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A B S T R A C T   

This review systematically explores the application of transformer-based models in EEG signal processing and 
brain-computer interface (BCI) development, with a distinct focus on ensuring methodological rigour and 
adhering to empirical validations within the existing literature. By examining various transformer architectures, 
such as the Temporal Spatial Transformer Network (TSTN) and EEG Conformer, this review delineates their 
capabilities in mitigating challenges intrinsic to EEG data, such as noise and artifacts, and their subsequent 
implications on decoding and classification accuracies across disparate mental tasks. The analytical scope ex
tends to a meticulous examination of attention mechanisms within transformer models, delineating their role in 
illuminating critical temporal and spatial EEG features and facilitating interpretability in model decision-making 
processes. The discourse additionally encapsulates emerging works that substantiate the efficacy of transformer 
models in noise reduction of EEG signals and diversifying applications beyond the conventional motor imagery 
paradigm. Furthermore, this review elucidates evident gaps and propounds exploratory avenues in the appli
cations of pre-trained transformers in EEG analysis and the potential expansion into real-time and multi-task BCI 
applications. Collectively, this review distils extant knowledge, navigates through the empirical findings, and 
puts forward a structured synthesis, thereby serving as a conduit for informed future research endeavours in 
transformer-enhanced, EEG-based BCI systems.   

1. Introduction 

Inside the brain, millions of neurons are active at all times [1]. 
Postsynaptic potentials in neurons of the cerebral cortex perpendicularly 
to the cortical surface result in what is generally referred to as brain 
activity [2]. These changes in electrical potentials, or simply electrical 
activities, can be observed by deploying Electroencephalography (EEG) 
electrodes on the scalp of a subject. To be precise, the EEG data is 
captured by placing electrodes on a subject’s outside of the scalp, which 
record the summation of all local potentials (also known as field po
tentials). Upon collecting the signals with this relatively cost-effective 
procedure, researchers and developers can utilise the resulting data 
(with its generally high temporal resolution) to analyse and deploy 
Brain-Computer Interfaces (BCIs) [3–5]. 

Recently, the widespread adoption and availability of natural lan
guage processing (NLP) has significantly advanced human-computer 
interaction by enabling machines to interpret and respond to human 
language inputs. This technology facilitates efficient and intuitive 

interfaces for diverse applications ranging from simple information 
retrieval to complex problem-solving and programming tasks. However, 
NLP is inherently constrained by the modalities of verbal or written 
communication, which necessitates the explicit externalization of 
thoughts [6–8]. 

Emerging EEG-based BCIs represent a critical evolution in this 
interface dynamic, offering a direct communication pathway between 
the human brain and computational systems. By capturing and inter
preting neural signals, BCIs eliminate the necessity for physical or verbal 
interaction, thereby providing a more immediate and bandwidth- 
efficient method of interfacing with technology. This direct neural 
interaction facilitates a higher throughput of information and a reduc
tion in the latency associated with conventional input methods such as 
keyboards or speech. 

From a scientific standpoint, BCIs extend the capabilities established 
by NLP by translating neural activity directly into executable com
mands. This advancement could significantly enhance computational 
tasks that currently rely on language-based input, such as programming, 
by allowing for direct brain-to-code generation. Such capabilities not 
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only streamline interactions but also enhance the potential for real-time 
computing applications, where speed of input and processing is critical. 

Furthermore, the application of BCIs can profoundly impact cogni
tive neuroscience research, providing deeper insights into brain function 
and information processing. This direct interfacing could lead to ad
vancements in understanding neural correlates of cognition and 
behavior, which are crucial for both medical diagnostics and therapeutic 
interventions. 

In summary, while NLP has facilitated a more natural interaction 
between humans and machines through language, BCIs promise to 
transcend this communication barrier by establishing a direct, language- 
independent neural interface. This represents a significant scientific and 
technological leap towards creating more integrated, efficient, and 
intuitive computational systems. 

EEG-mediated BCI signal analysis has long been a cornerstone of 
neuroscientific research, aiming at bridging human cognition with 
computational interfaces. With the progression of deep learning tech
niques, the integration of NLP within this domain holds the potential to 
enhance the real-time classification, signal-to-noise ratio, and multi- 
class classification accuracy of EEG signals. The crux of this literature 
review delves into the interplay between EEG-based BCIs and NLP, 
particularly spotlighting the advent of transformer-based models in the 
field. 

Transformers, despite their relatively recent introduction to the 
machine learning panorama, have swiftly become the quintessence of 
innovation in the NLP realm. Their intrinsic capability to handle com
plex sequential data through innovative network architecture compo
nents has rendered them indispensable in contemporary AI applications. 
Given their accelerated trajectory in the NLP domain, an immediate 
question emerges: what are the prospects of these models in broad- 
spectrum data-driven research, especially in contexts where deep 
learning models have made their mark? 

Within the research landscape of EEG-based BCIs, there has been a 
significant transition from traditional Machine Learning (ML) ap
proaches to the more sophisticated realm of Deep Learning (DL). This 
literature review anchors itself firmly in the context of this transition, 
highlighting the pivotal role that DL methodologies are beginning to 
play in the advancement of EEG-BCI technology. DL’s inherent strengths 
— such as the ability to construct end-to-end learning models, achieve 
higher classification accuracies, and more effectively map and model 
complex signal interactions — represent not just incremental advance
ments but a substantial leap forward in the field of BCIs. 

This transition from traditional ML methods to DL-based approaches 
in EEG-BCI research is reflective of a larger trend within the field of 
artificial intelligence, where DL has consistently demonstrated its su
periority over ML in managing complexity and enhancing predictive 
accuracy. Considering that DL methods have opened up new capabilities 
in interpreting and harnessing EEG signals, this review emphasises their 
ground-breaking impact. The spotlight on transformer-based DL meth
odologies is particularly warranted as they symbolise the latest evolu
tionary development, offering solutions to inherent ML challenges, 
including the dependence on handcrafted features and a limited scope of 
generalisation. Therefore, a thorough exploration of these cutting-edge 
DL techniques through this literature review is not just timely but crit
ical for mapping out the future trajectory of EEG-BCI research. 

The importance of transformers in BCI is multifaceted. First, their 
architecture, primarily designed for handling sequential data, aligns 
seamlessly with EEG data, which is inherently temporal. Additionally, 
transformers have shown an exceptional capacity to understand and 
represent long-range dependencies and contextual connections in data, 
making them particularly effective for EEG data, which is inherently 
temporal and complex [9–11]. By addressing latency issues, trans
formers can dramatically bolster the real-time classification of EEG 
signals, a challenge that has perennially plagued BCIs. Furthermore, by 
virtue of their depth and attention mechanisms, transformers can 
potentially ameliorate the signal-to-noise ratio in EEG data, subse
quently improving the reliability and classification accuracy of BCI 
systems. Hence, this alignment of technical strengths with the long
standing challenges of BCIs underscores the exigency of a comprehen
sive review paper in this domain. 

Additionally, the application of transformer models transcends mere 
classification improvements, extending into the crucial realm of signal 
denoising. The sophistication of transformer architectures enables them 
to excel in identifying and isolating relevant patterns within noisy 
datasets, a common challenge in EEG signal processing. The ability of 
transformers to handle sequential data makes them particularly suited 
for temporal signal enhancement, offering a new level of precision in 
distinguishing between noise and true neural signals. By leveraging 
these capabilities, transformers hold the promise of significantly 
elevating the clarity and quality of EEG data, which is paramount for the 
real-time functionality of BCIs. This advancement is not only expected to 
improve the reliability and accuracy of EEG interpretations but also to 
expand the practical applications of BCIs in complex, real-world envi
ronments where noise factors are prevalent. This additional focus on 
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denoising underscores the versatility and comprehensive impact of 
transformer models in EEG-BCI research, warranting the in-depth 
investigation that this literature review aims to undertake. 

This comprehensive review aims to map the burgeoning terrain of 
transformer-based EEG-BCIs, a field at the cusp of transformative de
velopments. The advent of transformer technology, coupled with its 
nascent integration into EEG signal analysis, marks a critical juncture for 
the review of current methodologies and the charting of prospective 
research directions. Acknowledging the dominance of RNNs, CNNs, and 
traditional ML methods in EEG classification, this paper identifies a 
significant gap: the under-utilisation of transformer models in the BCI 
domain. Current literature on EEG-BCIs has largely overlooked the 
unparalleled efficiency of transformers in handling sequential data in 
combination with extracting long-range dependencies and contextual 
relationships in data, as well as their subsequent potential to enhance 
the precision and robustness of EEG signal classification and 
interpretation. 

The necessity for this review stems from the observed deficiencies in 
existing studies, notably the scarcity of exploration into the application 
of advanced NLP techniques within EEG signal processing. Furthermore, 
while transformer models revolutionise NLP, their capability to redefine 
EEG-based BCIs remains largely untapped. By bridging this gap, our 
review serves as a critical contribution, elucidating the transformative 
impact of these models on the BCI field. It underscores the urgency for 
in-depth, targeted research to assimilate transformer technology into 
EEG-BCI development, paving the way for novel approaches that can 
tackle the complexities of brainwave data. Thus, this paper not only 
catalogues the current state of affairs but also serves as a clarion call for 
the BCI research community to broaden its horizons and embrace the 
potential of transformers, setting a trajectory for future innovations and 
advancements. 

2. Background 

Electroencephalography-based brain-computer interfaces (EEG 
BCIs) are emerging as a transformative technology in both biomedical 
applications and socioeconomic realms. In the biomedical sector, EEG 
BCIs hold significant promise for the development of assistive devices 
that empower individuals with severe motor disabilities, such as those 
resulting from stroke or spinal cord injuries, to communicate and control 
their environment. These interfaces translate neural activity into com
mands that enable users to operate software or hardware, such as 
speech-generating devices and robotic limbs, thereby providing a new 
lease on independence and interaction. 

Additionally, EEG BCIs are instrumental in advancing neuro
rehabilitation techniques. They play a crucial role in facilitating neural 
plasticity, which is the brain’s ability to reorganize itself by forming new 
neural connections. This capability is essential for recovery of motor 
functions in patients who have suffered neurological damage. By 
engaging patients in brain-driven tasks, these technologies help 
strengthen neural pathways and improve motor outcomes, enhancing 
the overall rehabilitation process. 

Moreover, EEG BCIs are increasingly utilised for seizure detection 
and management in patients with epilepsy. By continuously monitoring 
brain waves, these systems can identify the characteristic electrical 
patterns that precede a seizure as shown in Fig. 1. This advance warning 
allows for timely intervention, such as the administration of medication 
or the activation of a neuromodulation device, potentially preventing 
the seizure or mitigating its severity. This application not only improves 
patient safety but also contributes to better management of epilepsy, 
reducing the burden on patients and healthcare systems alike [13]. So
cioeconomically, the integration of EEG BCIs can lead to significant cost 
savings in healthcare by reducing the need for long-term care and 
rehabilitation services [14]. Moreover, as the technology advances and 
becomes more accessible, it is expected to play a crucial role in the 
workplace by augmenting human capabilities and potentially altering 

traditional job roles [15]. As the landscape of EEG BCIs continues to 
evolve, the convergence of interdisciplinary research and technological 
innovation paves the way for groundbreaking applications that chal
lenge our current understanding of neural interaction and computa
tional methodologies. 

2.1. EEG and BCI basics 

Different stimuli result in the activation of different brain regions, 
with mostly distinct patterns occurring as a result of different intentions 
of and reactions of stimuli to the brain [2]. This results in a range of 
different mental tasks [2,16]. The visual stimulation of subjects, for 
instance, will trigger different brain regions (i.e., the visual cortex) [17] 
than the participating subjects’ limb movements (the coordination of 
which is likely to mainly take place in the primary motor cortex and the 
premotor cortex) [18,19], ultimately forming two distinct categories of 
mental tasks in BCIs as exemplary shown in Fig. 2. 

BCI is an umbrella term for applications and devices that enable a 
direct communication pathway between the central nervous systems (i. 
e., the human brain) and an external, digital receptor (i.e., any mobile or 
desktop application) by translating brain signals into digital commands 
than can be read by machines [21]. Therefore, BCIs have generally been 
accepted not only to boast significant potential to improve the quality of 
life (i.e., for individuals in stroke rehabilitation or suffering from 
motor-neuron disabilities) but also to revolutionise the way society may 
interact with technology in the future. In addition, recent advances in 
Artificial Intelligence (AI), as well as data and signal processing in the 
past few years have extended the range of possibilities in the research 
and development field of BCIs, providing new waves of momentum to 
the research landscape in this domain [22]. 

Current research in Brain-Computer Interfaces (BCIs) offers a spec
trum of approaches, with non-invasive EEG-BCIs, the focus of this re
view, representing one end, and invasive BCIs representing the other 
end [23,24]. 

Non-invasive BCIs establish a one-way information flow from the 
brain to external devices, allowing users to control external systems 
through thought commands. However, advancements are being made in 
invasive BCIs, such as those developed by Neuralink [24]. These devices 
hold immense promise for individuals with paralysis or neurological 
conditions by establishing a two-way communication channel between 
the brain and external devices. 

Invasive BCIs directly interface with neural tissue, potentially 
enabling not only control of external systems but also the much- 
anticipated addition of sensory feedback. This could revolutionise the 
lives of paralysed individuals, allowing for a more natural and intuitive 
user experience. 

It is important to note that invasive BCIs, while exciting, are still in 
their early stages of development. Surgical implantation is necessary, 
introducing inherent risks of infection, bleeding, and immune response 
[25]. Long-term safety and efficacy data are still being gathered. Addi
tionally, the ethical considerations surrounding invasive 
brain-computer interfaces are substantial. Issues around user privacy, 
data security, and potential manipulation of brain functions necessitate 
careful ethical frameworks and ongoing public discourse [26]. 

Due to the focus on practicality and relative safety within the domain 
of non-invasive EEG-BCIs, this review will primarily explore advance
ments in this established technology. However, acknowledging the po
tential of invasive BCIs provides valuable context for understanding the 
broader landscape of BCI development. Non-invasive approaches 
currently offer a more readily available and established option, while 
invasive techniques hold the promise of future breakthroughs for those 
willing to accept a higher level of risk. 

In contrast, non-invasive BCIs such as Electroencephalography (EEG) 
based applications can establish a one-way information transmission 
channel from brain to machine [27]. These BCIs are relatively 
cost-effective, efficient, and easy to use when developing and 
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researching wearable BCI applications [28,29]. 
To improve the clarity and readability of this review, the abbrevia

tion “BCI” is employed solely to denote non-invasive Brain-Computer 
Interfaces, unless explicitly stated otherwise. 

For the scope of this review, there is a primary focus on the mental 
task of Motor Imagery (MI) due to its broadly reported intuitiveness for 
participants, as well as due to the abundance of research and data on this 
task’s domain in the literature [30,31]. Knowledge gaps have been 
identified in the domain of general EEG signal processing using MI task 
recordings, however, other tasks, such as inner speech, may ultimately 
be incorporated in future studies as they hold immense potential for 
novel BCI applications. 

As denoted previously, MI is a common mental task for EEG BCIs. It 
describes all kinds of tasks in which an individual subject is required to 
imagine specific motor functions (such as i.e., the closing of a hand, 
movement of feet, or raising of the tongue) without actually and phys
ically executing the given task, hence the popular term imagined 
movement [22,32]. In this cognitive process, similar neural networks in 
the affected brain regions are activated when compared to actually 
executing the given movement or command, which reportedly makes it 
one of the most intuitive BCI mental tasks as well as the most suitable for 
people with motor-neuron disorders [33,34]. 

Generally, there are multiple EEG patterns/phenomena that are used 
to classify MI-EEG signals. The most used representations of the power 
increase and decrease of power are the Event-Related Synchronisation 
(ERS) and the Event-Related Desynchronisation (ERD) [35,36], which 
typically manifests within what is referred to as the Mu-band (8–13Hz) 
and the Beta-band (13 and 30 Hz), respectively [37]. 

2.2. Pre-processing and noise removal of EEG signals 

EEG raw data is generally considered to be notoriously affected by a 
myriad of artifacts, which are unwanted signals and patterns within the 
data that arise from unwanted and undesirable events [38,39]. These 
events include but are not limited to, muscle movements throughout the 
body, electrode movements, eye movements, and environmental noise 

and the caused interference thereof [40–44]. Forthgoing in this work, 
the terms artifact removal, denoising and noise removal are used 
interchangeably. 

These unwanted artifacts pollute the raw data and decrease chances 
for reliable and accurate classification, and therefore, need to be dealt 
with before feeding data into an AI of any sort. From basic denoising 
approaches such as via regression (which erroneously assumes that 
every channel in the given dataset is part of a total sum of representa
tions of artifacts and source signal representations thereof [40–42]) to 
various wavelet transformation approaches (i.e. wavelet packet trans
form), various papers have been published over the past 20 years, with a 
myriad of numerous applications and assessments of their individual 
and overarching performances and utilities in EEG signal processing and 
denoising [41,42,45–47]. Since wavelet transformation and other 
“manual” EEG signal pre-processing steps are not essential in the pro
posed NLP-based EEG-BCI, it is covered only briefly in this work. 
However, its impacts on EEG signal processing and BCI development are 
significant overall. Generally, wavelet transformation enables 
pre-processing EEG signals by decomposing the recorded signals into 
various frequency components [48,49]. The processed signals then 
enable the detection of transient events (and to determine other changes 
that occur locally) as the processed data now can be observed in its time 
and frequency domain at the same time [50–52]. 

Besides the previously mentioned approaches, in EEG there are other 
popular pre-processing strategies, perhaps most notably the Principal 
Component Analysis (PCA) and Independent Component Analysis (ICA) 
– both of which fall into the domain of Blind Source Separation (BSS) 
[53]. Summarising, PCA identifies the most significant signal compo
nents by estimating high variances in the data, whilst ICA separates 
original sources independently [54]. This in turn again means that ICA 
assumes all observed signals to be a linear combination of all source 
signals, which then allows for the extraction of individual components 
(i.e. artifacts such as eye movement, muscle movements) [54,55]. 
Therefore, given its ability to identify statistically independent compo
nents, ICA is often the preferred method of proceeding in EEG signal 
pre-processing [56–58]. 

Fig. 1. Signal and data processing pipeline of a Biomedical application of a Brain-Computer Interface for seizure detection [12].  

Fig. 2. Visualised neural activity of low and high complexity tasks across different control groups [20].  
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Given both the scope of this work and the proposed research’s focus 
on deep learning, however, the following sections will not reference 
traditional ML benchmarking performances but rather outline a suc
cessive development towards Deep Learning-based approaches. 

2.3. Data analysis for EEG-based BCIs 

2.3.1. Traditional ML 
To summarise, traditional Machine Learning (ML) has been utilised 

in EEG data and signal processing for many years, particularly in the 
domain of MI task data processing [34,59]. Irrespective of the model, 
these “traditional” ML approaches do not operate well when faced with 
raw EEG data. Hence, the feature extraction (and therefore, its accuracy 
and performance) prior to feeding data into the actual ML classification 
algorithm is vital to curating an advanced ML BCI solution [32,60]. 

Generally, the step of the feature extraction itself aims to extract vital 
information from the raw EEG signal data (herein referred to as raw 
data), so it can be used more effectively by any ML model. Over the 
years, a plethora of feasible feature extraction techniques have been 
developed and scrutinised by researchers [22,61]. Common feature 
extraction methods for raw data include frequency filtering, spatial 
filtering, time-domain analysis, and frequency-domain analysis [45,59, 
62,63]. Depending on raw data, task, subject and the technique 
deployed, different features may be derived, such as band power ratios 
or spectral bands. However, many statistical features have been utilised 
as well, including, but not limited to, signal variance, autoregressive 
coefficients, or entropy [64–66]. However, it is important to note that 
these steps basically describe an almost hand-crafted, labour-intensive, 
and (more or less) manual selection of features, based on few (and often 
generalised) cognitive assumptions about the prevalent raw data. 

Upon retrieving the desired features, one must deploy a traditional 
ML classification algorithm to train (and ultimately test) the system. 
Widely used and common ML models such as Naïve Bayes, Linear 
Regression (LR), Random Forests (RF), and Support Vector Machines 
(SVMs) have been utilised frequently to categorise EEG signals over the 
past two decades. Although these have demonstrated good capabilities, 
as well as indicated a solid generalisation ability, all these ML models 
ultimately do come with several technical flaws concerning the BCI, 
with several limitations of which few are briefly discussed below. 

Firstly, and as mentioned above, the feature engineering process in 
itself heavily relies on human and domain expert knowledge and basi
cally represents a manual approach as per today’s modern data pro
cessing standards. This makes any application prone to error and under- 
leveraging the given data prior to the AI’s training phase already, as 
subtle yet perhaps relevant features may be completely overlooked by 
even the most experienced experts [67–69]. This limitation also is one 
reason for the underdelivering of ML models in terms of capturing 
complex relationships within EEG data. Moreover, the manual ap
proaches are simply time and labour-intensive, which is not an attractive 
attribute moving forward. 

Secondly, there is a (although debatable) lack of capability to 
generalise the ML model [70,71], with various researched ML models 
having reported poor generalisation ability on different tasks, particu
larly given the manual (and therefore, static, or fixed) nature of the 
pre-processing and feature extraction pipeline, which usually would 
need to be adapted from trial to trial, task to task, as well as individual to 
individual [72]. 

Lastly, several researchers have reported that ML-based models do 
not necessarily encapsulate any hierarchical representations of the 
original data within their final model [73,74]. This means that the final 
model’s capability to accurately classify EEG signals is further limited 
and usually shallow in nature. 

In summary, despite the high-performance metrics achieved in lab
oratory settings and various limitations inherent to traditional Machine 
Learning (ML) methodologies, the primary emphasis of this review will 
be directed towards the exploration and development of innovative 

Deep Learning (DL) techniques. These DL methods offer several ad
vantages, including superior capabilities for end-to-end learning, 
enhanced classification accuracy, and more effective capture and 
modelling of nonlinear relationships within signal data. Furthermore, 
DL-based approaches demonstrate increased generalization and adapt
ability in Electroencephalogram-Brain Computer Interface (EEG-BCI) 
models compared to their ML-based counterparts [59,67,68,73,75–77]. 

2.3.2. Signal classification using CNNs 
With the advances of AI beyond the domain of BCI research and 

development, various DL approaches have been proposed, most notably 
using Recurrent Neural Networks (RNNs) and Convolutional Neural 
Networks (CNNs), the latter of which seem to dominate the research 
space in terms of research output using CNNs as methodological pref
erence [67,76–79]. 

Given the stringent focus on DL-based approaches of this review, as 
well as the previously mentioned omnipresence of CNNs in this research 
domain, the subsequent section addresses the basic methodology of 
CNNs as a classifier, its achievements, and its limitations. 

CNNs have become a powerful and guiding component in the 
development of much of DL-based research and development, both in 
the academic and the private and industrial sectors. CNNs (and their 
popularity) originally emerged from the field of digital image process
ing, pattern recognition and computer vision [80,81]. However, their 
fundamental characteristics and naturally advantageous attributes have 
made them a popular choice in other domains over time, EEG signal 
processing and BCI development being one of which [82]. In fact, 
several researchers have successfully demonstrated that CNNs are 
well-positioned to leverage EEG signal data given their inherent com
petency to facilitate the learning of hierarchical representations in data 
(which ML models often neglect). This ability, combined with the fact 
that no manual feature selection is needed due to the CNN’s auto-feature 
nature [83], position them as an extraordinarily attractive methodology 
for EEG signal classification, which is the reason why they have widely 
been used for EEG signal classification for years now [84,85]. 

Although the feature selection is not required to be performed 
manually with CNNs, there needs to be some sort of pre-processing of the 
raw data as to that the CNN can retrieve the data in the correct input 
format, so it can automatically select the features during training. There 
is no fixed standard procedure on how to conduct pre-processing stage, 
or as to which methodology and technique for pre-processing is to be 
deployed. However, there are arguably some industry standards or good 
practices that help get the most out of the models by utilising some basic 
signal processing methods such as normalising amplitudes or imple
menting filters (including, but not limited to band-pass filters) [13,76, 
79]. 

In addition to the basic noise removal using i.e., filtering, it is 
necessary to perform a segmentation of the EEG data, which basically 
means splitting the usually long recordings (usually multiple minutes) 
into smaller time segments with a fixed duration, i.e., 4 s per “frame” 
[86]. This is necessary to ensure that we can feed individual samples into 
the CNN that all are of equal size, just as one would do when feeding 
image data into a CNN. Given nchannels by nelectrodes of the EEG apparatus, 
the final dimensions of the CNNs input layer DimInput therefore must be 
equal to [nchannels, ntimesamples]. 

CNNs come in different shapes and with different hyperparameter 
settings, and various layer types and overall architectures. As indicated 
by their name, their main character is derived from the implementation 
of convolutional layers, which have the ability to automatically learn 
local feature representations within data [87]. These layers generally 
crate feature maps which are often subsequently down samples in their 
spatial dimensions using pooling layers [87,88], ultimately distilling the 
most important information of the prior convolution and improving the 
CNN’s overall translational invariance. Through this structure, CNNs 
enable an automated feature selection, therefore reducing the need for 
manual intervention during feature extraction. 
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One such example is delineated by a novel Ensemble pre-trained 
Convolutional Neural Networks (ECNNs) method for emotion recogni
tion from EEG signals of individuals watching music videos was intro
duced [89]. utilising scalograms generated through Continuous Wavelet 
Transform and retraining multiple CNN models, this approach signifi
cantly enhances the accuracy of recognising emotions. This methodol
ogy was tested on the Database for Emotion Analysis using Physiological 
signals (DEAP), a widely recognised dataset for analysing physiological 
responses to emotional stimuli, demonstrating notable success using the 
proposed methodology [89,90]. 

Another recent CNN-based approach highlighted the capability of 
CNNs to interpret complex brain signals for emotion recognition by 
utilising directed Directed Transfer Function (dDTF) to generate images 
that represent brain activity, which are then analysed using fine-tuned 
CNN models like AlexNet, ResNet-50, and more. Tested on the 
MAHNOB-HCI and DEAP databases, the ResNet-50 model, in particular, 
showed exemplary performance in capturing emotional states through 
EEG signal connectivity, achieving high accuracy and F1-scores [91]. 

Continuing the exploration of CNNs for emotion recognition, this 
study leverages EEG signals to investigate the relationship between 
emotions, brain wave patterns, and PTSD. By employing a novel auto
mated CNN-LSTM with ResNet-152 algorithm, the research addresses 
previous challenges in emotion analysis, achieving a notable accuracy of 
98 % [92]. These studies underscore the potential of hybrid deep 
learning algorithms in accurately identifying emotional states, demon
strating significant advancements over traditional methods. 

It can be summarised that CNNs have become an integral part of 
data-driven analysis and research in the domain of BCI development 
over the past years and have been applied to a myriad of mental tasks, 
including, but not limited to MI classification and emotion recognition. 
By deploying CNNs to classify EEG data, researchers have been able to 
demonstrate improved robustness, improved generalisability, as well as 
increased classification accuracies [29,44,79,93,94]. In addition, the use 
of CNNs has been combined with additional DL models, such as 
Long-Short-Term Memory Networks (LSTMs) or RNNs [68,79,95,96]. 
These combinatory approaches have further provided evidence to sug
gest an improved capturing and handling of complex and noisy EEG 
data. 

In this chapter, we explored and discussed some of the CNN-based 
BCI applications and unravelled how CNNs enable an automatic 
handling of non-linear relationships in data, pose an improved gen
eralisability, and easier adaptation to individual features of subjects. 
Overall, it can be concluded that the overwhelming majority of DL-based 
EEG-BCIs in published research incorporate some kind of CNN, due to 
many of the previously described advantages over other architectures 
and the manual ML approaches, as well as because of their prominence 
in other domains. 

Most recently, however, a relatively new methodology in DL has 
started to baffle the global tech scene, whilst simultaneously creating 
inevitable momentum across all research disciplines – Transformer 
Networks, herein referred to as Transformers, have made a colossal 
impact on the private sector within weeks of the release of the public 
beta of OpenAI’s ChatGPT 3.5 in November 2022 [97]. In the next 
section, the methodology of Transformers is explained before outlining 
and discussing how to potentially utilise them for building EEG-based 
BCIs in the future. 

3. Review methodology 

3.1. Search strategy 

The methodology for this review was systematically designed to 
encompass an exhaustive search of the literature pertaining to the 
application of transformer models in EEG-based BCI systems. The liter
ature search was conducted across electronic databases with a strong 
focus on Scopus and PubMed [98,99]. The search strategy was tailored 

to include a combination of key terms and phrases related to EEG, BCI, 
CNNs, and transformer models using AND operators exclusively across 
queries. 

3.2. Inclusion and exclusion criteria 

The criteria for including articles in this review were as follows.  

● Published in the period between January 2018 and December 2023 
to ensure both recency and relevance of the findings.  

● Articles that discuss the development, implementation, or evaluation 
of transformer models in the context of EEG data analysis and BCI 
applications. 

● Studies that provide empirical evidence on the performance, ad
vantages, or limitations of transformer-based approaches. 

The exclusion criteria were defined as follows.  

● Articles not published in English.  
● Studies that do not explicitly focus on EEG-based BCI systems or do 

not employ transformer models (or CNNs, see Table 1).  
● Conference abstracts, editorials, and non-peer-reviewed literature 

omitted unless indicated otherwise. 

3.3. Search outcome 

The initial search for research output including the keywords BCI 
and EEG yielded 5052 records, of which 2465 entries constitute original 
research articles. Upon narrowing down the search by including BCI 
EEG entries using CNNs, a total of 666 entries were identified, of which 
367 are research articles. In comparison, the same search for 
transformer-based research in this field queried a total number of 29 
research articles for the period of 5 years only. 

These findings have been summarised in Table 1 below, which shows 
the results of the total counts per query, Fig. 3 shows the annual pub
lication counts of each query, excluding the initial BCI AND EEG query 
in order to highlight the research trends in this niche research area of 
Transformers in BCI. 

4. Transformers 

Relatively recently (on the June 12, 2017), the first transformer 
networks were proposed by a couple of high-profile Google engineers in 
a Paper called “Attention Is All You Need” [100], which arguably paved 
the way for a new era of processing sequential data, particularly for 
applications in NLP [101,102]. Prior to their introduction, CNNs and 
RNNs had an almost exclusive position at the forefront of NLP research 
and applications [103–105]. Despite their advantages as described in 
the previous sections of this paper, however, RNNs, and particularly 
CNNs, experience stringent limitations and disadvantages when it comes 
to capturing dependencies over medium to extended periods of time – 
which is why the disruptive paper by Vaswani [100] introduced the 
transformers ability to leverage so-called “self-attention” mechanisms, 
which allow capturing more dependencies between all given points and 
positions within a sequence, without any regard to their individual 
proximity to each other [100,106,107]. This puts transformers in a 

Table 1 
Scopus Query Results; Total Document Counts for the past 5 years with break
down by keyword combinations using AND query operator.  

Keywords Total Results Research Articles 

BCI, EEG 5052 2645 
BCI, EEG, CNN 666 367 
BCI, Transformer 62 32 
BCI, Transformer, EEG 51 29  
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competitive position compared to previous DL approaches, as this global 
attention span provides the ability for the model to capture both global 
and local features, which is an important advancement, particularly in 
the domain of NLP, where long pieces of texts and entire paragraphs are 
required to be analysed in various contexts [100,108]. However, since 
their introduction, transformer models have been shown to provide 
substantial benefits to a myriad of computational analytical problems, 
such as in computer vision or speech recognition [109–111]. 

Whilst CNN-based approaches utilise local convolutional filters to 
extract and learn spatial and temporal features, transformers generally 
handle this using self-attention mechanisms [100,112]. Transformers 
also process input sequences in parallel, which is a more efficient 
mechanism to capture global relationships within data when compared 
to CNNs, which mainly proceed hierarchically, and learn features by 
scaling through multiple successive convolutional procedures [87]. 

Therefore, in this section, an introduction to the transformer model’s 
architecture and methodology is given, before discussing their potential 
applications for BCI research studies in the future. 

4.1. Architecture 

Transformers essentially contain a dualism between an encoder and 
a decoder, in which input data is processed via the encoder and pre
dictions (outputs) are being produced based on the encoded output of 
the encoder [40,100,108] as shown in Fig. 4. 

4.1.1. Encoder 
Positional encoding is crucial in the Transformer Encoder (TE) to 

compensate for its lack of sequential processing, using sinusoidal func
tions to establish order within sequences [100] (see Fig. 5). In general, 
sinusoidal functions ensure that all positional encodings remain differ
entiable by deploying a geometric progression of frequencies using Sine 
and Cosine functions [100,113]. This advantage also boasts the ability of 
the transformer to generalise any sequences of variable lengths and 
ensures the transformer’s capability to make use of various length se
quences [111,114]. Overall, however, employing functions other than 
sinusoidal ones is possible as well and may be subject to research in the 
near future. 

In both NLP and non-NLP tasks, the TE processes input sequences 
through multiple identical layers, each consisting of sub-layers. These 
sub-layers include multi-headed self-attention layers followed by feed
forward networks, with residuals and normalisation layers integrated 
throughout [100,108,114]. Each of these sub-layers within the TE is 
escorted by residual links, which again adds the previously original 

input in addition to the output of the sub-layer, which generally is 
perceived to be able to prevent effects of a vanishing gradient which may 
occur just like in the training of CNN or other NN-based DL networks. 
Lastly, within the sub-layer, the layer normalisation is utilised in sub
sequence to the previous residual links, ultimately improving the 
adjustment effectivity, as well as soothing the training progression itself 
[100,114,115]. 

Within the TE, the multi-headed self-attention layer (MHSA) pro
vides the model’s capability to capture various features and aspects of 
the sequential input [100,111,114]. Using the MHSA, learnable matri
cidal representations of data are formed, which are the key (K), the 
query (Q), as well as the value (V) vectors, all of which can be configured 
based on the initial input [116–118]. A self-attention score is computed 
by utilising the dot product, and by utilising a square root of the key 
vector dimension to scale the result, which measures the degree of 
relevance between each of the keys and the query [118,119]. 

Now, for processing the outputs of the MHSAs, position-wise Feed- 
Forward Networks (FFNs) are deployed as previously mentioned, which 
enables transformer models to extract and analyse more versatile re
lationships and patterns of the original input data. For the generally 
proposed transformer architecture, FFNs within the TE are comprised of 
two linear layers that encapsulate some kind of activation function [93]. 
Interestingly, a more efficient parallel computation of the computation 
of individual sequential elements under disregard of element-wise 
positioning and positional relationships is enabled by applying the 
TE’s FFNs to all positions of any input sequence independently [93,100]. 

Again, this combination of self-attention and FFNs within the sub- 
layers has been reported to enable the TE’s capability to extract both 

Fig. 3. Comparison of annual research outputs according to the Scopus search 
results including articles, conferences, books, and more. Transformer-based 
approaches start to increase towards the end of 2023, while not being a 
cornerstone of contemporary BCI research. 

Fig. 4. Original architecture of the first transformer model as introduced by 
Google Engineers in 2017 [100], modified to highlight both the encoder and the 
decoder components. 
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diverse and rich features from the originally provided input. In terms of 
NLP, this enables a more nuanced and human-like interaction with the 
sequential data and allows for more efficient post-processing using i.e., 
sentiment analysis to perform a wide range of NLP tasks [103,108]. This 
concept may be a valuable and intrinsically significant component to 
unlocking improved denoising within EEG data processing when dealing 
with sequential EEG data. Therefore, this too may be subject to future 
research and may be considered when designing a transformer-based 
EEG encoder system. However, one shall consider the risk of over
fitting as well, and perhaps aim to experiment with various dropout links 
and regularisation techniques when designing a novel transformer’s 
building blocks. 

Summarising, the design of the first of the two main components of 
the transformer architecture (the TE) has a significant impact on the 
transformers’ overall ability and decision-making process. Therefore, 
adaptations and variations of the encoder design may be subjected to 
future research, as there is a substantiated and ongoing need to refine 
the TEs’ degree of functionality. 

4.1.2. Decoder 
For each transformer’s architecture, the transformer decoder (TD) is 

the second main component. Like the TE, the TD compromises multiple 
layers with several sub-layers [100]. More importantly, however, its 
main responsibility lies within its function to generate the corresponding 
output sequences based on the encoder’s outputs (i.e., continuous rep
resentations of the positionally encoded raw data). Generally, as per 
their initial proposal, the TD layers again are organised as an MHSA, 
encoder-decoder attention (EDA) mechanism, as well as a position-wise, 
fully connected FFN, each of which will again be succeeded by residuals 
with normalisation just as previously described for the encoder module 
TE. Masked self-attention is generally deployed within the first TD layer, 
as one of the critical aspects of transformer training is to inhibit the TD 
from “relying” on future information when proceeding with the gener
ation of sequential outputs [120,121]. Masked self-attention can help 
circumvent the occurrence of this phenomenon by modifying the MHSA 
input and setting their attention scores close to negative infinity, effec
tively making them (or masking them) inaccessible or unfeasible for 
considerations of inclusion within the generated output sequence [120, 
121]. 

In contrast, the EDA is a structure exclusively found within the DT 
components of the transformer. Its main function has been reported to 
be attending to the TE’s output sequence (i.e., the TD’s input sequence) 
by comparing, and if necessary, correcting, the generation of relevant 
outputs by the encoder (in NLP, this would be referred to as ensuring 
that outputs correspond to the correct semantic context). To do so, the 
EDA applies the same computational efforts as previously discussed 
within the TE module but with a small yet significant difference: Source 
values for K and V are derived from the encoder’s input, and Q is derived 
from the output of the preceding layer within the TD module [100,122]. 

Summarising, the EDA mechanism is like the MHSA, yet uses 
different source values for its query matrix and the operations thereof. 
Lastly, the final (i.e., third) TD layer deploys another FNN, just as pre
viously explored when describing the TE architecture. 

4.2. Training and loss function 

Regarding the training of these models, transformers models allow 
for the implementation of supervised end-to-end learning, with general 
similarities to training considerations as i.e., in CNNs, where the most 
common optimisation objectives are ensured by deploying an analysis of 
cross-entropy loss during training [123,124]. Just like as observed in 
various other DL techniques, the training of transformers can quickly 
result in high computational expenses and the need for extended hard
ware resources, the need of which generally scales further with 
increasing model complexity and the dataset’s magnitude. 

4.3. Performance of transformer-based models 

Transformer architecture offers several advantages over traditional 
CNNs and RNNs for sequence modelling tasks. As per the following 
pages, its inherent parallelism, self-attention mechanism, well-suited 
encoder-decoder structure, and flexibility make it a powerful tool for 
various applications [9,100,125]. However, researchers are still 
exploring ways to address the computational cost and interpretability 
challenges associated with Transformers. In this section, their general 
advantages and disadvantages are delineated before delving into their 
impact in the BCI domain. 

4.3.1. Advantages 
Unlike RNNs, Transformers achieve faster training times due to 

inherent parallelism in the self-attention mechanism [100]. This is 
evident in a study by Ref. [126], where their Transformer-XL model 
achieved state-of-the-art performance on various language modelling 
benchmarks while requiring significantly less training time compared to 
RNN-based models. Research from other domains such as speech 
recognition confirm these findings, such as a study by Ref. [127], in 
which the authors demonstrate significant performance benefits of 
Transformer models over RNNs in various benchmarks, including a 
notable superiority in 13 out of 15 automatic speech recognition tasks 
[127]. 

Moreover, the Transformer’s encoder-decoder architecture with 
attention is particularly well-suited for machine translation. Vaswani 
et al. (2017) demonstrated that their Transformer model achieved 
significantly better translation quality on English-to-French and English- 
to-German tasks compared to traditional RNN-based encoder-decoder 
models [100]. This improvement was attributed to the attention 
mechanism allowing the decoder to focus on relevant parts of the 
encoded source sentence during translation, leading to more accurate 
and coherent translations [100]. 

Another advantage of Transformers may be their significant flexi
bility, allowing for adaptation to various tasks, such as recent ad
vancements like the Vision Transformer by Dosovitskiy et al. (2020) 
further demonstrate this flexibility by achieving competitive results on 
image classification tasks traditionally dominated by CNNs [128]. 

However, this versatility of transformer-based models is under
pinned in various other research domains, too, including protein struc
ture prediction applications in which the performance of the 

Fig. 5. EEG Conformer Architecture as proposed by the researchers, with both convolutional and transformer components [156].  
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transformer-based models outperformed state-of-the-art unsupervised 
structure learning methods by a wide margin, with far greater parameter 
efficiency than prior state-of-the-art protein language models [129]. 
Other examples of applications in which transformers outperformed 
previous state-of-the-art models (such as RNNs and CNNs) were recently 
given including, but not limited to long-sequence time-series forecasting 
[130], traffic-flow prediction [131], molecular dynamics-based drug 
discovery [132], and more. 

4.3.2. Disadvantages 
While parallelisable, transformers can still be computationally 

expensive to train compared to simpler models [100]. This may limit 
their application in resource-constrained environments. In addition, the 
interpretability of how these models make decisions can be challenging 
due to the complex nature of the self-attention mechanism, which 
currently hinders interpretability compared to more simple models 
[133,134]. 

In conclusion, the Transformer architecture offers several advan
tages over traditional CNNs and RNNs for sequence modelling tasks. Its 
inherent parallelism, self-attention mechanism, well-suited encoder- 
decoder structure, and flexibility make it a powerful tool for various 
applications. However, researchers are still exploring ways to address 
the computational cost and interpretability challenges associated with 
Transformers. Whilst powerful, they also face significant challenges 
such as high memory requirements and susceptibility to overfitting. The 
extensive memory demand arises from the self-attention mechanism, 
which computes interactions across all elements in the input sequence, 
making them less viable for tasks with very long sequences or limited 
computational resources. Additionally, their large parameter space in
creases the risk of overfitting, especially when trained on smaller or less 
diverse datasets, where they may fail to generalise well to new, unseen 
data [100,135,136]. 

4.4. Transformers in BCI research 

4.4.1. Overview 
As discussed in the previous section, transformers have been found to 

be a powerful deep learning architecture traditionally used in NLP, 
which however can be highly valuable for EEG data processing and MI 
classification tasks. However, since transformers are a relatively recent 
development, with an even more recent introduction to EEG processing, 
only a few applications have been explored so far - only 29 original 
research articles were found via Scopus query as shown in Table 1. 

EEG signals generally comprise non-linear, temporal relationships 
which cause even RNNs to face problems capturing the patterns prop
erly, usually under the interference of the vanishing gradient problem 
[137,138]. Transformers may be able to capture these long-ranging 
dependencies more effectively than RRNs (and CNNs) due to their 
self-attention mechanisms as described in the previous section, ulti
mately leading to an improved understanding of temporal features in i. 
e., MI tasks. 

Another promising consideration in the design of new BCI applica
tions using transformer DL models is the fact that they can be deployed 
using parallel processing, despite them being sequential models. RNNs 
are not able to do this, which may enable transformers to a more effi
cient, cost-effective, and more timely analysis in various. This also 
makes them more suitable for applications outside of the lab, where 
models with swift processing and response times are required in real-life 
settings, which currently is another main hurdle yet to be taken using 
the DL-based BCI applications that are currently being researched [107, 
139]. 

As transformer models can attend to both temporal information and 
spatial information simultaneously, the case for a transformer-based 
EEG analysis further solidifies as this implies that transformer-based 
BCIs could carry a superior discriminative capability for the various 
kinds of BCI mental tasks when compared to either CNN or RNN-based 

approaches [100,140]. 
In addition, not only do transformers support end-to-end supervised 

learning, but they do also incredibly well in applications where adapt
ability and Transfer Learning (TL) are required. In fact, this may be one 
of the strongest advantages advocating for the case of future 
transformer-based BCIs, given the fact that all currently popular and 
commercial language models (i.e., Google’s Bard or OpenAI’s ChatGPT) 
are pre-trained on training data of enormous magnitudes, and improve 
over time using transferable knowledge [102,108,141]. This in turn 
concludes that it would be possible to overcome some of the current 
limitations of BCI development (i.e., inter-subject variability in brain 
activity) using effective transfer-learning on more generalised and 
well-informed transformer models, similar to TL approaches using CNNs 
and RNNs that researchers in this domain have undertaken previously 
[78,79,142,143]. Here, the exact methodology of the novel, pre-trained 
BCI transformer is to be addressed in future research before deploying it 
on collected data, i.e., by experimenting with approaches using the 
open-source EEG-BCI baseline datasets such as the physioNet EEG Motor 
Movement/Imagery Dataset, which contains 109 patients and is a 
commonly used in EEG BCI research [144]. 

Next, transformer-based EEG signal analysis may pose additional 
advantages in certain settings (i.e., when deployed as medical devices), 
given their potential evolving around interpretability, ultimately paving 
the way for potentially developing an Explainable Artificial Intelligence 
(XAI) [145]. Such XAI-BCI would be useful, particularly in clinical en
vironments, where practitioners and clinical experts are often faced with 
liabilities and responsibility when basing any diagnostic decisions of 
medical AI systems, which more often than not occur to the human 
decision makers as black boxes [146]. However, a transformer-based 
signal analysis can easily visualise its learned attention weights [145], 
which ultimately would enable the decision makers (as well as re
searchers that previously trained and tested the models) to make more 
informed decisions by understanding the time points and regions within 
the EEG recording that have been most apparent for the decision of the 
classification model. 

Lastly, transformer-based EEG-BCIS may be less susceptible to noisy 
data. EEG signals are infamously contaminated with various artifacts 
and other noise from various sources [42,44,147], which is often 
considered one of the main hurdles yet to take in the development of 
reliable and effective BCIs. Applications have shown that 
transformed-based applications could potentially be less susceptible to 
noise, and more effective in removing unwanted signals without 
depending on human interference [40,107,148]. One such application is 
a recent piece of work in which researchers have proposed an EEG 
decoding method using the Spatial-Temporal Tiny Transformer (S3T), 
which utilises attention mechanisms to transform EEG data into a more 
characterised representation [140]. By considering EEG spatial and 
temporal information, the proposed S3T captures global dependencies 
and determines the importance of different feature channels for classi
fication [140]. According to the researchers, this method is more 
cost-effective and consists of pre-processing, spatial and temporal 
transformation, classification, and additional merging steps. The S3T 
demonstrated promising potential for EEG decoding, enhancing classi
fication accuracy and efficiency. However, decoding is not the only 
aspect that may be able to be improved by the implementation of 
attention mechanisms by transformer models. 

4.4.2. Contemporary research and preliminary findings 
In one of the few recent publications from January 2023, researchers 

have adopted the previously mentioned transformer-based deep 
learning network approach for MI classification tasks on EEG data [149]. 
The researchers utilised a Temporal Spatial Transformer Network 
(TSTN), which incorporates three kinds of key processes, which was 
basically implemented by adopting the architecture as proposed by 
Ref. [140]. 

Firstly, TSTN employs a Common Spatial Pattern (CSP) approach to 
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construct discriminative relationships by employing several spatial fil
ters. Different brain functions are attributed to distinct brain areas, and 
therefore, the implementation of CSP allows for the creation of partic
ular spatial filters to extract task-induced neuronal activities effectively 
[150]. 

Secondly, TSTN performs using self-attention to improve the data as 
obtained through the CSP. When juxtaposing different prevalent meth
odologies (i.e., RNN or CNN), where the choice of kernel size is crucial 
for classification, TSTNs do not require explicit kernel selection 
[151–153]. Instead, self-attention is applied to the feature-channel data, 
allowing for the weighting of relevant channels pertaining to an in
dividual’s performance of the given mental task. In addition, CNNs 
generally disregard temporal dependencies of time-series information 
[149,152]. 

Lastly, the Temporal Segment Transformer Network (TSTN) as pro
posed by the researchers segments the improved feature-channel data 
into information batches and utilises transformation techniques to 
identify dependencies along the temporal dimension. In comparison to 
RNNs or long short-term memory networks (LSTMs) as utilised in prior 
literature, both RNNs and LSTMs suffer from the issue of vanishing 
gradients [137,149]. Therefore, RNN or LSTM-based solutions may 
encounter difficulties when faced with analysing MI-task-based EEG 
data with prolonged time frames in which participants perform the 
corresponding actions for the tasks. For instance, one example the au
thors of this article referenced is stroke patients, who generally are ex
pected to process the information only slowly when moving the 
corresponding limb, requiring an extended time for executing the given 
MI tasks [149,154]. 

Amongst other findings of the study, it was found that in various 
scenarios, the acquisition of EEG signal data points is closely related to 
factors including, but not limited to, a subject’s emotional state or 
cognitive abilities [149]. Artificial neural network-based approaches, on 
the other hand, demonstrate better flexibility in adapting to sequential 
data learning [155]. However, one notable drawback of the 
transformer-based network, such as TSTN, is its substantial model size. 
The implementation of TSTN on wearable devices might be challenging 
due to the significant training resources needed and the prerequisite of 
elevated computing power to result in high accuracies. 

Nonetheless, these research findings have highlighted the advan
tages of the transformer-based approach, which effectively incorporates 
spatial filtering, self-attention, and multi-head transforming to address 
the challenges associated with EEG data processing in MI classification. 

Another recent publication by the same researchers in December 
2022 proposed an “EEG Conformer”, which resembles a convolutional 
transformer for the computation of EEG decoding as shown in Fig. 5 
[156]. 

The architecture as proposed by the researchers encompasses not 
only transformer modules, but in fact three key elements: a convolu
tional module, a self-attention module, and a fully connected classifier 
[156]. For the convolutional component, the input comprises the raw 
two-dimensional EEG trials. By applying convolutional modules on both 
temporal dimension and electrode channel dimensions, the researchers 
propose to attend temporal and spatial convolutions. As reported by 
their work, this would allow for the model to assess both temporal and 
spatial patterns that are inherent in the EEG data. To enhance general
ization and suppress noise interference, subsequent pooling is performed 
[156]. 

Subsequent to the convolutional layer, the output as spatial-temporal 
representation is processed by the self-attention module, where long- 
term temporal dependencies are extracted [156]. According to the re
searchers, attending to these dependencies provides the model’s capa
bility to capture essential relationships and patterns across time points. 

The pre-processing steps for this application included the application 
of a Chebyshev filter, which is a type of digital filter commonly used in 
signal processing, including EEG signal pre-processing. It is designed 
based on Chebyshev polynomials, which provide the optimal trade-off 

between the filter’s ripple in the passband and its roll-off rate in the 
stopband [157,158]. Generally (as well as in EEG signal pre-processing), 
Chebyshev filters are used to attenuate or eliminate unwanted frequency 
components, such as noise or artifacts, while preserving the desired 
frequency components related to brain activity [159,160]. They can be 
particularly useful for filtering EEG signals due to their ability to effi
ciently suppress noise and provide well-defined frequency response, 
since some of their advancements as compared to other filter types 
include a Steep Roll-off, an adjustable ripple, as well as a generally 
compact filter design: Chebyshev filters can achieve a sharp roll-off in 
the stopband, meaning they can quickly attenuate frequencies outside 
the desired passband [157,160,161]. This characteristic allows for the 
effective removal of unwanted noise or interference from the EEG signal. 
In addition, they offer control over the trade-off between the passband 
ripple and the stopband attenuation. This is possible because Chebyshev 
filters are designed based on Chebyshev polynomials, which optimize 
the ripple in the passband and the roll-off rate in the stopband. By 
adjusting the filter parameters, the user can customize the level of 
passband ripple and stopband attenuation according to specific re
quirements [157,161]. This flexibility allows for fine-tuning the filter’s 
performance to balance the preservation of desired frequency compo
nents and the suppression of unwanted noise or interference in EEG 
signal processing [162]. Lastly, as indicated before, Chebyshev filters 
can furthermore achieve a given level of performance using fewer filter 
coefficients compared to other filter designs. This compactness is ad
vantageous in terms of computational efficiency and memory 
requirements. 

However, there are some drawbacks to selecting this kind of filter 
when compared to other pre-processing filter designs: Chebyshev filters 
with steep roll-off can introduce some signal distortion, particularly in 
the transition band between the passband and the stopband [162,163]. 
This distortion may affect the shape and timing of EEG signal compo
nents, potentially altering the characteristics of interest. In addition, like 
many other filters, Chebyshev filters can introduce phase distortion, 
leading to a time delay or phase shift in the filtered EEG signal. This 
phase distortion may affect the synchronisation of EEG signals with 
other analyses that are time-dependent, such as the study of 
event-related potentials (ERP). 

Another drawback (although non-technical) is that designing Che
byshev filters requires determining parameters such as the ripple 
tolerance, stopband attenuation, and cut-off frequency. Selecting 
appropriate values for these parameters can be challenging and may 
require expertise in signal processing. 

However, other filter types may be deployed first in the proposed 
architecture to evaluate their actual impacts on final classification 
outcomes. 

In the proposed application by the researchers, the overall results of 
the EEG conformer slightly outperform binary classification results as 
given per state-of-the-art CNNs on three separate datasets, with the re
searchers demonstrating how well the introduced transformer module 
can improve overall performance by enhancing the segregation ability of 
the model as shown via their implementation of t-distributed stochastic 
neighbor embedding (t-SNE) [156]. As per Fig. 6, the transformer en
ables easier discrimination between data point clusters. 

Whilst the authors of this novel research demonstrated the potential 
utility of transformer networks in the binary classification of EEG signals 
in MI, no other mental tasks have been assessed. In addition, this is 
highly conceptual research only which does not necessarily improve any 
real-time BCI performance given the already high performances in bi
nary classification MI tasks. Consequently, the magnitude of the influ
ence exerted by transformer-embedded systems and attention-based 
components remains an unexplored area of study. In fact, the re
searchers themselves further mentioned how “the role of multi-heads in 
the self-attention module remains unclear” [156], which boasts further 
space for research in this domain. Hence, the impacts of transformer 
networks on multi-class MI classification tasks may be subjected to 
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future research as it may pose the most impactful advantages of trans
former modules in EEG signal processing. Currently, there is not suffi
cient research in the domain of real-time and multi-class classification 
tasks using transformer-based BCIs. 

For instance, as of March 2024, the SCOPUS search string of TITLE- 
ABS-KEY (“EEG” AND “transformer” AND “brain-computer interface” 
AND “multi-class”) OR TITLE-ABS-KEY (“electroencephalography” AND 
“transformer” AND “BCI” AND “Multi-class classification”) returns only 
one single article, in which the authors report an outstanding classifi
cation accuracy of 99.7 % for binary classification, and 84 % for four- 
class classification suing transformers in MI. This is in stark contrast to 
96 articles when compared to 93 articles when searching using the key 
“binary” [164]. 

Another aspect of this developing field, which has not been assessed 
as of May 2023, is the incorporation of pre-trained transformers. As 
described in the earlier parts of this literature review, pre-trained 
transformers come from the domain of NLP, where their model archi
tecture and their performance have received an enormous amount of 
research attention and media coverage over the past few months. 
However, these incredibly useful NLP models have been pre-trained on 
huge datasets of billions of text samples, before eventually being 
deployed for generative purposes [101,102,165]. In the currently 
limited literature of transformer-based EEG signal processing, however, 
investigations of pre-trained models remain absent and therefore, boast 
a major knowledge gap that urges to be addressed in the near future. 

Given that pre-trained weights may reduce the required (and 
sometimes extensive) sample acquisition and training time, this is an 
important aspect to investigate. Furthermore, pre-trained EEG trans
formers may be able to benefit from improved complex pattern- 
capturing capabilities. In addition, pre-trained models may be a viable 
potential solution for the remaining issue of cross-subject variability in 
EEG signal classification for BCIs. Pre-training with additional data, 
hence potentially improving the generalisability of the end-user’s model 
itself is to be investigated in future research. This generalisation further 
may boast increased flexibility of the model, which then in turn would 
support more extensive fine-tuning and adaption to more specific tasks. 

Another field for potential improvements using Transformer-based 
EEG-BCIs is the denoising of EEG signals, given their previously 
mentioned low signal-to-noise ratios (SNR). In a recent paper by 
Ref. [40], the researchers introduce the inclusion of a transformer for 
denoising EEG signals, as many other DL architectures have already 
been shown to leverage their denoising capabilities more effectively 
than traditional denoising methods [?]. In this particular paper, the 
researchers propose a 1-D EEG denoising network with a 2-D trans
former (EEGDnet) [40]. In this recent paper, Electrooculogram (EOG; 
artifacts that generally arise from natural eye movements) and Elec
tromyogram (EMG; artifacts that naturally arise from muscle activity 
such as on the scalp, mouth, or even other parts of the body) artifacts 
were removed (in separate experiments) using a transformer-based 
denoising module, achieving 18 % and 11 % improvement of correla
tion coefficients, respectively [40]. This may be interpreted as an 
important first step towards denoising EEG signals for real-time appli
cations outside of the lab. However, the research leaves a couple of is
sues remain unaddressed. 

Firstly, EOG and EMG artifacts were removed separately, and it is 
inconclusive whether the proposed transformer-based denoising 
approach is capable of correctly removing separately induced noise ar
tifacts at the same time, i.e., EOG + EMG removal simultaneously. 

Secondly, it is unclear how the proposed EEGDnet would perform 
under uncontrolled conditions, such as in real-life settings in noisy en
vironments outside of the lab. In addition, no attempts have been made 
to evaluate the classification utility and performance of the proposed 
network when online, which is an essential knowledge gap to bridge in 
future research, given the EEG-BCI application’s extensive records of 
underperforming real-time classification scenarios outside of the labo
ratory [82,166]. 

Transformers have also been subjected to preliminary research in 
EEG tasks other than MI. For instance, they have shown outstanding 
performances in tri-class emotion recognition [167], another popular 
mental task category for BCI applications. Whilst achieving high per
formances of between 91.9 % and 98.7 % on the SEED-IV and SEED 
dataset [168,169], respectively, the authors simultaneously state that 

Fig. 6. Feature learning results in categorical discrimination in t-SNE visualisation by the researchers, with and without transformer module.  
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the model’s ability to generalise results is yet to be improved in the 
future, as per with previous DL architectures described in the previous 
sections, too [167]. In addition, as of March 2023, researchers have for 
the first time demonstrated how the introduction of transformer models 
can significantly improve the speech signal and EEG-based detection of 
clinical depression for diagnostic purposes, with outstanding perfor
mances and improved detection accuracies of 97.3 % in the Multimodal 
Open Dataset for Mental Disorder Analysis (MODMA) [170,171]. 

In addition, a recent paper proposed how the transformer’s self- 
attention mechanisms can improve the EEG decoding for inner speech 
EEG tasks. Preliminary results here demonstrated the feasibility of this 
approach and also indicated their efficacy as transformer applications 
with a single channel only were utilised to decode the imagined speech 
[172]. However, as the very few transformer-EEG papers are not all 
accessible to the public (and hidden behind paywalls that were not 
circumventable by utilising university or third-party resources) it is 
difficult to provide an in-depth analysis at this point in time (which 
applies to this particular paper, as well as unfortunately, other papers 
that could not be included in this literature review). In the near future, 
more insights may be derived here as the body of literature in this 
domain only started to form recently. 

In summary, it can be hypothesised that transformers may offer an 
entire repertoire of advantageous traits that may advance the current 
state of EEG-based BCI benchmarking performances for a range of 
mental tasks. However, the concept of utilising NLP-derived models to 
interfere with and develop novel EEG signal analysis applications is too 
new to accurately determine the developments and results in the future, 
with only a handful of papers currently being dedicated to exploring the 
domain of the aforementioned applications. 

5. Discussion 

Through rigorous exploration and analysis of the existing body of 
research, it is discerned that transformer-based models are beginning to 
redefine the landscape of EEG signal processing, particularly within MI 
classification tasks. The advent of innovative architectures, such as the 
‘EEG Conformer’, exemplifies this shift, exhibiting superior binary 
classification prowess when benchmarked against traditional CNNs. 
However, these advancements are, at present, largely confined to 
theoretical constructs and have not yet been fully harnessed in real-time 
BCI applications. Moreover, the focus has remained relatively narrow, 
with a predominance of studies dedicated to binary classification, while 
the spectrum of multi-class MI tasks and other mental tasks await more 
comprehensive exploration. 

Overall, a conspicuous lacuna in the research was identified — the 
sparse application of pre-trained transformers within the EEG-BCI 
domain. This contrasts sharply with the NLP domain, where pre- 
trained models have catalysed significant breakthroughs. This nascent 
stage of application in EEG signal processing signals an untapped 
reservoir of potential, notably in diminishing the extensive demands for 
data acquisition and training, enhancing signal pattern recognition, and 
surmounting the perennial challenge of cross-subject variability. 

Advancements in DL for EEG-BCIs must address several key tech
nological challenges to enhance efficacy and user applicability. Fore
most among these is the trade-off between the portability of wireless DL- 
EEG-BCIs and their operational stability. Wireless systems offer signifi
cant benefits for real-world applications by enabling mobile monitoring; 
however, they are susceptible to fluctuations in signal quality, exacer
bated by poor SNR in dynamic environments. This issue is critical in 
online classification tasks where real-time data processing demands high 
SNR to maintain accuracy and reliability. Future developments should 
focus on robust signal processing techniques and adaptive DL algorithms 
capable of compensating for environmental noise. 

The debate between the need for advanced neuro-sensors versus 
refined AI and computing tools further complicates technological 
progress in BCIs. Whilst the development of ultrasensitive, non-invasive 

sensors could dramatically improve the quality of neural data acquisi
tion, the complexities of neural signals demand equally sophisticated AI 
models for effective interpretation and utilisation. The challenge lies in 
enhancing sensor technology to provide high-quality data while simul
taneously advancing AI to decode intricate neural patterns efficiently. 

Additionally, the dichotomy between personalised BCIs and stand
ardised models presents significant implications for scalability and 
performance. Personalised systems, whilst potentially more effective for 
individual users, require extensive customisation that may limit wide
spread deployment. Conversely, standardisation facilitates broader 
application but may not address individual neurophysiological vari
ability. Innovative solutions might include developing modular AI 
frameworks that support customisation through user-centric adaptive 
algorithms, offering a compromise between personalisation and 
standardisation. 

Additionally, the noise attenuation capabilities intrinsic to trans
former architectures, such as those demonstrated in EEGDnet, represent 
a nascent yet promising pathway. Challenges, however, remain un
abated, particularly concerning the concurrent elimination of multiple 
artifact types and the implementation of these methods in the cluttered 
and unpredictable environments of real-world settings. The extant body 
of literature is bereft of substantial evidence supporting the enhance
ment of real-time, online classification performance — a keystone for 
the operational deployment of BCIs in practical scenarios. 

In the succeeding paragraphs, the ultimate key findings of the liter
ature review have been delineated, which will be succeeded by a précis 
of the prospective directions this burgeoning field may take.  

● Pre-trained transformers, while transformative in natural language 
processing (NLP), have not been extensively adapted or evaluated 
within EEG signal processing, indicating a significant gap in the 
current literature.  

● The efficacy of transformer modules, such as those incorporating 
multi-head self-attention mechanisms, has been preliminarily vali
dated; however, the role and optimisation of these modules warrant 
further investigation.  

● Transformer-based models may have the potential for a superior 
performance in binary motor imagery (MI) classification tasks across 
several classification domains, which can be attributed primarily to 
their enhanced feature segregation capabilities. 

● There is a critical need to extend the evaluation of transformer net
works beyond binary classification tasks to encompass a wider range 
of mental tasks within EEG-based BCIs, which may reveal more 
comprehensive benefits.  

● Investigating the application of pre-trained transformer models to 
EEG signal processing could offer insights into their generalization 
capabilities, potentially reducing the need for extensive data acqui
sition and model training. 

● Future research should explore the denoising capabilities of trans
former networks in EEG signal processing, particularly in real-world, 
noisy environments, and their effectiveness in online, real-time 
classification scenarios.  

● Addressing cross-subject variability through pre-training may 
improve model generalisability and flexibility, opening pathways for 
fine-tuned, task-specific BCIs.  

● Preliminary research into the application of transformers in EEG 
tasks beyond MI, such as emotion recognition and clinical di
agnostics, has been promising, suggesting a broader applicability of 
these models that should be further probed. 

Within the context of this literature review, several unaddressed 
questions and knowledge gaps emerge, warranting further investigation 
in future studies. These questions reflect areas of potential inquiry that 
could significantly contribute to the advancement of the field. 
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1. Can transformer-based EEG signal encoders effectively identify and 
eliminate multiple types of artifacts simultaneously, thus improving 
BCI performance? 

2. Are alternative positional encoding methods, beyond the conven
tional sinusoidal approach, capable of enhancing the denoising, 
overall performance, and robustness of transformer-based models?  

3. Is it possible to evolve and approximate optimised transformer-based 
network architectures to create end-to-end processing pipelines that 
ensure reliable performance tailored to specific target populations?  

4. How reliable are transformer-based models in supporting multi-class 
classification tasks, particularly in more complex mental processes? 

These questions underscore the need for further research and 
experimentation to fill existing knowledge gaps and expand our un
derstanding of the potential benefits and limitations of transformer- 
based EEG signal processing within the domain of brain-computer 
interfaces. 

5.1. Ethical implications and Governance 

Amidst the excitement and the recent advances in AI, ethical con
siderations regarding the unfettered use of AI in EEG-BCIs necessitate 
careful examination. Recent regulatory frameworks, such as the Euro
pean Union (EU) AI Act [173], aim to address these concerns and paves 
the way for future regulations [174]. Hence, understanding these 
frameworks is paramount for advancing EEG-BCI democratisation. 

The EU AI Act categorizes AI systems based on potential risk. EEG- 
BCI applications intended for medical diagnosis or critical infrastruc
ture control (e.g., autonomous vehicles) would likely fall under the high- 
risk category. This necessitates stricter regulations to ensure user safety 
and trustworthy operation. Transparency and explainability of the AI’s 
decision-making processes are paramount for EEG-BCI applications. 
Users need to understand how the AI interprets their brain signals, 
fostering trust and enabling informed decision-making [175]. 

Furthermore, the Act prohibits discriminatory AI systems. Biases 
within EEG-BCI training data can lead to unfair outcomes. Mitigating 
bias through balanced data collection and responsible algorithm design 
is essential to ensure inclusivity and equitable access to this technology. 
The EU AI Act serves as a springboard for anticipated global regulations. 
Specific neurotechnology regulations are likely to emerge, echoing the 
principles outlined in the EU Act. Existing data privacy regulations, such 
as the EU’s General Data Protection Regulation (GDPR) and California’s 
Consumer Privacy Act (CCPA), are expected to encompass EEG-BCI data. 
These regulations will ensure user control over their brain data and 
prioritize data security. 

In addition to these overarching concerns, regulations may target 
specific high-risk applications of EEG-BCIs. Medical diagnosis, for 
instance, demands rigorous validation and testing to ensure diagnostic 
accuracy and patient safety. Similarly, brain-computer interfaces for 
controlling critical infrastructure will necessitate robust security mea
sures to prevent unauthorised access or manipulation [176]. 

6. Conclusion and outlook 

The development of EEG-based BCIs has made substantial progress 
over recent years, particularly via advances in DL-driven denoising and 
signal-processing techniques. In particular, CNNs, RNNs, and LSTMs 
were at the forefront of this development, and still remain in the spot
light. However, with the recent introduction of transformer-based DL 
models, a new shift in data-driven EEG analysis may be before us, which 
is new territory to biomedical research and has just begun to be exam
ined over the past few months. Overall, we discussed and outlined how 
transformers may be able to boast certain advantages over their DL- 
predecessor methodologies in EEG analytics, yet further research is 
necessary to make precise declarations in this regard. For future research 
in this domain, their ability to capture both spatial and temporal 

features may be examined, as well as their ability to auto-denoise live 
streaming data during online classification applications for wearable 
BCI applications. In addition, one may focus on optimizing the archi
tecture for the specific needs of EEG data, exploring hybrid models that 
combine the strengths of both transformers and CNNs and investigating 
methods for reducing the computational complexity of transformer 
models to make their applications more practicable for large-scale and 
real-time EEG analysis. 

In this paper, a critical examination of the burgeoning domain of 
transformer-based EEG analysis within the realm of BCIs has been 
conducted. This review has cast a spotlight on the transformative impact 
that transformer models have begun to wield in the field of EEG signal 
processing. As a result, this paper traces the significant strides made in 
this domain, whilst concurrently delineating the extant challenges and 
fertile grounds for research that persist. The revolutionary impact of 
transformer technology is unequivocally acknowledged in the sphere of 
natural language processing (NLP); yet, its foray into EEG-BCI is 
comparatively embryonic. 

The exploration of transformer-based models has started to venture 
beyond the confines of MI tasks, with early ventures into domains such 
as emotion recognition and clinical depression detection showing 
encouraging results. Nonetheless, the robustness and generalisability of 
these novel models necessitate further empirical corroboration. More
over, the application of transformer models in the decoding of inner 
speech through single-channel EEG showcases the versatility and 
adaptability of this approach but also accentuates the limited accessi
bility and inclusivity of the research conducted to date. 

In synthesis, our review submits that while transformers exhibit 
substantial promise for the evolution of EEG-based BCI systems, their 
full potential remains unrealised. This paper has elucidated these extant 
research gaps, thereby charting a course for forthcoming inquiry. It can 
be hypothesised that, by leveraging advancements from NLP, trans
former models are well-poised to significantly advance benchmark 
performances across an array of mental tasks within BCIs. However, 
given the nascent nature of this interdisciplinary venture, definitive 
outcomes and trajectories are still emergent and speculative. One can 
expect a significant increase in output in the domain of transformer- 
based BCI research over the coming years, and this review paper in
tends to ignite further exploration and application of transformer tech
nology within the EEG-BCI sphere, potentially ushering in a novel 
paradigm in BCI research and application. As the field of research in this 
domain continues to evolve further, additional research is expected to 
profoundly impact and enhance the capabilities and utility of future 
BCIs, ultimately driving innovation in the field of interactions between 
the human brain and machines. 
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