N is a binary support mask that transformed from the original image mask

Ml ∈ {0, 1}H×W . It is resized to the exact size of Wl, Hl as the input features by linear

interpolation, followed by expansion along channel wise and flattened to RHlWl×N .

3.2.4 A Symmetric Cross-image Feature Encoding Method

The few-shot Siamese segmentation framework [33] consists of a Support branch and a query

branch. The former receives support images with annotated mask learning class representa-

tion to guide the query image segmentation in the latter branch. The two-branch guidance
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Figure 3.3: The proposed Masked Cross-Image Encoding.

architecture has been a source of inspiration for researchers in utilizing Transformer’s cross-

attention mechanism to enable query features to attend to informative support features, as

demonstrated by CyCTR, a closely related work to our study. In CyCTR, support and query

features are typically treated as separate entities. The query features are encoded using stan-

dard self-attention to obtain a query image representation, which is then unidirectionally passed

to a cross-alignment block for query guidance. In contrast, our proposed method suggests that

query and support features containing the same class can be integrated as a uniform feature

source for generalizing novel class semantic information. By employing cross-image attention,

we aim to capture shared representations and semantic relationships among images sharing the

same class, which can enhance the meta-learning ability of the few-shot segmentation model.

As it shown in Figure 3.3, lth level feature maps
(
fS
l ,f

Q
l

)
are flattened to sequences of HlWl

patches, where each patch has C channels. This tokenization can be formulated by fl =[
f 1
l ,f

2
l , . . . , f

HlWl
l

]
, where f i

l ∈ RC . Given a token embedding with mappings W q
S ,W

k
S ,W

v
S ,

and W q
Q,W

k
Q,W

v
Q for a specific scale support sequence fS and query sequence fQ, the query-
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key-value tokens (Sq,Sk,Sv) and (Qq,Qk,Qv) can be calculated by:
Sq = W q

SfS

Sk = W k
SfS

Sv = W v
SfS


Qq = W q

QfQ

Qk = W k
QfQ

Qv = W v
QfQ

(3.4)

Note that we omit multi-head attention and multi-level indicator for a concise presentation.

We employ the token embedding to preserve the spatial properties, then implement the cross-

image encoding by a symmetric cross-attention in two branches: 1) We obtain the support cross

feature embedding using the value vectors (Sq,Sk,Qv). 2) Similarly, the query cross feature

embedding from the query branch is calculated with vectors (Qq,Qk,Sv).

In the support branch, the support embedding first performs self-attention between support

tokens (Sq,Sk). Then it conducts cross-attention with a query token Qv to enhance the feature

representation of an object. Let AS ∈ RHW×HW denote the matrix of self-attention scores

obtained via linear mapping:

AS = (Sq +M)ST
k , (3.5)

where Sq =
[
S1

q ,S
2
q , ...,S

HW
q

]
∈ RHW×C and Sk =

[
S1

k,S
2
k, ...,S

HW
k

]
∈ RC×HW are token

embeddings to perform self-attention within the query features, which can be obtained using

Eq. 3.4. After the self-attention, the model conducts cross-image attention with the attention

matrix AS and the query token Qv. Moreover, to perform normalization for masked-attention

scores and find out the regional semantical relations from the query branch, the scaled attention

is calculated as follows:

RS = softmax

(
AS√
d

)
Qv, (3.6)

where Qv =
[
Q1

v,Q
2
v, ...,Q

HW
v

]
is a token of query image features, and RS ∈ RHW×C represents

the masked cross-image feature maps in support branch.

The query cross attention encodes the local semantic information of the support objects into

the query feature in a similar way:

AQ = QqQ
T
k , (3.7)

RQ = Softmax

(
AQ√
d

)
(Sv +M) , (3.8)

where the support mask is applied on the support token to remove the background.
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The obtained cross-image relation maps RQ and RS are then fed to the MLP block to further

encode the cross-image common information into local regions as: f ′S
l = MLP

(
Norm

(
RS ⊙ fS

l

))
+Norm

(
RS ⊙ fS

l

)
f ′Q
l = MLP

(
Norm

(
RQ ⊙ fQ

l

))
+Norm

(
RQ ⊙ fQ

l

)
,

(3.9)

where Norm represents Layernorm and the MLP block contains of two transformation layers

with GELU non-linearity. Finally, the reshaped outputs f ′Sl and f ′Ql are aggregated as the

cross encoding feature fcross by concatenation and 1× 1-convolution.

3.2.5 Similarity Matrix

Figure 3.4: The calculation process of similarity matrix

We notice that the prior map of PFENet [36] determines the query pixel class according to

the maximum similarity over the support pixels, which may bias towards a unique support

pixel and thus fail to consider the whole object features. Therefore, as shown in Figure 3.4,

we propose calculating a mean similarity score matrix to reflect the mean semantic correlation

between each query feature position and support object positions. To obtain the relation

matrix, we first compute the cosine similarity between every position pair (xcross,xs) from the

intermediate masked support feature fS and the enhanced query feature fcross. The similarity

for query pixel and background support pixel pair would be zero, as the mask operation sets

background features to zero. The similarity scores matrix Asim ∈ RHl×Wl are the mean relation

scores as follows:

Asim (xcross,xs) = mean
(

xT
cross·xs

∥xcross∥∥xs∥

)
cross ∈ (1, 2, . . . , HlWl) , s ∈ (1, 2, . . . , HlWl),

(3.10)
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The features fQ,VS,fcross,Asim are concatenated as a whole feature, then it is fed into an

ASPP module, where a dilated convolution is used to enlarge the receptive field. Finally, we

apply a convolution block and a pixel-wise classifier to predict the final segmentation mask

Pred:

Pred = Softmax (CLS (Cat (fQ,VS, fcross,Asim))) , (3.11)

Here, CLS represents a combined operation of an ASPP, an 3× 3-convolution and a classifier.

3.3 Experiments

3.3.1 Dataset and Evaluation Metric

We evaluated our method on the PASCAL 5i [33], COCO-20i [45] and the FSS-100 dataset

as introduced in Section 2.5.1. PASCAL 5i is composed of PASCAL VOC 2012 and extended

annotations from SDS [130] datasets with 5,953 and 1,449 images for training and validation,

respectively. 20 classes were evenly divided into 4 folds 5i ∈ 0, 1, 2, 3 and each fold contains

5 classes. The dataset COCO-20i consists of 82,081 training images and 40,137 validation

images from 80 object classes divided into 4 folds: 20i ∈ 0, 1, 2, 3. For the four subsets, three

of them were selected as the training set, and the rest one was used as the testing set to

validate the effectiveness. Note that the training images containing the novel classes on the

testing set were removed to prevent information disclosure. For these four subsets, three of

them are selected as the training set, and the rest one is used as the test set to validate

the effectiveness of the proposed method. In FSS-1000, we adhere to the dataset’s original

configuration, dividing the 1,000 classes into train/validation/test sets with proportions of

520/240/240 classes, respectively. In the training stage, we randomly select one (one-shot) or

five (five-shot) images for each class as the support images, another image as the query image.

Following [36], we randomly sample 1,000 query-support pairs for testing.

We adopt mean intersection over union (mIoU) and foregroud-background IoU (FBIoU) as

the evaluation metrics of our experiments. IoU for class c is defined as IoUc =
TPc

TPc+FPc+FNc
,

where TP, FP and FN are the number of true positives, false positives and false negatives of

the predicted pixels. The mIoU is the average of all the IoU of different classes in each fold,

i.e., mIoU = 1
N

∑N
i=1 IoUi, where N = 5 for PASCAL 5i and N = 20 for COCO-20i. FB-

IoU calculates the foreground-background average IoU as FB − IoU = 1
2
(IoUF + IoUB). As
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FSS-1000 only provide the foreground object labels, we calculate the FB-IoU on this dataset.

3.3.2 Implementation Details

All the experiments are conducted on Pytorch platform, using a server equit with Intel Xeon

Gold 6226R CPU and Nvidia Quadro RTX 6000 GPU. We use Stochastic Gradient Descent

(SGD) as the optimizer, which we apply the “ploy” learningl rate scheduler with the momentum

and weight decay of 0.9 and 10−5, respectively. The model was trained for 300 epochs with a

base learning rate of 0.0025 and batch size 16 on PASCAL 5i. For COCO-20i, models were

trained for 150 epochs with a base learning rate of 0.005 and batch size 8. FSS-1000 is trained

for 100 epochs using initial learning rate of 0.01 and batch size 32.

In the training stage, we randomly cropped the input images to 473×473 for PASCAL-5i and

COCO-20i, 224×224 for FSS-1000. The models are implemented with VGG-16 and ResNet-50

backbone pre-trained on ImageNet, whereas we load the pre-train parameter from the offical

Pytorch model zoo for fare comparison with other methods. The intermediate features from

the backbone are 1/4, 1/8, 1/16 of the original input size for multi-scale feature fusion. For

K-shot setting, the model takes averaged cross-image encoding feature {f i
cross}Ki=1, prototype

vector {V i
s }Ki=1 and similarity score matrix {Ai

sim}Ki=1 to concatenate a fusion feature for final

prediction. The shared channel dimension c of fcross and Vs is set to 256. We build our baseline

model on the source code of [99], where the Masked Average Pooling (MAP) operation is applied

to generate a single prototype for guiding query images.

3.3.3 Results Analysis

Recent efforts optimize the few-shot segmentation models from the aspects of prototype con-

struction [35], [94], [133], feature correlation learning [34], [126], [128], and query feature en-

hancement [36], [132]. Following the nature of few-shot learning, our method focuses on the

aspects of feature enhancement and feature correlation learning. We compare the proposed

method with other state-of-the-art methods on PASCAL-5i and COCO-20i under both 1-shot

and 5-shot settings.

Quantitative Results Table 3.1 and Table 3.2 compare the meta-learner performance without

filtering background through a base class segmentation network [39]. The tables provide the

mean IoU for each fold, representing the average IoU scores across all classes within each fold
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Table 3.1: The class mIoU results are reported for each Fold, with MeanIoU(%) representing

the average class mIoU and FB-IoU for averaged foreground-background IoU across four folds

for 1-shot and 5-shot segmentation on PASCAL-5i. BAM∗ presents the performance of the

meta-learner.

Backbone Method
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 MeanIoU(%) FB-IoU% Fold-0 Fold-1 Fold-2 Fold-3 MeanIoU(%) FB-IoU%

VGG-16

PANet [35] 42.3 58.0 51.1 41.2 48.1 - 51.8 64.60 59.8 46.5 55.7 -

FWB [131] 47.0 59.6 52.6 48.3 51.9 - 50.9 62.9 56.6 50.1 55.1 -

CRNet [128] - - - - 55.2 - - - - - 58.5 -

PFENet [36] 56.9 68.2 54.4 52.4 58.0 72.0 59.0 69.10 54.8 52.9 59.0 72.3

HSNet [126] 59.6 65.7 59.6 54.0 59.7 73.4 64.9 69.0 64.1 58.6 64.1 76.6

QCLNet [132] 61.3 66.8 58.4 55.8 60.6 - 66.1 68.5 63.2 58.8 64.2 -

BAM∗ [39] 59.9 67.5 64.9 55.7 62.0 - 64.0 71.5 69.4 63.6 67.1 -

Ours 60.6 69.5 65.1 56.3 62.9 74.5 65.6 72.8 69.7 64.7 68.2 78.2

ResNet-50

PANet [35] 44.0 57.5 50.8 44.0 49.1 - 55.3 67.2 61.3 53.2 59.3 -

CANet [122] 52.5 65.9 51.3 51.9 55.4 - 55.5 67.8 51.9 53.2 57.1 -

CRNet [128] - - - - 55.7 - - - - - 58.8 -

PPNet [94] 48.6 60.6 55.7 46.5 52.5 69.2 58.9 68.3 66.8 58.0 63.0 75.8

PFENet [36] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9

CyCTR [102] 67.2 71.1 57.6 59.0 63.7 - 71.0 75.0 58.5 65.0 67.4 -

HSNet [126] 64.3 70.7 60.3 60.5 64.0 76.7 70.3 73.2 67.4 67.1 69.5 80.6

QCLNet [132] 65.2 70.3 60.8 61.0 64.3 - 70.6 73.5 66.7 67.1 69.5 -

BAM∗ [39] 65.7 71.4 65.6 59.0 65.4 - 67.3 72.4 69.2 66.3 68.8 -

Ours 65.3 71.2 66.2 61.0 65.9 78.1 69.2 73.7 70.5 66.8 70.0 81.3

(5 classes in PASVAL and 20 classes in COCO). The term “Mean” refers to the average of the

mIoU scores across the four folds. Additionally, the tables include the both overall mIoU and

the FB-IoU for the entire dataset.

In Table 3.1, the results for PASCAL-5i demonstrate that our proposed method surpasses all

compared state-of-the-art techniques in terms of mIoU and FB-IoU when utilizing VGG-16

and ResNet-50 backbones for both 1-shot and 5-shot settings. Particularly noteworthy is our

method’s superiority in the most challenging 1-shot scenario, where it outperforms BAM by

0.9% and 0.5% with VGG-16 and ResNet-50 backbones, respectively. Furthermore, substantial

performance gains are observed when providing 5 support images, with our method achieving

a 1.1% (VGG-16) and 1.2% (ResNet-50) mIoU improvement over the SOTA. This underscores

the effectiveness and superiority of our proposed model.

Additionally, with the ResNet-50 backbone, although CyCTR obtains marginally higher scores

in fold-0 (0.8%) and fold-1 (1.3%), our model significantly outperforms it in challenging folds.

Notably, in fold-2, we observe a remarkable 12% improvement, and in fold-3, a 1.8% improve-
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Table 3.2: The class mIoU results are reported for each Fold, with MeanIoU(%) representing

the average class mIoU across four folds for 1-shot and 5-shot segmentation on COCO-20i.

BAM∗ presents the performance of the meta-learner.

Backbone Method
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 MeanIoU(%) Fold-0 Fold-1 Fold-2 Fold-3 MeanIoU(%)

VGG-16

PANet [35] - - - - 20.9 - - - - 29.7

FWB [131] 18.4 16.7 19.6 25.4 20.0 20.9 19.2 21.9 28.4 22.6

PRNet [133] 27.5 33.0 26.7 29.0 29.1 31.2 36.5 31.5 32.0 32.8

PFENet [36] 35.4 38.1 36.8 34.7 36.3 38.2 42.5 41.8 38.9 40.4

BAM∗ [39] 38.4 43.8 44.3 39.8 41.6 45.9 48.9 47.9 47.0 47.4

Ours 39.5 44.1 45.3 41.6 42.6 46.7 51.4 48.3 46.5 48.2

ResNet-50

ASGNet [124] - - - - 34.6 - - - - 42.5

RePRI [134] 32.0 38.7 32.7 33.1 34.1 39.3 45.4 39.7 41.8 41.6

PPNet [94] 28.1 30.8 29.5 27.7 29.0 39.0 40.8 37.1 37.3 38.5

PFENet [36] 36.5 38.6 34.5 33.8 35.8 36.5 43.3 37.8 38.4 39.0

HSNet [126] 36.3 43.1 38.7 38.7 39.2 43.3 51.3 48.2 45.0 46.9

CyCTR [102] 38.9 43.0 39.6 39.8 40.3 41.1 48.9 45.2 47.0 45.6

QCLNet [132] 39.8 45.7 42.5 41.2 42.3 46.4 53.0 52.1 48.6 50.0

BAM∗ [39] 41.9 45.6 43.9 41.2 43.1 47.0 51.9 49.5 47.8 49.0

Ours 42.1 48.3 43.7 42.8 44.2 47.8 55.2 50.8 50.3 51.0

ment. These folds encompass challenging classes like “potted plant” and “dining table,” often

accompanied by other classes, posing difficulties in distinction. Our method, which employs

patch-wise mutual correlation encoding to enhance the visual representation of the target class,

proves superior in addressing such complex scenarios compared to CyCTR, which solely per-

forms image-level feature propagation.

Similarly, Table 3.2 depicts the comparison of class mean IoU performance on COCO-20i.

With VGG-16 as the backbone, our approach attains state-of-the-art results of 42.6% mIoU

under the 1-shot setting and 48.2% under the 5-shot setting. Furthermore, we observe even

more precise segmentation performance with the utilization of the more powerful ResNet-50

backbone, achieving 44.2% and 51.0% in the 1-shot and 5-shot settings, respectively.

In comparison to the PASCAL-5i dataset, the COCO-20i dataset encompasses a broader array

of object categories and poses greater challenges, including variations in object scale and occlu-

sion levels. Previous prototype-based approaches have primarily relied on compressed prototype

vectors to match all query feature pixels, disregarding the spatial structures of support features

and contextual affinity. Consequently, they struggle to accurately align support and query

images, particularly for objects with significant scale disparities and occlusion. In contrast, our

proposed method integrates intra-image regional affinity and inter-image semantic relationships
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Table 3.3: FB-IoU results on FSS-1000

Methods Backbone 1-Shot 5-Shot

OSLSM [33] 70.3 73.0

GNet [135] 71.9 74.3

FSS1000 [48] VGG-16 73.5 80.1

PFENet [36] 81.5 82.7

HSNet [126] 82.3 85.8

Ours 83.8 86.2

PFENet [36] 84.6 86.1

HSNet [126] ResNet-50 85.5 87.8

Ours 86.6 88.2

by embedding contextual correlations that encapsulate many-to-many dependencies. Conse-

quently, our method consistently outperforms the compared methods on the COCO-20i dataset

in comparison to the PASCAL-5i dataset. In contrast to Pascal VOC and COCO datasets, FSS-

1000 encompasses a broader array of object categories, including those not present in previous

datasets such as diminutive objects, merchandise, and logos. Nevertheless, the dataset suffers

from a dearth of images per class, with each class consisting of merely ten images. This lim-

itation constrains the diversity of available support image combinations and exacerbates the

risk of overfitting during model training. Sine the dataset exclusively provides annotations

for foreground objects, In Table 3.3, we delineate the FB-IoU performance of models using

VGG-16 and ResNet-50 architectures under both 1-shot and 5-shot settings. Our approach

attains a pinnacle in performance among the contrasted methodologies, exhibiting a notable

improvement over the FSS-1000 [48] baseline by 10.3% using the VGG-16 backbone with a

single support image. Remarkably, despite the absence of a complex dense correlation decoder

akin to HSNet [126], our method outperforms HSNet by considerable margins of 1.5% and

1.1% when leveraging the VGG-16 and ResNet-50 backbone, respectively. This underscores

the compelling effectiveness and computational efficiency of our proposed approach.

Qualitative Results Figure 3.5 illustrates qualitative segmentation results for unseen classes

in the 1-shot setting. The first column displays support images with their corresponding masks

highlighted in blue, while the second and third columns depict the predictions and ground truth

of query images, respectively. Notably, our method produces precise pixel-wise predictions,

effectively covering nearly all target areas with just one support image. Particularly remarkable
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is the model’s performance in segmenting “boat,” where it even surpasses the ground truth by

labeling the rear part of the boat, not included in the ground truth label. This achievement

is attributed to the MCE module, which captures contextual information to identify adjacent

pixels sharing common semantics, thus underscoring the benefits of cross-image encoding within

our framework.

The visualization results presented in Figure 3.6 showcase the MCE output maps for the

PASCAL-5i dataset under a 1-shot setting. The first two columns exhibit instances of sup-

port images with ground truth annotations highlighted in green, followed by query images with

labeled masks depicted in red. Subsequent to these, correlation encoded feature maps and

prediction outcomes are displayed, illustrating the impact of MCE on segmentation perfor-

mance. Specifically, we examine the correlation maps generated in the MCE moduel, which

provide a succinct overview of the relationship between different image regions. These cor-

relation maps are represented as heatmaps for ease of visualization. Notably, the features of

target object regions such as ”bottle” and ”boat” are notably enhanced through cross-image

encoding. Consequently, regions exhibiting higher values are expected to be activated in the

final segmentation decoder, contributing to improved segmentation performance.

3.3.4 Ablation Study

We first discussed the choices of output maps in the masked cross-image encoding module and

then studied the effectiveness of each fused feature. All the tests were conducted under the

1-shot setting on PASCAL-5i using ResNet-50 backbone.

Selection of the MCE outputs. Due to the nature of the few-shot segmentation task,

which mainly focuses on segmenting the query image based on the support images, support

features are typically kept constant and used only as references to enhance the query feature.

Recent decoder-oriented transformer model [102] suggests that passing support images that

do not correspond to the query mask may negatively impact the self-alignment of the query

images. However, it is also worthwhile to enrich the support feature by referencing contextual

information from the query feature to reduce underlying inductive bias. To determine the

most effective feature in our encoder-oriented symmetric architecture, we separately output

the support feature f ′Ql and query feature f ′Ql in Figure 3.3, as well as their fusion feature

fcross, as the final cross-image encoding feature. Experimental results presented in Table 3.4
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Figure 3.5: Qualitative results on PASCAL-5i dataset in 1-shot setting

indicate that the fused feature outperforms the other two features, suggesting that symmetric

cross-image encoding exploits more mutual dependencies than its asymmetric counterparts and

leads to implicit feature guidance at the encoding stage.

Components Ablations. Table 3.5 presents an analysis of the effectiveness of each component

in the proposed network. The results indicate that all proposed modules have a positive impact

on performance improvement. Specifically, the absence of cross-image encoding, similarity

matrix, and multi-level strategy decreases the prediction mIoU by 0.82%, 0.32%, and 1.54%,

respectively, compared to the final aggregation performance. The proposed cross-support-query

encoding on multi-level features contributes a noticeable performance gain in enhancing few-

shot segmentation performance.

Differences between possible cross-attention schemes. Various cross-attention-based

variants exist for modeling pixel-level relations between support and query features extracted
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Figure 3.6: Visualization results of the MCE output maps on both PASCAL-5i under 1-shot

setting.

Table 3.4: The performance of optimal output map of the masked cross-image encoding module

f ′Q
l f ′S

l fcross mIoU%

✓ 65.24

✓ 63.13

✓ 65.93

from a CNN-based backbone at a high level. In this section, we consider typical forms of these

variants illustrated in Figure 3.7 and separately incorporate them into the baseline model.

The mIoU results under the 1-shot setting on PASCAL-5i are presented in Figure 3.7. These

variants can be categorized into three distinct classes as follows:

• 1) Unidirectional Query Encoding(UQE): This is the most straightforward approach,

which directly adapts vanilla self-attention and cross-attention in the Transformer [65]. In

this variant, only the features from the query branch are enhanced through cross-attention

from the support branch. Much like the approach described in [102], this method employs

self-attention within the support image and subsequently passes the resulting features to

the query branch for one-way feature propagation. This unidirectional cross-attention
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Table 3.5: The results of module performance

Cross Map Sim Mat. multi-level mIoU%

64.84

65.34

64.12

65.93

approach yields the lowest segmentation performance across most of the splits and the

overall mIoU. The limitation lies in the fact that this scheme only focuses on enhancing

the semantics of a single branch, leading to inferior segmentation performance

• 2) Efficient Bidirectional Encoding (EBE). An efficient variant is introduced in [38], where

cross-image attention encoding is performed only once to obtain a weighted feature cor-

relation matrix, which is used to enhance both query and support features. This ap-

proach effectively mitigates the computational and memory challenges associated with

the Transformer architecture. However, it is important to note that this variation lacks

self-attention, which could potentially result in the loss of vital intrinsic information.

The subpar performance observed on split3 can be attributed to the model’s overempha-

sis on inter-image correspondence while neglecting the contextual intra-image information

within both the support and query images themselves.

• 3) Masked Cross-image Encoding (MCE). Our masked cross-encoding encoding scheme, as

illustrated in Section 3.2.4, represents a more versatile approach to cross-attention models

for FSS. Unlike the aforementioned structures, MCE adopts a symmetric bidirectional

architecture that simultaneously considers both intra-image contextual information and

inter-image feature mutual correspondences, resulting in fewer inductive biases and a

more comprehensive representation of the query image.

From Figure 3.8, it is evident that the MCE architecture attains the highest scores in terms of

mean IoU compared to the other two typical cross-attention designs, and it also outperforms

them in the majority of splits. Regarding the EBE approach, which employs bidirectional cross-

attention mechanisms, it achieves notably higher scores than the one-way image-level feature

propagation scheme (UQE). These findings indicate the significant role of mutual correlations
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Figure 3.7: Comparison between conventional “fixed feature + decoder optimization” FSS

methods and the proposed learnable cross-image feature scheme. (a) Current FSS methods

independently learn object prototypes from support features and conduct coarse prototype

matching or fine “pixel-wise” feature guidance at the decoding stage. (b) The proposed joint

encoding scheme makes it possible to learn extra object context from other images before

decoding.

in enhancing feature representations within the FSS framework. Moreover, the inclusion of self-

attention operations proves to be indispensable in enriching intra-image target region features.

The visualized output masks of the potential cross-attention schemes, as depicted in Figure 3.9,

illustrate that the Multi-Context Encoding (MCE) approach can better differentiate irrelevant

regions compared to UQE and EBE. Particularly noteworthy is the observation in the last row,

where the majority of the “people” area is included in both UQE and EBE, whereas MCE

effectively excludes the main body of the rider.

From the in-depth camparsion of different cross-image schemes, it suggests how to design a

cross-attention mechanism under the setting of few-shot segmentation from the following as-

pects.
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Figure 3.8: Performance of different cross-attention schemes on 4 sub-folds of PASCAL-5i

1) Mutual consistency is a principle guiding the model to maintain symmetry in considering

relationships between support and query images. It asserts that the relationship observed from

one perspective should align with the relationship observed from the opposite perspective. For

example, when comparing a picture of a cat (query image) to pictures of dogs (support set),

the similarity in shape between the cat and the dog should be consistent regardless of which

image is considered the reference. This principle ensures fairness in evaluating relationships

between query and support images. To implement mutual consistency, the model employs a

symmetrical architecture, ensuring that relationships are calculated in a balanced manner from

both perspectives. This symmetrical design allows the model to treat both query and support

images equally when assessing their relationships.

2) Taking into account local features is crucial for precise dense prediction tasks, such as

semantic segmentation. While cross-image relation learning has broad applicability, semantic

segmentation demands pixel-level feature affinity. Real-world images present diverse challenges,

including objects appearing in different poses, scales, and with varying appearances. Global

feature propagation, akin to the UQE scheme, may overlook subtle local semantic cues and in-

troduce dependency inconsistencies. This occurs because relation dependencies are established

across different levels of feature representations, potentially impairing the model’s capacity to

accurately classify objects.
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Figure 3.9: Qualitive comparison of the output masks of three alternative cross-attention de-

signs. From the left colunm to the right are support image, Unidirectional Query Encod-

ing(UQE), Efficient Bidirectional Encoding (EBE), Masked Cross-image Encoding (MCE) and

ground Truth.

3.4 Chapter Summary

This chapter presents a novel approach to few-shot semantic segmentation by incorporating

masked cross-image encoding, mask average pooling, and similarity scores to perform multi-

level guidance for FSS. The approach is designed to mine support-query mutual dependencies

and introduce a novel approach for jointly encoding shared semantic information and an intu-

itive scheme for calculating comprehensive pixel-wise relations. The symmetric encoder, utiliz-

ing masked cross-image attention, effectively constrains attention within target object regions

to enhance support-query feature interaction, which enriches the semantic context of query fea-

tures and provides implicit guidance for segmentation. Extensive experiments on benchmark

datasets demonstrate the effectiveness of our approach, which outperforms compared methods.

58



Chapter 4

Hierarchical Multi-Prototype

Discrimination: Boosting

Support-Query Matching for Few-Shot

Segmentation

4.1 Introduction

Chapter 3 introduces an efficient way to exploit support and query images from the aspect

of feature encoding enhancement. While the proposed MCE module exhibits a plug-and-play

advanced encoding ability to improve the support-query FSS framework, the post-encoding

process plays a more vital role in the performance boost. This chapter discusses a potential

scheme to address FSS from the aspect of feature matching. This is motivated by the fact

that mainstream FSS methods adopt a support-query matching paradigm that activates target

regions of the query image according to their similarity with a single support class prototype.

However, this prototype vector is inclined to overfit the support images, leading to potential

under-matching in latent query object regions and incorrect mismatches with base class features

in the query image.

FSS is an extension of few-shot learning (FSL) [136]–[139], specifically designed as a dense

prediction task. In contrast to semi-supervised methods, which initialize a base model using
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a small set of labeled data and then refine the base model with large amounts of unlabeled

data, FSS addresses a more challenging setting that only a few labeled examples are provided,

without any additional unlabeled data. It implies that semi-supervised strategies, which require

considerable unlabeled data to provide pseudo-label [140], contrastive pairs [141] or synthetic

samples [142], are not applicable when addressing FSS task. To rapidly adapt to unseen classes,

mainstream FSS approaches [35], [124], [128], [143] basically adopt the prototype matching

paradigm [28], [29], [81] that aims to learn novel class prototypes from labeled support images

and then segments query(test) image by referring to prototype matching scores. Following this

paradigm, optimization works primarily revolve around two major aspects, namely, learning

class-agnostic visual representations of the target class [94], [124], [144], [145], and devising

effective semantic matching mechanisms [126], [146], [147].

However, scarce support images pose a formidable challenge in constructing a versatile pro-

totype to encapsulate all the visual properties of a novel class. This challenge arises from

two primary facets: firstly, the inherent variability observed among support-query images can

lead to an issue of under-matching. This implies that the prototype matching process fails to

activate certain query visual content that is rarely presented within the support images. As

illustrated in Figure 4.1, the features of “nose” and “mouth” constitute a relatively small frac-

tion of the “dog” support image. As a result, the prototype incorporates limited information

concerning these regions, inevitably missing the “mouth” region in the query image. Secondly,

the “dog” shares visually similar attributes with the “cat’’ class, which can potentially lead to

false positive matches when solely relying on foreground prototypes for feature alignment.

To alleviate the under-matching problem, the key lies in minimizing the distance between sup-

port prototypes and the missed query features within a latent space. Many prevalent methods

extract foreground prototypes from support images [124], [144] or the entire training set [37],

hoping that these prototypes can capture a broader range of novel class properties, thus increas-

ing the likelihood of matching more target pixels within the query image. However, we argue

that, in addition to creating optimal prototypes, another viable strategy to increase matching

confidence is to bring the potential novel class features of the query image closer to the support

prototypes. To end this, we introduce a collaborative learning approach between query and

support features to establish a unified representation for novel classes and offer implicit feature

guidance. This is achieved through the introduction of Masked Cross-Image Encoding (MCE),

as proposed in Chapter 3, which integrates the semantic information of the support novel class

60



B
ackbone

“dog”
prototype

Support image

Query image

Support mask

Decoder

Prediction

  Valid Matching  Valid Matching
  False Matching  False Matching
Under MatchingUnder Matching

Prototyping

Query features

Figure 4.1: Conventional FSS methods learn a single novel class prototype (e.g., “dog ”) from

support features independently, which results in under-matching problems when the support

image lacks a similar part to that in the query image and false matching problems when

background features resemble the “dog”.

into the query feature. The MCE module adopts a symmetric structure inspired by the cross-

attention mechanism in Transformer architectures [65], [66] to establish semantic relationships

between objects across support and query images. By leveraging this module, the target query

feature is facilitated in becoming more akin to the support features, thereby obtaining a higher

similarity score when matched with the support prototype.

In contrast to learning novel class prototypes with limited images, it is easier to capture com-

prehensive base class visual properties as abundant labeled base images are available in the

FSS task. Additionally, it is important to note that base class objects are treated as back-

ground when segmenting novel class images. Inspired by these observations, we reevaluate the

prototype learning and matching process in existing FSS approaches from a multi-prototype

perspective. Unlike employing multiple prototypes as a pixel classifier for label assignment

in conventional segmentation [148], our primary aim is to effectively suppress irrelevant ob-

61



ject regions with the assistance of base class prototypes. Specifically, we introduce a ”visual

words” dictionary lookup paradigm, where every spatial location of the query image feature is

compared to both the base class prototypes and the novel class prototype. In practice, we de-

vise a Semantic Multi-prototype Matching (SMM) module that combines base class prototypes

with the current novel class prototype to identify target regions in the query image according

to matching scores. Query features exhibit greater similarity to base prototypes are catego-

rized as background, and their matching scores are set to 0. The feature-prototype matching

is performed on multi-scale features to obtain corresponding guide maps for the subsequent

segmentation guidance. This innovative method effectively mitigates the class-matching am-

biguity typically encountered in conventional FSS methods that primarily rely on foreground

prototype matching.

We notice that dense feature matching often struggles to identify continuous semantic regions

within target objects, we propose to exploit the prior knowledge from the backbone to activate

salient regions that might be suppressed in the prototype matching stage. Concretely, we de-

sign an adaptive feature activation map called Target-Aware Class Activation Map (TWCAM),

derived from the Class Activation Map (CAM) that is commonly used in weakly supervised se-

mantic segmentation to approximate the spatial location and broad semantics of target objects.

To enhance the effectiveness of CAM in the context of few-shot segmentation, we incorporate

a learnable lightweight network into the FSS meta-task. This network learns how to predict a

weight matrix to refine CAM, resulting in a more accurate and precise representation. Lever-

aging weighted CAM in our model significantly improves the identification and delineation of

target segments.

In this model, we incorporate the MCE module introduced in Section 3 to improve the correla-

tion between query and support features. It works as a complementary component with other

modules to facilitate the multi-prototype matching in the following ways:

• Enhanced MCE Functionality: In this work, MCE serves not only to enrich the represen-

tation of query features but also helps bring target object features closer to the support

prototype, mitigating the issue of under-matching.

• Multi-Prototype Alignment Paradigm: We introduce a new multi-prototype alignment

approach to tackle the remaining mismatching problem observed in the previous work,

which was caused by a single foreground matching approach. By comparing query features
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with multiple prototypes derived from both novel and base classes, we effectively suppress

regions that show high confidence in base class prototypes.

• Feature Activation Map, TCAM: Instead of relying solely on prototype matching, which

neglects spatial relationships within semantics, we introduce a novel feature activation

map called TCAM. TCAM complementarily activates salient target regions to enhance

segmentation performance.

• Hierarchical Feature Alignment: To address objects of diverse sizes, ranging from intricate

details to prominent large elements, we advocate for multi-prototype feature alignment

across multiple scales. Through the fusion of guide maps from different scales, the model

can leverage rich semantic cues to enhance its capacity to differentiate between objects

with similar appearances based on their contextual surroundings.

Leveraging the proposed modules, we introduce a Hierarchical Multi-prototype Matching Net-

work (HMMNet). This network establishes a hierarchical feature guidance scheme based on

multi-prototype matching and enhanced features. The multiple prototypes serve as generalized

visual representations for all base classes across the entire dataset, aimed at amplifying mutual

discrimination among novel and base class regions, thereby mitigating mismatching phenomena

in FSS. To address under-matching issues, the network establishes symmetric patch-wise corre-

spondences between the support target region and query feature using the MCE module. This

mechanism effectively enhances the query feature, bringing it closer to the support prototype

and resulting in more precise matching with increased confidence. Furthermore, to generate

semantically consistent masks, we incorporate a novel module that predicts target-aware class

activation maps. This module effectively activates target segments that might otherwise be er-

roneously eliminated due to dense matching guidance. Extensive experiments conducted on the

PASCAL 5i and COCO 20i benchmarks illustrate that our method outperforms state-of-the-art

techniques, offering a fresh perspective on handling prototype-based FSS methods.

4.2 Methodology

The framework of the proposed encoder-decoder-based model is depicted in Figure 4.2. The

encoder comprises a convolutional neural network pretrained on ImageNet and the proposed

MCE module in Chapter 3. This integrated feature encoder is tasked with extracting a diverse
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Figure 4.2: The proposed hierarchical multi-prototype matching network (HMMNet). The

backbone network, along with the proposed MCE, extracts enriched multi-scale support and

query features. These features are then sent to SMM to produce multi-scale matching score

maps. Finally, in the decoder, the query features pre-activated by TCAM are gradually guided

at corresponding resolution using matching score maps from SMM.

array of enriched intermediate feature maps with varying spatial resolutions from both support

and query images. Subsequently, these features are inputted into the SMM to conduct multi-

prototype matching and generate multi-scale matching guide maps. These maps guide the

pre-activated query feature in the decoder in a coarse-to-fine manner.

In the following, we provide an overview of the model’s data flow, followed by a detailed

explanation, using single-scale features as an example. This includes an exploration of feature

enhancement in MCE, the construction of multiple prototypes using the base dataset, and how

object regions are activated by the proposed Target-Aware Class Activation Map (TCAM).

4.2.1 Network Data Flow

This research presents a novel framework for few-shot semantic segmentation, where the support-

query matching problem is tackled through a visual properties prototype look-up approach. The

proposed semantics alignment scheme architecture consists of several modules, as illustrated in

Figure 4.3. The backbone network, which is pre-trained on ImageNet, is used to extract a set

of intermediate feature maps from both the support and query images. These feature maps,

referred to as {(F s
l , F

q
l )}

3
l=1, are fed into the Masked Cross-image Encoding (MCE) module,
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where a masked cross-attention operation is employed to captures cross-image visual informa-

tion. The MCE builds the support-query mutual correspondence for implicit guidance and

reduces the inter-image feature distance between support and query features in a latent space.

lThe enhanced query feature F̂Q is then fed into the Semantic Multi-prototype Matching (SMM)

module, where each location of the query feature is compared with the support novel class

prototype and base class prototypes. Those features yielding high confidence with base class

prototypes are deemed as background, thus the similarity scores of the corresponding features

are set to 0. After the matching process, the SMM module outputs multi-scale class similarity

maps {G}l3=1, which are used to guide the pyramid segmentation process for the query image.

Finally, the hierarchical decoder leverages the class similarity maps {G}l3=1 and TCAM to

activate the query feature F̂Q
l at corresponding resolutions in a coarse-to-fine manner.

4.2.2 Cross Feature Enhancement and Novel Prototype Acquisition

In Chapter 3, cross-attention has demonstrated its efficacy in enhancing visual representations

of relevant image parts by merging information from different instances. In this work, we
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Figure 4.3: Overall architecture of the proposed Hierarchical Multi-prototype Matching Net-

work (HMMNet), which incorporates three novel components of Masked cross-image encoding

module(MCE), Target-aware Class Activation Map (TCAM), and Semantic Multi-prototype

Matching (SMM). The detailed data flow is elaborated in Section 4.2.



mainly focus on alleviating the problem of prototype overfitting to support images and false

matching to the base classes. We argue that the MCE bridges the intra-class semantic gap and

the base prototype construction deals with the inter-class discrimination problem to achieve

comprehensive feature matching.

Figure 4.4: The modified Masked Cross-Image Encoding module. It outputs the enhanced

query feature F̂Q for subsequent segmentation and the the enhanced support feature F̂ S tol l

generate the novel class prototype P0

Expanding on the Masked Cross-Image Encoding (MCE), the cross-image feature enhancement

module should not only allow the model to extract shared knowledge between support images

but also draw the query features of target objects closer to the prototype of the support novel

class. To end this, we modify the MCE as it shown in Figure 4.4. Similarly, lth scale feature

maps F S
l ,F

Q
l

( )
are flattened to sequences of HlWl patches, and are tokenized to (Sq,Sk,Sv)

and (Qq,Qk,Qv). In the support branch, masked self-attention is performed between support

tokens (Sq,Sk). Let AS ∈ RHW×HW denote the matrix of masked self-attention scores obtained

via:

AS = (Sq +M)Sk
T. (4.1)

To obtain corss-image relation map RS, it conducts cross-attention with the query token Qv
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to enhance the feature representation of the target object. In the query branch, cross-attention

encodes the local semantic information of the support objects into the query feature in a similar

way:

AQ = QqQ
T
k , (4.2)

RQ = Softmax

(
AQ√
d

)
(Sv +M) , (4.3)

where the support mask is applied on the support token to remove the background.

The obtained cross-image relation maps RQ and RS are then fed to the MLP block to further

encode the cross-image common information into local regions as: F̂ S
l = MLP

(
Norm

(
RS ⊙ F S

l

))
F̂Q

l = MLP
(
Norm

(
RQ ⊙ FQ

l ⊙RS

))
,

(4.4)

where Norm represents Layernorm, ⊙ denotes the element-wise multiplication and the MLP

block contains of two transformation layers with GELU non-linearity. Different from the pro-

posed MCE in Chapter 3, the modified module outputs the enhanced query feature F̂Q
l by

merging the cross-image relation map RQ and RS to its input feature FQ
l for subsequent seg-

mentation. The the enhanced support feature F̂ S
l is used to generate the novel class prototype

P0 by mask average pooling as:

P0 =

∑
p,q F̂

S
p,q ·Mp,q∑

p,q Mp,q

(4.5)

where M represents the binary mask, where 1 indicates regions of interest and 0 indicates

regions to be ignored, p and q denote the spatial location of the output feature map.

4.2.3 Multiple Semantic Prototypes Matching

Motivation Currently, most of the FSS methods typically construct a single novel class pro-

totype vector [35], [123], [124] using masked average pooling in the support branch to guide a

query feature. Improved versions [124], [144], [149] have attempted to use cluster-based algo-

rithms to create multiple prototype vectors that can capture diverse and fine-grained support

object features. However, many of these methods tend to treat the few-shot segmentation

problem as a densely 1-way classification task, where the focus is primarily on constructing

foreground feature prototypes, and fail to fully consider the relationships between base classes
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and the novel class. Despite AGNN [150] constructing a graph network to examine semantic

similarities between two data instances, effectively separating objects with high similarity to the

target class visual representation remains challenging without prior class semantic knowledge.

The multiple semantic prototypes learning. The idea of utilizing multiple prototypes is

examined in APANet [151] to indirectly promote foreground prototype matching. The APANet

involves clustering background prototypes from query images to create negative feature-prototype

pairs, thereby encouraging query features to exhibit higher confidence towards the foreground

prototype. The strategy is then discarded during meta-testing because those background pro-

totypes are unavailable as the query mask is not provided. Conversely, the rationale behind our

multi-prototype scheme centers on the suppression of irrelevant class object regions that exhibit

greater similarity to base prototypes. Our multi-prototype generation process is designed to ob-

tain discriminative base class prototypes that can be directly utilized to filter background areas

during meta-testing. These prototypes offer a broader and more diverse set of class information,

thereby enhancing the network’s ability to conduct accurate support-query matching.

It is composed of two primary steps: prototype generation and relation loss calculation. Given

the base class images and their corresponding masks, the prototype generation step extracts

feature representations through a pre-trained network and subsequently utilizes the masked

average pooling operation to compute the vectorial representation P c
i for the c-th class in the

i-th image as:

Pc
i =

∑HW
1 Fx,y

i · 1 [Mx,y
i = c]∑HW

1 1 [Mx,y
i = c]

, (4.6)

where Fx,y
i denotes the learned features for the pixel at (x, y) in the i-th image and Mx,y

i

indicates its segmentation mask of class c. A generalized prototype P c of base class c is then

obtained by computing the average vectorial representations as:P c = 1
Nc

∑i=1
Nc

P c
i , where Nc is

the number of images containing class object c. The multiple class prototypes of both novel

class and base class are derived using masked average pooling on the support set and base class

training set. These semantic descriptors are then used to perform explicit multi-class matching

to densely assign query features to the most likely class.

To enhance the discriminability of the vectorial representations of all base classes, a contrastive

learning strategy is employed by utilizing the derived prototypes. This process involves comput-

ing the average cosine similarity among all possible pairs of two classes. The average similarity
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loss Lp is formulated as:

Lp =

∑n
cs

∑n
ct
Sim (P cs , P ct)1 [cs ̸= ct]∑n
cs

∑n
ct
1 [cs ̸= ct]

(4.7)

Sim (P cs , P ct) =
P cs · P ct

∥P cs∥ · ∥P ct∥
(4.8)

where cs and ct denote the prototype index. In this process, similarity calculations are carried

out for all possible combinations of prototype pairs, with the pairs being switched between each

other. The resulting prototype similarity values are then averaged to compute the relation loss,

denoted as Lp. The primary objective of Lp is to facilitate prototype separation during training.

It achieves this by encouraging the network to minimize the similarity between different classes.

By doing so, Lp contributes to enhancing the network’s performance and prepares it for more

accurate matching.

Multi-prototype matching. After obtaining the base class prototypes {P 1, P 2, ..., P n}, we

freeze the backbone for the following meta-learning stage. In order to precisely activate the

query features, we first extract the novel class prototype P 0 by performing masked average

pooling on the support image feature. Then, we calculate the cosine similarity between all

prototypes Pa = {P 0, P 1, P 2, ..., P n} and the query feature F̂Q
l at each spatial location (x, y)

to get the affinity matrix Axy
i ∈ RHlWl×N as:

Axy
i = cos(F̂Q

l (x, y), Pa) (4.9)

Using the affinity matrix, we determine the activation value for each spatial location by referring

to the index with the highest similarity score. The process of generating the prototype similarity

map G can be formulated as:

idx = argmax(Axy
i ), (4.10)

Gxy =

 Axy
i idx = 0

0 otherwise
, (4.11)

4.2.4 Target-aware Class Activation Map

The class activation map (CAM) serves as a valuable tool in semantic segmentation tasks by

offering insights into the regions of the input image that play a significant role in identifying

specific classes. Given that the backbone is pretrained on ImageNet and target class objects
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are enhanced in the MCE, generating a CAM from the encoder’s output embedding is likely to

localize regions in the input image relevant to the target class.

Given this insight, we opt for the Class Activation Map (CAM) as the primary attention map

generator to pinpoint prominent object regions in the query image. To be precise, we utilize the

class-specific feature maps generated by the final convolutional layer of the encoder to produce

attention maps, a process that demands minimal effort owing to the utilization of pre-trained

backbone network knowledge.

However, due to the inherent nature of the Few-Shot Segmentation task, attention maps in

different training iterations tend to emphasize various regions of the target objects. To address

this variability, we propose an online attention-generation strategy that adaptively predicts a

weight score map to refine the corresponding class activation map.
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Figure 4.5: Target-aware class activation map (TCAM) learning. The weight prediction network

ϕ() takes the query image feature extracted from the encoder as input and learns to predict a

weight map that can be applied to adaptively enhance or suppress CAM activation values.

In pursuit of this approach, we introduce a lightweight CNN network denoted as Φ() during

the meta-training stage as depicted in Figure 4.5. The purpose of this network is to predict

an adaptive CAM weight map, denoted as Wadp, which can selectively activate the target

object pixel values within CAM. Specifically, the query feature FQ
l , extracted from the model

backbone, is fed into the lightweight network Φ() to derive the object target weight map.

Consequently, the CAM is adaptively adjusted as follows:

Mtcam = Norm(Mcam · Φ(fQ)) (4.12)
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where · represents element-wise multiplication, Norm donates Min-max normalization.

Although the weight prediction network operates as an auxiliary branch, it does not impose

an additional learning objective. Instead, it learns to extract instance-specific information that

aids in localizing target object regions conditioned on the segmentation loss function.

4.2.5 Hierarchical Guidance

The hierarchical pyramid strategy proves valuable in image segmentation tasks, especially when

confronted with complex scenes and objects of varying scales. Images encompass objects ranging

from intricate details to prominent elements, necessitating a progressive refinement process. The

hierarchical structure facilitates this refinement, with lower levels capturing coarse information

about larger objects. As the resolution increases, the model can then concentrate on finer

details and delineate boundaries between objects. Consequently, we advocate for a hierarchical

guidance structure that aligns prototypes and features across different scales to refine pixel-

wise feature alignment. In other words, pixels that generate high similarity scores to the

foreground prototype across multiple scales of features are more likely to be activated in the

final segmentation mask.

Initially, the multi-scale intermediate feature maps {(F s
l , F

q
l )}

3
l=1 from l stages are collected

from the encoder. Following this, multiple prototype similarity maps are calculated using

multi-prototype matching at corresponding resolutions within the SMM module. Subsequently,

the HMMNet incorporates a pyramid decoder to predict the final segmentation mask with

the hierachically guided feautres. Concretely, the multi-scale activation map {Mtcam}3l=1 and

the prototype similarity maps G3
l=1 are concatenated with the query features F̂Q

l to provide

guide information at a specific scale l. These combined features are subsequently aggregated

by a 1 × 1 convolutional operation, resulting in the generation of three fused query features

{F̃Q
l }3l=1 across multiple scales. Finally, we incorporate the information of all scale features for

hierarchical segmentation as:

F̃′Q = I(F1×1(I
(
F̃Q
3

)
⊕ F̃Q

2 ))⊕ F̃Q
1 (4.13)

where I(·) indicates the interpolation operation, F1×1 represents the convolution with kernel

size 1× 1, and ⊕ denotes the concatenation along the channel dimension.
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4.2.6 Loss Function

We adopt the cross-entropy loss as our main segmentation loss function denoted as Lseg. Similar

to Eq.4.7, one of the optimization objectives is to ensure that the novel class prototype remains

distinct from all base prototypes. This is accomplished by minimizing the average similarity

loss Lp =
∑n

c=1 Sim(P 0,P c)
n

. The total loss L is a balanced sum of Lseg and Lp as:

L = Lseg + µLp, (4.14)

where the weight coefficient µ is assigned a value of 0.3.

4.3 Experiments

4.3.1 Datasets

We evaluate the proposed method on the three most widely adopted few-show semantic seg-

mentation datasets: PASCAL-5i [129] and COCO-20i [45]. The PASCAL-5i is an extension of

the PASCAL VOC 2012 dataset [44] and the SDS [130], which has been partitioned into four

subsets. It contains 20 object classes, from which five classes are sampled and designated as

the test label-set Dtest = 4i+1, …, 4i+5, where i denotes the fold number. The remaining 15

classes are then used to form the training label-set Dtrain.To facilitate evaluation on a more

challenging dataset than PASCAL-5i, the COCO-20i dataset has been created. It contains 80

object classes and features ground-truth segmentation masks with lower quality compared to

those in PASCAL VOC. Specifically, 60 classes are utilized for training, while the remaining

20 classes are designated as the test classes. In FSS-1000 [48], the 1,000 object classes are sep-

arated into distinct training, validation, and testing sets. The split uses a balanced proportion

of 520 classes for training, 240 classes for validation, and another 240 classes for testing.

4.3.2 Eavluation Metrics

We adopt mean intersection over union (mIoU) as the evaluation metrics of our experiments.

IoU for class c is defined as IoUc = TPc

TPc+FPc+FNc
, where TP, FP and FN are the number of

true positives, false positives and false negatives of the predicted pixels. FB-IoU calculates the

foreground-background average IoU as FB − IoU = 1
2
(IoUF + IoUB).
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Table 4.1: The class mIoU results are reported for each Fold, with MeanIoU(%) representing

the average class mIoU and FB-IoU for averaged foreground-background IoU across four folds

for 1-shot and 5-shot segmentation on PASCAL-5i. BAM∗ presents the performance of the

meta-learner.

Backbone Method
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 MeanIoU(%) FB-IoU(%) Fold-0 Fold-1 Fold-2 Fold-3 MeanIoU(%) FB-IoU(%)

VGG16

ASR(CVPR’21)[152] 50.2 66.4 54.3 51.8 55.7 72.9 53.7 68.5 55.0 54.8 58.0 74.1

PFENet(TPAMI’20)[36] 56.9 68.2 54.4 52.4 58.0 72.0 59.0 69.1 54.8 52.9 59.0 72.3

HSNet(CVPR’21)[126] 59.6 65.7 59.6 54.0 59.7 73.4 64.9 69.0 64.1 58.6 64.1 76.6

BAM(CVPR’22)[39] 63.2 70.8 66.1 57.5 64.7 77.3 67.4 73.1 70.6 64.0 68.8 81.1

MCE(ICME’23)[153] 60.6 69.50 65.1 56.3 62.9 74.5 65.6 72.8 69.7 64.7 68.2 78.2

HMMNet(Ours) 64.5 70.8 67.4 56.1 64.7 76.8 66.8 72.8 70.6 64.2 68.6 80.7

ResNet-50

PFENet(TPAMI’20)[36] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9

CyCTR(NIPS’21)[102] 67.2 71.1 57.6 59.0 63.7 - 71.0 75.0 58.5 65.0 67.4 -

MMNet(ICCV’21)[154] 62.7 70.2 57.3 57.0 61.8 - 62.2 71.5 57.5 62.4 63.4 -

HSNet(ICCV’21)[126] 64.3 70.7 60.3 60.5 64.0 76.7 70.3 73.2 67.4 67.1 69.5 80.6

NTRENet(CVPR’22)[155] 65.4 72.3 59.4 59.8 64.2 77.0 66.2 72.8 61.7 62.2 65.7 78.4

BAM(CVPR’22)[39] 69.0 73.6 67.6 61.1 67.8 - 70.6 75.0 70.8 67.2 70.9 -

ABCNet(CVPR’23) [156] 68.8 73.4 62.3 59.5 66.0 76.0 71.7 74.2 65.4 67.0 69.6 80.0

FECANet(TMM’23) [38] 69.2 72.3 62.4 65.7 67.4 78.7 72.9 74.0 65.2 67.8 70.0 80.7

MCE(ICME’23) [153] 65.3 71.2 66.2 61.0 65.9 78.1 69.2 73.7 70.5 66.8 70.0 81.3

HMMNet(Ours) 68.8 74.9 67.0 61.7 68.1 80.2 71.8 75.6 71.3 67.4 71.5 81.7

ResNet-101

PFENet(TPAMI’20) [36] 60.5 69.4 54.4 55.9 60.1 72.9 62.8 70.4 54.9 57.6 61.4 73.5

CyCTR(NIPS’22) [102] 67.2 71.1 57.6 59.0 63.7 - 71.0 75.0 58.5 65.0 67.4 -

NTRENet(CVPR’22) [155] 65.5 71.8 59.1 58.3 63.7 75.3 67.9 73.2 60.1 66.8 67.0 78.2

SCCAN(ICCV’23) [157] 70.9 73.9 66.8 61.7 68.3 78.5 73.1 76.4 70.3 66.1 71.5 82.1

ABCNet(CVPR’23) [156] 65.3 72.9 65.0 59.3 65.6 78.5 71.4 75.0 68.2 63.1 69.4 80.8

HMMNet(Ours) 70.1 75.3 67.5 62.0 68.7 81.4 72.6 75.9 71.8 67.8 72.0 82.6

4.3.3 Implementation Details

Multiple semantic prototypes learning: The pre-trained (on ImageNet) VGG-16 and ResNet50

are used as backbone networks for feature extraction. The prototypes used in our method

consist of the online novel class prototype and offline base class prototypes. The former is

obtained from the support images using masked average pooling during the meta-training stage

and the latter is generated on images containing the base classes in the prior prototype learning

stage. To ensure the consistency of features used for both novel and base prototype construction,

the backbone parameters are kept frozen after the base prototype learning stage. The number

of base prototypes is 15 on PASCAL-5i, 60 on COCO-20i and 540 on FSS-1000, based on the

statistics of categories in these datasets.

Baseline. We adopt a modified version of PFENet [36] as our baseline method, wherein the fea-

ture enrichment module (FEM) is substituted with atrous spatial pyramid pooling (ASPP) [21]

to expedite training

K-shot setting Given a support set S = {(Is,M s)}k1 and a query image Q = (Iq,M q), we

take the average vectorial representation of K support image as the novel class prototype P0,
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Table 4.2: The class mIoU results are reported for each Fold, with MeanIoU(%) representing

the average class mIoU across four folds for 1-shot and 5-shot segmentation on COCO-20i.

BAM∗ presents the performance of the meta-learner.

Backbone Method
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 MeanIoU(%) Fold-0 Fold-1 Fold-2 Fold-3 MeanIoU(%)

ResNet-50

PFENet(TPAMI’20)[36] 36.5 38.6 34.5 33.8 35.8 36.5 43.3 37.8 38.4 39.0

HSNet(ICCV’21)[126] 36.3 43.1 38.7 38.7 39.2 43.3 51.3 48.2 45.0 46.9

CyCTR(NeurIPS’22)[102] 38.9 43.0 39.6 39.8 40.3 41.1 48.9 45.2 47.0 45.6

FECANet(TMM’23) [38] 38.5 44.6 42.6 40.7 41.6 44.6 51.5 48.4 45.8 47.6

BAM(CVPR’22) [39] 43.4 50.6 47.5 43.4 46.2 49.3 54.2 51.6 49.6 51.2

NTRENet(CVPR’22) [155] 36.8 42.6 39.9 37.9 39.3 38.2 44.1 40.4 38.4 40.3

ABCNet(CVPR’23) [156] 42.3 46.2 46.0 42.0 44.1 45.5 51.7 52.6 46.4 49.1

MCE(ICME23) [153] 42.1 48.3 43.7 42.8 44.2 47.8 55.2 50.8 50.3 51.0

HMMNet(Ours) 41.2 52.7 48.5 47.4 47.5 49.8 57.3 53.6 50.1 52.7

ResNet-101

PFENet(TPAMI’20) [36] 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4

CWT(ICCV’21) [158] 30.3 36.6 30.5 32.2 32.4 38.5 46.7 39.4 43.2 42.0

NTRENet(CVPR’22) [155] 38.3 40.4 39.5 38.1 39.1 42.3 44.4 44.2 41.7 43.2

DCAMA(ECCV’22) [104] 41.5 46.2 45.2 41.3 43.5 48.0 58.0 54.3 47.1 51.9

SCCAN(ICCV’23) [157] 42.6 51.4 50.0 48.8 48.2 49.4 61.7 61.9 55.0 57.0

HMMNet(Ours) 43.3 53.4 49.5 49.6 49.0 50.3 61.2 58.1 56.0 56.4

similar to the base class generation process introduced in Section 4.2. To make full use of

the K support images, support features {F S
l }k1 ∈ RHlWl×C from the backbone are fused into

{F ′S
l }k1 ∈ RHlWl×KC through concatenation operation along channel dimension.

All the experiments are conducted on Pytorch platform, using a server equit with Intel Xeon

Gold 6226R CPU and Nvidia Quadro RTX 6000 GPU. We use Stochastic Gradient Descent

(SGD) as the optimizer, which we apply the “ploy” learningl rate scheduler with the momentum

and weight decay of 0.9 and 10−5, respectively. The model was trained for 300 epochs with a

base learning rate of 0.0025 and batch size 16 on PASCAL 5i. For COCO-20i, models were

trained for 150 epochs with a base learning rate of 0.005 and batch size 8. FSS-1000 is trained

for 100 epochs using initial learning rate of 0.01 and batch size 32.

We utilize Stochastic Gradient Descent (SGD) as the optimizer with a “ploy” learning rate

scheduler. The momentum and weight decay are set to 0.9 and 10−5. Our model trained on

PASCAL-5i for 300 epochs with a learning rate 0.0025 and batch size 16, while these parameters

on COCO-20i experiment are 50, 8 and 0.05 respectively. We train the model on FSS-1000 for

150 epochs with base learing rate of 0.001 and batch size 32. In the training stage, we follow [36]

to randomly crop or zero pad 473×473 patches from the processed images as training samples

for PASCAL-5i and COCO-20i, 224×224 for FSS-1000. The experiments are conducted Pytorch
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Table 4.3: FB-IoU results on FSS-1000

Methods Backbone 1-Shot 5-Shot

OSLSM [33] 70.3 73.0

GNet [135] 71.9 74.3

FSS1000 [48] 73.5 80.1

PFENet [36] VGG-16 81.5 82.7

HSNet [126] 82.3 85.8

MCE [153] 83.8 86.2

HMMNet(Ours) 86.5 88.3

PFENet [36] 84.6 86.1

HSNet [126] ResNet-50 85.5 87.8

MCE [153] 86.6 88.2

HMMNet(Ours) 89.2 89.7

platform, using a server with Intel Xeon Gold 6226R CPU and Nvidia Quadro RTX 6000 GPU.

4.3.4 Comparison Experiments

We compare the proposed method with other state-of-the-art methods using different backbones

including VGG16 [159] and ResNet50 [160]on PASCAL-5i and COCO-20i in both 1-shot and

5-shot settings.

PASCAL-5i: In terms of the mIoU performance in both 1-shot and 5-shot settings using

ResNet-50 as the backbone, our method outperforms previous approaches on the PASCAL-

5i dataset, as shown in Table 4.1. Specifically, compared to the state-of-the-art performance

achieved by BAM and FECANet, our method achieves a performance gain of 0.3% and 0.7%

in the 1-shot setting on ResNet-50, respectively. This stems from the adoption of a direct

yet efficient approach, which generates multiple base class prototypes to suppress base object

regions. Consequently, we are able to explicitly identify the category of each spatial location

within the query feature. In fold-2 split, encompassing novel categories like “dog,” “horse,”

“motorbike,” and “person,” our method exhibits superior performance compared to other ap-

proaches, achieving a minimum improvement of 1.3% with the VGG16 backbone in the 1-shot

scenario. Notably, these categories frequently occur in the background of the training set

(base classes), emphasizing our model’s capability to enhance the discriminative power of novel

classes against base classes, particularly those regarded as background elements. Moreover, in
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the 5-shot scenario, our method demonstrates substantial growth and fares favorably against

alternative approaches

COCO-20i: The dataset presents greater challenges compared to the PASCAL-5i dataset, pri-

marily because of its larger number of categories and the complexity of scenes it encompasses.

As shown in Table 4.2, our approach surpasses all the advanced methods by a large margin. No-

tably, it exhibits a significant performance gain over two cross-attention-based models, CyCTR

and FECANet, by 6.7% and 5.9% respectively, under the 1-shot setting, as measured by mean

class mIoU metric when using ResNet-50 as the backbone. In the 5-shot setting, our method

also outperforms all methods, demonstrating the superior class discrimination ability when

encountering a wider range of classes.

FSS-1000: FSS-1000 comprises a larger number of classes and provides only foreground labels

for each image, aligning with the tailored setting for FSS, wherein the objective is to predict a

binary mask for the novel class. The comparison results are presented in Table 4.3. HMMNet

achieves the new state-of-the-art performance in terms of FB-IoU with both VGG-16 and

ResNet-50 backbones, across both 1-shot and 5-shot experiments. It surpasses the MCE method

introduced in Chapter 3 by substantial margins of 2.6% and 1.5% when utilizing one and five

support images, respectively. These findings demonstrate the consistent effectiveness of the

proposed hierarchical multi-prototype matching scheme.

Qualitative Evaluation: We visualize the segmentation results of the baseline, CyCTR and

our HMMNet in Figure 4.6. CyCTR is the most closely related work to our study which also

introduces the cross-attention mechanism to explore image relations. However, our model differs

from CyCTR in two main aspects. Firstly, our model utilizes Masked Cross-image Encoding

(MCE) to mix support and query features containing the same class as a uniform feature

source for generalizing novel class semantic information, which implements bidirectional cross-

attention with different image features. In contrast, CyCTR treats support and query features

as separate entities and uses standard self-attention to encode query features for unidirectional

cross-alignment. Therefore, the model becomes more proficient in accurately discovering the

target regions like “plane” without including background regions of the sky. Secondly, our

model employs multi-prototype matching that helps to filter irrelevant regions of base classes.

As illustrated in the second column of Figure 4.6, our approach performs better in segmenting

query images containing multiple objects (e.g., person and bike), where the leg part of the
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Figure 4.6: Qualitative comparison results of baseline, CyCTR[102] and our method. The

yellow shades indicate the predicted area of the target novel class, and the corresponding

ground truth is in the case of Query.

person is excluded compared to baseline and CycTR.

Effectiveness on cross-domain few-shot segmentation. To assess the effectiveness and

robustness of our method in cross-domain few-shot segmentation, we conduct experiments

where the model is trained on COCO-20i training folds and tested on the non-overlapping

testing set of PASCAL, as utilized in prior work [134]. For the COCO to FSS-1000 cross-

domain experiment, we randomly sample 240 classes that do not overlap with the COCO

training classes to form the testing set. We report the class mIoU and FB-IoU for the COCO

→ PASCAL and COCO → FSS-1000 experiments, respectively.

Our approach achieves superior performance in cross-domain semantic segmentation for both

1-shot and 5-shot tasks across the domain shift scenarios. Specifically, we surpass the tradi-
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Method
COCO → PASCAL COCO → FSS-1000

1-shot 5-shot 1-shot 5-shot

ASGNet [124] 57.4 66.6 72.3 75.6

PFENet [36] 60.8 61.9 70.6 74.2

RePRI [134] 63.2 67.7 68.4 69.1

SLC [161] 49.1 60.3 76.0 78.8

HSNet [161] 61.5 65.4 75.5 80.1

ABCNet [156] 62.9 68.2 78.9 81.0

HMMNet(Ours) 65.3 69.5 82.2 86.7

Table 4.4: Cross-domain few-shot semantic segmentation results on COCO to PASCAL and

COCO to FSS-1000. COCO → PASCAL reports the class mIoU and COCO → FSS-1000

presents FB-IoU. ResNet-50 is employed as backbone for all models.

tional single-prototype state-of-the-art few-shot semantic segmentation method ABCNet [156]

by 2.4% and 3.3% under the 1-shot setting in the two challenges. Furthermore, our method

outperforms the correlation-oriented method HSNet by a significant margin, with over 4.1%

mIoU improvement for 5-shot in the COCO → PASCAL experiment and 6.6% FB-IoU improve-

ment for 5-shot in the COCO → FSS-1000 experiment. These noteworthy results suggest that

the proposed multi-prototype matching strategy can effectively handle cross-domain scenarios

better than other optimization schemes. This improvement can be attributed to the fact that

base prototypes learned from one domain may not be present in images from other domains,

leading to the suppression of these base classes during matching with the base prototype and

thereby resulting in better segmentation performance.

4.4 Ablations

In this section, we conducted all ablation studies on PASCAL-5i benchmark under the 1-shot

setting using ResNet-50 as the backbone. First, we investigate the effectiveness of the proposed

modules by observing the overall mIoU after removing one of them. Then we study possible

variants of cross-attention of MCE to find out the most effective scheme. Finally, we discuss

the influence of employing TCAM on segmenting specific classes.

78



MCE Multi-Prototype TCAM Mean% Params Speed (FPS)

✓ ✓ 66.73 8.3 M 24.5

✓ ✓ 65.34 18.4 M 19.2

✓ ✓ 67.12 18.4 M 20.3

✓ ✓ ✓ 68.04 19.6 M 18.6

Table 4.5: The ablation results of module performance on PASCAL-5i under 1-shot setting.

“Params” refers to learnable parameters.

4.4.1 Effectiveness of Components

Table 4.5 presents the ablation study results, underscoring the influence of different components

in our suggested methods. The bottom row represents the fully integrated model comprising

all modules, while the rows above indicate the performance impact when each module is indi-

vidually excluded. Notably, the multi-prototype matching significantly mitigates the impact of

irrelevant false-positive regions from the base class, leading to a performance enhancement of

2.7% in segmentation. Impressively, this multi-prototype module does not introduce additional

parameters and only necessitates minimal memory to store the base prototype vectors. Ex-

cluding the cross-image encoding module results in a decrease in mIoU by 1.31%, emphasizing

the critical role of exchanging support-query features for implicit feature guidance. However,

MCE introduces an extra 11.3 million learnable parameters due to numerous attention opera-

tions. Moreover, integrating TCAM, designed to activate salient regions in the query image,

furthers performance by nearly 1%. It’s noteworthy that the lightweight prediction network

for TCAM requires only 1.2 million parameters for training. In terms of inference speed, while

multi-prototype matching minimally affects the speed, it delivers the most substantial improve-

ment in performance. Discarding the MCE will result in an increase of the inference speed by

approximately 6 frames per second (FPS) on average.

Qualitative segmentation examples of 1-shot segmentation on the PASCAL-5i dataset are pro-

vided in Figure 4.7. When examining the results of the baseline model, it becomes apparent

that the segmentation masks for the “person” and “sofa” classes are noticeably incomplete.

However, upon integrating the MCE module into the network, the model demonstrates an

improved ability to identify additional regions corresponding to “person” and “sofa” that were

previously overlooked by the baseline methods. Furthermore, it is evident that the incorpora-
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Support Query Baseline Base+MCE Base+MCE+SMM

Figure 4.7: Qualitative results for component analysis. From the left to the right are

masked support image, masked query image(Ground Truth), baseline, baseline+MCE and base-

line+MCE+SMM

tion of the Semantic Multi-prototype Matching (SMM) module has a dual effect. Not only does

it effectively filter out false-positive regions associated with the ”person” class in the second-row

example, but it also serves to activate more parts of the target novel class (i.e. “person” and

“sofa”) in the first and third rows. This increase in activation is attributable to the multi-

prototype matching mechanism, which raises the similarity scores for those pixels associated

with the target novel class.

4.4.2 TCAM Effectiveness

In the pixel-wise prototype matching paradigm of FSS, each spatial location of the query feature

is evaluated independently. This approach inherently disregards the spatial correlation among

adjacent pixels. Consequently, it leads to the phenomenon of scattered activation points with

lower confidence in the feature map, as demonstrated in the ”w/o TCAM” column in Figure 4.8.

The presence of these low-confidence points can have a potentially negative impact on the final

segmentation results. It is clear that the proposed TCAM excites the main part of the target

object with high confidence. By fusing the TCAM, our model is able to produce relatively pure

feature activation maps as the activation score of target pixels is significantly increased with
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Figure 4.8: Qualitative visualization map. From the left to the right, are support image, query

image, our proposed target-aware CAM, the guided query feature without fusing TCAM, and

the final fused query feature on both PASCAL-5i and COCO-20i

TCAM. The introduced TCAM is evidently successful in activating the primary regions of the

target object with high confidence. When incorporating TCAM, as depicted in the rightmost

column of Figure 4.8, our model is able to generate notably pure feature activation maps, as

the activation scores of target pixels are significantly enhanced with the assistance of TCAM.

4.4.3 Visual Content Impact

The presence of different object categories in an image can significantly impact the perfor-

mance of semantic segmentation. We randomly select four sets of images from the PASCAL

dataset, categorized based on the number of classes present within each image. As shown in

Figure 4.9, we evaluate the performance of both the proposed multi-prototype matching and

the conventional single-prototype matching methods across various scenarios characterized by

different numbers of semantic content. The line chart illustrates that with an increase in the

number of classes, there is a noticeable decline in mIoU. However, it’s noteworthy that the
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Figure 4.9: The influence of the number of visual content on segmentation performance

multi-prototype matching method exhibits a slower decrease compared to its single-prototype

counterpart. This phenomenon can be attributed to the effectiveness of our matching strategy

in managing complex scenarios featuring a wide range of classes.

4.5 Limitations

Limitations. Other than addressing issues of foreground feature alignment within the FSS

framework, the proposed HMMNet introduces a novel multi-prototype matching strategy. This

approach aims to filter background regions by employing base class prototypes. While it ef-

fectively addresses the influences of base objects in most query images, its effectiveness in en-

hancing segmentation performance might be reduced in scenarios where the background lacks

objects from the base classes.

4.6 Chapter Summary

This chapter presents a comprehensive FSS approach aimed at addressing the inherent under-

matching and mismatching issues within the support-query prototype matching framework.

The proposed method introduces two effective modules, MCE and SMM, which serve to bridge

the inter-class semantic gap between support prototypes and query features, and facilitate a

clear distinction between similar novel and base classes. Furthermore, we have devised an

adaptive class activation map to highlight salient regions that might otherwise be overlooked
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during strict feature patch-wise alignment. Extensive experiments conducted on PASCAL-5i

and COCO-20i datasets demonstrate that these proposed modules work synergistically and

yield superior few-shot segmentation performance.
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Chapter 5

Task Consistent Prototype Learning

for Few-shot Incremental Semantic

Segmentation

5.1 Introduction

The preceding two chapters have explored the conventional Few-Shot Semantic segmentation

(FSS) task from two distinct perspectives of the FSS framework: feature representation and

segmentation guidance. While the impressive results in segmenting novel classes suggest that

engineers might reduce their time spent on dense labeling tasks, there is a notable limitation

in the FSS technology. Specifically, it is constrained to segmenting just one single novel class

at a time, neglecting other classes even if they have been identified in previous training, this

limitation hinders their real-word application. Imagine a robot tasked with obstacle avoidance

during floor cleaning. A FSS model could be trained to identify a new obstacle class, such as

“ceramic vase” using just a few labeled images. While successful in navigating around ceramic

vase, the robot might still collide with established obstacle classes, like “table”, “sofa” even if

previously trained on them. This hinders the robot’s ability to perform comprehensive obstacle

detection and navigation within a single environment.

Moving forward, researchers are actively addressing this limitation by developing multi-class

FSS techniques. It is inherently anticipated that a model should exhibit the capability to

segment both base and novel classes within an image, a concept referred to as Generalized
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Few-shot Semantic Segmentation (GFSS) [162], [163]. However, this semantic segmentation

settings typically operate within a fixed output space, where the number of target classes is

predetermined and remains constant. This approach may not adequately meet the demands of

real-world scenarios, where the total number of categories is uncertain, and new class objects

may emerge over time, limiting the applicability and scalability of the model.

Taking a step further, this chapter delves into a more complex and applicable scenario where the

model continuously encounters a stream of new image data containing instances of previously

unseen classes.The task known as Incremental Few-Shot Semantic Segmentation (iFSS) in the

existing literature [164]–[166], is inspired by few-shot class incremental learning (FSCIL) [167],

[168]. Unlike conventional FSS, iFSS emphasizes a series of ongoing adaptation tasks. It

aims to learn how to segment new classes with only a handful of annotated examples, while

crucially retaining the knowledge of previously learned classes. In this way, the extendibility

and flexibility of the model can be improved, which is critical for many real-world applications,

such as autonomous driving and human-machine interaction.

The objective of iFSS is to update a model to effectively segment new classes using a few

annotated samples while retaining its segmentation capability on existing seen classes. While

FSCIL is a broad concept applicable to any task where new classes are incrementally introduced

with few examples, iFSS specifically focuses on learning pixel-wise classification tasks for new

classes. iFSS has more practical applications than FSCIL because it meets the demands of tasks

that require fine-grained visual understanding and interaction. Its ability to handle dynamic

environments, enhance human-computer interaction, improve decision-making, support robotic

object manipulation, and facilitate detailed content creation makes it more broadly applicable

in real-world scenarios.

iFSS shares two common challenges with FSCIL, namely catastrophic forgetting of learned

knowledge and overfitting to a limited number of novel class examples. This arises due to the

absence of access to previous session data during the incremental learning stage. When updating

parameters with imbalanced novel class data (where the number of novel classes is considerably

smaller compared to base classes), the model tends to exhibit a strong bias towards novel classes

in pursuit of rapid adaptation. Consequently, there is a risk of aggressively overwriting crucial

knowledge related to old classes in an attempt to accommodate the latest instances, resulting

in a loss of generalization ability.
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Figure 5.1: Illustration of the evaluation protocol and our meta-training process. During the

online incremental learning stage, the model undergoes training solely on new classes within

each incremental session, while evaluation is conducted on all classes encountered thus far. Our

strategy aims to replicate this evaluation protocol during the offline base class training stage.

This is accomplished by randomly sampling a large portion of base class images to constitute

the pseudo base dataset, with the remaining classes forming the pseudo novel classes. Initially,

the model trains on the pseudo base dataset and subsequently adapts to the pseudo novel

classes. This approach enables the model to learn how to swiftly identify new classes while

retaining the ability to segment previously encountered ones

Specifically, in the incremental Few-Shot Semantic Segmentation (iFSS) task, an initial base

set containing a relatively larger number of training samples is provided to initialize the learn-

able parameters of a semantic segmentation model. Subsequently, a few pixel-level annotated

training samples of novel categories are introduced, aiding in the incremental expansion of the

model’s segmentation capability to accommodate the encountered novel classes.

The challenges mentioned above inherently stem from the task misalignment inherent in main-

stream few-shot class incremental learning (FSCIL) methods. Like FSCIL, the iFSS consists of

an offline training stage and an online incremental learning stage. In the offline training stage,

the model has access to a large-scale dataset for some base classes. FSCIL learns a model
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on these base classes. During the online incremental learning (i.e. evaluation) stage, it will

encounter novel classes in a sequential manner, where a few novel classes are presented at each

time step (called incremental session). For each novel class, only a few training examples are

provided. In addition, it can only access training examples corresponding to the novel classes

at the current time step. In other words, we cannot store training examples from previous

time steps during evaluation. The evaluation protocol is defined such that at each incremen-

tal session, after learning the novel classes, the model is evaluated on all encountered classes

(including base classes).

Many incremental learning methods begin by initializing model parameters using fully super-

vised learning, utilizing ample samples during the base session to achieve optimal segmentation

performance for base classes. Subsequently, they employ few-shot prototype learning strategies

to rapidly adapt to novel classes during subsequent incremental sessions (evaluation steps).

However, the inconsistent training objectives between the base class training stage and the

expected evaluation criteria in the incremental stage inevitably compromise the model’s ability

to swiftly adaptation and resist forgetting. To alleviate forgetting and adaptation problem,

we propose a meta-learning (e.g. [76]) based prototype learning approach that directly learns

to incrementally adapt to novel classes conditioned on a few examples. This is achieved by

simulating the incremental few-shot scenario during base session training. The base dataset is

split into a pseudo base set and a pseudo incremental set. As shown in Figure 5.1, we create a

sequence of pseudo incremental tasks by sampling a small subset of base classes. The remain-

ing base classes are treated as the pseudo base set. For each pseudo task, consisting of a few

labeled images (e.g., 1-5), the model undergoes fast adaptation and updates its parameters.

We then evaluate the model’s performance on test images from both the old and new classes.

This process of sampling pseudo tasks is repeated until the model reaches convergence. In such

a meta-learning pattern, we find a good starting point for the model so that it can learn new

classes in a sequence without forgetting the old ones.

In addition to the training paradigm, there have been a few attempts to address the catastrophic

forgetting and overfitting challenges by employing two types of methods: replay-based and

regularization-based. In replay-based methods, samples of previous tasks are either stored or

generated at first and then replayed when learning the new task. Zhu et al. [168] propose

to store the same number of old samples as each new class to form a joint set during its

incremental learning process. Regularization-based methods protect old knowledge from being
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covered by imposing constraints on new tasks. For example, an intuitive solution proposed in

FSCIL [167], [169] suggests fine-tuning the network on new session data with distillation loss to

mitigate forgetting of old classes. However, the few-shot data in novel sessions can easily lead

to overfitting, making it challenging to distill useful knowledge from the model of the previous

step. Alternatively, some studies [170], [171] suggest to train a backbone network on the base

session to serve as a feature extractor. In novel sessions, the backbone network remains fixed

to preserve base class knowledge, while a set of novel-class prototypes (classifier vectors) are

incrementally learned using the shared backbone features. However, the proximity of newly

added prototypes to old-class prototypes may hinder the ability to discriminate between old-

class and novel-class samples during evaluation.

To optimize the prototype generation process, we propose a Prototype Space Redistribution

Learning (PSRL) to incrementally learn novel class prototypes and adaptively allocate base

and novel prototypes into a latent prototype space, maintaining optimal prototype boundaries.

Specifically, we fix the pre-trained feature backbone to preserve a unified feature extractor and

introduce a prototype projector mapping intermediate class vectors to a subspace for dynamic

prototype distribution. The redistribution process aims to enhance discrimination between new

class prototypes and existing old class prototypes, thereby improving novel class segmentation

performance. Furthermore, it regulates the updated base prototypes placed near their previous

position to prevent prototype misalignment, effectively mitigating knowledge forgetting. The

contributions of this chapter are summarized as:

• We propose a meta-learning optimization approach that aligns the base step learning

objective closely with the evaluation protocol. This method directly optimizes the model

to facilitate the discovery of novel objects while preserving its segmentation capability for

previously encountered classes

• We present Prototype Space Redistribution Learning (PSRL), a method that projects

class prototypes into a subspace where they are redistributed, taking into account inter-

prototype discrimination while ensuring consistency among base prototypes. This ap-

proach alleviates catastrophic forgetting of base classes and facilitates rapid adaptation

to novel classes.

• Extensive experiments on dedicated iFSS benchmark from PASCAL VOC and COCO

datasets demonstrate the proposed method outperforms several counterparts.
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5.2 Method

In this section, we introduce our proposed method for addressing iFSS, a problem that remains

under-explored. We begin by providing a formal problem definition that elucidates the task

setting. Next, we describe how a basic prototype-based model is trained for the iFSS problem.

Building upon this base framework, we introduce the proposed Prototype Space Re-distribution

Learning method and the associated meta-learning process, which aim to mitigate issues of

catastrophic forgetting and class overfitting.

5.2.1 Problem setting

iFSS addresses the challenge of updating a pre-trained segmentation model to accommodate

newly introduced classes over time, utilizing limited annotated examples for each novel class.

Specifically, let Dt
train/test = {It

n,Mt
n}, n ∈ {1, 2, . . . , K}, t ∈ {1, 2, ..., T}, denote a sequence

of the training and testing sets of image It
train/test and their corresponding semantic label

masks Mt
train/test. The label classes Ct of each set are disjoint, such that Ci ∩ Cj = ∅, ∀i ̸=

j. iFSS comprises a base session with abundant labeled training images from D0
train and a

sequence of incremental sessions with only a few training images for each novel class from

{D1
train, D

2
train, ..., D

T
train}. We undertake offline training in the base session to initialize a model

using base classes C0. After the base session, the model is expected to adapt to new classes

Ct(t > 0) with a few examples in the subsequent incremental sessions. Note that at the tth

session, the model has access only to Dt
train for training and then is evaluated on test images

containing all the encountered classes so far, i.e. {D0
test ∪D1

test... ∪Dt
test}.

5.2.2 Prototype-based model for iFSS

Prototype-based models are extensively utilized in various segmentation tasks [36], [92], [162],

[163]. These models learn a single weight or multiple representative vectors for each class to

perform dense prediction. The segmentation process can be conceptualized as nearest prototype

retrieval, wherein pixel-wise classification is accomplished by matching each pixel in the image

to the closest prototypes. Unlike traditional deep learning models, which have a fixed output

space, prototype-based models benefit from a flexible classification mechanism. The prototype

classifier can dynamically expand without requiring adjustments to the model architecture.

This property makes prototype-based models highly suitable for the iFSS setting, where the

model encounters novel classes over time. As depict in Figure 5.2, a typical prototype-based
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Figure 5.2: Prototype-based model for iFSS: In the base step, the model undergoes training with

base class data to acquire the initial prototype classifier P0, encompassing prototypes for all

base classes. The “Sim” function serves as a similarity metric, computing the distance between

positional features and prototypes to enable pixel-wise classification. During the incremental

step, a prototype of the novel class is derived via Masked Average Pooling (MAP) and integrated

into P0 to establish a new classifier capable of segmenting both novel and base classes

framework for iFSS comprises a feature extractor and a prototype classifier. In the base step, the

feature extractor transforms the input image I ∈ Rh×w×3 into a feature embedding F ∈ Rw×h×d

in a latent space. Subsequently, a prototype classifier P0 ∈ RB×d is trained on base classes

to perform pixel-wise predictions for B classes on F . For the incremental step, our objective

is to progressively expand the base prototype classifier P0 with prototypes of novel classes,

facilitating the continuous segmentation of newly encountered classes without forgetting prior

knowledge. Formally, in an N-class K-shot incremental session (N novel classes and each novel

class has K training samples), all training samples It
c,n are first processed by a feature extractor

f and mask average pooling. Subsequently, these samples are averaged over K shots to create
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Figure 5.3: The proposed prototype-based approach utilizes masked average pooling (MAP)

to derive the novel class prototype. Subsequently, all prototypes are projected into a latent

prototype space for redistribution. The resulting prototypes form a new classifier P t capable of

identifying both base and novel classes. This process is considered as a sequential task of the

meta-learning optimization. In the online incremental sessions, the feature extractor remains

frozen, and only the prototype projector and segmentation head are updated.

N prototypes, denoted as ptc(c ∈ {1, 2, . . . , N}).

ptc =
1

K

K∑
n=1

∑
h,w

[
Mt

c,n ◦ f
(
It
c,n

)]
h,w∑

h,w

[
Mt

c,n

]
h,w

, (5.1)

where It
c,n denotes the n-th training image of class c. Mt

c,n ∈ Rh,w,1 is the class mask for class

c on feature f
(
It
c,n

)
∈ Rh,w,d. After obtaining N prototypes, the prediction of pixel i of F is

assigned according to the normalized cosine similarity score Si,c(F) between features and the

class prototype ptc as:

Si,c(F) =
exp (Sim(Fi,p

t
c)/τ)∑Nt

j=1 exp
(
Sim(Fi,pt

j)/τ
) , (5.2)

where Fi ∈ Rd are the positional features extracted from input image I, N t = N t−1 + N

represents the cumulative category of prototype vectors up to session t, N t−1 = B when it

comes to the first incremental session. The τ is a temperature parameter that controls the

concentration level of the distribution [172]. Sim(, ) =
F⊤

i pt

∥Fi∥∥pt∥ is the cosine similarity metric

that measures the pixel classification score.
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5.2.3 Prototype Space Redistribution Learning

The previously mentioned basic framework inevitably leads to the problem of catastrophic

forgetting. When the model trains in incremental session to derive prototypes for novel classes,

the parameters of the feature extractor are updated. This means that the knowledge of the

base classes will be gradually overlid by the novel knowledge as the incremental steps progress.

Cermelli et al. [164] proposed a prototype-based distillation loss to recover base class knowledge

from the previous status of the model. However, the feature extractor of those methods is frozen

which means the feature space distributed for the base class is reused to accommodate extra

class. When adapting to new classes, there may be visual similarities or overlapping features

between old and new classes. This can lead to interference, where the model incorrectly asso-

ciates features from previously learned classes with the new classes, causing both catastrophic

forgetting and overfitting.

We argue that the misalignment dilemma between features and classifiers is the root cause

of the catastrophic forgetting problem for old classes. If a backbone network is updated in

incremental sessions, the features of old classes in test images may easily deviate from their

classifier prototypes. Conversely, if a backbone network is fixed and a set of new prototypes for

novel classes are allocated into the constant feature space, where the new prototypes are lied

close to old-class prototypes, it may also induce misalignments with the fixed features. Hence,

the objectives of adjusting the classifier prototypes and the network are twofold: (i) maintaining

a sufficient distance between the old-class and the novel-class prototypes; (ii) preventing the

adjusted old-class prototypes from deviating significantly from their original positions.

Considering that the prototype classifier encompasses both base and newly encountered classes,

and base examples are inaccessible during incremental learning, modulating the feature extrac-

tor might lead to new classes being mapped into a different feature space from that of base

classes. Therefore, to ensure consistent feature mapping, the backbone is prefered to remain

consistently fixed. For concern that the newly added prototypes may be close to the base-class

prototypes because the prototype is derived from a fixed feature space tailored for base classes.

We introduce the prototype projector g to map the current prototypes into a latent prototype

space. This space allows for the adaptive distribution of base and novel prototypes, achieving

two objectives: i) ensuring clear inter-prototype discrimination among base and novel proto-

types for fast adaptation to new classes, and ii) minimizing the displacement of base prototypes
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away from their original positions to prevent catastrophic forgetting and maintain alignment

between features and prototypes. Accordingly, we propose a novel prototype redistribution

loss that places the new class prototype P t
i at a position far from base prototypes P t−1

j and

relocates base classes to a near-optimal position as:

Lr =

∑Nt−1

i=1

∑N
j=1 Sim

(
P t−1
i , P t

j

)∑Nt−1

i=1 Sim(P t−1
i , P̂ t−1

i )
, (5.3)

where N t−1, N are the class prototype number of previous sessions [0, 1, ..., t − 1] and current

session t. P̂ t−1
i represents the redistributed prototype vector derived from the base prototype

P t−1
i . We utilize cosine distance as the metric for the similarity matrix. The loss function

Lr is designed to minimize the similarity between new class prototypes and base prototypes

while simultaneously maximizing the similarity between the original base prototypes and their

respective redistributions.

Figure 5.3 illustrates the process of adapting novel classes. One or a few novel training image

pairs It
n,Mt

n are provided to the model. After applying masked average pooling to the training

image, the novel prototype is obtained. Along with the current old class prototypes in P t−1,

these prototypes are projected into a latent prototype space. In this space, supervised by the

loss function 5.3, the prototypes are redistributed to ensure they are far apart from each other

while remaining relatively close to their original positions. The redistributed prototypes then

form a new classifier capable of segmenting both novel and base objects. It is noteworthy

that the feature extractor continues to update during the base training stage and remains fixed

during the incremental training stage. The prototype projection and segmentation head remain

consistently trainable to facilitate rapid adaptation. The objective Ltask is a conbined loss

function designed to achieve optimal performance through the redistribution of class prototypes

as:

Ltask = LCE(Itest,Mtest) + λLr. (5.4)

5.2.4 Learning to Incrementally Learn

The core idea underlying our approach is meta-learning inspired by MAML [76] for few-shot

tasks. During the meta-training phase, the model is trained with a set of novel class adapta-

tion tasks that are formulated as few-shot learning problems, aiming to simulate the scenario

encountered during meta-testing. In iFSS, the online incremental stage closely resembles the
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Figure 5.4: The meta-learning optimization strategy samples pseudo-sequential learning tasks

on the base set to perform task training. The meta update process encourages the model to

learn in a manner that preserves performance on old classes while effectively adapting to novel

classes with minimum likelihood of overfitting.

”meta-testing” stage. This stage entails adapting the model to a sequence of incremental ses-

sions, where each session introduces several novel classes with few-shot examples. Inspired by

this, the model is meta-trained on base classes with the goal of mimicking the incremental

learning scenario anticipated during the subsequent online incremental learning (i.e., evalua-

tion). This ensures that the model is learned in a manner enabling effective adaptation to new

classes with less forgetting.

Sequential task sampling. We replicate the evaluation process by utilizing the base classes.

More precisely, we segregate the training images of base classes into distinct training and

testing sets with no overlap. In each epoch, we initiate the training process by sampling a

sequence of T tasks, Ds
train/test =

{(
Ij
train/test,M

j
train/test

)}T

j=0
, where T is greater than the

actual incremental session number, and each session include training and testing image-mask

pairs. We define D0 as the pseudo base set, comprising more classes and training examples than
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subsequent tasks (e.g., j > 0) in the few-shot setting. To reduce the risk of the model overfitting

to a specific sequence, we randomly repeat the sampling process with different classes until the

model converges.

Algorithm 1 Meta training process
Require: : θg, θseg: pre-trained weights

Require: : D0: training set of base classes

1: Initialize the models with pre-trained weights

2: while not converged do

3: Ds
train/test =

{(
Ij
train/test,M

j
train/test

)}T

j=0

4: Dmeta = ∅

5: for j = 0, 1, 2, ..., T do
6: P = Concat(Pold,Pnew)

7: θ̂g,seg = θg,seg − α∇θg,segLtask

(
Ij
train,M

j
train; θ

g,seg
)

8: Dmeta = Dmeta ∪ Dj
test

9: θg,seg = θg,seg − β∇θg,seg

∑
(I,M)∈Dmeta

Ltask

(
I,M; θ̂g,seg

)
10: end for

11: end while

Meta-training. During the meta-training phase, for every sampled sequence Ds
train/test, we

introduce a prototype redistribution-oriented optimization approach grounded in meta-learning.

We denote θ = {θf , θg, θseg} as the parameter for the whole network, where θf , θg, θseg denote

the parameters for backbone, prototype projection layer and segmentation head, respectively.

We first conduct supervised training of θ on the pseudo base classes using segmentation loss

(Ltask). The meta-training procedure is illustrated in Algorithm 1 and Figure 5.4. At the

beginning of training on each sequence, we define an empty cumulative meta test set Dmeta

to store the test images from previous tasks. At the jth task, we first generate the new class

prototypes Pnew and then concatenate it into the current prototype classifier Pold. Subsequently,

we start to perform fast adaptation to new classes and update θg and θseg via a few L gradient

steps:

θ̂g,segj = θg,seg − α∇θg,segLtask

(
Ij
train,M

j
train; θ

g,seg
)
, (5.5)

where Ij
train,M

j
train are the images and labels for training jth pseudo task. The loss Ltask(, :)

is computed on the output of the current model and the target label Mj
train.
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The adaptation process mimics the model’s learning pattern for new classes during incremental

sessions. Ideally, we aim for the adapted parameters to perform well in both the classes from

the previous and current tasks. The meta-testing set accumulated from previous tasks is used

for evaluating how well the updated model resists catastrophic forgetting on old classes and

adaptation on new classes. We append Dj
test to Dmeta , and accordingly, the meta-objective is

defined as:

θg,seg = θg,seg − β∇θg,seg

∑
(I,M)∈Dmeta

Lmeta

(
I,M; θ̂g,seg

)
(5.6)

In the online incremental learning stage, we execute Lines 5-7 of Algorithm 1 to acquire knowl-

edge about novel classes during evaluation. The steps outlined in Algorithm. 1 align with the

evaluation protocol: after being trained on the current session, the model undergoes evaluation

on all encountered classes so far. This meta-objective encourages our model to quickly adapt

to novel classes without sacrificing remembering old ones.

5.3 Experiments

5.3.1 Dataset

We evaluate the proposed method on two widely used semantic segmentation datasets: PAS-

CAL VOC 2012 [44] and COCO [45]. Following established practices [164], we evenly partition

the classes in PASCAL VOC and COCO into four folds as in the previous chapters, with each

fold containing 5 and 20 categories, respectively. According to the few-shot incremental task

setting, the base set should encompass sufficient labeled samples, while each incremental ses-

sion consists of only a few samples from previously unseen classes. For both PASCAL and

COCO datasets, three folds are designated to form the base set, while the categories from the

remaining fold are used for testing purposes.

5.3.2 Implementation Details and Evaluation Metrics

In all experiments, we employ ResNet-101 [160] pre-trained on ImageNet as the feature extrac-

tor. Our configuration involves ASPP [20] with a 1x1 convolutional layer as the segmentation

head. All the models are trained using SGD and a batch size of 16 on NVIDIA GPU RTX6000.
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The learning rate is set to 0.02 and 0.01 for the pre-training and fine-tuning stages respectively.

The number of iterations for the pre-training stage is 110000 with two weight decay steps with

the rate of 10 at 80000 and 100000 iterations. The number of iterations for fine-tuning stage

depends on the number of examples ranging from 500 iterations (with K = 1) to 6000 iterations

(with K = 30).

According to the GFSS protocol outlined in [162], we evaluate the performance of a method

utilizing three mean intersection-over-union (mIoU) metrics: mIoU on base classes (mIoU-B),

mIoU on new classes (mIoU-N), and the harmonic mean of the two (HM). Consistent with [164],

all reported results are presented upon the completion of training in the final incremental

session. Particularly, the single step means all the New classes are given in one session, while

multi-step has multiple sessions: 5 sessions of 1 class on VOC and 4 sessions of 5 classes on

COCO.

As there are few iFSS works in the literatures, we adapt some incremental and prototype-based

models as baselines of the comparison experiments. A very basic baseline is finetune, which

directly fine-tune the base model with new classes on each session.

For Weight Imprinting (WI), we extended the methodology from [173] originally designed for

image classification. Specifically, we substituted the image-level feature extractor used in with

masked average pooling (MAP). This approach eliminates the need for additional hyperparam-

eters, and we initialize the prototypes for new classes while retaining the prototypes of old ones

unaltered.

Similarly, in the case of Dynamic Weight Imprinting (DWI) [174], we employed the classifier

utilizing the identical attention mechanism and weight generator as described in [174]. How-

ever, we substituted the class-specific image-level features with those extracted through MAP.

DWI incorporates a secondary meta-learning training stage on the base classes to enhance the

performance of the weight generator.

We implemented the knowledge distillation-based method “Modeling the Background (MiB)”

following the approach outlined in [175]. MiB utilizes revised cross-entropy and distillation

losses, along with initialization of classifier weights for new classes.

For the Semantic Projection Network (SPN) [176], we utilized the implementation provided by

the authors, which incorporates a combination of word2vec [177] and fastText [178] as class
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embeddings, directly employing them as classifier weights. This method does not entail specific

hyperparameters, and we tailored it for iFSS by excluding the retention of old datasets in the

learning steps.

5.3.3 Main Results

Quantitive analysis.The results of our method on the PASCAL VOC 2012 and COCO

datasets are reported in Table 5.1 and Table 5.2, respectively. Our approach demonstrates su-

perior performance in novel class adaptation across all settings for both PASCAL and COCO

datasets. Additionally, it achieves state-of-the-art performance in terms of Harmonic Mean

(HM) scores across all settings, indicating that our approach effectively balances the retention

of information about old classes while facilitating adaptation to new ones. Particularly note-

worthy is our method’s performance on the PASCAL dataset, where it achieves significantly

higher novel class segmentation mIoU scores compared to all other methods, reaching 35.8%

and 29.1% in single-step and multi-step settings, respectively. This surpasses the state-of-the-

art method (PIFS) by 2.4% and 1.8%, respectively. Our meta-learning-based approach exhibits

superior fast adaptation capability to novel classes without compromising base class segmen-

tation accuracy, achieving competitive base class segmentation performance on both PASCAL

and COCO datasets.

On the COCO dataset, our approach showcases significantly greater improvements in HM

scores compared to the state-of-the-art method PIFS [164]. For instance, in the task of 5-shot

segmentation, our method’s HM scores surpass those of PIFS by 5.3% and 4.1%, whereas the

margins are only 2.3% and 1.8% on the PASCAL dataset. This highlights the effectiveness

of our approach in tackling the more intricate challenges associated with a larger number of

classes, which is particularly beneficial in real-world applications.

Qualitative analysis. In Figure 5.6 and Figure 5.7, we showcase visualized segmentation

results obtained from training under the multi-step incremental setup, using one training ex-

ample for each novel class. Figure 5.6 shows prediction results on PASCAL dataset, from left

to right: training image, testing image, weight-printing (WI) segmentation results (the baseline

method for reference), our proposed model’s segmentation predictions, and the ground truth

segmentation mask. Segmentation masks are overlaid on the original images for clarity. In

comparison to vanilla weight-printing (WI), which simply appends new class prototypes to the
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Table 5.1: The experimental results, measured in terms of mIoU, are presented for the PAS-

CAL dataset. “FT” signifies direct fine-tuning of the model solely on novel classes following

traditional supervised learning methods. “HM” denotes the harmonic mean of the mIoU scores

calculated separately for base and novel classes.

Method

Single step Multi-step

1-shot 5-shot 1-shot 5-shot

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

FT 58.3 9.7 16.7 55.8 29.6 38.7 47.2 3.9 7.2 58.7 7.7 13.6

WI [173] 62.7 15.5 24.9 64.9 21.7 32.5 66.6 16.1 25.9 66.6 21.9 33.0

DWI [174] 64.3 15.4 24.8 64.9 23.5 34.5 67.2 16.3 26.2 67.6 25.4 36.9

MiB [179] 61.0 5.2 9.7 65.0 28.1 39.3 43.9 2.6 4.9 60.9 5.8 10.5

SPN [176] 59.8 16.3 25.6 58.4 33.4 42.5 49.8 8.1 13.9 61.6 16.3 25.8

PIFS [164] 60.9 18.6 28.5 60.5 33.4 43.0 64.1 16.9 26.7 64.5 27.5 38.6

Ours 63.4 19.7 30.1 61.6 35.8 45.3 65.5 20.4 31.1 65.9 29.1 40.4

prototype classifier, our approach notably distinguishes novel classes like “bus” from the base

class “person” and “sheep” from the background. Additionally, as observed in the third row,

WI exhibits overfitting to the “sofa” and completely forgets the knowledge of the “chair”. Our

method, employing task-consistent meta-learning with prototype distribution loss, preserves

the ability to segment learned classes while accurately adapting to new classes.

The iFSS task becomes more challenging when dealing with images from COCO containing a

larger number of classes compared to PASCAL. Our qualitative results in Figure 5.7 on COCO

demonstrate that our method excels in distinguishing between objects from base and novel

classes. For instance, in the results pertaining to the ”sandwich” class, our method correctly

identifies the majority part of “orange”, whereas WI misclassifies it as another class, labeling it

with a blue color. This capability stems from our prototype redistribution loss, which pushes

similar prototypes away from each other, enabling clear differentiation between similar objects.

Similar observations are made in discriminating between “giraffe” and “zebra.”

Step by step analysis. To investigatethe process of novel class adaptation and base class

forgetting, we systematically assess the model’s performance at each incremental step under the

multi-step setting. The results for each incremental step on PASCAL and COCO are presented

in Figure 5.5. For each incremental step, harmonic mean (HM) scores between the mIoU for
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Table 5.2: The experimental results (mIoU) on COCO dataset.

Method

Single step Multi-step

1-shot 5-shot 1-shot 5-shot

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

FT 41.2 4.1 7.5 41.6 12.3 19.0 38.5 4.8 8.5 39.5 11.5 17.8

WI [173] 43.8 6.9 11.9 43.6 8.7 14.5 46.3 8.3 14.1 46.3 10.3 16.9

DWI [174] 44.5 7.5 12.8 44.9 12.1 19.1 46.2 9.2 15.3 46.6 14.5 22.1

MiB [179] 43.8 3.5 6.5 44.7 11.9 18.8 40.4 3.1 5.8 43.8 11.5 18.2

SPN [176] 43.5 6.7 11.7 43.7 15.6 22.9 40.3 8.7 14.3 41.4 18.2 25.3

PIFS [164] 40.8 8.2 13.7 42.8 15.7 23.0 40.4 10.4 16.5 41.1 18.3 25.3

Ours 43.8 10.4 16.7 44.4 20.8 28.3 43.1 12.3 19.1 43.5 22.2 29.4

(a) PASCAL Multi-step (b) COCO Multi-step

Figure 5.5: Step by step “Multi-step” HM results on PASCAL and COCO dataset.

base and new classes are shown on the line chart.

From the results, it is evident that fine-tuning (blue) and incremental learning methods such as

MiB (dark orange) exhibit the poorest performance across all settings. This can be attributed

to their failure in leveraging prototype learning, which hampers their ability to effectively

initialize and represent the new classes. Prototypes act as a compact and efficient way to store

information about previously learned classes. Unlike storing all the training data, prototypes

capture the essential features of each class in a single vector. By comparing new data to these

prototypes, the model can maintain knowledge of past classes even as it learns new ones. This

reduces memory requirements and computational overhead compared to keeping all the training
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Figure 5.6: Visualization of multi-step results under one shot setting on the PASCAL

data, making it suitable for scenarios where resources are limited.

On the contrary, methods that incorporate prototype learning, such as DWI (green), WI (or-

ange), and PIFS (brown), demonstrate a more favorable balance between learning and forget-

ting. Particularly noteworthy is PIES, which utilizes distillation loss on a prototype model

and achieves commendable performance on PASCAL, closely trailing our approach (pink) in

the 1-shot setting. Our method stands out among the counterparts, exhibiting a significant

performance advantage, primarily attributable to its remarkable ability to identify new classes

while maintaining stability on seen classes.

In the COCO results, all methods exhibit a downward trend as incremental steps progress.

Particularly noteworthy is the performance of PIFS, which achieves a high score in the initial

step but then experiences a dramatic drop to around 15% by the third step before experiencing

a slight increase in the final step. In contrast, our method consistently outperforms the others

across all steps. This demonstrates that our prototype generation module enhances class-wise

feature representation, while our meta-learning optimization strategy enables the model to learn

with reduced forgetting.
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Figure 5.7: Visualization of multi-step results under one shot setting on the COCO

5.3.4 Ablation Study

In this section, all the ablation studies are conducted on COCO dataset adopting 1-shot and

multi-step incremental setting.

Componet ablations We investigate the effectiveness of three key components: i) the pro-

posed prototype redistribution loss Lr, which not only maximizes the distance between inter-

class prototypes but also prevents base prototypes from shifting away; ii) the meta-learning

training strategy, which encourages the model to rapidly learn novel classes while remaining sen-

sitive to old ones; and iii) the inter-prototype discrimination loss Linter =
∑Nb

i=1

∑Nt

j=1 Sim
(
P t−1
i , P t

j

)
,

which focuses on minimizing the similarity between novel and base classes. We use vanilla pro-

totype weight imprinting as the basic model for reference.

As illustrated in the second row of Table 5.3, introducing the meta-learning strategy, which

trains the model in a manner aligned with the expected evaluation in the incremental sessions,

significantly improves the novel class adaptation performance by 3.4% and mitigates catas-

trophic forgetting. The application of Linter upon meta-learning results in a 0.9% increase in

novel class accuracy but induces a 1.3% performance reduction in the base class. It suggests
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Table 5.3: Ablation study of the meta-learning scheme and prototype redistribution loss

on COCO in terms of mIoU (%), under the multi-step one-shot setting. Linter =∑Nb

i=1

∑Nt

j=1 Sim
(
P t−1
i , P t

j

)
merely aims to minimize similarity between novel and base classes.

“Base” denote the vanilla prototype weight imprinting.

Base Meta-learning Linter Lr Base Novel HM

✓ 44.1 7.2 12.4

✓ ✓ 42.5 10.6 17.0

✓ ✓ ✓ 41.2 11.5 18.0

✓ ✓ ✓ 43.1 12.3 19.1

Table 5.4: Ablations on backbones and prototype redistribution. “fix” denotes that the back-

bone remains fixed during incremental steps, while “update” means that the backbone continues

to update. “PR” indicates the addition of the prototype projection layer and the adoptation of

the prototype redistribution loss Lr.

Methods Novel Base HM

Baseline (fix) 7.2 44.1 12.4

Baseline (update) 7.8 36.0 12.8

Baseline (fix) + PR 10.6 40.4 16.8

Baseline (Update) + PR 10.2 36.5 15.9

that merely focusing on minimizing the similarity between the new class and the old class pro-

totypes while neglecting the drift of the base class can lead to prototype inconsistency before

and after adaptation, resulting in knowledge forgetting.

Backbone and prototype redistribution. To investigate the performance difference be-

tween frozen and updated backbones, we conduct comparison experiments using two baseline

models. In these experiments, the pre-trained backbone is either kept fixed or updated during

the incremental steps. The model with the fixed backbone is denoted as Baseline (fix), while

the model with the updated backbone is referred to as Baseline (update). As shown in Ta-

ble 5.4, Baseline (update) outperforms Baseline (fix) in terms of HM score, primarily due to its

superior performance on novel classes. However, there is a significant drop in mIoU for base

classes, indicating that updating the backbone without any constrain may lead to overfitting
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on new classes and result in catastrophic forgetting.

Then, we augment the model by appending a prototype projection layer after the backbone

and applying prototype redistribution supervision to obtain the classifier. From the results of

the last two rows of Table 5.4, the fixed version outperforms the updated counterpart by a

significant margin in both novel and base class segmentation. This superiority is attributed to

the fixed backbone’s ability to retain information about the base classes, while “PR” ensures

that the prototypes in the subspace remain well-separated. These factors mitigate catastrophic

forgetting and facilitate rapid adaptation.

5.4 Chapter Summary

This chapter addresses a practical scenario of semantic segmentation that incrementally learns

novel classes with a few examples. A meta-learning-based approach is proposed, which directly

optimizing the network to acquire the ability to incrementally learn within the few-shot in-

cremental setting. To alleviate catastrophic forgetting and overfitting problems, we introduce

a prototype space re-distribution mechanism to dynamically update class prototypes during

each incremental session. Extensive experiments on PASCAL and COCO benchmarks demon-

strate that the proposed method facilitates a model learning paradigm for quick classes learning

without forgetting.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Outcomes

This dissertation rigorously investigates a range of methodologies and strategies aimed at en-

hancing the generalizability and robustness of image semantic segmentation models under con-

ditions of limited data supervision. It addresses this intricate yet promising area through an

exploration of two sequential tasks: few-shot semantic segmentation (FSS) and incremental

few-shot semantic segmentation (iFSS). FSS involves segmenting target objects in query im-

ages with the aid of a small set of pixel-wise annotated support images, while iFSS extends this

challenge by necessitating the retention of knowledge across all encountered classes.

Acknowledging the limitation in most FSS approaches, which independently learn class-wise

descriptors from support images while neglecting the intricate contextual interplay and mutual

dependencies between support and query features, Chapter 3 introduces a novel joint learning

methodology named Masked Cross-Image Encoding (MCE). This method aims to elucidate

common visual characteristics that define object particulars and to foster bidirectional inter-

image dependencies, thereby augmenting feature interaction. MCE transcends a mere visual

representation enhancement module by incorporating cross-image mutual dependencies and

implicit guidance.

Chapter 4 offers a fresh perspective on the feature-matching mechanism within the FSS frame-

work. Predominant FSS techniques employ a support-query matching approach that activates

target regions in the query image based on their resemblance to a singular support class proto-
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type. Nonetheless, this prototype vector is susceptible to overfitting support images, potentially

leading to under-matching in latent query object regions and erroneous mismatches with base

class features in the query image. To confront these challenges, this chapter redefines the

conventional single foreground prototype matching to a multi-prototype matching approach.

Within this paradigm, query features demonstrating high confidence with non-target prototypes

are classified as background. Specifically, target query features are aligned more closely to the

novel class prototype using the Masked Cross-Image Encoding (MCE) module introduced in

Chapter 3, and a Semantic Multi-prototype Matching (SMM) module is employed to collabo-

ratively filter unintended base class regions on multi-scale features. Moreover, it introduces an

adaptive class activation map, termed target-aware class activation map (TCAM), to conserve

semantically coherent regions that may be inadvertently suppressed under pixel-wise matching

guidance.

Addressing the application of FSS in real-world scenarios, Chapter 5 delves into incremental

FSS, where the model is continually exposed to new streams of image data comprising instances

of previously unseen classes. Common approaches often involve pre-training models on base

classes in a fully supervised manner, followed by the application of few-shot prototype learning

during incremental sessions. In the absence of base class data, such paradigms are vulnerable

to overfitting novel classes and forgetting prior ones due to misalignments between offline base

learning objectives and online incremental learning assessment protocols. This study intro-

duces a meta-learning-based approach for iFSS, emulating the incremental evaluation protocol

during base training sessions. Each task in the simulated sequence is trained using a meta-

objective to facilitate swift adaptation without forgetting. To enhance discrimination among

class prototypes, the dissertation proposes prototype space re-distribution learning, which dy-

namically updates class prototypes in each incremental session, thereby establishing optimal

inter-prototype distances within the prototype space.

6.2 Future Work

Further work in the field of few-shot segmentation can explore various dimensions to address

existing challenges and open new avenues for research. Some potential directions include:

• Integration with Unsupervised and Semi-supervised Learning: Exploring how unsuper-

vised or semi-supervised learning can complement few-shot learning to make the most of

106



unlabeled or partially labeled datasets, reducing the dependency on annotated data.

• Human-in-the-loop Learning: Integrating human feedback into the learning loop to refine

model predictions and annotations, ensuring higher accuracy and reliability in scenarios

where expert knowledge is crucial.

• Novel class discovery segmentation(GCDSS). It requires the model to learn from both

labeled and unlabeled data, and to discover and segment the novel classes without any

supervision.

• Generalized class discovery segmentation. Different from novel class discovery segmenta-

tion (NCDSS), which assumes that each unlabeled image has at least one novel class and

focuses only on foreground objects. GCDSS is more realistic and challenging, as it does

not require such prior knowledge and covers the entire image.
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