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Abstract

Background: The escalating prevalence of fertility problems in the aging population

necessitates a comprehensive exploration of contributing factors, extending beyond

environmental concerns, work-related stress, and unhealthy lifestyles. Among these,

the rising incidence of testicular disorders emerges as a pivotal determinant of fertility

issues. Current treatment challenges are underscored by the limitations of high-dose

and frequentdrugadministration, coupledwith substantial sideeffects and irreversible

trauma inflicted by surgical interventions on testicular tissue.

Material and methods: The formidable barrier posed by the blood–testis barrier

compounds the complexities of treating testicular diseases, presenting a significant

therapeutic obstacle. The advent of nanocarriers, with their distinctive attributes,

holds promise in overcoming this impediment. These nanocarriers exhibit exceptional

biocompatibility, and membrane penetration capabilities, and can strategically target

the blood–testis barrier through surface ligandmodification, thereby augmenting drug

bioavailability and enhancing therapeutic efficacy.

Results and discussion: This review concentrates on the transformative potential of

nanocarriers in the delivery of therapeutic agents to testicular tissue. By summariz-

ing key applications, we illuminate the strides made in utilizing nanocarriers as a novel

avenue to effectively treat testicular diseases.

Conclusions: Nanocarriers are critical in delivering therapeutic agents to testicular

tissue.
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2 ZHAO ET AL.

1 INTRODUCTION: CURRENT CHALLENGES OF
INFERTILITY AND THEIR CAUSES

Infertility, as a pervasive global health challenge,1 is impacting millions

of couples and individuals worldwide. Current statistics reveal that 48

million couples and 186 million individuals are challenged with infer-

tility (www.who.int/publications/i/item/978920068315), with male-

related factors contributing to nearly half of these cases.2–4 The etiol-

ogy of male infertility is intricate, with a myriad of factors influencing

both its onset and progression.

Testicular disorders encompass a spectrum of conditions affect-

ing the physiological function of the testicles and their ancillary

structures, including the epididymis, spermatic cord, and scrotum.

Categorically, testicular dysfunction manifests through congenital

genetic conditions including point mutations,5 like microdeletions

and translocations of chromosomes,6 and acquired disorders, such

as genitourinary infections (epididymitis or orchitis, etc.), chemother-

apy for malignant tumors,7 varicocoele,8 and various kinds of med-

ication treatment (statins9 and psychoactive drugs10) Poor lifestyle

including smoking, excessive alcohol consumption,11 obesity,12 and

substance abuse and chronic exposure to chemicals, radiation, and

heavy metals can also exert significant influences on fertility.13 For

instance, anabolic steroids can cause testicular atrophy,14 while drugs

like cocaine and marijuana can temporarily reduce sperm count or

quality,15 and significantly affect fertility.16,17 Moreover, a variety

of medical conditions and surgical interventions can impede male

fertility,18 ranging from infections like epididymitis or orchitis to

scarring that hinders sperm passage through the excurrent duct

system.19

The multifaceted nature of male infertility extends to various

medical treatments, including radiation therapy or chemotherapy

forcancer,20 antibody attacks on spermatozoa, and abnormal blood

flow resulting from conditions like varicocoele. Specific medication

regimens may interfere with testicular endocrine function, altering

reproductive or supportive cellular mechanisms and impacting sperm

production.21

In essence, male infertility emerges from a complex interplay of

factors, encompassing testicular ailments, chronic health conditions,

lifestyle preferences, therapeutic interventions, environmental condi-

tions, de novo genetic mutations, and so forth. A comprehensive clas-

sification identifies threemain categories ofmale infertility: secondary

hypogonadism due to hypothalamic–pituitary disorders,22 obstruction

of semen outflow, and testicular dysfunction. Among these, testic-

ular dysfunction stands out as the most prevalent cause, thereby

shaping the primary treatment strategy based on its specific under-

lying causes. In the meantime, controlled male contraception from a

medication-based approach has long been lacking and requires consid-

erable attention. Any approaches that could unlock the blood–testis

barrier (BTB) would be of immense help in all the above issues in male

reproduction.

2 TESTICULAR DISORDERS AND CURRENT
TREATMENTS

Prominent testicular disorders are orchitis, epididymis—orchitis,23

testicular cancer, testicular torsion, varicocoele, and testicular effu-

sion. Orchitis,24 an inflammation often triggered by microorganisms

like bacteria, viruses,25 fungi, and parasites, demands tailored inter-

ventions. Antibiotics play a pivotal role in bacterial orchitis, while

supportive care, including analgesics and hot or cold compresses, is

essential for other infections. Severe cases may necessitate surgical

drainage or excision.

Testicular cancer,26 the most prevalent solid malignant tumor in

young males, primarily comprises germ cell tumors.27 Its uncertain

etiology intertwines innate factors such as cryptorchidism, hered-

ity, and chromosomal abnormalities with acquired factors like infec-

tions, trauma, environmental pollution, and nutritional deficiencies.

Orchiectomy, serving both diagnostic and therapeutic purposes, guides

subsequent treatments such as active surveillance, chemotherapy,

retroperitoneal lymph node dissection, and radiation therapy. Yet,

these interventions come with significant side effects, including infer-

tility and various toxicities.

Cyclophosphamide (CP), a key component in cancer treatment,

induces testosterone deficiency (TD) and fertility issues. Testosterone

replacement therapy (TRT) addresses TD,28 but its adverse effects

underscore the need for more effective treatments post-CPTD.29 Bal-

ancing the efficacy of common cancer treatments against their poten-

tial long-term toxicities, including cardiovascular disease, secondary

cancers, and reduced fertility, remains a critical consideration.

Azoospermia, encompassing testicular spermatogenic dysfunction

and obstructive azoospermia (OA),30 presents distinct challenges.

Non-obstructive azoospermia (NOA), linked to endocrine conditions,

varicocoele-induced damage, undescended testes, and various factors,

requires tailored clinical approaches. OA can involve surgical recon-

struction or sperm retrieval for those desiring fertility, although the

effectiveness of surgical correction varies.31,32

Asthenozoospermia, characterized by poor sperm motility,33 arises

from diverse etiologies, including inflammation, hormonal imbalances,

lifestyle factors, and exposure to environmental stressors. Potential

therapeutic strategies involve improving energy metabolism34,35 and

reducing oxidative stress,36 with antioxidants and supplements such as

N-acetylcysteine, coenzymeQ10, vitamin E,37 and L-carnitine showing

promise.

Oligospermia, marked by a reduced sperm count, stems from

various causes, including endocrine dysfunction, infections, hered-

ity, varicocoele,38 sperm agglutination, and environmental factors.39

Treatment options range from surgical interventions for varico-

coele and cryptorchidism to immunosuppressants for anti-sperm

antibodies.40,41

In summary, treatments for male infertility, ranging from med-

ication to surgery, target specific underlying causes. Hormones,
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ZHAO ET AL. 3

F IGURE 1 Schematic diagram of the blood–testis barrier (BTB) andmode of transportation of substances across the BTB. The BTB is located
near the basementmembrane of the germinal epithelium of the seminiferous tubules. It is composed of tight junctions, gap junctions (GJs),
ectoplasmic specialization (ES), and desmosome-like junctions (DJs). BTB can regulate the transport of various substances, in which nutrients
essential for spermatogenesis are transported through simple diffusion, solute carrier-mediated transport, and so forth. Nanoparticles of varying
sizes can also pass through the BTB, due to their small size or surface-modified ligands that bind to the receptor. LC, leydig cell; SC, Sertoli cell; SPC,
spermatocyte; SPG, spermatogonia; SPT, spermatid; TJ, tight junctions.

antibiotics, and supplements address endocrine dysfunction, repro-

ductive tract inflammation, and sperm function, while surgeries like

descending testicular fixation and varicocoelectomy promote sper-

matogenic function.42,43 However, the formidable BTB remains a

critical challenge, limiting therapeutic efficacy and exacerbating drug

toxicity and side effects.

3 OBSTRUCTION OF DRUG DELIVERY BY THE
BLOOD–TESTIS BARRIER

The BTB, is a barrier between the seminiferous tubules and the circu-

lation, located near the base of the Sertoli cells, and consists of tight

junctions (TJs), ectoplasmic specializations (ESs), desmosomes, and gap

junctions (GJs; Figure 1),44 it plays a pivotal role in orchestrating the

testicular microenvironment. Spermatogonia and preleptotene sper-

matocytes are located in the basal zone compartment, while other

primary and secondary spermatocytes, round spermatids, and elon-

gated spermatids are located in the intraluminal compartment.45 TJs

are the most important components of the BTB, acting simultaneously

as a gate and a fence. TJs prevent the passage of water, solutes, and

other macromolecules through the interstitial space of the cell and

restrict the movement of proteins and lipids between the apical and

basolateral domains. ES consists of F-actin microfilaments arranged

in a hexagonal pattern between the plasma membrane and the

endoplasmic reticulum (Figure 1). ESs that exist between SCs are

called the basal ESs while those that exist between SCs and elon-

gated spermatids are called the apical ESsx. GJs are intercellular

channels that allow the diffusion of metabolites, second messen-

gers, ions, and molecules smaller than 1 kDa.46 Regulating the

influx of nutrients (O2, H2O, and ion) essential for spermatogene-

sis, the BTB acts as a guardian, preventing the entry of deleteri-

ous substances47—particularly chemicals that might impede sperm

production.48 Furthermore, it governs the transportation of biological

macromolecules and modulates the concentration of bioactive sub-

stances within the seminiferous tubules,45 thus fostering an optimal

milieu for spermatogenesis.49 The protective role of the BTB extends

to shielding spermatogenic cells from immune system assaults and

thwarting the invasion of toxic substances and pathogens into the

seminiferous ducts, essential for preservingmale fertility.50

Dynamic alterations in BTB occur throughout spermatogenesis,

influenced by peptides and signaling molecules that impact its barrier

function and facilitate the transport of reproductive cells.51 Despite its

crucial protective functions, the BTB poses a formidable challenge in

the context of drug delivery for testicular disorders. Certain viruses

and tumors have been able to find refuge within the testes due to

the BTB’s immune privilege, rendering it difficult for water-soluble or

large-molecule drugs, including antibiotics, antivirals, and antitumor

agents, to penetrate the barrier and achieve therapeutically effective

concentrations.52
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4 ZHAO ET AL.

Efflux proteins stationed at vital barriers in vivo further compli-

cate drug delivery, exporting waste products of normal metabolism

and preventing the entry of various harmful compounds into the pro-

tected tissues.53 The germ cells of the BTB and testis express multiple

drug transporter proteins, including the multidrug resistance protein

P-glycoprotein,48,54 actively expelling drugs from the testis and dimin-

ishing their therapeutic efficacy. Despite the surge in the variety and

incidence of testicular disorders, the development of testicular drug

delivery systems has seen limited progress.

Historically, treatment modalities for testicular diseases heav-

ily relied on oral and intravenous administration.55 However, these

approaches presented notable drawbacks, such as systemic side

effects, frequent dosing, challenges in achieving sufficient intrates-

ticular concentration for therapeutic impact, and the incapacity of

macromolecules to traverse the formidable BTB. Drugs targeting

oxidative stress and energy metabolism enhancement, although fre-

quently employed, often lack organ specificity and exhibit limited

efficacy at elevated dosages. The BTB, acting as a formidable guardian,

hampers the treatment of reproductive system diseases, including tes-

ticular cancer, asthenozoospermia, and viral infections, by impeding

the entry of small-molecule compounds and nucleic acid drugs into

reproductive cells.56

4 ADVANTAGES OF NANOPARTICLES IN DRUG
DELIVERY

The formidable presence of the BTB poses a significant challenge

for conventional drugs to traverse and reach the targeted lesion

site effectively. Nanoparticles, characterized by their ability to sur-

mount biological barriers, offer a promising avenue for overcoming

this obstacle.57,58 Nanocarriers, specifically designed to ferry func-

tional therapeutics, exhibit the capability to breach biological barriers

through endocytosis59 and physical methods that aid in the transient

opening of biological barriers and deliver therapeutic payloads to tis-

sues safeguarded by such barriers. These nanocarriers are adept at

carrying small molecules of chemical drugs, nucleic acids, peptides,

proteins, antibodies, and CRISPR/Cas9.

Nanocarriers can be broadly classified into four main categories

based on their composition: organic materials, inorganic materials,

extracellular vesicles (EVs), and viral vectors.60 Organic nanoparti-

cles, including lipid-based nanodelivery vectors, micelles, and dendritic

macromolecules formed from lipids, polymers, and small molecules,

can be surface-modified to enhance critical properties like surface

charge,61 lipophilicity, biocompatibility, tissue and organ targeting,

and cell permeability.62 These carriers can also achieve controlled

release of drugs under specific conditions,63,64 protecting them from

rapid clearance by the body and prolonging their circulation time65

(Figure 2).

In previous studies, each type of nanoparticle is capable of loading

drugs of different nature, such as some biomolecules with therapeutic

effects (siRNA, mRNA, plasmids and proteins, etc.) and small molecule

inhibitors. The characteristics of different types of nanoparticles

vary, liposomes have the advantage of flexible drug loading and high

biosafety, but they also face poor biodistribution and low drug loading

rates. Inorganic metal nanoparticles have the advantage of flexible

size and shape, but due to their poor solubility, they often need to be

modified to improve their biocompatibility. Various nanoparticles have

been prepared in a variety of ways, as summarized in Table 1.

Inorganic nanoparticles, encompassing metals, metal oxides, and

silica,60 leverage their unique physical, chemical, optical, electronic,

and magnetic properties for applications such as drug delivery,

bioimaging,81 therapeutics, and cancer immunotherapy,82 The size,

shape, and surface properties of inorganic nanoparticles can be con-

trolled for optimal interaction with target cells. These nanomaterials

offer biostability and non-degradability, allowing internal or external

control of transport and drug release through factors like temperature,

pH, magnetic fields, and light.83

EVs, originating from eukaryotic cells and bacteria, present a nat-

ural and endogenous option for drug delivery.84 Comprising lipid

bilayer membranes containing organelle-free cytoplasmic lysosomes,

these vesicles can transport drugs across cell membranes via various

pathways, ensuring good biocompatibility and low immunogenicity.85

Viral vectors, including adenovirus,86 lentivirus,87 and retrovirus,88

exhibit unique structures and have been explored for their potential in

vaccine development.89 Virus-like particles (VLPs), lacking a genome

and being non-infectious, offer a safer and less immunogenic alter-

native. Viral nanostructures serve as scaffolds for diverse materials,

enhancing their modifiability and functionalization.89

Nanoparticles are significant in overcoming biological barriers,

such as the blood–brain barrier (BBB), BTB, and placental barrier,

to deliver drugs. Nanoparticles typically cross biological barriers to

the lesion site through the transcellular pathway encompassing tran-

scytosis and receptor-mediated transportation.90 Alternatively, they

may rely on physical means to assist them through the paracellu-

lar pathway. The transcytosis pathway can be identified as specific

receptor-mediated and non-specific receptor-mediated. Specific endo-

cytosis involvesmodifying the surfacewith targetingmolecules such as

glucose,91 amino acids,92,93 apolipoprotein E,94,95 and ferritin,96 These

molecules bind specifically to their corresponding receptors expressed

by targeting cells to achieve efficient transport. Non-specific transcy-

tosis includes adsorption-mediated, clathrin-dependent, or clathrin-

independent transcytosis pathways. For instance, cationic liposomes97

and erythrocyte-derived EVs cross the biological barrier through

adsorption-mediated cytosis.98 Delivery of nanoparticles through the

paracellular pathway can be affected by various factors, including

size,99 surface charge,100 surface modification,101 and magnetic102

and photothermal properties.103 Furthermore, physical methods, such

as ultrasonic waves and electromagnetic pulses (EMPs), can be uti-

lized to momentarily open the barrier and facilitate the delivery of

nanoparticles.104 Although there are limited studies on how nanopar-

ticles penetrate the BTB, it is important to reference the crossing of

other biological barriers (e.g., the extensively studied BBB) for the

development of drug delivery vectors relevant to testicular diseases.

Modification strategy for targeting specific cells in the testis (Figure 3)

mostly involves the initial step to identify the target cells, followed by
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ZHAO ET AL. 5

F IGURE 2 Common types of nanoparticles (NPs) and properties. NPs can be loadedwith different properties and types of drugs, such as
proteins, small molecules, nucleic acids, and antibodies; Common types of NPs include liposomes, polymeric NPs, and exosomes. The surface of
NPs can be positively or negatively charged, and their particle size, shape, and hardness can vary. In addition, the surface of NPs can bemodified
with small molecules, proteins, antibodies, and aptamers to enhance targeting. These properties enable in vivo applications such as extended
biological half-life, efficient cellular uptake, tissue penetration, and controlled drug release.

F IGURE 3 Rational design for cell type-specific targeting nanoparticle.
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6 ZHAO ET AL.

TABLE 1 Summarization of drug loading, characterization, and preparation of different nanoparticle types.

NP type

Therapeutic cargo

delivered Advantages Disadvantages Production References

LNP siRNA, mRNA, ASO,

protein, small molecules,

vaccines

Simple formulation,

self-assembly, good

biocompatibility, high

bioavailability, ability to

carry drugs with different

physical properties

Low drug loading and

biodistribution that

results in high uptake to

the liver and spleen

Microfluidic methods,

extrusion of lipid vesicles,

nanoprecipitation

66–68

Polymer NPs Small molecules, siRNA,

mRNA, ASO

Biocompatible and have

simple formulation

parameters

The increased risk of

particle aggregation and

toxicity

Solvent evaporationmethod,

dialysis

69–71

Inorganic NPs Small molecules, siRNA,

DNA protein

Thewide variety of sizes,

structures and geometries,

unique physical, electrical,

magnetic and optical

properties

Low solubility and toxicity

concerns

Method of precipitation,

ultrasonic method,

self-assembly

70, 72, 73

EVs siRNA, antibody, protein,

plasmid, small molecules

Low immunological

response; potential

intrinsic therapeutic

activity

Low separation efficiency,

Limitedmechanism

studies

Density gradient

centrifugation, differential

centrifugation, kit method

74–77

Virus vectors and

VLPs

mRNA, protein, small

molecules

Favorable biocompatibility

and biodegradability

Be recognized and

attacked by the immune

system

Modification using genetic

engineering techniques

78–80

Abbreviations: ASO, antisense oligonucleotides; EVs, extracellular vesicles; LNP, lipid nanoparticle; NP, nanoparticle; siRNA, small interfering RNA; VLPs,

virus-like particles.

identifying their corresponding unique surface markers, and a proper

ligand that can bind to the surface marker of choice using techniques

such as computer simulation, antigen–antibody conjugation, and so

forth. The selected ligand can then be used to decorate and “function-

alize” the surfaces of nanoparticles, thus enabling them to transport

across the BTB.

In summary, nanoparticle-based carrier systems provide a multi-

tude of advantages, including protection of drugs from degradation,

prolongation of drug circulation time, improvement of bioavailabil-

ity, controlled drug release, and targeted delivery to specific cell

types. Recognizing these advantages, nanodelivery carriers emerge as

a promising approach to overcoming biological barriers. This review

focuses on several nanocarriers capable of crossing the BTB and

delivering small-molecule inhibitors, nucleic acid drugs, and male

contraceptives to testicular tissue (Table 2).

4.1 Extracellular vesicles

EVs are membranous structures released by cells, facilitating the

transport of bioactive cargoes—proteins, lipids, and nucleic acids—to

regulate diverse biological functions. Categorized into microvesicles,

apoptotic bodies, and exosomes based on their diameter and origin,85

EVs serve as signal carriers for intercellular communication, playing a

crucial role in maintaining cellular homeostasis. Their ability to fuse

with the membranes of target cells allows for the delivery of contents,

regulatingphysiological or pathological processes, andaiding indisease

diagnosis and prediction. Due to their potential to traverse biological

barriers, EVs stand out as promising clinical drug delivery vehicles,112

exemplified by their ability to cross the BBB for drug delivery in brain

disorders.113

Previous studies have demonstrated EVs containing RNA for

enhanced green fluorescent protein (EGFP) released into the blood-

stream by transplanted human cells. Intriguingly, fluorescent signals

observed in mouse epididymal spermatozoa suggest the potential of

EVs to deliver somatic cell material to germ cells, possibly crossing

blood–blood or blood–epididymal barriers.114

Sertoli cells, pivotal for testicular development, hormone secretion,

and BTB formation, release exosomes that could be instrumental in

treating male infertility. Research indicates that Sertoli cell-derived

exosomes facilitate the transfer of miR-486-5p into spermatogonial

stem cells (SSCs).105 Furthermore, these exosomes can cross the BTB,

delivering their contents, including CCL20 mRNA, to mesenchymal

cells, thereby regulating mesenchymal cell survival through CCL20.115

In mammalian testicular development, exosomes and their miRNAs

play crucial roles in regulating various stages, from SSC prolifer-

ation to spermatocyte meiosis, maintaining the testicular immune

microenvironment.106

Studies on Sertoli cell-derived extracellular vesicles (SC-EVs)

loaded with miR-24-3p inhibitors have resulted in a nanomedicine

(SCsEV@miR-24-3p inhibitor) capable of crossing the BTB and deliv-

ering the inhibitor to germ cells. This nanomedicine proved effective in

targeting testicular and germ cells, showcasing its potential in clinical

treatments like asthenozoospermia.116

Bone marrow mesenchymal stem cell-derived exosomes (BMSC-

exos) could reduce the reproductive toxicity of CP by inhibiting
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ZHAO ET AL. 7

TABLE 2 Application of nanoparticles in testicular-related diseases.

NP type Drug Application potential References

EVs Nucleic acid drug (miR-486-5p) Diagnosis of male infertility 105

EVs Nucleic acid drug (miR-30a-5p) Male infertility 106

EVs Nucleic acid drug (miR-24-3p) Asthenozoospermia 106

LNP Nucleic acid drug (Dmc1 saRNA) Male infertility caused by genetic mutations 107

LNP Nucleic acid drug (PIN1 proteins) Male infertility 108

LNP Small-molecular drug (honokiol) Cisplatin-inducedmale fertility defects 109

Inorganic NP Small-molecular drug (MCP I) Male contraceptive 110

Inorganic NP Small-molecular drug (curcumin) Improve spermatogenesis 111

HFn Small-molecular drug (ATP) Asthenozoospermia 96

Abbreviations: Dmc1, DNA meiotic recombinase 1; EVs, extracellular vesicles; HFn, human H-ferritin; LNP, lipid nanoparticle; MCP 1, Carica papaya seeds
extract; miRNA, microRNA; NP, nanoparticle; PIN 1, peptidylprolyl cis/trans isomerase NIMA-interacting 1; saRNA, self-amplifying RNA.

p38MAPK/ERK and AKT signaling pathways and ameliorating CP-

induced testicular spermatogenesis dysfunction.117 Further experi-

ments demonstrated that BMSCs-exos alleviated cell death in CP-

exposed spermatogonia GC1 and TM3 mouse Leydig cells and pro-

moted autophagy to improve TD induced by CP by regulating the

AMPK-mTOR signaling pathway.118 A summarized table (Table 2)

for the detailed application of nanoparticles in male reproductive

treatment is presented. In addition to their loaded drugs (Table 2),

these nanoparticles are also functionalized by decorating ligands

(e.g., ferritin96) for receptor-mediated transcytosis across the BTB,

although, many cases are not able to identify themechanism aiding the

nanoparticle transversing the BTB after intravenous application.107

While EVs hold promise for drug delivery with attributes like low

immunogenicity, low cytotoxicity, and high biocompatibility, challenges

remain. Limitations include effective isolation methods, drug load-

ing efficiency, EV uptake by target cells, non-specific biodistribution,

and rapid elimination in circulation.119 Although evidence suggests

that EVs can facilitate information exchange between testicular mes-

enchyme and seminiferous tubules, further experiments are essential

to elucidate the precise mechanisms of EVs crossing the BTB in vivo,

paving the way for their application in diseases related to the testicles.

4.2 Lipid-based nanoparticles

Liposomes and lipid nanoparticles (LNPs) are well-established nano-

materials in drug and gene delivery, many liposome nanomedicine

have been instrumental in anti-cancer therapeutic because Doxil was

approved by the US Food and Drug Administration (FDA) in 1995,

and then LNPs have shown strong potential in gene delivery as

applied in some mRNA-based COVID-19 vaccines.120 Liposomes are

self-assembled spheres, composed of amphiphilic molecules with a

hydrophilic head facing the outer aqueous environment, exhibit supe-

rior biocompatibility and transmembrane transport, resembling cell

membranes.121 Surface-modified liposomes, adorned with specific lig-

ands, can target disease tissues or tumormicroenvironments, enabling

targeted drug delivery and minimizing the risk of toxic side effects.

Their unique structure allows encapsulation of hydrophobic small-

molecule drugs, nucleic acids,122 proteins,123 and hydrophilic small

molecules, offering protection against degradation and prolonging

drug half-life in the blood.

Extensively studied for aiding nucleic acid drugs in crossing

the BBB, lipid-based nanodelivery vectors have shown promise in

helping these drugs traverse the BTB. For instance, studies utiliz-

ing cholesterol-amino-phosphate (CAP) lipids, mixed with dioleoyl

phosphatidylethanolamine (DOPE) and 1,2-dimyristoyl-rac-glycero-3-

methoxypolyethylene glycol (DMG-PEG), formed LNPs (CAP2-4 LNP)

with a particle size of around 120 nm. These examples successfully

aided the delivery of DNA meiotic recombinase 1 (Dmc1) saRNA,

demonstrating therapeutic effects in mice with low expression of

Dmc1, akin to azoospermic mice.108

Lipid-based nanodelivery vectors have also proven effective in

assisting the delivery of proteins across the BTB. Studies encapsulat-

ing filipin protein nanoparticle complexes in cationic lipids successfully

delivered PIN1 proteins to testis cells, restoring protein levels and res-

cuing mice with testicular immaturity caused by PIN1 deficiency.109

Additionally, by an yet-to-identify mechanism, liposomes are able to

transport across the BTB, release their encapsulated natural polyphe-

nol antioxidants honokiol to reduce reactive oxygen species (ROS) lev-

els, maintaining mitochondrial structure and ATP-producing capacity

in testicular cells, thereby compensating for cisplatin-induced defects

in male fertility.107

While lipid-based nanodelivery vectors stand as primary nanoma-

terials in drug delivery, their use in crossing the BTB for treating

testicular diseases is an emerging area. Surfacemodifications targeting

theBTBcould significantly enhance treatment efficiency for testicular-

related diseases, overcoming potential limitations such as low drug

loading efficiency and systemic drug distribution.

4.3 Inorganic nanoparticles

Inorganic nanoparticles possess unique physicochemical properties

and enhanced bioactivity due to their high surface area-to-volume

 20472927, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/andr.13729 by U

niversity O
f T

echnology Sydney, W
iley O

nline L
ibrary on [06/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 ZHAO ET AL.

ratio. They can be engineered into various sizes, structures, and

geometries, and their surfaces can be functionally modified to improve

their ability to cross biological barriers.68 Types of nanoparticles

include metal nanoparticles (platinum, gold, silver, and copper), metal

oxide nanoparticles (titanium dioxide, zinc oxide, and iron trioxide),

and carbon nanomaterials (fullerenes and carbon nanotubes). These

nanoparticles have shown promise in drug delivery and imaging.

Gold-based nanoparticles, such as nanospheres, nanorods, and

nanocages, have been studied extensively for diagnostic imaging and

drug delivery. For instance, gold nanoparticles modified with Carica

papaya seeds extract MCP I demonstrated enhanced contraceptive

effects in rats.110 The nanoparticleswere conjugatedwithMCP I, over-

coming the impediment of the BTB and achieving higher efficacy in

albino rats comparedwith conventional delivery systems.

PEG-modified gold nanoparticles (mPEG@AuNP)124 demonstrated

efficient tissue permeability and low toxicity. These nanoparticles

could pass through the BTB and enter germ cells without affecting

fertility, making them potential drug delivery systems for treating

testicular diseases.

Starfish-like gold–copper alloy nanocrystals125 showed potential in

carrying siRNA, miRNA, DNA, or peptides to male germ cells for treat-

ing male infertility. These nanocrystals penetrated male germ cells

through the BTB, especially under certain pathological conditions or

heat treatment.126,127

Iron oxide nanoparticles (IONP) loaded with curcumin111 demon-

strated improved spermviability inmice subjected toprolonged scrotal

thermotherapy. The nanoparticles reduced the required drug dosage

andmitigated toxic side effects, enhancing spermatogenesis.

MgH2, a nanomaterial used for hydrogen storage, positively

affected male fertility by inhibiting oxidative stress.128 Additionally,

intravenously injected amorphous silica nanoparticles (MSN) accumu-

lated in supporting cells and germ cells, penetrating the BTB without

causing significant damage to the testes. This opens avenues for

targeted drug delivery through an appliedmagnetic field.129

Fluorescent europium-doped zinc oxide nanoparticles (ZnO: Eu

NPs) accumulated in the testis without adverse effects, showcasing

their potential for diagnostics.130 Physical methods, such as pulsed

unfocused ultrasound (PuFUS)127 and EMP131 exposure, were also

explored for enhancing the permeability of the BTB to drugs.

Inorganic nanoparticles with magnetic, radioactive, or plasmonic

properties find applications in diagnostics, imaging, and photothermal

therapy. Targeting moieties,132 such as human h-ferritin (HFn), can be

modified on the surface of nanoparticles to achieve specific targeting

of elevated spermatozoa in the testis, improving sperm viability.96

While inorganic nanoparticles offer diverse possibilities in drug

delivery and diagnostics, challenges include potential toxicity, low

solubility, and non-specific distribution. Surface modifications with

targeting moieties aim to address these challenges, emphasizing the

importance of continued research for clinical applications.

The use of inorganic nanoparticles for male contraception is also

a topic that is currently attracting considerable interest. In light of

the superior physicochemical properties of IONP, researchers have

identified a method of controlled male contraception. This involves

the injection of PEG-coated iron oxide nanoparticles (PEG@Fe3O4-

50), with a diameter of 50 nm, into the testes under the action of an

alternating magnetic field (AMF).133 A further study investigated the

potential of human heavy chain ferritin (HFn) nanocarriers loadedwith

aggregation-induced emission luminogens (AIEgens) for non-invasive

and controlled male contraception, guided by Near-Infrared-II (NIR-

II) fluorescence imaging.134 Nevertheless, these methodologies are

not without inherent constraints. For instance, testicular administra-

tion and infrared lasers may cause discomfort, while the non-readily

degradable nature of nanoparticles may give rise to certain safety con-

cerns. Thesemethods are acceptable for patientswith diseases but less

convenient for healthy men who require contraception. Consequently,

the utilization of nanoparticles formale contraception necessitates the

collective endeavors of numerous researchers.

5 CONCLUSION AND PERSPECTIVES

The presence of the BTB limits the bioavailability of drugs in the testis,

which complicates the therapeutic regimen for testis-related diseases.

There is an urgent need for a safe and effective drug delivery strat-

egy to address this limitation. Nanotechnology enables potential drug

delivery systems across the BTB to effective targets. Adjustable size,

morphology, and especially modifiable surfaces enable nanocarriers to

passively or actively target specific areas.

Ongoing research is developing new testicular delivery strategies

that will safely, accurately, and efficiently penetrate the BTB through

various non-invasive routes to deliver drugs to the target site, ulti-

mately enhancing drug efficacy. These strategies include (1) Surface

modification with antibodies, peptides, and other ligands to achieve

active targeting of the desired site and improve in vivo distribution and

accumulation by specific coupling with receptors on the membrane.

This approach ensures more effective and precise delivery of the ther-

apeutic agents; (2) Biomimetic nanoparticles can acquire the traits of

the original cells, overcomemultiple biological barriers in vivo, achieve

homologous targeting, and reduce immune rejection; (3) Coupling the

delivery vehicle with bioactive decorations enhances the efficiency

of drug penetration into the BTB. Moreover, the limited availability

and side effects of current male contraceptives highlight the need for

further research. The use of nanoparticle loading to enhance the con-

traceptive efficacy and biosafety of hormonal male contraceptives is

thus a highly promising avenue. Yet, despite the emerging studies for

the exciting avenue shipping across theBTB, current research still lacks

a suitable model, in vivo or in vitro, to assess BTB permeability. As for

future translation, data must be obtained to address safety concerns,

such as potential reproductive toxicity, in vivometabolic changes organ

accumulation, and so forth before proceeding with clinical translation.
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