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Abstract: Over 10,000 arthropod species are currently considered to be pest organisms. 
They are estimated to contribute to the destruction of ~14% of the world’s annual crop 
production and transmit many pathogens. Presently, arthropod pests of agricultural and 
health significance are controlled predominantly through the use of chemical insecticides. 
Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection 
pressure that has led to the development of insecticide-resistant arthropods, as well as 
concerns over human health and the environment. Bioinsecticides represent a new 
generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, 
recombinant baculoviruses, toxin-fusion proteins and peptidomimetics) and show promise 
as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom 
peptides are now being investigated as potential sources of bioinsecticides. With an 
estimated 100,000 species, spiders are one of the most successful arthropod predators. 
Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that 
cause insect paralysis or lethality through the modulation of ion channels, receptors and 
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enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. 
Here we review the structure and pharmacology of these toxins and discuss the potential of 
this vast peptide library for the discovery of novel bioinsecticides. 
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1. The Global Insect Pest Problem 

1.1. Agricultural Pests 

Arthropods are the most successful and diverse group of animals, with an estimated 2.8–10 million 
global species [1]. While only around 10,000 species are recognised as crop pests, approximately 14% 
of global crop loss and 20% of damage to stored food grains are due to insects [2,3]. This results in an 
estimated USD100 billion in damage each year [4]. Phytophagous (plant-eating) arthropods are the 
major cause of this crop loss. These include insect species from the Orders Coleoptera (beetles), 
Orthoptera (locusts and grasshoppers) and Lepidoptera (moths and butterflies) [5]. While the larval 
forms of lepidopterans are considered the most destructive [6], with 40% of chemical insecticides 
directed against heliothines [7], insect species from the Order Diptera (true flies), Hemiptera  
(true bugs), Thysanoptera (thrips) and Acarina (mites) are also recognised as important crop pests [6,8]. 
The crop loss caused by insect pest damage diminishes our ability to meet the ever-increasing demand 
for food production to sustain the world’s population, which is expected to grow from ~7 billion to 
around 9.31 billion people in the next 40 years (U.N. Department of Economic and Social Affairs; 
http://esa.un.org/unpd/wpp/unpp/panel_population.htm). 

1.2. Vectors of Disease 

A number of arthropod pests act as disease vectors for the transmission of infectious diseases of 
human and veterinary health importance [9]. In particular, insects belonging to the Order Diptera, such 
as mosquitoes, midges and flies, are major disease vectors [10–12]. Hematophagous (blood-sucking) 
dipterans are collectively responsible for a wide variety of infections known to cause human morbidity 
and mortality, including malaria, dengue fever, West Nile virus, yellow fever, filariasis, leishmaniasis, 
Japanese encephalitis and African trypanosomiasis [10–12]. Other disease vectors include ticks, fleas, 
lice and triatomid bugs [13], which are responsible for the transmission of infectious diseases such as 
Lyme disease, ehrlichiosis, various rickettsioses, Rocky mountain spotted fever, tularemia, bubonic 
plague, Chagas disease and Bartonella [10,11,14–17]. Newly emerging diseases, such as 
onchocerciasis, Barmah Forest virus, Japanese spotted fever and dengue-dengue hemorrhagic fever are 
also vectored by arthropods [10]. Of these infectious diseases, malaria best exemplifies the need for 
insect pest control due to the fact that 3.3 billion people—almost 50% of the world population—live in 
areas at risk of transmission [18]. There were 216 million cases of malaria in 2010, averaging one 
death every minute, most of whom were children under the age of 5 [19]. Treatment is available, yet 
the infection still accounts for 20% of all childhood deaths in Africa [20].  
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Arthropod-mediated viral, rickettsial, bacterial and protozoan diseases pose not only a threat to 
human health, but also have consequences for global food production. Poultry and livestock diseases 
such as African swine fever, Akabane disease, bovine ephemeral fever, equine encephalitis, blue 
tongue fever and epizootic hemorrhagic fever all have the potential to compromise animal health. 
Symptoms range from lameness, blindness, wasting, congenital defects, spontaneous abortion and 
sterility to death, with infected livestock often being destroyed [21]. Currently, arthropod pest control 
and eradication programs rely on synthetic chemical insecticides as a means of reducing, if not 
eliminating, the prevalence of these debilitating diseases in humans and animals. 

2. Agrochemical Insecticides: Current Challenges to Insect Pest Control 

Chemical insecticides were first introduced in the 1940s and they remain the major method for 
controlling insect pests. Chemical insecticides were seen as promising tools for insect control with the 
remarkable success of DDT in malaria eradication programs [22,23]. Organophosphates were then 
introduced in the 1960s [23]. The widespread use of organophosphates and other chemical insecticides 
in agriculture and malaria eradication programs provided a quick and relatively cheap solution to the 
growing insect pest problem. However, major problems with the use of agrochemicals have arisen 
including (i) a lack of phyletic specificity resulting in human health and environmental impacts, and 
(ii) a lack of diversity in the bioactivity of these compounds leading to insecticide resistance.  

2.1. Health Consequences and Environmental Impacts 

To provide effective and safe insect control it is important that insecticides act with high affinity 
only at specific sites within the target invertebrate. Unfortunately, the majority of current 
agrochemicals act on targets conserved across insects and non-target organisms, including humans. As 
a consequence, acute toxicity is well documented in both animal models and humans. For example, in 
the developing world, over 250,000 people die each year from suicide and deliberate self-harm using 
insecticides and other pesticides. [24,25]. These deaths are responsible for about a third of suicides 
globally [24] and the World Health Organization (WHO) now recognizes pesticide poisoning to be the 
single most important means of suicide worldwide [26]. 

The effects of chronic exposure to residual chemical pesticides, however, remain controversial [27]. 
Epidemiological studies have purported to show a link between exposure to chemical pesticides and 
the development of cancers including pancreatic cancer, multiple myeloma, leukaemia, ovarian cancer 
and prostate cancer (for a review see reference [28]). However, the evidence is not substantial and 
currently only arsenic-containing insecticides are considered carcinogenic, while others are only 
suspected of carcinogenicity [29]. There are also possible links between chronic pesticide exposure 
and congenital defects [28,30], preterm birth [31], Parkinson’s disease [32–36], and 
neuropsychological dysfunctions (for a review see reference [37]).  

Adverse environmental effects are also of concern. Due to the indiscriminate actions of some 
agrochemical insecticides, beneficial insects (e.g., pollinators such as bees and butterflies), birds, 
aquatic invertebrates and fish can also succumb to the toxic effects of these agents either  
through direct, or indirect, exposure in the form of spray drift, run-off or leaching [38–40]. Some 
agrochemicals also persist in the environment, with insecticides such as DDT highlighting the 
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deleterious effects of bioaccumulation. These environmental problems along with human health 
concerns have seen the de-registration or use-cancellation of 169 insecticides between January 2005 
and December 2009, with only 9 new insecticides registered during the same period [41].  

2.2. Insecticide Resistance 

The vast majority of agrochemicals act on a single target within the insect nervous system. Indeed 
chemical insecticides interact with just one of five main targets—voltage gated sodium (NaV) 
channels, glutamate receptors, γ-aminobutyric acid (GABA) receptors, nicotinic acetylcholine 
receptors and acetylcholinesterases [42]—although a new class of insecticide has recently been 
developed that targets ryanodine receptors [43]. As a result, the use of agrochemicals with so few 
targets has promoted the evolution of resistance to a number of insecticide families [17,44]. There are 
multiple ways that this insecticide resistance can arise: (i) increased metabolic detoxification,  
(ii) decreased target sensitivity, and/or (iii) increased sequestration or lowered insecticide  
bioavailability [17,44]. The molecular mechanisms responsible for these increases in resistance include 
point mutations in the ion channel of the GABA receptor or NaV channel, mutations in the active site of  
acetylcholinesterase, amplification of esterase genes, and mutations causing up-regulation of detoxification 
enzymes [17,44–46]. Unfortunately, resistance has now arisen in almost all insect vector  
species [47,48]. In particular, increases in the number of surviving insect vectors following treatment 
with insecticides is predicted to directly influence the resurgence [49], or challenge the management, 
of vector-borne diseases [47]. 

These problems indicate the need to identify new and safe insecticidal lead compounds, validate 
novel insecticidal targets and develop alternate methods of effective insect control. Therefore, it is 
crucial that we identify novel insecticides that can exploit subtle differences in targets that are 
conserved between insects and vertebrates, or agents that target structures only found in insects. 

3. Bioinsecticides as Natural Insect Pest Control Agents 

Bioinsecticides are being investigated as potentially more efficacious and safer alternatives to 
chemical insecticides. Bioinsecticides are natural organisms, or their metabolic products, that can be 
employed for the control of insect pests. One aim is to develop bioinsecticides to help mitigate 
environmental concerns associated with persistent, broad-spectrum chemical insecticides and provide 
new control options for insecticide-resistant pest insects [50]. Furthermore, bioinsecticides have the 
potential to improve the efficacy of current pest management programs, and in some cases exhibit 
synergism with existing integrated pest management (IPM) techniques [51].  

In 2009 the global pesticide market was valued at approximately USD43 billion, with a predicted 
compound annual growth rate (CAGR) of 3.6% and a projected value of USD51 billion in 2014 [52]. 
In contrast, the global biopesticide sector has grown more strongly, with a CAGR of 15.6% and an 
increase in value from USD1.6 billion in 2009 to an estimated USD3.3 billion in 2014. In 2006, 
orchard crops had the largest share of biopesticide use at 55%, and in the same year biopesticides 
represented roughly 2.5% of the global pesticide market [53]. However, synthetic pesticides still retain 
the highest market share, with a CAGR of 3% leading to an estimated value of USD48 billion in  
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2014 [52]. Nevertheless, the 5-fold higher CAGR for biopesticides has resulted in increased interest in 
this sector of the market [53].  

The potential sources of biopesticides include microbes (viral, fungal, bacterial), entomophagous 
nematodes, plant-derived products, insect pheromones and insect resistance genes expressed in crops 
(for a review see reference [54]). In particular, insecticidal toxins derived from insect predators and 
parasitoids are of growing interest in the development of bioinsecticides, and these include peptide 
neurotoxins derived from the venoms of scorpions [55], parasitic wasps [56], the straw itch mite [57], 
and spiders [58,59]. Currently, there is a great deal of interest in spider venoms as they comprise an 
extensive library of potent insecticidal, neurotoxic peptides. 

4. Spider Venoms: Sources of Novel Bioinsecticides 

Spiders are ancient creatures that evolved from an arachnid ancestor around 300 million years ago 
during the Carboniferous period. This highlights the long evolutionary timescale over which spiders 
have evolved their complex venom. Spiders are the most speciose venomous animal and along with 
predatory beetles are the most successful terrestrial predators, with over 42,000 extant species 
described to date [60]. This may be an under-representation of their true speciation, with about four 
times as many species predicted to exist, but not yet characterised [61]. One of the major features 
contributing to the overall success of spiders is the production of a highly toxic venom from their 
venom glands that they employ to subdue prey and deter predators. Since they rely completely on 
predation as a trophic strategy, spiders have evolved a complex pre-optimized combinatorial library of 
enzymes, neurotoxins and cytolytic compounds in their venom glands [62–69]. These venom 
components fall into three classes delineated by their molecular mass: (i) low molecular mass 
acylpolyamines and other nonpeptidic molecules (<1 kDa), (ii) disulfide-rich neurotoxins and linear 
cytolytic peptides (1–10 kDa), and (iii) high molecular mass proteins (>30 kDa) comprising mainly 
enzymes and neurotoxins. Most spider venoms are dominated by small disulfide-rich peptide 
neurotoxins (Figure 1B), and these are the largest and most extensively studied group of spider toxins.  

To date, around 800 peptide toxins from 78 spider species have been described in ArachnoServer 2.0 
(www.arachnoserver.org), a curated database containing available information on spider-venom 
peptides and proteins [70,71]. These toxins were isolated from the venom of 20 of the 110 extant 
spider families, including representatives from the two major infraorders Araneomorphae (“modern” 
spiders) and Mygalomorphae (“primitive” spiders) (Figure 1A). Araneomorphs represent >90% of all 
known spider species. However, mygalomorphs are a more sustainable and convenient source of 
venom due to their large venom glands and their longevity (they can live for over 25 years). In recent 
years, it has become clear that spider venoms are considerably more complex than previously 
appreciated, with some venoms containing more than 1000 distinct peptides [72]. If one uses a 
conservative estimate of 100,000 species and 200 peptides per venom, then spider venoms may contain 
upwards of 10 million bioactive peptides [73]. Less than 0.01% of this proteomic diversity has been 
explored to date. 
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Spiders utilize their venoms to paralyze and/or kill prey or predators as rapidly as possible. 
Therefore their venoms are particularly rich in neurotoxins that rapidly modify ion conductance  
(ion channel toxins), and to a lesser extent affect neurotransmitter exocytosis (presynaptic toxins). 
However, like scorpion toxins, they appear to lack significant numbers of postsynaptic toxins that 
block the action of neurotransmitters, which are particularly common in the venom of snakes and, to a 
lesser extent, marine cone snails. Many of these spider peptide toxins are selectively insecticidal. In 
particular, insect-selective toxins have been patented for their possible use as bioinsecticidal agents for 
the control of phytophagous pests or insect vectors [74]. The focus of this review is the discovery, 
processing, structure, and function of insecticidal spider-venom peptides. In particular, it will detail the 
site and mechanism of their action, the molecular determinants for their pharmacology, and discuss the 
application of these peptides in the development of novel bioinsecticides.  

5. Spider-Venom Peptide Nomenclature 

Recently there has been an exponential increase in the number of spider toxins that have been 
reported in the literature [75]. This has resulted from the advent of modern high-throughput analytical 
techniques involving proteomic, transcriptomic and genomic approaches. As a result, a rational 
nomenclature system based on a Greek letter “activity prefix’ together with a toxin name based on the 
family, genus and species of the spider has been recently proposed [75]. This nomenclature has been 
adopted by UniProtKB and ArachnoServer 2.0. This review will employ this new nomenclature to 
facilitate identification of orthologs and paralogs, but we will also provide original names of the toxin. 
In addition, readers are directed to relevant entries in the ArachnoServer 2.0 database for original 
literature references, biological activity, molecular targets, sequence and 3D structure (where known). 

6. Structure of the Precursor Spider-Venom Peptide and Post-Translational Processing  

Similar to peptides from marine cone snails and sea anemones, spider-venom peptides are translated 
as precursors that undergo post-translational modification to yield the mature toxin [68]. These 
precursors are typically composed of an N-terminal signal peptide of 15–47 residues that generally 
precedes a propeptide region rich in acidic residues and of highly variable length, followed by a single 
downstream copy of the mature toxin sequence (Figure 2A). However, some larger spider-venom 
proteins do not contain a propeptide region in their precursor. 
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Figure 1. Distribution of spider-venom peptides. (A) Distribution of characterized 
araneomorph and mygalomorph spider-venom peptides organized by spider family. 
Abbreviated toxin family names are indicated on the right hand ordinate. Bars in dark grey 
indicate insecticidal toxins, while light grey bars are non-insecticidal peptides, including 
those with unknown activity, from the same spider family; (B) Mass distribution of 
characterized spider-venom peptides. Masses represent the monoisotopic oxidized mass 
sorted into 500 Da bins. The overlaid curve shows the cumulative total number of peptides. 
Dark grey columns show mass ranges dominated by proteins with sphingomyelinase D 
(SMase D) activity from Loxosceles spp., as well as latrotoxins (LTX), latroinsectoxins 
(LIT) and latrocrustatoxins (LCT) from Latrodectus spp. N-terminal fragments are not 
included in the data. Note the discontinuous abscissa in both panels. Data were collated 
from the ArachnoServer 2.0 Spider Toxin Database (www.arachnoserver.org; [70], 
accessed on 20 January 2012). 
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It appears that during evolution toxin diversity is maintained through gene duplication followed by 
focal hypermutation in the mature peptide region while conserving the basic disulfide framework [68]. 
Hypermutation of the mature toxin sequence often gives rise to new pharmacological activity. Peptide 
libraries of toxin paralogs are maintained, with spider species capable of expressing up to 26 variants 
(homologs/isoforms) of a single peptide toxin (e.g., U2-AGTX-Ao1a to -Ao1z [70]). Despite this high 
diversity, the signal sequence within the prepropeptide and the Cys residues responsible for correct 
protein folding are highly conserved [68]. The signal peptide is presumably conserved since its role is 
to direct the precursor to a specific secretory pathway to ensure correct peptide folding. The specific 
role(s) of the propeptide region is still not understood but it may enhance folding of the mature toxin 
and provide signals for post-translational modifications (PTMs) such as N-terminal pyroglutamate 
formation, palmitoylation, and C-terminal trimming and amidation (Figure 2B). However,  
insecticidal spider peptide toxins have only been observed with palmitoylation and C-terminal 
trimming/amidation. In the case of the high molecular mass latroinsectoxins, from Latrodectus spp. 
(widow spiders), the N-terminal propeptide is absent (Figure 2A). These mechanisms have allowed 
spiders to evolve vast libraries of peptides with variable pharmacological activity.  

7. Structural Motifs of Spider-Venom Peptides: Variations on an Ancestral Fold 

Around 90% of spider-venom toxins are compact globular proteins possessing several disulfide 
bridges. The number of disulfide bridges ranges from one to seven, but nearly 60% of all toxins have 
three bridges (Figure 2C). These peptides, predominantly targeting voltage-activated ion channels, 
often contain a “disulfide pseudo-knot” which places them in a class of toxins and inhibitory 
polypeptides with an “inhibitor cystine-knot” (ICK) motif [76]. This structural motif is normally 
exemplified by a triple-stranded, antiparallel ȕ-sheet stabilized by disulfide bridges. Since not all ICK 
peptides exhibit the N-terminal ȕ-strand (ȕ1 in Figure 3Cb), a modified definition composed of  
“an antiparallel ȕ-hairpin stabilized by a cystine-knot” without a mandatory third ȕ-sheet has been 
proposed [76–78]. The three disulfide bridges and intervening backbone form a pseudo-knot consisting 
of a ring (CysI-CysIV, CysII-CysV) penetrated by a third disulfide bridge (CysIII-CysVI) [76]; see  
Figure 3Db. The ICK has a consensus sequence of -Cys-X3–7-Cys-X3–8-Cys-X0–7-Cys-X1–4-Cys-X4–13-Cys- 
where X is any amino acid [76]. Within this fold-class, the biological activities of spider ICK toxins 
are quite diverse with activity at voltage-activated sodium (NaV), calcium (CaV), and potassium (KV) 
channels, acid-sensing ion channels (ASICs), transient receptor potential (TRP) channels, and 
mechanosensitive channels (MSCs) (see below). This highlights the observation that different 
biological functions are often grafted onto the same, or similar, structural scaffolds. 
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Figure 2. Precursor architecture and posttranslational modifications in spider-venom 
peptides. (A) All insecticidal spider-venom toxins display a classical prepropeptide 
paradigm except LITs (e.g., Į-LIT-Lt1a) from Latrodectus spp. Ȧ-AGTX-Aa1a from 
Agelenopsis aperta is a heterodimer consisting of a 66-residue major chain that is linked 
via a disulfide bond to a 3-residue minor chain; (B) Known PTMs in spider-venom 
peptides (dark grey bars) as well as probable PTMs (light grey bars) and those predicted 
from sequence homology (white bars); (C) Distribution of the number of disulfide bonds 
found in insecticidal spider toxins (dark grey bars) and non-insecticidal peptides  
(light grey bars). Peptides with unknown disulfide connectivity are not shown. Note the 
discontinuous axes in all panels. Data were collated from the ArachnoServer 2.0 Spider 
Toxin Database (www.arachnoserver.org; [70], accessed on 20 January 2012). 
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Another structural fold has been defined for spider toxins. The disulfide-directed ȕ-hairpin (DDH) 
fold lacks the disulfide knot and is composed of a double-stranded antiparallel ȕ-hairpin stabilized by 
two mandatory disulfide bridges with a current consensus sequence of -CysX4–19-CysX2(G or P)X2-
CysX4–19-Cys-, where X is any amino acid (Figure 3A,B). The ICK motif appears to have evolved 
from this simpler canonical ancestral fold [79,80]. This DDH fold has been observed in a range of 
peptides with unknown targets such as the MIT-like U1-HXTX-Hv1a [81] and U1-TRTX-Lp1a  
and -Lp1b [63], and the insecticidal toxins U1-TRTX-Hh1 toxins, U1-TRTX-Asp1f and -Asp1g [63]. 
The ICK fold in particular creates hyperstable mini-proteins that are typically resistant to extremes of 
pH, organic solvents, and high temperatures [82]. However, from a bioinsecticide perspective, their 
most important property is their resistance to proteases. Specific differences in the DDH and ICK 
structural folds, determined by the spacing between cysteine residues and their connectivity, is critical 
for the presentation of key functional residues to the target. This together with their protease resistance 
and compact nature provides an effective scaffold for the design of bioinsecticides, including 
peptidomimetics, as well as molecular tools and therapeutics [76]. Finally, another structural motif that 
has been reported in spider venoms is the Kunitz-type toxin motif characterised by an N-terminal  
310 helix, C-terminal Į-helix and a triple-stranded antiparallel ȕ-sheet with a CI-CVI, CII-CIV, CIII-CV 
disulfide bonding pattern. Peptides and proteins with this motif exhibit potassium channel blocking 
activity and also act as serine protease inhibitors. This structural fold has been discovered in toxins 
from a variety of other venomous animals including cone snails, scorpions, sea anemones, snakes, 
ticks, and wasps, and but has so far only been reported in the venoms of two theraphosid spiders 
(Haplopelma schmidti and H. hainanum) and one araneid spider (Araneus ventricosus) [83]. 

8. Insecticidal Targets of Spider Neurotoxins 

There are predicted to be at least 10 million bioactive spider-venom peptides [73] of which only 
800 have been characterized. Of the 800 peptides in the ArachnoServer 2.0 Database, 136 are 
insecticidal with 38 being insect-selective, 34 non-selective and 64 of unknown phyletic selectivity 
(these data do not include homologs whose activity and phyletic selectivity is yet to be determined). Of 
the insecticidal spider toxins the molecular target has only been identified for 85 (63%). To date, the 
most common identified targets of insecticidal spider-venom toxins are NaV channels (n = 33), CaV 
channels (n = 33), the lipid bilayer (n = 11), calcium-activated potassium (KCa) channels (n = 7), 
presynaptic nerve terminals (n = 2) and N-methyl-D-aspartate (NMDA) receptors (n = 1); see Figure 4. 
However, these statistics may be skewed by the rather limited range of targets that have been assayed 
to date. With advances in venom screening technologies [84], it is likely that spider toxins with novel 
molecular targets will be discovered in the near future. In the subsequent sections we review the 
structure and pharmacology of some of the insect-selective toxins that have been identified in  
spider venoms. 

8.1. Spider-Venom Peptides Targeting Insect NaV Channels 

Mammalian and insect NaV channels mediate inward sodium conductance during the depolarisation 
phase of the action potential and regulate a wide range of physiological processes [85,86]. The crystal 
structure of a bacterial NaV channel has recently been determined and it has confirmed the structural 
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basis for voltage-dependent gating, ion selectivity and drug block of the channel [87]. The NaV 
channel contains a pore forming Į-subunit, associated with one or two auxiliary ȕ-subunits [88]. The 
Į-subunit has four homologous domains (I–IV) that are further divided into six transmembrane 
sections (S1-S6). The voltage-sensing domain is composed of the S1–S4 segments that flank the pore 
module comprising the S5 and S6 segments. The re-entrant P-loop between S5 and S6 forms the 
narrow ion-selectivity filter at the extracellular end of the pore [88]. The S4 segment acts as the 
voltage sensor by locating charged amino acids within the membrane electric field that undergo 
outward displacement in response to depolarization and initiate opening of the ion pore [89]. Sodium 
channel inactivation is mediated by a short intracellular loop connecting domains III and IV [90,91]. 

To date, nine mammalian NaV channels (NaV1.1–1.9) have been cloned and, in all cases except 
NaV1.9, functionally expressed [92]. Consequently the structural, functional and pharmacological 
diversity of mammalian NaV channels is achieved primarily through expression of multiple genes. In 
contrast, insects appear to rely upon extensive alternative splicing and RNA editing of a single para 
NaV channel gene to provide channels with different functional properties. For example, gene splicing 
of the NaV channels has been observed at nine different sites in Drosophila [93,94]. This has the 
potential of leading to 100 distinct variants of the insect NaV channel. 

The wide range of para NaV channels are highly conserved across various insect orders, with 
sequence identities of 87–98% [95]. Hence, insecticides targeting insect NaV channels have broad 
toxicity across diverse insect orders. In contrast, para NaV channels have only low levels of sequence 
identity (50–60%) with mammalian NaV1.1–1.9 channels [95]. As a result, insect and mammalian NaV 
channels are distinguishable pharmacologically by the selective action of several chemical insecticides. 
These include DDT, pyrethroids, N-alkylamides, oxadiazines and dihydropyazoles [42,96,97], as well 
as a growing range of insect-selective NaV channel toxins including those derived from spider venoms. 
Much of the structure and function of NaV channels have also been determined using toxins derived 
from a range of animal venoms and plants. These molecular probes have enabled identification of at 
least seven allosterically coupled neurotoxin binding sites, referred to as neurotoxin receptor sites 1–7, 
of which three sites bind spider-venom peptides [98–100]. Toxins targeting NaV channels are 
expressed in most families of araneomorph and mygalomorph spiders, suggesting an early 
development during venom evolution. These spider toxins modulate neuronal excitability, resulting in 
paralysis (both flaccid and excitatory) and death in insects. Importantly, some spider toxins are highly 
selective for these three neurotoxin receptor sites on insect NaV channels and thus insect-selective 
spider neurotoxins have potential to be developed as bioinsecticides. Importantly, the three neurotoxin 
receptor sites do not correspond to the site targeted by pyrethroids, DDT or DDT analogues  
(site 7) [98] so the possibility of cross resistance between spider toxins and pyrethroids/DDT  
is negligible. 
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Figure 3. The ICK structural motif. Left-hand panels (A,B) show a schematic view of the 
3D structures of typical representatives of the ICK structural motif: (A) The insecticidal 
peptide į-AMATX-Pl1b (PDB 1V91) and (B) the insecticidal peptide Ȧ-HXTX-Hv1a 
(formerly Ȧ-ACTX-Hv1a; PDB 1AXH) showing the major pharmacophore residues. Panel 
(C) shows a schematic representation of the ICK motif depicting the formation of the 
cystine-knot and possible addition of the third ȕ-strand. The dark arrow (ȕ1) represents the 
additional ȕ-strand not always present in ICK spider-venom peptides (i.e., present in A but 
not B). (D) Stereoview of the cystine-knot motif of ț-TRTX-Scg1a (formerly SGTx1). In 
all panels, ȕ-strands are shown as gray arrows and disulfide bridges connecting cysteine 
residues are shown as dark gray lines with roman numerals. 

 

8.1.1. Spider-Venom Peptides Targeting Insect NaV Channel Site-1: Pore Blockers 

Site-1 neurotoxins, like the guanidinium-containing alkaloid neurotoxin tetrodotoxin (TTX), 
physically occlude the pore region of the channel and are referred to as pore blockers.  
ȝ-Theraphotoxin-Hhn2b (µ-TRTX-Hhn2b; formerly hainantoxin-I) is the most abundant component 
within the crude venom of the Chinese black earth tiger tarantula Haplopelma hainanum [101] and 
blocks insect channels with high affinity [102]. It displays 15-fold selectivity for the Drosophila para 
(DmNaV1) channel compared with rat NaV1.2, with no effect on rat NaV1.1 and NaV1.4–1.8  
channels [102]. It does not appear to alter ion selectivity, nor alter the voltage-dependence of 
activation or inactivation kinetics. However, µ-TRTX-Hhn2b is associated with a hyperpolarizing shift 
in the voltage dependence of steady-state NaV channel inactivation that stabilizes the channel in the 
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inactivated (closed) state and inhibits Na+ conductance [102]. It has been claimed that µ-TRTX-Hhn2b 
is the first spider toxin to selectively block Na+ conductance via an interaction with site-1. However, 
the significant shift in steady-state inactivation suggests a remote allosteric site of action to inhibit ion 
conductance rather than a pore block. Using a panel of alanine mutants, it was found that the key 
residues responsible for the interaction of µ-TRTX-Hhn1b (formerly HNTX-IV), a structurally related 
toxin with similar actions on mammalian NaV channels, are Lys27, Arg29, His28, Lys32, Phe5 and 
Trp30 [103]. Interestingly, His28 is substituted by the negatively charged Asp26 in µ-TRTX-Hhn2b, 
thus providing a possible molecular basis for the selectivity of µ-TRTX-Hhn2b for the insect  
Na channel. 

Figure 4. Molecular targets of spider toxins. Dark grey bars represent invertebrate targets of 
insecticidal spider-venom toxins, while light grey bars represent vertebrate targets. Toxins may 
have more than one target and may be phylum-selective or non-selective. Abbreviations: 
SMase D, sphingomyelinase D; GluR, glutamate receptor; ASIC, acid-sensing ion channel; 
MSC, mechanosensitive channel; TRP, transient receptor potential; KCa, calcium-activated 
potassium channel. Note the discontinuous abscissa. Data were collated from the 
ArachnoServer 2.0 Spider Toxin Database (www.arachnoserver.org; [70], accessed on 19 
January 2012). 

 

8.1.2. Spider-Venom Peptides Targeting Insect NaV Channel Site-3: Gating Modifiers of Inactivation 

Site-3 toxins induce a block or slow NaV channel inactivation and are referred to as gating modifiers 
of inactivation. The block or slowing of NaV inactivation generally produces an excitatory effect due to 
the increased activity of NaV channels [98,99]. į-Ctenitoxin-Pn1a [į-CNTX-Pn1a; formerly Tx4(6–1)] 
was isolated from Phoneutria nigriventer venom and has significant selectivity towards dipterans  
(ED50 of 36 pmol/g) and blattarians (ED50 of 95–477 pmol/g), with no neurotoxic effects in 
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lepidopterans or coleopterans [104]. į-CNTX-Pn1a specificity was further highlighted by the absence 
of effects on mammalian NaV1.2 and NaV1.4 channels [104,105]. į-CNTX-Pn1a is an excitatory toxin 
resulting in immediate knockdown, with trembling and uncoordinated movements [104]. It has been 
definitively established that į-CNTX-Pn1a interacts with site 3 of the insect NaV channel using 
competition binding assays where it displaces the site-3 ligand BomIV, an Į-like scorpion toxin [105].  

Insecticidal toxins have also been isolated from the Japanese funnel web spider Macrothele  
gigas [106]. In particular, µ-hexatoxin-Mg1a (µ-HXTX-Mg1a; formerly Magi-2) demonstrates high 
affinity and selectivity for the insect NaV channel that results in flaccid paralysis of insect larvae. In 
comparison, the toxin fails to induce any neurotoxic symptoms in mice [106]. The displacement of 
125I-LqhĮIT binding, another classical ligand of insect site-3, from cockroach neurons further implies 
that an interaction with site 3 is likely. µ-HXTX-Mg1a shares 68% sequence identity with an inactive 
homolog µ-HXTX-Mg1a (formerly Magi-1). A comparative study of these two toxins theorised that 
the string of cationic residues Lys16–Lys19 in µ-HXTX-Mg1a may be critical for toxin affinity [106]. 

8.1.3. Spider-Venom Peptides Targeting Insect NaV Channel Site-4: Gating Modifiers of Activation 

Toxins interacting with site 4 typically alter the threshold for action potential generation. 
Hyperpolarising shifts in the voltage dependence of activation result in the activation of NaV channel 
at, or near, resting membrane potentials, and result in an excitatory phenotype. In contrast, a 
depolarising shift in activation threshold results in a depressant phenotype due to the greater 
depolarisation required to open the channel. Consequently, toxins interacting with neurotoxin receptor 
site 4 are classed as either depressant or excitatory toxins.  

Four insecticidal peptides, į-amaurobitoxins (į-AMATX-Pl1a to -Pl1d; formerly PaluIT toxins), 
from the venom of Pireneitega luctuosa demonstrate high selectivity for insect NaV channels [107]. 
None of the į-AMATX-Pl1 toxins demonstrate activity following intracerebroventricular injection into 
mice [107]. Using native and cloned para/tipE insect NaV channels, į-AMATX-Pl1 toxins have been 
shown to slow insect NaV channel inactivation without any significant shifts in the voltage dependence 
of channel activation. However they fail to modulate the activity of mammalian NaV1.2 channels at 
concentrations up to 10 µM [108]. This action is similar to site-3 neurotoxins. Despite this they have 
been shown to displace the site-4 excitatory scorpion Į-toxin, Bj-xtrIT, but not the site-3 ligand 
LqhĮIT, on cockroach membranes [109]. In reciprocal experiments, Bj-xtrIT and the depressant 
scorpion Į-toxin LqhIT2 also displaced 125I-AMATX-Pl1b binding [109]. Thus į-AMATX-Pl1 toxins 
represent the first spider toxins that definitively bind to site-4 on insect NaV channels but modulate 
NaV channel inactivation, an action typically associated with site-3 toxins. 

The active site of the į-AMATX-Pl1 toxins consists of a discontinuous string of residues. A  
main hot spot of positively charged Arg residues (8, 26, 32 and 34) surrounded by aromatic  
Tyr residues (22, 30) stands distinct from another aromatic region (Trp12) that is considered critical 
for activity [109]. Asp19 also appears to play an important role in maintaining toxin activity, however 
it seems unimportant for target affinity. A similar feature has been observed on the scorpion toxin  
Bj-xtrIT with Glu15 playing a part in trapping the NaV channel voltage-sensor during channel 
activation [110]. An action such as this may, in part, account for disparity between toxin activity and 
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target affinity. These results contribute to the theory that the channel target site is more complex than 
originally perceived. 

The ȝ-agatoxin-Aa1 toxins (µ-AGTX-Aa1a to -Aa1f; formerly µ-Aga I–VI) are a family of 
terminally amidated 36–38 residue peptides isolated from the venom of the Western grass spider 
Agelenopsis aperta [111,112]. The six members of this family share a high degree of homology with 
the į-AMATX-Pl1 toxins [107] and belong to a larger group of µ-agatoxin-1 toxins from Agelena 
orientalis, Agelena opulenta and Hololena curta that are the most potent toxins to modulate the 
activity of NaV channels [111–115]. µ-Agatoxin-1 family toxins are insect-selective neurotoxins that 
cause a convulsive paralysis in insects. They are also specific to certain insect orders, being very 
potent in dipterans (LD50 of 30–1380 pmol/g), moderately potent in orthopterans (LD50 of  
944–4875 pmol/g), but only weakly active in lepidopterans (LD50 of 6565–18258 pmol/g). This action 
is the result of repetitive firing in insect axons resulting in a marked increase in spontaneous 
neurotransmitter release [111]. This results from a hyperpolarizing shift in the voltage-dependence of 
NaV channel activation [116,117]. This action is analogous to that reported for site-4 excitatory 
scorpion ȕ-toxins [118] and therefore it is likely that this family targets site-4, although this awaits 
further radioligand binding studies. However, µ-AGTX-1 toxins also slow NaV channel inactivation in 
insect motoneurons [116,117] an action shared by į-AMATX-Pl1 toxins. The similarities in primary 
structure and pharmacology of these toxins provide further support for the hypothesis that the insect 
site-4 is a macrosite, which may be allosterically linked to both channel activation and inactivation.  

8.1.4. Spider-Venom Toxins with an Unknown Site of Action on Insect NaV Channels 

A family of 56–59 residue µ-diguetoxin-1 toxins have been isolated from the weaving spider, 
Diguetia canities [119]. These toxins share moderate homology with each other however they do not 
appear to show any significant homology with any other venom peptides. This family consists of three 
toxins, isolated as a result of their potent insect paralytic activities, designated µ-DGTX-Dc1a to -Dc1c 
(formerly DTX9.2, DTX11 and DTX12). µ-DGTX-Dc1a demonstrates strong to moderately potent 
activity with a PD50 value of 380 pmol/g in lepidopterans [119,120]. In mice, ȝ-DGTX-Dc1a did not 
show any activity at 657 pmol/g after intraperitoneal injection. While the toxin produced an excitatory 
effect with increasing muscle spasms until paralysis, the toxin was not lethal. Interestingly, it was 
apparent that even if larvae recovered from the symptoms of toxicity, feeding was inhibited [119]. This 
is an important distinction in terms of developing insecticides for crop protection. Studies performed 
on neuromuscular preparations from Musca domestica (house flies) were used to further analyse the 
rapid and potent activities of these toxins. The application of µ-DGTX-1 toxins induced excitatory 
postsynaptic potentials [120]. Due to a TTX-dependent effect on cockroach action potentials it is likely 
that µ-DGTX-1 toxins target insect NaV channels [120], however further studies are necessary to 
definitively ascertain the site of toxin action.  
  



Toxins 2012, 4  
 

206

8.2. Spider-Venom Peptides Targeting Insect CaV Channels 

CaV channels are key signal transducers that convert depolarization of the cell membrane into an 
influx of extracellular calcium ions. This ion influx then triggers muscle contraction, hormone and 
neurotransmitter release, enzymatic activities and patterns of gene expression [99]. Many channel 
subtypes have been identified in both vertebrates and invertebrates. Insect CaV channels are divided 
into two broad families based on their voltage-dependence of activation. Low-voltage-activated (LVA) 
CaV channels are activated by small membrane depolarizations and show rapid voltage-dependent 
inactivation, whereas high-voltage-activated (HVA) CaV channels are only activated by larger 
depolarizations and inactivate more slowly. 

HVA CaV channels are composed of a pore forming unit (Į1), an extracellular subunit (Į2) linked to 
a transmembrane į domain through a disulfide bridge, an intracellular ȕ subunit and a transmembrane 
Ȗ subunit [121,122]. The transmembrane topology of the Į1 subunit of CaV channels is similar to NaV 
channels and voltage dependence of activation is modulated by a similar mechanism [123]. In contrast, 
LVA CaV channels are simpler in structure as they appear to comprise only the Į1 subunit [121,122]. 

Insects have a much smaller repertoire of CaV channels than vertebrates. For example, whereas the 
human genome encodes 10 pore-forming Į1 subunits, four ȕ subunits, four Į2-į complexes and seven 
Ȗ subunits, the genome of the fruit fly Drosophila melanogaster appears to encode only three Į1 
subunits, a single ȕ subunit, three Į2-į subunits and possibly a single Ȗ subunit [124]. However, insects 
are able to expand their array of functional CaV channels through alternative splicing and RNA  
editing [59]. Amino acid sequence comparisons indicate that the three Į1 subunits produced by 
Drosophila, designated Dmca1D, Dmca1A and Ca-Į1T, can likely be classified as HVA CaV1-, and 
CaV2- channels and LVA CaV3-type channels, respectively [59]. The fact that insects express only a 
single ortholog of each of three subtypes of CaV channels [95] might explain why loss-of-function 
mutations in the genes encoding Dmca1D and Dmca1A are embryonic lethal [125,126]. In contrast, 
the larger repertoire of CaV channels in vertebrates permits at least some functional plasticity since 
mice that harbour a knockout of the gene encoding the Į1 subunit of many CaV channel subtypes are 
viable [95]. This critical role in insects, coupled with <68% homology with their vertebrate 
counterparts and substantial differences in pharmacological sensitivities [127], makes insect CaV 
channels an ideal target for the development of bioinsecticides. However the weaker conservation of 
insect CaV channels across insect orders [95] suggests that it might be more challenging to develop 
blockers of these channels that have a broad spectrum of activity. Of course, the potentially beneficial 
corollary of this is that it may be easier to develop CaV channel blockers that target specific groups of 
insect pests without harming beneficial insects such as pollinators.  

8.2.1. Spider-Venom Peptides that Block Insect CaV1 Channels 

Ȧ-Hexatoxin-Hv1a (Ȧ-HXTX-Hv1a, formerly Ȧ-atracotoxin-Hv1a) is the prototypic member of a 
large family of toxins from the venom of Australian funnel-web spiders with high affinity and 
specificity for insect CaV channels [128–131] (Figure 3Da). These toxins have low ED50 values in 
Orthoptera, Hemiptera, Dictyoptera, Diptera, Coleoptera, Acarina and Lepidoptera [128,129,132] with 
no effect in vertebrates at up to 10,000-fold higher concentrations [129–131,133]. It has been proposed 
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that insect CaV1 channels are the primary target of Ȧ-HXTX-Hv1a [134]. However, recent studies 
revealed that Ȧ-HXTX-Hv1a is a moderately potent blocker of both MVA and HVA (putative CaV2) 
currents in cockroach DUM neurons [131]. Thus it appears that Ȧ-HXTX-Hv1a has high affinity for 
insect CaV1 channels (which may not be present, or present only at very low levels, in DUM neurons) 
and only moderate affinity for CaV2 channels. Thus, Ȧ-HXTX-Hv1a might be a useful 
pharmacological agent for simultaneous block of all insect HVA CaV channel subtypes. In contrast to 
its effect on insect HVA channels, the toxin has no effect on calcium currents in rat trigeminal  
neurons [128], nor does it block rat CaV1.2, CaV2.1 and CaV2.2 HVA channels at concentrations as 
high as 10 ȝM [135]. Transgenic expression of Ȧ-HXTX-Hv1a in tobacco plants results in protection 
from Helicoverpa armigera and Spodoptera littoralis larvae [133]. Topical application of recombinant 
thioredoxin-Ȧ-HXTX-Hv1a has also been shown to be lethal to these caterpillar species [133]. Of 
particular interest is the orally active properties demonstrated by Ȧ-HXTX-Hv1a in ticks [136]. 

8.2.2. Spider-Venom Peptides that Block Insect CaV2 Channels 

Ȧ-Plectotoxin-Pt1a (Ȧ-PLTX-Pt1a, formerly Plectreurys toxin-II) is a toxin from the venom of 
Plectreurys tristis containing an unusual C-terminal O-palmitoyl threonine amide residue that is 
critical for toxin activity [137–139]. The toxin is assumed to be insecticidal as it blocks presynaptic 
CaV channel currents in Drosophila nerve terminals [138,140], most likely through specific block of 
the CaV2 (Dmca1A) channel [141]. This results in a block of neurotransmitter release [138]. In 
contrast, Ȧ-PLTX-Pt1a has no effect on KV and NaV channels [141] and it fails to block synaptic 
transmission at frog neuromuscular junctions [140]. At higher concentrations Ȧ-PLTX-Pt1a also 
begins to disrupt endocytosis [141], suggesting that it might block additional insect CaV channel 
subtypes. Nevertheless, low concentrations of Ȧ-PLTX-Pt1a appear to be a defining pharmacology for 
the Drosophila, and possibly other, insect CaV2 channels.  

A second family of insect-selective neurotoxins have also been isolated from Hadronyche versuta 
with a 10,000-fold preference for insect over vertebrate CaV channels. Ȧ-Hexatoxin-Hv2a  
(Ȧ-HXTX-Hv2a, formerly Ȧ-atracotoxin-Hv2a) is the prototypic member of a family of  
42–45-residue insect-selective neurotoxins [142]. Ȧ-HXTX-Hv2a induces immediate and sustained 
paralysis when injected into crickets with an ED50 of 160 pmol/g [142]. This contrasts with the slow 
onset of paralysis following injection of Ȧ-HXTX-Hv1a [128]. The toxin is lethal to ticks [136] but it 
causes no adverse effects when injected into newborn mice [142]. Injection of Ȧ-HXTX-Hv2a into 
insects induces instantaneous paralysis and application of picomolar doses of toxin results in 
significant inhibition of CaV channel currents in bee brain neurons (IC50 130 pM) [142].  
Ȧ-HXTX-Hv2a is considered the most potent blocker of insect CaV channels reported thus far. The 
insect CaV channel subtype targeted by Ȧ-HXTX-Hv2a has not been determined, but several lines of 
evidence suggest it is likely to be CaV2 (reviewed in reference [59]). Unfortunately a recombinant 
expression system has never been developed for Ȧ-HXTX-Hv2a so this is yet to be confirmed. 

Ȧ-Theraphotoxin-Hh2a (Ȧ-TRTX-Hh2a, formerly huwentoxin-V) is a 35-residue peptide toxin 
isolated from the venom of the Chinese tarantula Haplopelma schmidti [143]. Small amounts of toxin 
induce a reversible paralysis when injected into locusts and cockroaches (PD50 = 4 nmol/g) whereas 
much larger doses (>24 nmol/g) are lethal. The neurotoxic effects of the peptide appear to be  
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insect-specific since mice injected with high doses of toxin (7–49 nmol/g) via the intra-abdominal or 
intracerebroventricular route are unaffected [143]. Ȧ-TRTX-Hh2a has no effect on NaV, KV and MVA 
CaV channel currents in cockroach DUM neurons, but it blocks HVA CaV currents with an IC50 of  
219 nM [144]. This toxin therefore appears to be a moderately potent, but selective, blocker of insect 
CaV2 channels, although its effect on insect CaV1 and CaV3 channels remains to be examined. 
Nevertheless, Ȧ-TRTX-Hh2a might prove to be a valuable pharmacological tool for the study of insect 
CaV2 channels, especially for dissecting out currents mediated by different CaV2 isoforms. 

8.2.3. Spider-Venom Peptides that Block Insect CaV3 Channels 

To date, no toxins have been described that block insect CaV3 channels. Furthermore, biophysical 
and pharmacological characterization of these channels is sadly lacking, with not a single study of 
insect CaV3 channels reported in the scientific literature. It remains to be determined whether some of 
the LVA CaV currents recorded from insect neurons are mediated by CaV3 channels. 

8.3. Spider-Venom Peptides Targeting Insect KV Channels  

Voltage-activated potassium (KV) channels are involved in cellular signaling processes, regulation 
of neurotransmitter release and heart rate, insulin secretion, neuronal excitability, epithelial electrolyte 
transport, smooth muscle contraction and cell volume regulation [145]. Given this highly diverse range 
of functions it is not surprising that more than 75 human genes encoding various KV channel subunits 
have been cloned [146]. There are six known families of voltage-activated potassium (KV) channels in 
Drosophila. These have been classified as Shaker (mammalian KV1-related), Shaw (KV2-related), Shal 
(KV3-related), Shab (KV4-related), and EAG, ERG, and ELK (KCNH-related) [147]. Additionally, the 
slo gene family encodes large-conductance, Ca2+-activated KV (BKCa) channels and Na+-activated KV 
(KNa) channels. These channels activate in response to voltage changes, as well as to changes in the 
intracellular concentration of calcium (BKCa) and sodium (KNa) [148,149].  

Unlike NaV and CaV channels, KV channels are tetramers with a four-fold symmetry around a 
central pore [99]. Each subunit consists of an α-helical transmembrane domain that is made of six 
transmembrane segments (S1–S6) arranged into two types of domains: a single pore domain formed by 
the S5–S6 regions from the four subunits, and four surrounding voltage-sensing domains (S1–S4) from 
a single subunit [99]. The pore domain contains the K+-selective ion conduction pathway and the 
receptor for pore-blocking toxins that bind to the extracellular vestibule near the selectivity filter. BKCa 
channels are an exception as they have seven transmembrane segments [149]. KV channels may 
contain homotetrameric or heterotetrameric α-subunit assemblies, explaining the diversity of these ion 
channels [150], although Shaker, Shal, Shab and Shaw are all homotetramers [150]. While there are 
many KV channel families, only one is of importance to this discussion—the insect BKCa channel. 

ț-Hexatoxin-1 family of toxins, isolated from Australian funnel-web spiders [78], were the first 
spider toxins discovered to selectively target insect potassium channels [151]. These 33–37 residue 
peptides were originally named “Janus-faced” atracotoxins after the two-faced god Janus from Roman 
mythology due to the striking asymmetric distribution of hydrophobic and charged residues on 
opposite surfaces of the molecule [152,153]. The most insecticidal member of this family,  
ț-HXTX-Hv1c, was recently identified as a high affinity blocker (IC50 of 2 nM) of insect BKCa 
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channels with a lack of effect on insect NaV, CaV as well as other subtypes of KV channels [151]. 
Channel block displayed a lack of voltage-dependence, in contrast with many other spider toxins 
targeting vertebrate KV channels (for a review see reference [154]). Like the ȝ-agatoxin-1 family, 
toxins from the ț-hexatoxin-1 family are specific to certain insect orders, being very potent in 
dipterans (LD50 of 91–319 pmol/g), moderately potent in orthopterans (LD50 of 167–1022 pmol/g), but 
only weakly active in lepidopterans (LD50 of 3070–3195 pmol/g). However, the ț-hexatoxin-1 family 
is not toxic against newborn mice, adult rabbits or isolated preparations of chick biventer cervicis or 
rat vas deferens [151–153]. Therefore ț-HXTX-1 toxins are highly insect-selective. 

Although several insect-selective hexatoxins have been isolated from the venom of spiders 
belonging to the family Hexathelidae, there have been only a limited number of investigations of 
insecticidal toxins from spiders of the family Theraphosidae [102,155]. This is despite the 
characterization of a number of toxins from theraphosid (“tarantula”) spiders that target mammalian 
ASICs, MSCs, KV, NaV, and CaV channels. Recently a family of three ț-theraphotoxin-Ec2 toxins  
(ț-TRTX-Ec2a to -Ec2c) from the venom of the East African tarantula Eucratoscelus constrictus were 
found to block insect BKCa channels [156] without blocking insect KV, NaV, or CaV channels.  
ț-TRTX-Ec2a induces complete paralysis of orthopterans within 5 min, and death within 15 min at 
1100 pmol/g. ț-TRTX-Ec2a and ț-TRTX-Ec2b cause no activity in mice after intracranial injection. 
Interestingly, ț-TRTX-Ec2c, which shows >80% sequence identity with other members of this toxin 
family, is not insect specific. It induces strong neurotoxic symptoms including convulsions, tonic 
paralysis, general ataxia, and respiratory paralysis in mice [156]. ț-TRTX-Ec2c could therefore yield 
insights into which residues are important for insect specificity. It is noteworthy that although these 
toxins share their target with ț-HXTX-Hv1c, they possess no obvious sequence homology, implying 
that they may interact with different sites on the insect BKCa channel. The ț-hexatoxin-1 and  
ț-theraphotoxin-1 families will be useful for probing the biological role of BKCa channels in insects 
and are potential lead compounds for the development of insect-selective biopesticides. 

8.4. Membrane-Acting Linear Peptides 

To date, several groups of cytolytic peptides with antimicrobial activity have been discovered in 
araneomorph spider venoms. These have been classified as membrane-acting antimicrobial peptides 
(MAMPs) with the activity prefix “M” (for a review see reference [67]). These cytolytic peptides are 
short (<50 residues), highly cationic, amphipathic peptides lacking cysteine residues. While these 
peptides are highly active against Gram-negative and Gram-positive bacteria, the reported insecticidal 
effect of MAMPs on insects is negligible with very high LD50 values (5–10 nmol/g). In contrast to 
these short MAMPs, Lachesana tarabaevi (Zodariidae) venom also contains a family of long, linear 
M-ZDTX-Lt toxins (cyto-insectotoxins) with much more potent insecticidal activity, in addition to 
cytolytic and antimicrobial activity. These are more than twice the length of typical MAMPs and 
possess very high charge at neutral pH. They still retain an Į-helical motif but appear to be composed 
of two short MAMPs joined together in a “head-to-tail” configuration by a short four-residue  
linker [157].  
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8.5. Spider-Venom Toxins Targeting Presynaptic Nerve Terminals 

Venoms from widow spiders of the genus Latrodectus (Theridiidae) contain five insect-specific 
proteins, known as latroinsectotoxins (LIT) Į, ȕ, Ȗ, į and İ [158,159], with phylum-selective insecticidal 
actions. There is also a vertebrate-specific neurotoxin, Į-latrotoxin (Į-LTX; for a review see  
reference [160]), and a toxin affecting crustaceans, Į-latrocrustatoxin (Į-LCT) [161]. Two of the 
latroinsectoxins have been cloned and fully sequenced: Į-LIT-Lt1a [162] and į-LIT-Lt1a [163]. They 
are high-molecular mass proteins with masses of 111 and 130 kDa, respectively. All latrotoxins whose 
structures have been determined are highly homologous and have a similar domain architecture, which 
consists of a unique N-terminal sequence and a large domain composed of 13–22 ankyrin repeats. It is 
believed that these toxins induce paralysis in insect prey by stimulating massive neurotransmitter 
exocytosis from nerve terminals. They act by (i) binding to specific receptors, some of which cause 
exocytosis, and (ii) inserting themselves into the terminal membrane to form non-selective cation 
channels (for a review see reference [164]). Specific receptors for LITs have yet to be identified, but 
all three classes of vertebrate receptors known to bind Į-LTX are also present in insects. LITs are the 
most potent spider-venom toxins known, with LD50 values of <1 pmol/g in lepidopterans and  
dipterans [163,165]. Furthermore, as LITs form ion channels upon membrane insertion it is unlikely 
that only a short fragment of the protein can be found that mimics the broad range of activity of the 
entire toxin, given that this fragment would need to encode information regarding targeting, membrane 
insertion and oligomerization. 

8.6. Spider-Venom Toxins Targeting Glutamate Receptors 

In vertebrates the neuronal actions of L-glutamate are mediated by two distinct glutamate 
neurotransmitter receptor classes in the CNS: ionotropic [166] and metabotropic [167]. All  
known vertebrate ionotropic L-glutamate receptors comprise cation channels and are classified  
into three subtypes: Į-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), kainate (KA)  
and N-methyl-D-aspartate (NMDA) receptors. In insects, however, at least two ionotropic  
L-glutamate-gated cation channels mediate neurotransmission at the neuromuscular junction, rather 
than in the CNS [168,169]. In addition, two insect ionotropic L-glutamate receptors that gate chloride 
channels (GluCls) have been discovered in insect CNS neurons [170]. These anion-gated GluCls are 
important sites of action of insecticides such as ivermectin [171], and in some cases fipronil [170].  

While there have been a wide range of glutamate receptor antagonists found in spider venoms these 
are mostly acylpolyamines (in particular Į-agatoxins [172]). Thus far, only one spider toxin,  
Ƚ-CNTX-Pn1a (formerly PnTx4 (5–5)) from the venom of the Brazilian armed spider Phoneutria 
nigriventer, has been found to inhibit vertebrate glutamate receptors, in this case specifically inhibiting 
NMDA- but not the KA- or AMPA-subtypes [173]. Ƚ-CNTX-Pn1a is highly insecticidal,  
with <50 pmol/g causing neurotoxic effects immediately after intrathoracic injection in blattarians, 
orthopterans, and dipterans. This suggests that the effects of Ƚ-CNTX-Pn1a may be mediated via 
insect glutamate receptors. Importantly, ī-CNTX-Pn1a had no effect when injected i.c.v. into mice at a 
dose of 290 pmol/g [173].  
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9. Bioinsecticide Lead Selection 

There are several requirements for a spider-venom peptide to be considered as a bioinsecticide lead. 
The most obvious is their potency on the insect target(s). The potency of a toxin is inversely 
proportional to the volume needed to be deployed in the field. However, potency alone is not 
sufficient, as selectivity is also crucial. For example, a toxin that is potent on insects but also lethal to 
vertebrates would not be considered an appropriate bioinsecticide lead, although it might still be used 
to elucidate the key residues for determining phyletic selectivity. Good examples of such non-phylum-
selective toxins are the į-hexatoxins-1 toxins from Australian funnel-web spiders. į-Hexatoxin-Ar1a 
and -Hv1a are potent insecticides, but they are also responsible for the lethal effect of these hexathelid 
venoms in primates [174]. The most potent insecticidal toxins reported so far are the Į- and  
į-latroinsectotoxins from L. tredecimguttatus with LD50 values of 0.11 pmol/g and 0.45–0.54 pmol/g, 
respectively, in lepidopterans. However, with 1170 and 991 residues, respectively, these protein toxins 
are clearly an exception from the other, mainly low molecular mass insecticidal peptide toxins. Despite 
their potency and specificity, LITs are not suitable leads for insecticide development as their large size 
makes it difficult to economically produce the large amounts of protein required for field applications. 
Among low mass peptide toxins, U1-CUTX-As1c from Apomastus schlingeri is the most potent in 
lepidopterans (LD50 of 2.4 pmol/g), followed by its paralog U1-CUTX-As1d (LD50 of 7.2 pmol/g) and  
U1-PLTX-Pt1a from Plectreurys tristis with an LD50 of 13.8 pmol/g. At the other end of the 
insecticidal potency scale we find several toxins that target lipid bilayers, with the lowest activity 
being recorded for M-OXTX-Ot2a from Oxyopes takobius with a LD50 of 500,400 pmol/g in 
lepidopterans (i.e., 208,500 times less potent than U1-CUTX-As1c). Therefore, it has to be questioned 
whether such weakly insecticidal peptides should still be considered “insecticidal toxins”. 

Ideally, a toxin should also not target all insects but rather only a narrow range of pest species while 
not harming other arthropods (e.g., pollinators and natural predators of the target pest species). 
Unfortunately, most studies have failed to determine if insecticidal spider toxins are toxic to beneficial 
or protected species of certain beetles, dipterans and lepidopterans. Such assays would alleviate 
environmental concerns over poor insecticidal selectivity. However, the high sequence homology of a 
single target (e.g., NaV channels) between insect orders suggests that this might be difficult to  
achieve [95]. Despite this, potency differences have been observed in acute toxicity assays across 
different insect orders. Based on the phyletic selectivity data in the ArachnoServer 2.0 Database [174], 
spider toxins have been described with activities against five insect orders: Blattaria, Coleoptera, 
Diptera, Lepidoptera, and Orthoptera. The LD50 values of the same toxin tested in different insect 
orders can vary by several orders of magnitude. For example, ȝ-AGTX-Aa1d was reported to be  
317 times more potent in dipterans than in lepidopterans. But even within one insect order, activity can 
vary considerably. For example, U1-PLTX-Pt1a is 309 times more potent against Manduca sexta than 
its lepidopteran relative Heliothis virescens. 

It is tempting to compare literature values for toxin potencies to provide an indication of which 
toxins might be regarded as potent, medium-strength, or weak insecticides. However, there is neither a 
standard assay nor standard target species for testing the insecticidal activity of toxins. Factors that can 
vary include the end-point that is measured (i.e., ED50, PD50, or LD50), the time interval between toxin 
administration and the end-point, the routes of toxin application, the insect species tested, and different 
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developmental stages/sizes of the insect tested. It is therefore rather difficult to make a direct 
comparison of the activities of two toxins unless they have been tested in exactly the same 
experimental setup using the same target species and developmental stage. Nevertheless, the values 
recorded for insecticidal activity in the ArachnoServer 2.0 Database show a remarkable variation. 

There is also a requirement that the toxin is orally- or contact-active, unless the toxin is to be 
delivered via a vehicle such as an entomopathogen. Unfortunately, the insecticidal activity of most 
spider-venom peptides has been determined by injection, and their contact and per os activity in most 
cases is unknown (an exception being the Ȧ-HXTX-1 toxins). A further requirement is that the toxin is 
sufficiently stable under field conditions to affect the target species, while allowing a complete 
degradation to innocuous metabolites over time to avoid adverse impacts on the environment via 
biomagnification and bioaccumulation. 

Despite the discovery of 136 insecticidal spider toxins, so far less than 25 have been sufficiently 
characterized (i.e., determination of the full sequence and molecular target) and found to be 
sufficiently potent and specific for insects to be considered suitable as bioinsecticide leads. It must be 
noted that some of these toxins have poorly characterised orthologs/paralogs which, given their high 
sequence homology, may also be suitable bioinsecticide leads. Nevertheless, there are still some 
promising candidates fulfilling most, or all, of the criteria defined above for an ideal bioinsecticide. 
Based on the information available to date, we would consider the following spider toxins as suitable 
candidates for insecticide leads: Ȧ-hexatoxin-1 family, ȝ-agatoxin-1 family, į-ctenitoxin-Pn1 family, 
ȝ-diguetoxin-Dc1, ț-hexatoxin-1 family, and ī-CNTX-Pn1a (Table 1). There might be additional 
candidates among those toxins that are potently insecticidal but for which the molecular target is currently 
unknown (“U” prefix). More work needs to be done to fully characterize these toxins before their 
suitability as insecticide leads can be properly gauged. Based only on their insecticidal potency, the most 
interesting toxin groups for further investigation are (where the number in brackets indicates the total 
number (n) of paralogs/orthologs): (i) the U1-, U2-, and U3-cyrtautoxin-1 family (n = 6); (ii) the  
U2-filistatoxin-1 family (n = 2); and (iii) the U1-plectotoxin-1 family (n = 6). 

10. Commercialisation of Spider-Venom Toxins 

The high phyletic specificity, potency, and novel mode of action, of a limited range of spider toxins 
recommends them as lead compounds for the development of bioinsecticides. Indeed, transgenes 
encoding insect-specific arachnid toxins, including spider neurotoxins, have been successfully 
expressed in a number of crops and entomopathogens. One of the simplest ways is via the 
development of a recombinant baculovirus. Insertion of the gene encoding the toxin into the 
baculovirus genome greatly enhances the efficacy of natural insect-specific baculoviruses, reducing the 
“time-to-kill”, and thus increasing the insecticidal potential of these viruses [175,176]. The most 
widely used baculovirus strain for gene insertion studies has been the Autographa californica nuclear 
polyhedrosis virus (AcNPV) as it infects various important lepidopteran pest insects [177] (for a 
review see reference [178]). Three spider toxins have already been trialed including ȝ-AGTX-Aa1d 
and two toxins whose target has not been clearly defined, U1-AGTX-Ta1a (formerly TalTX-1 from the 
hobo spider Tegenaria agrestis) and µ-DGTX-Dc1d [57,175,179–181]. Insertion of genes that encode 
for these toxins has been shown to cause dramatic improvements in the speed of action, causing 
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lepidopteran larvae to die up to 50% more rapidly than those larvae infected with wild-type virus. A 
similar approach is to engineer a transgene encoding a spider toxin into an entomopathogenic fungus 
such as Metarhizium anisopliae as has been achieved with the insect-selective scorpion toxin AaIT. 
The toxicity of this fungus was significantly increased against the tobacco hornworm Manduca sexta 
(Lepidoptera: Sphingidae) and the dengue mosquito Aedes aegypti (Diptera: Culicidae) without 
compromising its host specificity [182]. Although generally regarded as safe and selective, 
baculoviruses have not met their full potential. Construction of recombinant baculoviruses to speed the 
time-to-kill pest insects has been validated a number of times, yet they not become a mainstream pest 
management strategy due to what is often dubbed the “psychological effects of seemingly unsuccessful 
commercialization” [178]. 

Table 1. Spider peptide toxins suitable as insecticidal leads. 

Toxin Name Source 
Insect 
Target 

Acute toxicity test species 
(Order †: Genus species) 

ED50 or PD50 
(pmol/g) 

LD50 
(pmol/g) 

Paralogs/
orthologs 

į-CNTX-Pn1a  
Phoneutria 
nigriventer 

NaV 
channel 

B: Periplaneta americana  
D: Musca domestica 

95 ‡ 

36 
 2 

ī-CNTX-Pn1a 
Phoneutria 
nigriventer 

 
GluR 

B: Periplaneta americana 
D: Musca domestica 
O: Acheta domesticus 

48 ‡ 
10 ‡ 
29 ‡ 

 0 

ț-HXTX-Hv1c 
Hadronyche 
versuta 

BKCa 
channel 

D: Musca domestica 
D: Musca domestica 
D: Lucilia cuprina 
L: Heliothis virescens 
L: Spodoptera frugiperda 
O: Acheta domesticus 
O: Acheta domesticus 

 

91 
319 # 
117 # 

3195 # 
3070 # 

167 
1022 # 

6 

ȝ-AGTX-Aa1d 
Agelenopsis 
aperta 

NaV 
channel 

D: Musca domestica 
L: Manduca sexta 

 
30 

9524 
11 

ȝ-DGTX-Dc1a 
Diguetia 
canities 

NaV 
channel 

L: Heliothis virescens  380  3 

Ȧ-HXTX-Hv1a 
Hadronyche 
versuta 

CaV 
channel 

D: Musca domestica 
L: Heliothis virescens  
O: Acheta domesticus 

250 # 
77 
89 

27 

† B = Blattaria, D = Diptera, L = Lepidoptera, O = Orthoptera; ‡ Not ED50/PD50  
values-Neurotoxic effects noted immediately after intrathoracic injection at this concentration;  
# Recombinant toxin. 

Further transgenic approaches aim to incorporate insecticidal spider toxins into plants for the 
control of phytophagous pests, as successfully employed for Bacillus thuringiensis Cry proteins  
(for a review see reference [183]). This possibility arises because of the surprising oral toxicity of  
Ȧ-ACTX-Hv1a recently reported following incorporation into the tobacco plant Nicotiana tabacum. 
Tobacco plants incorporating the spider-toxin transgene had markedly enhanced resistance to Heliothis 
armigera and Spodoptera littoralis (Lepidoptera: Noctuidae) [128,133]. Public reticence in some 
regions may limit commercial deployment of engineered baculoviruses and transgenic plants. 
Nevertheless, transgenic crops are widely grown in Argentina, Australia, Brazil, Canada, China, India, 
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Pakistan, Paraguay, South Africa, Uruguay, and the USA. These crops can markedly reduce insecticide 
use and increase crop yield [184]. Human insecticide poisonings have also been reduced by >75% in 
China since the introduction of GM crops [185]. Despite these benefits, and reductions in risk, some 
people remain sceptical of the long-term safety and efficacy of GE products. 

Other approaches include the development of orally active acaricidal and insecticidal agents. While 
Ȧ-ACTX-Hv1a has been reported to be toxic by oral administration to the American lone star tick 
Amblyomma americanum [136] no other spider toxins have been reported to possess oral activity even 
in the modified gut of ticks. Nevertheless, the bioavailability of these peptides may be increased by 
coupling them to a carrier protein such as snowdrop lectin (Galanthus nivalis agglutinin, GNA) or 
garlic lectins to increase the absorption of toxins across the insect midgut [186–188]. For example, 
fusion of the insecticidal spider toxin U2-SGTX-Sf1a (SFI1) to GNA significantly increased its  
oral toxicity to the tomato moth Laconobia oleracea [188] as well as the rice brown  
planthopper Nilaparvata lugens and the peach-potato aphid Myzus persicae [189]. Surprisingly, a  
thioredoxin-Ȧ-HXTX-Hv1a fusion protein was found to be insecticidal in Helicoverpa armigera and 
Spodoptera littoralis caterpillars by topical application [133] (although the fusion protein was applied 
topically in a solution containing high levels of imidazole, a compound known to have contact 
insecticidal activity; [190]). These findings open up a variety of approaches for delivery of  
insecticidal peptides. 

A final alternative could be to design conformationally constrained non-peptide mimetics to be used 
as foliar sprays. Theoretically, using a non-peptide organic scaffold, the peptide residues critical for 
binding to the target can be grafted onto a backbone structure to produce a peptidomimetic overcoming 
the bioavailability issues of peptides penetrating the insect cuticle or gut mucosa. The concept has 
received limited validation following attempts to develop small-molecule drug leads by “cloning” the 
functional residues of peptide toxins that block vertebrate CaV or KV channels [191,192].  

It should also be particularly interesting in the future to examine the interplay between these peptide 
toxins and conventional chemical insecticides. For example, in tests with neonate H. virescens, the 
scorpion toxin AaIT acted synergistically with cypermethrin [193]. Moreover, a pyrethroid-resistant 
strain of H. virescens was more susceptible than resistant strains to the effects of a recombinant 
baculovirus that expressed an AaIT transgene [193]. Pyrethroids and AaIT are neurotoxins that act on 
the same molecular target, namely the NaV channel. Thus, it is interesting that NaV channel mutations 
that provide resistance to pyrethroids make the channel more susceptible to toxins that bind the 
channel at different locations than pyrethroids. This suggests that these peptide toxins might be 
particularly useful for the control of insect populations that have evolved resistance to commercially 
available chemical insecticides. 

11. Concluding Remarks  

The pesticide market is a multibillion-dollar industry. Agrochemicals dominate the marketplace 
with >95% of the market share, but their spectrum of activity is often too broad with significant  
non-target toxicity. Additionally, the restricted range of targets limits their long-term viability in the 
face of growing insecticide resistance. Since resistance development should be anticipated for any 
insecticide [194], the development of new insecticides with specificity and effectiveness against target 
species, together with minimal non-target toxicity and environmental persistence, will continue to be 



Toxins 2012, 4  
 

215

in demand. Spider-venom peptides are a rich source of potential bioinsecticides that can combine the 
desirable attributes of high potency, novel target activity, structural stability and phyletic selectivity. 
Moreover, pharmacological characterisation of spider toxins is revealing novel target sites not previous 
exploited by conventional agrochemicals, thereby validating new insecticide targets for future 
screening programs. These peptides can be delivered to insect pests via many different routes, 
including incorporation of transgenes encoding the peptides into entomopathogens or crop plants. 

For venom peptides to play a competitive role in the bioinsecticide market they must: (i) have broad 
pest-species specificity; (ii) have low toxicity in non-target organisms; (iii) remain in the environment 
long enough to be effective, but not so long as to induce resistance development within pest species; 
(iv) be cheap to produce; (v) be easy to formulate and deliver; (vi) be publicly perceived as  
innocuous; and (vii) be readily accessible to both small farmers as well as large agribusinesses  
(for a review see reference [195]). Compared with existing agrochemicals, some of these latter goals 
have yet to be fully achieved with spider-venom peptides (see Table 2), although significant 
technological improvements continue to emerge. Future research will undoubtedly continue to 
facilitate the realization of these objectives. 

Table 2. Criteria for development of competitive insecticides. 

Goals OPs † Carbamates Pyrethroids Insect-selective 
spider toxins 

Broad pest-species specificity +++ +++ +++ +++ 
Low toxicity in non-target 
organisms + + ++ +++ 

Remain in the environment 
long enough to be effective +++ +++ ++ ++ 

Do not persist in environment 
to induce resistance 
development  

+ + ++ +++ 

Cheap to produce +++ +++ ++ ++ 
Easy to formulate and deliver +++ +++ ++ + 
Publicly perceived as 
innocuous + + +++ + 

Accessible to small farmers 
and agribusinesses + ++ +++ + 

† Organophosphates. 
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