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A B S T R A C T

Electronic health records (EHRs) are a valuable source of information that can aid in understanding a patient’s
health condition and making informed healthcare decisions. However, modelling longitudinal EHRs with
heterogeneous information is a challenging task. Although recurrent neural networks (RNNs) are frequently
utilized in artificial intelligence (AI) models for capturing longitudinal data, their explanatory capabilities are
limited. Predictive clustering stands as the most recent advancement within this domain, offering interpretable
indications at the cluster level for predicting disease risk. Nonetheless, the challenge of determining the optimal
number of clusters has put a brake on the widespread application of predictive clustering for disease risk
prediction. In this paper, we introduce a novel non-parametric predictive clustering-based risk prediction model
that integrates the Dirichlet Process Mixture Model (DPMM) with predictive clustering via neural networks.
To enhance the model’s interpretability, we integrate attention mechanisms that enable the capture of local-
level evidence in addition to the cluster-level evidence provided by predictive clustering. The outcome of this
research is the development of a multi-level explainable artificial intelligence (AI) model. We evaluated the
proposed model on two real-world datasets and demonstrated its effectiveness in capturing longitudinal EHR
information for disease risk prediction. Moreover, the model successfully produced interpretable evidence to
bolster its predictions.
1. Introduction

Decision support systems are evolving within healthcare to aid
clinicians in intricate decision-making processes by leveraging infor-
mation derived from clinical knowledge and patients’ electronic health
records (EHRs). EHRs constitute comprehensive repositories of diverse
healthcare data, encompassing unstructured medical notes, clinical
events, laboratory testing results, medical images, and other informa-
tion generated across multiple hospital visits. Typical applications of
utilizing EHRs to advance the precision medicine involve tasks such
as disease risk prediction [1–5], statistical phenotype prediction [6],
estimation of intensive care units (ICUs) stay duration [7], mortality
prediction [6], survival prediction [8], and disease diagnosis [6,9].
However, the efficacy of computational models is constrained by their
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ability to handle high-dimensional, longitudinal, discrete, irregular, and
heterogeneous EHRs [1].

This paper investigates a novel healthcare decision support model
that extracts the representation of latent states from longitudinal EHRs
to explore explainable patient trajectories for disease risk prediction.
While various neural network-based methods have been developed to
model longitudinal EHRs and learn latent states, such as recurrent
neural networks (RNNs) [10,11] and convolutional neural networks
(CNNs) [12,13], which are often regarded as data-driven black-box
approaches [14]. Predictive clustering [15,16], on the other hand,
has recently emerged as a novel approach for disease prediction tasks
by clustering patients’ latent health states into several groups and
providing cluster-level explainable evidence for prediction results. In
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this paper, we develop an explainable artificial intelligence (AI) model
for disease risk prediction based on the fundamental principles of
predictive clustering.

In the task of disease risk prediction, cluster assignment changes
demonstrate the shifts in patients’ latent health states and provide
clusters of patients with similar health characteristics, aiding our under-
standing of the factors contributing to their health outcomes. Determin-
ing the optimal number of clusters when applying predictive clustering
models to different EHR datasets is a significant challenge, as the
number of clusters can significantly affect the results, and the optimal
value can vary across datasets. To address this issue, we propose a
neural non-parametric approach based on the Dirichlet Process Mixture
Model (DPMM) [17] for predictive clustering in disease risk prediction
tasks. DPMM is formulated as an infinite mixture model, and the stick-
breaking construction of the Dirichlet process is employed. We can
cluster data without pre-defining the exact number of clusters using
DPMM. The model is trained using Stochastic Gradient Variational
Bayes (SGVB) [18] to couple non-parametric clustering with neural
networks.

To increase the level of explainability in our model, we explore both
cluster-level explainability methods and local-level ones. The attention
mechanism [19] is a popular local-level explainability method that has
been used extensively in the literature to provide detailed explanations
of prediction tasks. This mechanism assigns importance scores to input
features and identifies crucial medical terms that contribute to dis-
ease risk prediction. Previous studies have shown the effectiveness of
attention mechanisms for EHR data analysis [9,10,20–22]. Therefore,
we incorporate attention mechanisms into our model to enhance its
explainability. Notably, our focus is on modelling unstructured patient
information, such as medical notes and auxiliary information from
clinical events and laboratory testing results. The patient data found
in medical notes is highly valuable and demands special consideration.
However, due to the unstructured nature of this data, developing
models to analyse it can be challenging, and there is a paucity of
research in this domain. In order to transform the unstructured textual
data derived from medical notes, we employ Clinical-BERT [23], which
is a robust clinical language understanding model utilized as the text
encoder. However, heterogeneous data from different modalities may
have domain discrepancies that can lead to sub-optimal performance.
To address this, we adopt soft Prompt learning [24–26] to reduce
domain discrepancies between different modalities and better integrate
heterogeneous information from medical notes and other modalities.

In this paper, we introduce a novel neural model named Dirichlet
Process-based Predictive Clustering (DirPred) for the purpose of dis-
ease risk prediction. The primary contributions of our work are outlined
below:

• We present an explainable AI model designed to predict dis-
ease risk and enhance healthcare decision-making by incorpo-
rating multi-level explainability. This is achieved through the
integration of predictive clustering and the attention mechanism.

• To capture the temporal dependencies in longitudinal EHRs, our
predictive model comprises a prior module that encodes informa-
tion from previous time steps and a posterior module that encodes
observations at the current time step. The model parameters
are learned through stochastic gradient descent and variational
Bayesian inference.

• We address the challenge of encoding heterogeneous information
from EHRs into a unified encoding space by proposing a soft
Prompt learning-based data encoding approach.

• To validate the effectiveness of the proposed model, we apply
DirPred to two publicly available EHR datasets, namely MIMIC-
2

III [27] and N2C2-2014 [28].
2. Related work

2.1. AI models for disease risk prediction

In recent years, several AI models have been proposed for disease
risk prediction in healthcare decision-making using EHR data, including
time-aware, knowledge-aware, and attention-based models [2,29–34].
Given the longitudinal nature of EHR data, time-aware models utilize
time information during the model construction process. For example,
RetainEX [30] and ConCare [35] assumed that patient information
may decay between consecutive visits and thus applied the informa-
tion decay function to assist time-series data encoding for disease
risk prediction. Knowledge-aware models aim to improve risk predic-
tion performance by incorporating external information, such as med-
ical knowledge graphs [33,34] and disease-related information [36].
Attention-based models have played a significant role in risk prediction
along with time-aware and knowledge-aware models. The attention
mechanism [19] is a popular approach to interpreting the results
generated by deep neural networks. For example, RETAIN [10] intro-
duced the attention mechanism to the RNNs-based predictive model to
provide explainable results with high prediction accuracy. DIPOLE [20]
adopted the attention-based bidirectional RNNs for diagnosis predic-
tion. RAIM [7] and MNN [37] relied on the attention mechanism to
assign different weights to different variants for information extraction
and data aggregation. The work in [2,9,22] adopted a label-dependent
attention approach to help capture clinical terms from medical notes.

2.2. Modelling EHR data

EHRs contain heterogeneous information from multiple modalities,
reflecting patients’ health states from different aspects. For the time-
series laboratory testing data, many RNNs-based models have been
developed [7,38,39]. Meanwhile, attention mechanisms have been in-
creasingly introduced to generate explainable prediction results from
medical notes [9,22]. To model multimodal EHRs, RAIM [7] applied
RNNs and attention mechanisms to handle both laboratory testing
data and Electrocardiogram (ECG) waveform data. LDAM [2], on the
other hand, employed the label-dependent attention mechanism as the
bridge to fuse laboratory testing data with medical notes, demonstrat-
ing that the inclusion of disease risk-related prompts can lead to better
predictive performance.

Apart from heterogeneity, EHR data are also longitudinal, storing
patient health information collected from multiple hospital visits. A
variety of neural network-based models, such as RNNs and DSSMs,
have been developed to extract information from longitudinal data. For
example, GameNet [11], an RNNs-based model with an attention mech-
anism, was developed for disease diagnosis and drug recommendation.
The work in [15] attempted to understand disease progression using
deep predictive clustering, where encoded time-series data samples
were clustered over time. The methods in [12,13] used multi-level
CNNs to capture the complex changes of EHRs. Along with RNNs and
CNNs-based methods, DSSMs [39–41] have also played an essential role
in modelling longitudinal EHR data. For instance, the work in [39]
developed an attentive deep Markov model to trace patients’ latent
states and predict disease risk from laboratory testing results. The work
in [40] proposed a causal hidden Markov model to learn separate la-
tent representations with different supervised tasks, including medical
image reconstruction and risk prediction. In this paper, we primarily
concentrate on utilizing unstructured patient data, comprising medical
notes, for the purpose of disease risk prediction. As far as our under-
standing extends, only a few existing works focus on constructing deep
neural networks to represent this input data longitudinally.

2.3. Predictive clustering in healthcare decision making

Traditional unsupervised clustering models, such as K-means and

hierarchical clustering, often struggle to meet our expectations for
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Fig. 1. The flowchart of applying the DirPred model for healthcare decision-making in disease risk prediction.
most prediction tasks. Furthermore, there have been limited efforts to
use unsupervised cluster approaches for predicting risks at different
time points, particularly for longitudinal EHRs. With the widespread
use of neural networks, recent studies have explored leveraging their
ability to learn latent representations from raw data. [15] introduced
a predictive clustering model called ACTPC, which directed the un-
supervised clustering process using a supervised task. Patients’ latent
health states were clustered into different groups, and the embed-
ding of its cluster center characterized each group. As a continuation
of the ACTPC framework, CAMELOT [16] was developed, replacing
the non-differentiable selector network with an identifier network,
thereby enabling end-to-end training. Nevertheless, these techniques
necessitated a prior specification of the precise quantity of clusters and
bestowed insufficient emphasis on modelling unstructured longitudinal
medical records. This paper focuses on developing a non-parametric
predictive clustering model by introducing a neural Dirichlet process
to learn the number of clusters automatically.

3. Methodology

In this paper, we propose the DirPred model for disease risk pre-
diction in healthcare decision-making, as illustrated in Fig. 1. The
decision-making process comprises several key steps: collecting hetero-
geneous information from EHRs, pre-processing the data, modelling the
data using DirPred, and generating multi-level explainable results with
disease risk predictions. In the following sections, we provide a detailed
description of the DirPred model. Firstly, we explain the fundamental
concepts of predictive clustering and the Dirichlet process. Secondly,
we describe the three main modules of DirPred. Lastly, we define the
loss function for training the model.

3.1. Preliminary knowledge

3.1.1. Predictive clustering
Suppose each patient 𝑛 is characterized by a sequence of EHRs

collected from multiple hospital visits, where the data sample at each
3

visit 𝑡 is denoted as 𝒙𝑛𝑡 . In the risk prediction task, the presence of
disease risks {𝒚𝑛1,… , 𝒚𝑛𝑡 } are predicted using the information contained
in {𝒙𝑛1,… ,𝒙𝑛𝑡 }. Let  ∈ R×𝐷 denotes the embedding matrix of cluster
centers, where  is the number of clusters, and 𝐷 denotes the embed-
ding size, set to the default value of 768 as in [42].  can be initialized
by the K-means clustering results of all EHRs and updated by back-
propagation through end-to-end training. In the setting of predictive
clustering [15],  is used to predict risks via:

𝒚̂𝑛𝑡 = 𝑓 (𝑇 𝝅𝑛
𝑡 ), (1)

where 𝑓 (.) is the prediction network composed of fully connected
layers, and 𝝅𝑛

𝑡 ∈ R is the distribution of cluster assignment for patient
𝑛 at time 𝑡 learned by neural networks via encoding the information
from {𝒙𝑛1,… ,𝒙𝑛𝑡 }.

3.1.2. Dirichlet process
The Dirichlet Process Mixture Model creates clusters without pre-

defining the number of clusters by assuming that the cluster assignment
of each sample is generated via the Dirichlet process [43]. The stick-
breaking construction of the Dirichlet process is represented as follows,
which can be seen as a stick being broken into several pieces:

𝜋𝑛(𝑘)
𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑜𝑛(1)𝑡 , if 𝑘 = 1

𝑜𝑛(𝑘)𝑡

∏

𝑗<𝑘
(1 − 𝑜𝑛(𝑗)𝑡 ), for 𝑘 > 1. (2)

Here, 𝜋𝑛(𝑘)
𝑡 is the 𝑘th element of 𝝅𝑛

𝑡 ranging from 0 to 1 satisfying
∑∞

𝑘 𝜋𝑛(𝑘)
𝑡 = 1, and 𝑜𝑛(𝑘)𝑡 is drawn from a Beta distribution:

𝐵𝑒𝑡𝑎(1, 𝛽𝑛(𝑘)𝑡 ) = 𝛽𝑛(𝑘)𝑡 (1 − 𝑜𝑛(𝑘)𝑡 )(𝛽
𝑛(𝑘)
𝑡 −1). (3)

To infer the non-parametric distribution 𝝅𝑛
𝑡 coupled with deep neural

networks, SGVB is widely adopted. As the Beta distribution does not
meet the requirement of SGVB to have differentiable non-centered
parametrization (DNCP), the work in [44] chose the Kumaraswamy
(Kuma) distribution as the approximated posterior of 𝑜𝑛(𝑘)𝑡 , which is
written as:

𝑛(𝑘) 𝑛(𝑘) 𝑛(𝑘) 𝑛(𝑘) 𝑛(𝑘)(𝑎𝑛(𝑘)𝑡 −1) 𝑛(𝑘)𝑎𝑛(𝑘)𝑡 (𝑏𝑛(𝑘)−1) (4)
𝐾𝑢𝑚𝑎(𝑎𝑡 , 𝑏𝑡 ) = 𝑎𝑡 𝑏𝑡 𝑜𝑡 (1 − 𝑜𝑡 ) 𝑡 .
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Fig. 2. The overview of the proposed DirPred model. Key variables are described as follows: 𝒙𝑛
𝑡 is the medical notes with auxiliary information of patient 𝑛 at time 𝑡; 𝒛𝑛𝑡 is the

patient latent state at the 𝑡th hospital visit; 𝒛𝑛1∶(𝑡−1) = [𝒛𝑛1 ,… , 𝒛𝑛𝑡−1] contains all latent states from 1 to 𝑡−1 for patient 𝑛; 𝝅𝑛
𝑡 is the cluster assignment distribution generated from the

stick-breaking construction process, whose 𝑘th element 𝜋𝑛(𝑘)
𝑡 ranges from 0 to 1 satisfying ∑∞

𝑘 𝜋𝑛(𝑘)
𝑡 = 1; 𝑜𝑛(𝑘)𝑡 is the key variable to derive 𝜋𝑛(𝑘)

𝑡 ; 𝑎𝑛(𝑘)𝑡 and 𝑏𝑛(𝑘)𝑡 denote the parameters
of the posterior distribution 𝑞(𝑜𝑛(𝑘)𝑡 ), and 𝛽𝑛(𝑘)𝑡 is the parameter of prior distribution 𝑝(𝑜𝑛(𝑘)𝑡 );  is the embedding matrix of cluster centers; 𝒚̂𝑛

𝑡 refers to the predicted risks.
Fig. 3. The inputs of the text encoder 𝒙𝑛
𝑡 for patient 𝑛 at time 𝑡 in the posterior module. 𝒎𝑛

𝑡 , 𝒆𝑛𝑡 and 𝒍𝑛𝑡 refers to the medical notes, clinical events, and descriptions of laboratory
testing results. 𝒑𝑚, 𝒑𝑒, and 𝒑𝑙 are their soft prompts shared across all inputs. CBERT denotes the language model Clinical-BERT.
For DNCP, we desire Kumaraswamy’s closed-form inverse cumulative
distribution function, where the samples can be drawn via the inverse
transform [44]:

𝑜𝑛(𝑘)𝑡 ∼
(

1 − 𝑢
1

𝑏𝑛(𝑘)𝑡
)

1
𝑎𝑛(𝑘)𝑡 where 𝑢 ∼ Uniform(0, 1). (5)

where the detail of parameters in Eq. (3), (4), and (5) will be elaborated
in the following sections.
4

3.2. Our model

Fig. 2 provides an overview of our DirPred model. At the 𝑡th hospital
visit of patient 𝑛, the current observation 𝒙𝑛𝑡 encompasses unstructured
health information primarily derived from medical notes, along with
auxiliary details from clinical events and laboratory testing results. The
patient latent state 𝒛𝑛𝑡 is derived through predictive clustering utilizing
the embedding matrix  and the distribution of cluster assignment 𝝅𝑛.
𝑡
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The prior distribution 𝑝(𝑜𝑛(𝑘)𝑡 ), a crucial variable in constructing the
Dirichlet process for obtaining the cluster assignment 𝝅𝑛

𝑡 , is generated
based on the previous latent state 𝒛𝑛𝑡−1. Conversely, the posterior dis-
tribution 𝑞(𝑜𝑛(𝑘)𝑡 ) is approximated by encoding the current observation
𝒙𝑛𝑡 along with all previous latent states 𝒛𝑛1∶(𝑡−1). Our model is trained
by minimizing the Kullback–Leibler (KL) divergence between the prior
and posterior distributions of 𝑜𝑛(𝑘)𝑡 , combining the risk prediction loss.

3.3. The posterior module

3.3.1. Encoding unstructured health information
In this subsection, we focus on describing the text encoder of the

posterior module. Recent works in [2,22] have shown promising results
by integrating medical notes with other auxiliary information. How-
ever, they still cannot resolve the difference among data from different
modalities. To address this issue, we adopt a soft Prompt learning-based
data encoding method.

The example input shown in Fig. 3 contains raw data from medical
notes 𝒎𝑛

𝑡 and also auxiliary information including the descriptions of
clinical events 𝒆𝑛𝑡 and laboratory testing results in 𝒍𝑛𝑡 . The descriptions
of clinical events 𝒆𝑛𝑡 are obtained by concatenating all clinical events
into a sequence. For laboratory testing results, we apply the boxplot
anomaly detection method [45] to find all abnormal information and
convert it into textual descriptions 𝒍𝑛𝑡 . 𝒙

𝑛
𝑡 collects all this information

s 𝒙𝑛𝑡 = {𝒑𝑚,𝒎𝑛
𝑡 ,𝒑

𝑒, 𝒆𝑛𝑡 ,𝒑
𝑙 , 𝒍𝑛𝑡 }, where 𝒑𝑚, 𝒑𝑒, and 𝒑𝑙 are soft prompts.

hese soft prompts, which are modality-specific, are tokens that are
hared across all samples. The embeddings of the prompts are learnable
n the training process with the purpose of mitigating differences from
ifferent modalities.

.3.2. Neural Dirichlet process
Fig. 2 also illustrates the structure of the posterior module related to

he neural Dirichlet process. Suppose 𝒛𝑛1∶(𝑡−1) = [𝒛𝑛1,… , 𝒛𝑛(𝑡−1)] contains
ll previous latent states of the patient 𝑛, which is encoded together
ith 𝒙𝑛𝑡 to get a fused embedding vector 𝒗𝑛𝑡 ∈ R𝐷:
𝑛
𝑡 = 𝑓1(𝑔(𝐶𝐵𝐸𝑅𝑇 (𝒙𝑛𝑡 ))⊕𝐵𝑖𝐺𝑅𝑈 (𝒛𝑛1∶(𝑡−1))), (6)

here 𝐶𝐵𝐸𝑅𝑇 (.) denotes the Clinical-BERT encoder [23], 𝐵𝑖𝐺𝑅𝑈 (.) is
he bidirectional gate recurrent unit(GRU), 𝑓1(.) is a fully connected
etwork, 𝑔(.) is the forget gate adopted from the long short-term
emory (LSTM) [46] and ⊕ is the concatenation operator. 𝒗𝑛𝑡 is then

ed into two parallel fully connected networks 𝑓2(.) and 𝑓3(.) with the
𝑜𝑓𝑡𝑝𝑙𝑢𝑠 activation function: the outputs are the parameters of the
osterior distribution 𝑞(𝑜𝑛(𝑘)𝑡 ) = 𝐾𝑢𝑚𝑎(𝑎𝑛(𝑘)𝑡 , 𝑏𝑛(𝑘)𝑡 ), which are:

𝑎𝑛(1)𝑡 ,… , 𝑎𝑛(𝑘)𝑡 ,… , 𝑎𝑛(𝐾)
𝑡 ] = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑓2(𝒗𝑛𝑡 )) = 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝑓2(𝒗𝑛𝑡 ))) (7)

nd

𝑏𝑛(1)𝑡 ,… , 𝑏𝑛(𝑘)𝑡 ,… , 𝑏𝑛(𝐾)
𝑡 ] = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑓3(𝒗𝑛𝑡 )) = 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝑓3(𝒗𝑛𝑡 ))), (8)

here the softplus activation function is to make sure the parameters
𝑛(𝑘)
𝑡 and 𝑏𝑛(𝑘)𝑡 are positive. With 𝑎𝑛(𝑘)𝑡 and 𝑏𝑛(𝑘)𝑡 , for each 𝑘 then 𝑜𝑛(𝑘)𝑡 can
e sampled from Eq. (5) to generate the cluster assignment distribution
𝑛
𝑡 via Eq. (2). Please note that 𝐾 here does not refer to the exact
umber of clusters. Instead of implying a finite-dimensional prior, 𝐾
ere is the truncation parameter. 𝑜𝑛(𝐾)

𝑡 is always set to one to ensure
𝐾
𝑘 𝜋𝑛(𝑘)

𝑡 = 1, where 𝜋𝑛(𝐾)
𝑡 represents the total probability of 𝐾 to ∞

lusters.

.4. The prior module

As described in [44], the prior distribution of 𝑜𝑛(𝑘)𝑡 is assumed to
ollow the Beta distribution, that is 𝑝(𝑜𝑛(𝑘)𝑡 ) = 𝐵𝑒𝑡𝑎(1, 𝛽𝑛(𝑘)𝑡 ). Its parameter
𝑛(𝑘)
𝑡 is obtained by encoding the latent states at the previous time step:

𝛽𝑛(1)𝑡 ,… , 𝛽𝑛(𝑘)𝑡 ,… , 𝛽𝑛(𝐾)
𝑡 ] = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑓4(𝒛𝑛𝑡−1)), (9)

here 𝑓 (.) refers to a fully connected network.
5
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.5. The likelihood module

In the likelihood module, the embedding matrix of cluster centers
together with the cluster distribution vector 𝝅𝑛

𝑡 are used to generate
he patient latent state 𝒛𝑛𝑡 via:

𝑛
𝑡 = 𝑇 𝝅𝑛

𝑡 , (10)

here  ∈ R𝐾×𝐷, 𝐾 is the truncation parameter, 𝒛𝑛𝑡 ∈ R𝐷, and (.)𝑇 is
he transpose operator. 𝒛𝑛𝑡 is then fed into the fully connected network
5(.) to get the risk prediction results as:

𝒚̂𝑛𝑡 = 𝑓5(𝒛𝑛𝑡 ). (11)

3.6. Learning objective

With the adoption of the variational Bayesian inference, the loss is
defined as:

 = − 1
𝑁

𝑁
∑

𝑛=1

1
𝑇𝑛

{

E𝑞𝜙(𝒐𝑛1|𝒙
𝑛
1)
[𝑙𝑜𝑔𝑝𝜃(𝒚𝑛

1|𝒐
𝑛
1)] +𝐾𝐿(𝑞𝜙(𝒐𝑛1|𝒙

𝑛
1) ∥ 𝑝𝜃(𝒐𝑛1))−

𝑇𝑛
∑

𝑡=2
E𝑞𝜙(𝒐𝑛𝑡 |𝒛

𝑛
1∶(𝑡−1) ,𝒙

𝑛
𝑡 )
[𝑙𝑜𝑔𝑝𝜃(𝒚𝑛

𝑡 |𝒐
𝑛
𝑡 )] +

𝑇𝑛
∑

𝑡=2
𝐾𝐿(𝑞𝜙(𝒐𝑛𝑡 |𝒛

𝑛
1∶(𝑡−1),𝒙

𝑛
𝑡 ) ∥ 𝑝𝜃(𝒐𝑛𝑡 ))

}

,

(12)

where 𝑁 is the total number of patients, and 𝑇𝑛 is the number of
hospital visits for patient 𝑛. The likelihood 𝑝𝜃(𝒚𝑛𝑡 |𝒐

𝑛
𝑡 ) is calculated as:

𝑝𝜃(𝒚𝑛𝑡 |𝒐
𝑛
𝑡 ) =

1
𝐿

𝐿
∑

𝑖
𝑦𝑛𝑡,𝑖 ⋅ log(𝑦̂

𝑛
𝑡,𝑖) + (1 − 𝑦𝑛𝑡,𝑖) ⋅ log(1 − 𝑦̂𝑛𝑡,𝑖), (13)

here 𝐿 is the number of classes (i.e. disease risks). The posterior
nd prior of 𝒐𝑛𝑡 are 𝑞𝜙(𝒐𝑛𝑡 |𝒛

𝑛
1∶(𝑡−1),𝒙

𝑛
𝑡 ) = 𝐾𝑢𝑚𝑎(𝑎𝑛(𝑘)𝑡 , 𝑏𝑛(𝑘)𝑡 ), and 𝑝𝜃(𝒐𝑛𝑡 ) =

𝑒𝑡𝑎(1, 𝛽𝑛(𝑘)𝑡 ), respectively. 𝜙 and 𝜃 represent the parameters of neural
etworks for the distribution approximation. The KL divergence be-
ween the prior and posterior distributions of 𝑜𝑛(𝑘)𝑡 can be represented
s [44]:

𝑞(𝑜𝑛(𝑘)𝑡 )

[

𝑙𝑜𝑔
𝑞(𝑜𝑛(𝑘)𝑡 )

𝑝(𝑜𝑛(𝑘)𝑡 )

]

=
𝑎𝑛(𝑘)𝑡 − 1

𝑎𝑛(𝑘)𝑡

(

−𝛾 − 𝛹 (𝑏𝑛(𝑘)𝑡 ) − 1
𝑏𝑛(𝑘)𝑡

)

+ 𝑙𝑜𝑔𝑎𝑛(𝑘)𝑡 𝑏𝑛(𝑘)𝑡 + 𝑙𝑜𝑔 𝐵(1, 𝛽𝑛(𝑘)𝑡 )

−
𝑏𝑛(𝑘)𝑡 − 1

𝑏𝑛(𝑘)𝑡

+ (𝛽𝑛(𝑘)𝑡 − 1)𝑏𝑛(𝑘)𝑡

∞
∑

𝑚=1

1
𝑚 + 𝑎𝑛(𝑘)𝑡 𝑏𝑛(𝑘)𝑡

𝐵
( 𝑚
𝑎𝑛(𝑘)𝑡

, 𝑏𝑛(𝑘)𝑡

)

,

(14)

where 𝛾 is Euler’s constant, 𝛹 (.) is the Digamma function, 𝐵(.) is the
Beta function and the infinite sum results from the Taylor expansion.

The training procedure to optimize DirPred by minimizing the loss
defined in Eq. (12) is shown in Algorithm 1.

4. Experiments

4.1. Dataset

As summarized in Table 1, our model and all comparative baselines
are trained and evaluated on two publicly accessible de-identified
medical datasets, MIMIC-III1 and N2C2-2014.2

1 https://physionet.org/content/mimiciii/1.4/
2 https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

https://physionet.org/content/mimiciii/1.4/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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Algorithm 1 The DirPred model
1: Input Given the EHR data 𝒙𝑛𝑡 for 𝑡 ∈ {1,… , 𝑇𝑛} and 𝑛 ∈ {1,… , 𝑁},

where 𝒙𝑛𝑡 refers to the patient’s medical notes with auxiliary
information.

2: while not converge do
3: for Each patient 𝑛 do
4: for Each time 𝑡 do
5: Encode 𝒙𝑛𝑡 using the Clinical-BERT.
6: Encode the information from previous latent states 𝒛𝑛1∶(𝑡−1)

using the bidirectional GRU.
7: Combine the outputs from the above two steps using Eq. (6)

and then generate 𝑎𝑛(𝑘)𝑡 and 𝑏𝑛(𝑘)𝑡 for all 𝑘 using Eq. (7) and
Eq. (8).

8: Sample 𝑜𝑛(𝑘)𝑡 using 𝑎𝑛(𝑘)𝑡 and 𝑏𝑛(𝑘)𝑡 for all 𝑘 as defined in Eq.
(5).

9: Get the cluster assignment distribution 𝝅𝑛
𝑡 using {𝑜𝑛(𝑘)𝑡 }𝐾𝑘=1

from Eq. (2).
10: Generate the patient latent state 𝒛𝑛𝑡 using 𝝅𝑛

𝑡 and the
embedding matrix of cluster centers  from Eq. (10).

11: Obtain the prediction results using 𝒛𝑛𝑡 from Eq. (11).
12: Calculate the cross-entropy loss of the risk prediction results.

13: Derive the parameter 𝛽𝑛(𝑘)𝑡 of the prior distribution of 𝑜𝑛(𝑘)𝑡
for all 𝑘 using Eq. (9).

14: Calculate the KL divergence between the prior and the
posterior of 𝑜𝑛(𝑘)𝑡 as described in Eq. (14).

15: end for
16: end for
17: Update parameters by minimizing the loss defined in Eq. (12) for

patients in each batch.
18: end while

4.1.1. The MIMIC-III dataset
MIMIC-III [27] is one of the largest publicly accessible EHR datasets,

comprising both structured and unstructured health information col-
lected during multiple hospital visits of patients. It contains 22,220
records of patient visit information that encompass both medical notes
(hospital brief course) and auxiliary information collected from 19,017
distinct individuals across various single or multiple hospital visits. We
extracted hospital visit records and risk indicators from the MIMIC-
III dataset using the data extraction method described in [47]. Given
that our model encodes patients’ longitudinal information, we extracted
a subset of the MIMIC-III dataset that comprises records from 3740
patients who had two or more hospital visits, totalling 9759 records.
The average number of visits for patients in this subset is 2.61.

Clinical events and laboratory testing results serve as auxiliary in-
formation that is fed into the predictive model alongside medical notes.
Specifically, clinical events are transformed into a sequence of non-
repeating phrases, while the boxplot anomaly detection method [45]
is applied to laboratory data to obtain text descriptions of anomalies.
Examples of the extracted data are presented in Table 1. We pre-process
the three input textual data by removing numbers, noise, and stop
words. To evaluate the performance of our proposed model in the
disease risk prediction task, we use three upper-level categories of risk
indicators, Chronic disease risk, Acute disease risk, and Mixed disease
risk as our prediction targets [47]. We adopt the same data-splitting
strategy as in [47], whereby we obtain training and test datasets at a
4:1 ratio for performance evaluation.

4.1.2. The N2C2-2014 dataset
Different from MIMIC-III, the N2C2-2014 dataset does not include

such abundant auxiliary information. Instead, it consists of 1304 medi-
cal notes from 296 patients who have undergone two or more hospital
visits, with an average visit count of 4.41. We applied the same data
6

Table 1
The summary of EHR datasets.

Dataset MIMIC-III N2C2-2014

# Records 22,220 1,304

# Patients 19,017 296

# Patients
3,740 296with Multiple

Visits

Avg. # 2.61 4.41Visits

# Records from
9,759 1,304Patients with

Multiple Visits

Text: ‘‘This year old woman Text: ‘‘The patient is year old

Data
Examples

has a history of COPD. Over male with complaints of chest
the past five years she has pain and throat tightness. The
had progressive difficulties with patient reported that he was
her breathing. She was admitted stuck in traffic for about hours
to hospital for respiratory failure last night and apparently got
due to a COPD exacerbation. very tense. He felt some heat
Due to persistent hypoxemia, from his car thought that
she required intubation and a it was overheating and then
eventual bronchoscopy on developed some chest pain
revealed marked and throat tightness. He
narrowing of the airways on really described what seems
expiration consistent with to be fleeting chest tightness
tracheomalacia. She ...’’ and no diaphoresis no shortness
Event: ‘‘dextrose gauge of breath and no arm ...’’
furosemide lasix po intake nacl
magnesium sulfate chest xray...’’
Lab:‘‘high glucose
high fraction inspired oxygen
high glucose normal heart rate
low oxygen saturation...’’

pre-processing strategy as used for the MIMIC-III dataset, which in-
volved removing numbers, noise, and stop words. Our prediction target
was four disease risk-related factors: Hyperlipidemia, Hypertension,
Coronary artery disease, and Diabetes. We split the training and test
datasets at a 4:1 ratio for performance evaluation.

4.2. Baseline methods

We compared DirPred with other baseline methods, which fall into
three categories: Class 1 methods are purely supervised models for risk
prediction; Class 2 methods adopt clustering approaches to assist the
supervised prediction tasks; Class 3 methods are ablated versions of
DirPred.

The Class 1 baseline methods are listed as follows:

• SVM and XGBOOST: These are two conventional machine learn-
ing methods which use the word2vec representations of inputs for
predictive model construction.

• CAML: CAML [9] is a state-of-the-art interpretable medical tex-
tual classification model. It integrates label-embedding and cross-
attention mechanisms to provide an interpretable medical text
classification model.

• CAML+: The encoding layer of CAML is replaced with Clinical-
BERT [23] for a fair comparison with our model.

• CAML++: To encode the longitudinal information from EHRs, the
time-aware attention mechanism from ConCare [35] is integrated
into CAML+.

• RETAIN: RETAIN [10] extracts information from longitudinal
EHRs in reverse time order by using two RNNs and self-attention
mechanisms.
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• RETAIN+: For a fair comparison, the language model Clinical-
BERT is introduced to RETAIN for text embedding.

• DIPOLE: DIPOLE [20] replaces the two RNNs layers in RETAIN
with Bi-directional RNNs [48]. It also adopts an attention mech-
anism to help integrate information from both past and future
hospital visits.

• DIPOLE+: The encoding layer of DIPOLE is replaced with Clinical-
BERT for text embedding.

The Class 2 baseline methods are listed as follows:

• Deep K-means: K-means is a conventional unsupervised cluster-
ing method. To be capable of handling unstructured data and
performing risk prediction, we adopt a deep neural network
version of K-means by utilizing the Clinical-BERT [23] and fully
connected networks. All data will be first clustered into groups
via K-means to generate center embeddings, based on which a
predictive model will be built to predict disease risk.

• CAMLOT: ACTPC [15] and CAMELOT [16] are two recent predic-
tive clustering models for disease risk prediction. While CAMELOT
has demonstrated improved performance and training strategies,
it was not designed to handle unstructured data obtained from
multiple hospital visits; instead, it focused on modelling nu-
merical time-series health monitoring signals. In light of this
observation, we have modified CAMELOT by replacing its RNNs-
based encoding module with Clinical-BERT, thereby enabling it
to handle unstructured data.

he ablated versions of our model in Class 3 are listed as follows:

• DirPred-I: DirPred-I uses only medical notes as input data with-
out auxiliary information. We replaced the non-parametric clus-
tering approach with a parametric clustering approach [49]. For
MIMIC-III and N2C2-2014, the number of clusters is set to 8
and 16, respectively. We followed the strategy adopted in [15],
where the number of clusters is set to 2𝐿, with 𝐿 representing the
number of disease risks.

• DirPred-II: DirPred-II takes the same data input as DirPred-I,
while the clustering part follows the non-parametric approach
proposed in DirPred.

• DirPred-III: DirPred-III removes the prior module from DirPred
to check the impacts of modelling longitudinal information on the
performance of risk prediction.

For all comparative models, the learning rate is set to 1𝑒−5, the
oken length is 300, the embedding size of Clinical-BERT is 768, and
he size of the latent state is 384. The ADAM optimizer is chosen as the
ptimizer for model training. We also adopt the dropout strategy with
dropout rate of 0.3 and the gradient clip strategy with a clip value of
25. All comparative models are trained five times with a fixed set of
ive different seeds, and the results were presented in terms of average
ndicator performance. All models are implemented using PyTorch on
n NVIDIA TESLA V100 GPU. The source code of our model is publicly
ccessible.3

.3. Evaluation metrics

The performance of risk prediction is assessed using metrics such as
recision, recall, F1 score, accuracy, and AUROC score.

Precision is the ratio of positive predictions which are correctly
dentified, which is expressed as,

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(15)

3 https://github.com/Healthcare-Data-Mining-Laboratory/DirPred.git
7

Recall is the ratio of all true positives are correctly identified, which
is expressed as,

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(16)

F1 score is the harmonic mean of precision and recall, which is
expressed as,

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(17)

Accuracy is the ratio of correct predictions, which is expressed as,

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(18)

TP, TN, FP, and FN represent True Positives, True Negative, False
Positives, and False Negative. True Positives are for accurate positive
class predictions, True Negatives are for accurate negative class predic-
tions, False Positives are for inaccurate positive class predictions, and
False Negatives are for inaccurate negative class predictions.

Area Under the Receiver Operating Characteristic Curve (AUROC)
score is a classification performance measurement that summarizes a
value of the Receiver Operating Characteristic Curve.

In addition, to provide comprehensive evaluation results, we com-
pute all metrics from both micro-average and macro-average. The
difference between micro-average and macro-average is that the former
takes into account the total outcome contributions from all classes to
calculate the average, while the latter calculates the average for each
class independently and then aggregates.

4.4. Evaluation results

4.4.1. Comparison with Class 1 models
From Table 2 and Table 3, our DirPred model outperforms all

Class 1 methods with higher F1, AUROC, and ACC scores in the risk
prediction task for both datasets. We can also observe that compared
with conventional machine learning approaches such as SVM and XG-
BOOST, the neural network-based models, especially CAML+, exhibit
stronger predictive power. Although SVM and XGBOOST achieve high
recall values (close to 1.0), their precision scores are much lower
than the others. Therefore, when considering the overall performance
represented by F1 and AUROC scores, these models are found to be not
as good as the CAML+ model.

Furthermore, we observe that longitudinal models, such as CAML++,
RETAIN, and DIPOLE, have better performance than SVM, XGBOOST,
and CAML. Among these models, DIPOLE+ has the best F1, AUROC,
and ACC scores. This observation indicates that historical information
generated from previous hospital visits can improve the performance
of disease risk prediction. Moreover, RNNs are useful in extracting
longitudinal information, as evidenced by the evaluation performance
of the RETAIN and DIPOLE models.

Additionally, we find that the performance can be enhanced by
integrating Clinical-BERT [23] into predictive models. Specifically, the
F1, AUROC, and ACC scores from CAML, RETAIN, and DIPOLE can
be increased when the pre-trained language model is added. The im-
provement in the N2C2-2014 dataset is particularly significant. For
example, the ACC score of N2C2-2014 increased from 0.2957 to 0.5923
by introducing Clinical-BERT to DIPOLE.

4.4.2. Comparison with Class 2 models
Table 2 and Table 3 show that Deep K-means and CAMELOT models

have similar performance on the MIMIC-III dataset, while CAMELOT
outperforms Deep K-means on the N2C2-2014 dataset with higher F1,
AUROC, and ACC scores. However, both models fail to show better per-
formance than the Class 1 methods. This is because Class 2 methods are
not designed for modelling unstructured data, and providing cluster-
level evidence can sacrifice predictive performance. It is worth noting
that our DirPred model, which is also a predictive clustering-based ap-

proach, significantly outperforms CAMELOT and Deep K-means models.

https://github.com/Healthcare-Data-Mining-Laboratory/DirPred.git
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Table 2
The risk prediction results for the MIMIC-III dataset. The best results are highlighted in bold, and the second-best results are marked with an asterisk (*).

Models MIMIC-III

Micro Macro ACC

Precision Recall F1 AUROC Precision Recall F1 AUROC

SVM 0.7735 0.9998 0.8722 0.5004 0.7735 0.9998 0.8703 0.5003 0.5111
XGBOOST 0.7736 0.9999 0.8723 0.5005 0.7736 0.9999 0.8705 0.5003 0.5106
CAML 0.7849 0.9718 0.8777 0.6702 0.7809 0.9680 0.8634 0.6270 0.4939
CAML+ 0.8467 0.9294 0.8860 0.8350 0.8464 0.9229 0.8796 0.8165 0.5363
CAML++ 0.8445 0.9512 0.8895 0.8428 0.8385 0.9458 0.8853 0.8187 0.5471
RETAIN 0.8473 0.9206 0.8824 0.8131 0.8452 0.9176 0.8799 0.7956 0.5476
RETAIN+ 0.8336 0.9499 0.8879 0.8349 0.8326 0.9457 0.8848 0.8289 0.5556
DIPOLE 0.8401 0.9323 0.8904 0.8317 0.8384 0.9445 0.8879 0.8226 0.5397
DIPOLE+ 0.8581 0.9355 0.8948 0.8470 0.8572 0.9335 0.8929 0.8283 0.5633
Deep K-means 0.7735 0.9999 0.8624 0.6055 0.7735 0.9998 0.8601 0.5001 0.5103
CAMELOT 0.7803 0.9650 0.8618 0.5070 0.7803 0.9652 0.8600 0.5080 0.5108
DirPred-I 0.8272 0.9797 0.8971 0.8532 0.8262 0.9768 0.8952 0.8494 0.5651
DirPred-II 0.8778 0.9223 0.8994* 0.8692* 0.8773 0.9192 0.8972* 0.8576* 0.5980*
DirPred-III 0.8706 0.9223 0.8956 0.8514 0.8690 0.9194 0.8933 0.8470 0.5819
DirPred 0.8722 0.9340 0.9022 0.8778 0.8714 0.9307 0.8997 0.8625 0.6041
Table 3
The risk prediction results for the N2C2-2014 dataset. The best results are highlighted in bold, and the second-best results are marked with an asterisk (*).

Models N2C2-2014

Micro Macro ACC

Precision Recall F1 AUROC Precision Recall F1 AUROC

SVM 0.6068 0.9972 0.7539 0.5074 0.6063 0.9973 0.7441 0.5073 0.1869
XGBOOST 0.6062 0.9948 0.7540 0.5080 0.6070 0.9948 0.7437 0.5076 0.1826
CAML 0.6846 0.8502 0.7565 0.7333 0.6525 0.8142 0.7078 0.6572 0.2348
CAML+ 0.8908 0.9136 0.9007 0.9428 0.8893 0.9022 0.8949 0.9462 0.5627
CAML++ 0.8376 0.9275 0.8903 0.9239 0.8543 0.9175 0.8877 0.9221 0.5122
RETAIN 0.7556 0.8466 0.7949 0.8194 0.7392 0.8162 0.7716 0.7949 0.3126
RETAIN+ 0.8859 0.9118 0.8994 0.9204 0.8902 0.9023 0.8973 0.9082 0.5347
DIPOLE 0.7669 0.8341 0.7990 0.8253 0.7546 0.8000 0.7715 0.8118 0.2957
DIPOLE+ 0.8961 0.9201 0.9036 0.9376 0.8975 0.9128 0.8977 0.9226 0.5923
Deep K-means 0.6781 0.8272 0.7452 0.6774 0.5074 0.7453 0.6003 0.5187 0.1308
CAMELOT 0.6057 0.9999 0.7544 0.6803 0.6057 0.9999 0.7439 0.5754 0.1905
DirPred-I 0.9175 0.9344 0.9273* 0.9382* 0.9104 0.9275 0.9185* 0.9296* 0.6459
DirPred-III 0.8972 0.9306 0.9136 0.9346 0.8971 0.9209 0.9077 0.9284 0.6467*
DirPred / DirPred-II 0.9270 0.9379 0.9323 0.9592 0.9209 0.9360 0.9278 0.9638 0.7050

★ Please note that DirPred-II for the N2C2-2014 dataset is equivalent to DirPred because only medical notes data from the N2C2-2014 dataset are used.
his observation implies that our model is the state-of-the-art predictive
lustering method in the disease risk prediction task. The improvements
re attributed to the development of the neural Dirichlet process model.

.4.3. Comparison with Class 3 models
When comparing the non-parametric clustering-based approaches

i.e. DirPred-II and DirPred) with the parametric clustering approaches
i.e. DirPred-I), the results from Table 2 and Table 3 suggest that
he former outperforms the latter on both datasets. This observation
ndicates the superior performance of the non-parametric clustering
ethod for the disease prediction task. For MIMIC-III, which contains

dditional clinical events and laboratory results, we further investigate
he impact of including them in our model. By comparing DirPred-II
the ablated version of DirPred without using additional information)
ith DirPred, we find that incorporating auxiliary information can im-
rove performance. We also demonstrate the effectiveness of the prior
odule by introducing the ablated version, DirPred-III. By comparing
irPred-III with DirPred, we can see that the predictive performance

s significantly reduced without the prior module, especially for the
2C2-2014 dataset.

.5. Broadening model scope: Capturing intra-visit variations

To further explore the capabilities of our DirPred model with vary-
ng medical data inputs, we have undertaken an experiment specifically
ocusing on its proficiency in capturing intra-visit patients’ latent health
8

state variations related to acute disease risk, such as sepsis. We un-
dertake a comparative analysis between our model, DirPred, and the
baseline model DIPOLE (it has demonstrated the highest performance
evaluation scores across all baseline models) on the MIMIC-III dataset
(while the N2C2-2014 dataset does not include time-series input fea-
tures). To demonstrate the ability of our model to capture intra-visit
variations, we have implemented a transition from utilizing textual
inputs for each patient hospital visit to employing continuous time-
series laboratory testing results within each visit. Furthermore, we have
substituted the text encoder with an RNNs-based network—GRU. The
results presented in Table 4 show that our DirPred model attains the
highest evaluation scores across all metrics, thereby substantiating its
superior capability in capturing intra-visit variations.

5. Discussion

5.1. Local-level explainability

Our proposed model can assist clinicians and patients in extracting
valuable features from EHR data by providing local-level evidence
through an attention mechanism. Fig. 4 displays the local-level ex-
plainable results of the attention mechanism. We randomly selected
three patient cases from the test dataset to demonstrate the model’s
performance, where the highlighted input features are the ones that
gained high attention scores in the attention mechanism.

For example, patient case 1 is at risk of ‘‘acute cerebrovascular
disease’’. Our model highlights words or phrases from medical notes,
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Table 4
Evaluation performance on an acute disease risk (sepsis) with continuous time-series laboratory testing results as the input. The best results are highlighted in bold.

Models MIMIC-III

Micro Macro ACC

Precision Recall F1 AUROC Precision Recall F1 AUROC

DIPOLE 0.8220 0.8220 0.8220 0.6955 0.5366 0.5005 0.4543 0.6955 0.8220
DirPred 0.8261 0.8261 0.8261 0.7130 0.9127 0.5080 0.4680 0.7130 0.8261
Fig. 4. Local-level explainable results were obtained from the attention mechanism for three randomly selected patient cases. The highlighted input features gained high attention
scores (top 20%) in the attention mechanism and provided important information for disease risk prediction.
Fig. 5. The cluster assignments and medical terminologies of six randomly selected patients from their first three hospital visits.
such as ‘‘cerebral angiogram embolization’’, ‘‘underwent craniotomy
resection petra clinoid lesion’’, and ‘‘craniotomy’’, which are explicitly
semantically related to diagnosing diseases. For clinical events, ‘‘hep-
arin sodium’’ is a medication that is related to cerebrovascular disease
treatment [50]. Regarding laboratory testing results, parameters such
as ‘‘fraction inspired oxygen’’, ‘‘glucose’’, ‘‘oxygen saturation’’, ‘‘tem-
perature’’, and ‘‘pH’’ are commonly measured in patients with acute
cerebrovascular disease [51]. Similar findings were also observed in
the other two patient cases.

5.2. Cluster-level explainability

We present the results of clustering patients’ latent health states
using our predictive clustering-based model, which not only predicts
9

disease risks but also groups latent states into different clusters to pro-
vide cluster-level explainable evidence. Fig. 5 displays the assignments
of six patients randomly selected from the test dataset. By examining
the cluster assignments indicated by Cluster ID, we observe that the
trajectories of patients’ latent health states (i.e., cluster assignments at
different time points) change across different hospital visits. Specifi-
cally, patient 1 first stays in cluster 5 and then remains in cluster 1 for
the remaining two visits; patients 2, 3, and 4 are assigned to clusters 1,
3, and 2, respectively, for all three hospital visits; patient 5 is assigned
to clusters 3, 2, and 1 in three consecutive visits; patient 6 is assigned
to cluster 4 at the 1st and 3rd hospital visits and cluster 2 at the 2nd
hospital visit.



Decision Support Systems 181 (2024) 114228S. Niu et al.
Fig. 6. The performance of disease risk prediction under different settings.
The detected clusters by predictive clustering can be used to explain
patients’ health states by analysing each cluster’s common characteris-
tics. Fig. 5 shows the most frequent medical terminologies associated
with EHRs in each cluster. We find that most terminologies in each
cluster fall under one broad disease category. For example, cluster 1 is
related to cardiovascular diseases, where ‘‘cardiac arrest’’ is a typical
symptom of cardiovascular disease [52], ‘‘cirrhosis’’ may be caused by
heart disease [53], ‘‘neutropenia’’ could aggravate acute cardiovascular
diseases [54], and ‘‘melanoma’’ demonstrated that cardiac metastases
occurred in up to 65% of the cases [55]. Cluster 2, is related to
respiratory system diseases, and sometimes severe ‘‘hypoglycemia’’ can
lead to respiratory failure [56]. Similar findings are also observed for
the other three clusters. By understanding these clusters and analysing
the changes in cluster assignments for each patient over time, we can
gain insights into the changes in their health states, which in turn can
support the changes in the risk prediction results.

5.3. Sensitivity analysis

We have conducted a sensitivity analysis to investigate how the
number of clusters, denoted by , and the truncation parameter, de-
noted by 𝐾, would affect the performance of DirPred-I and DirPred,
respectively. Fig. 6 illustrates the F1 scores obtained by varying the
values of  and 𝐾 within the range of [8, 10, 16, 30, 40, 50, 80]. It
can be observed that the F1 curves of DirPred-I display more significant
fluctuations than those of DirPred across different settings. For DirPred-
I, the optimal number of clusters leading to the highest F1 scores
for the MIMIC-III and N2C2-2014 datasets are 8 and 16, respectively.
These values align with the recommendations proposed by [15] that
we have adopted in the previous experiments. In contrast, for DirPred,
the F1 values remain relatively stable when changing the truncation
parameter. This observation suggests that the performance of DirPred is
less sensitive to the choice of truncation parameter, which is a notable
advantage of non-parametric clustering methods.
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6. Conclusions

In this paper, we have proposed a novel explainable AI model,
the non-parametric predictive clustering, for disease risk prediction in
healthcare decision-making. Our model utilizes longitudinal medical
notes along with auxiliary information and provides multi-level ex-
plainable evidence simultaneously. The predictive clustering approach
groups latent health states and uses the weighted representation of
cluster centers for risk prediction without pre-defining the exact num-
ber of clusters. To accomplish this, we adopt the Dirichlet process
mixture model as a non-parametric clustering approach. To effectively
couple non-parametric processes with neural networks, the model is
trained using the stochastic gradient descent variational Bayesian in-
ference method. The posterior of the parameters in the non-parametric
clustering algorithm is approximated using both the current and histor-
ical information. To encode heterogeneous information from multiple
modalities of EHRs, we adopt the soft Prompt learning approach for
data fusion. In order to capture temporal dependencies and construct
a dynamic model, a prior network is specifically engineered to fur-
nish prior parameters derived from the previous latent state. In our
experiments, our model demonstrates superior predictive performance
over state-of-the-art comparative models on two popular real-world
EHR datasets. Additionally, it provides local-level and cluster-level
explainable evidence to identify valuable information contained in EHR
data and interpret patients’ latent health states.
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