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Chaos-based encryption methods have gained popularity due to the unique properties of chaos. 
The performance of chaos-based encryption methods is highly impacted by the values of initial and 
control parameters. Therefore, this work proposes Iterative Cosine operator-based Hippopotamus 
Optimization (ICO-HO) to select optimal parameters for chaotic maps, which is further used to 
design an adaptive image encryption approach. ICO-HO algorithm improves the Hippopotamus 
Optimization (HO) by integrating a new phase (Phase 4) to update the position of the hippopotamus. 
ICO-HO updates the position of hippopotamuses using ICO and opposition-based learning, which 
enhances the exploration and exploitation capabilities of the HO algorithm. ICO-HO algorithm’s better 
performance is signified by the Friedman mean rank test applied to mean values obtained on the CEC-
2017 benchmark functions. The ICO-HO algorithm is utilized to optimize the parameters of PWLCM 
and PWCM chaotic maps to generate a secret key in the confusion and diffusion phases of image 
encryption. The performance of the proposed encryption approach is evaluated on grayscale, RGB, 
and hyperspectral medical images of different modalities, bit depth, and sizes. Different analyses, such 
as visual analysis, statistical attack analysis, differential attack analysis, and quantitative analysis, 
have been utilized to assess the effectiveness of the proposed encryption approach. The higher NPCR 
and UACI values, i.e., 99.60% and 33.40%, respectively, ensure security against differential attacks. 
Furthermore, the proposed encryption approach is compared with five state-of-the-art encryption 
techniques available in the literature and six similar metaheuristic techniques using NPCR, UACI, 
entropy, and correlation coefficient. The proposed methods exhibit 7.9995 and 15.8124 entropy values 
on 8-bit and 16-bit images, respectively, which is better than all other stated methods, resulting in 
improved image encryption with high randomness.
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Recent growth in digital information technology has led to the transmission of many sensitive and confidential 
images over public networks. The availability of such crucial information over public networks raises concerns 
for image security. Image security can be achieved using steganography, watermarking, and encryption. Image 
steganography hides the secret data under another image, video, or audio. In this technique, only the intended 
recipient and the sender are aware of the data. Watermarking is placing an invisible or visible mark inside an 
image or document. This technique is popular for proving the ownership of an image or document. Image 
encryption is the conversion of a raw image into a cipher image, which can be decrypted at the receiver end. It is 
a prominent technique to ensure data security, confidentiality, and integrity over the public network1–3.

Image encryption techniques are of two types. One is the classical encryption techniques like RSA, AES, and 
DES. Traditional encryption techniques have proven their significance on text data and have been widely used 
for web security and banking. However, due to the high computation time, such techniques are not suitable 
for digital images, which contain highly correlated data4,5. The other category of image encryption techniques 
includes the confusion and the diffusion step6. These techniques are popular for image encryption due to their 
low computation time and robustness against several attacks. Different authors have used various techniques 
in the confusion and diffusion steps. However, Chaos-based image encryption methods have gained attention 
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due to chaos properties such as ergodicity, sensitivity to initial conditions and control parameters, random-like 
behavior, and unpredictability7,8. The performance of these methods depends upon the initial and the control 
parameters, which led to the need for optimal selection of these parameters for better performance of chaos-
based encryption methods9,10.

Metaheuristic optimization techniques have been widely used for behavioral pattern guidance11, and optimal 
parameter selection. Metaheuristic techniques are of two major types, i.e., single objective and multi-objective 
metaheuristic techniques. Different single and multi-objective metaheuristic techniques like Particle Swarm 
Optimization (PSO)12, Bald Eagle Search (BES)13, multi-objective Brown Bear Optimization14, and multi-
objective cheetah optimization15 algorithms have shown better performance in selecting the optimal parameters 
for different algorithms due to their high exploration and exploitation capabilities. This makes metaheuristic 
techniques suitable for selecting the initial and control parameters for the chaos-based image encryption methods. 
Various authors have used different metaheuristic techniques to select the initial and control parameters for 
chaos-based image encryption methods16.

Noshadian et al.17 have proposed an optimized image encryption technique based on Teacher Learning-
Based Optimization (TLBO), Gravitational Search Algorithm (GSA), and logistic map. The authors have used 
a logistic map as an encryption key for diffusion and TLBO and GSA to optimize the map parameters. Farah 
et al.6 have proposed a new hybrid chaotic map for image encryption and generated a new substitution box 
using the Jaya algorithm. Saravanan and Sivabalakrishanan18 proposed an optimized hybrid chaotic map for 
image encryption. The authors have hybridized the 2DLCM and PWLCM map and performed parameter tuning 
using the improved whale optimization algorithm. The authors have analyzed the performance of their proposed 
algorithm on medical, natural, and satellite images. Kaur and Singh19 have used multiobjective evolutionary 
techniques to select the optimal parameters for the chaotic maps. The authors used the optimal parameters 
to generate a secret key, which is used to encrypt the image. They performed key, statistical, and differential 
analyses to analyze the performance of the encryption algorithm.

Luo et al.20 have used the hyperchaotic system and the updating process of particle swarm optimization for 
image encryption. They used the secure hash algorithm 256 to generate the initial keys for the hyperchaotic 
Lu system. The authors have analyzed the proposed algorithm using several attacks. Toktas and Erkan21 have 
designed a 2D fully chaotic map by utilizing the Artificial Bee Colony (ABC) for image encryption. The authors 
used ABC to minimize the quadruple objective function, which consists of the entropy, correlation coefficient, 
0–1 test, and the Lyapunov exponent. Sameh et al.16 analyzed the impact of optimization of initial and control 
parameters for eight chaotic maps using nine metaheuristic optimization algorithms. Authors have computed 
the performance of encryption using sine, Tent, Circle, Gauss, singer, piecewise, and logistic maps without any 
optimization. Then, the authors used the Sine Cosine Algorithm (SCA), Moth Flame Optimization (MFO), 
Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO), Genetic Algorithm (GA), Dragonfly 
Algorithm (DA), Ant Lion Optimizer (ALO), Whale Optimization Algorithm (WOA), and Multi-Verse 
Optimizer (MVO) to select the optimal value of the chaotic map parameters. The authors have compared the 
performance to analyze the impact of each optimization algorithm.

Sharma et al.22 utilized the Self Adaptive Bald Eagle Search (SABES) optimization algorithm to optimize the 
chaotic parameters of PWLCM, PWCM, and tent maps. The authors used the random permutation method in 
the confusion phase and optimized chaotic maps in the diffusion phase with the cyclic redundancy check and 
circular shift method to secure patient medical information, medical signals as well as medical images. Sharma 
and Sharma23 have used the Harris Hawk Optimization (HHO) algorithm to optimize the Duffing, Lorenz, and 
Henon maps parameters. The authors have used different chaotic maps at different stages, which led to larger key 
spaces and resulted in a highly robust method.

Novelty and contributions of the work
As mentioned earlier, different researchers have worked on image encryption using the chaotic map with 
optimized parameters using metaheuristic techniques. Still, to the best of our knowledge, a high-performance 
image encryption algorithm for different types of images consisting of hyperspectral images, grayscale, and 
RGB images is not available. This work designs a reliable image encryption algorithm based on a chaotic map 
optimized using the Iterative Cosine Operator (ICO) based Enhanced Hippopotamus Optimization (HO) 
algorithm. Overall, the main contributions of the paper are as follows:

	 i.	� Designed ICO-HO, i.e., ICO-based HO, by integrating a new phase (phase 4) for position update of Hip-
popotamus Optimization (HO) by utilizing ICO and opposition-based learning to enhance the exploration 
and exploitation capabilities of the algorithm.

	ii.	� The proposed ICO-HO is used to design an adaptive image encryption method based on the chaotic maps, 
i.e., PWCM and PWLCM, with optimized parameters.

	iii.	� Analysis of the proposed encryption method on different types of images, including medical images, gray-
scale images, RGB images, and hyperspectral images.

The remaining paper has been divided into four more sections. The next section, section ii, elaborates on the 
Hippopotamus optimization algorithm. The proposed work, which consists of the ICO-HO algorithm and the 
image encryption architecture, is explained in section iii. The results are analyzed and discussed in section iv. 
Section v concludes the work and describes the future scope.
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Understanding of Hippopotamus optimization
Hippopotamus optimization (HO)24 is inspired by the hippopotamus’s social behavior and defense process. 
Similar to the other population-based optimization algorithms, the Hippopotamus position is a candidate 
solution to the problem. The hippopotamus’s initial position is generated randomly, as given in Eq. (1).

	 HOij = Lj + rand × (Uj − Lj)� (1)

Where HOij  denotes the position of ith Hippopotamus in the jth dimension. Uj , Lj  denotes the upper and 
lower bounds for jth dimension, respectively. rand gives the random number between 0 and 1. Equation (2) 
gives the overall position matrix for M hippopotamus in the N dimension.

	

HO =




HO0,0 HO0,1 · · · HO0,N

HO1,0
?

HO1,1 · · ·
? · · ·

HO1,N

?
HOM,0 HOM,1 · · · HOM,N




M× N

� (2)

The position update of the hippopotamus to explore the search space in the HO algorithm consists of three 
phases. The fitness value of each hippopotamus is computed using the fitness function fit (). Phase 1 exhibits 
the exploration using the social behavior of the hippopotamus. The hippopotamus group consists of females, 
calves, males, and the leader hippopotamus, as given by Eq. (3).

	 HO = HOf ∪ HOc ∪ HOm ∪ HOL� (3)

where HOf , HOc, HOm, HOL represents the females, calves, males, and leader hippopotamus, respectively. 
Each hippopotamus is labeled to HOf or HOcor HOmor HOL based on its fitness value only. The position 
update for the male hippopotamus inside the water bodies is given by Eq. (4).

	
HOm

ij = HOij + rand ×
(
HOL − C1HOij

) ∣∣ i = 1,2, 3, . . . ,
[
M/

2
]

and j = 1,2, 3, . . . .N � (4)

where C1 is the constant integer between 1 and 2. The position update for the female hippopotamus and calves 
i.e., HOfc = Hf ∪ Hc is given by Eq. (5).

	

HOfc
ij =

HOij + v1 ×
(
HOL − C2RGm

)
HOij + v2 ×

(
RGm − HOL

)
Lj + rand × (Uj − Lj)

∣∣∣∣∣∣
T > 0.6

else if rand > 0.5
else

� (5)

where i = 1,2, 3, . . . ,
[
M/

2
]

and j = 1,2, 3, . . . .N . The v1, v2 are generated using Eq.  (6) and T  is 

generated using Eq. (7). C2is the constant integer between 1 and 2. RGm is the mean of the randomly selected 
hippopotamus from the available M  hippopotamus.

	

v =





C2 ×
−−−→
rand + (∼ ϑ 1)

2 ×
−−−→
rand − 1−−−→
rand

C1 ×
−−−→
rand + (∼ ϑ 2)−−−→

rand

� (6)

	 T = e
−Curitr

/
Maxitr

� (7)

where Curitr  and Maxitr  is the current and maximum iteration, respectively. ϑ 1, ϑ 2  are the random 
integers between 0 and 1. The updated position of hippopotamus is accepted only if it is better than the previous 
f﻿itness value given by Eqs. (8) and (9).

	
HOi =

{
HOm

i
HOi

∣∣∣ fit (HOm
i ) < fit (HOi)

else � (8)

	
HOi =

{
HOfc

i
HOi

∣∣∣∣ fit
(
HOfc

i

)
< fit (HOi)

else
� (9)

where fit () is the fitness function. Phase 2 of the HO algorithms exhibits exploration and mimics the defense 
methodology of hippopotamus against predators. The position of the predator is given by the Eq. (10).

	 Pj = Lj + rand × (Uj − Lj) |j = 1,2, 3, . . . N � (10)

The distance of a particular hippopotamus from the predator can be found using Eq. (11).
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−−→
Dist = |Pj − HOij |� (11)

The hippopotamus decides its defensive action based on the 
−−→
Dist value i.e., distance from the predator. If the 

hippopotamus is in close vicinity of the predator i.e., fit (Pj) < fit (HOi) then hippopotamus turns to face 
the predator otherwise it moves towards the predator as shown in Eq. (12).

	

HOn
ij =

levyr ⊕ Pj +
(

b
(c−d∗cos(2π g))

)
·

(
1

−−→
Dist

)

levyr ⊕ Pj +
(

b
(c−d∗cos(2π g))

)
·

(
1

2∗−−→
Dist+

−−−→
rand

)
∣∣∣∣∣∣

fit (Pj) < fit (HOi)
else � (12)

where i =
[
M/

2
]

+ 1,
[
M/

2
]

+ 2, · · · M and j = 1,2, 3, . . . .N

The updated position of the hippopotamus is accepted only if its fitness value is better than the existing fitness 
value as given by Eq. (13).

	
HOi =

{
HOn

i
HOi

∣∣∣ fit (HOn
i ) < fit (HOi)

else � (13)

Phase 3 of the HO algorithm exhibits exploitation through the escaping behaviour of hippopotamus from 
the predator. Hippopotamus generally search for the nearest water bodies to escape from the predator. This 
phenomenon exhibits the exploitation search in the local region as hippopotamus explore the nearest water 
bodies. The local upper and lower bound for the current iteration can be found using the Eq. (14).

	
U local

j = Uj

/
Curitr

Llocal
j = Lj

/
Curitr

� (14)

The updated position of the hippopotamus is given by the Eq. (15).

	 HOn
ij = HOij + rand

(
Llocal

j + α
(
U local

j − Llocal
j

))
� (15)

where α  is given by the Eq. (16).

	

α =




2 ×
−−−→
rand − 1−−−→
rand−−−−→

randn

� (16)

where 
−−−−→
randn gives the random number with normal distribution. Hippopotamus will move to safer place only 

i.e., updated position is accepted only if its fitness value is better than the existing fitness value given by Eq. (17).

	
HOi =

{
HOn

i
HOi

∣∣∣ fit (HOn
i ) < fit (HOi)

else � (17)

The whole process i.e., three phases of the HO algorithm repeats for each candidate solution, for the Maxitr  
iterations. HO algorithm is improved and utilized to optimize the parameters of the chaotic map discussed in 
the next section.

Proposed work
This work proposes the ICO-HO, i.e., Iterative Cosine Operator-based Hippopotamus Optimization algorithm 
that adds a new phase to the HO algorithm for position updates using the ICO operator and opposition-based 
learning. The proposed ICO-HO is further used to optimize the initial and control parameters of chaotic maps. 
This work also proposes a security framework that uses the optimized chaotic maps in confusion and diffusion 
steps. Overall work is explained in two phases. The first phase defines the proposed ICO-HO, i.e., Iterative 
Cosine Operator-based Hippopotamus Optimization. The second phase describes the security framework for 
the image encryption approach based on ICO-HO.

ICO-HO
ICO-HO improves the HO algorithm’s exploration and exploitation capabilities by using an Iterative Cosine 
Operator (ICO). ICO performs exploration at the initial iterations, which converts to the exploitation of search 
space as the iteration increases. Unlike the HO algorithm, which completes in three phases, ICO-HO completes 
its process in four phases. The first three phases of ICO-HO are the same as those of the HO algorithm, while the 
fourth phase updates the Hippopotamus position using Eq. (18).

	

HOn
i =

HOi × rand + HOL × cos
(

(π × Curitr)
/

(2 × Maxitr)
)

HOi × rand − HOL × cos
(

(π × Curitr)
/

(2 × Maxitr)
)

∣∣∣∣∣∣
rand < 0.5

else � (18)

Scientific Reports |         (2025) 15:9476 4| https://doi.org/10.1038/s41598-025-86569-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where, as presented in the previous section HOL is the position of leader hippopotamus. Curitr , MaxItr  
are the current and maximum iterations, respectively. Equation  (18) shows that the hippopotamus explores 
the search space toward the leader or opposite to the leader with a 50% probability of each case. This includes 
opposition-based leaning, as the optima may exist opposite the leader. This exploration at initial iteration converts 

to exploitation as the iteration increases due to the value of ICO i.e., cos
(

(π × Curitr)
/

(2 × Maxitr)
)

 

approaching towards zero. The updated position value of the hippopotamus is accepted only if it gives a better 
f﻿itness value as compared to the existing fitness value, as represented by Eq. (19).

	
HOi =

{
HOn

i
HOi

∣∣∣ fit (HOn
i ) < fit (HOi)

else � (19)

The whole process is repeated for the MaxItr  times. The overall algorithm for ICO-HO is as follows.

A framework to secure the image is designed using the ICO-HO algorithm explained in the next subsection.

Proposed framework for image encryption approach
This framework proposed for image encryption is demonstrated in Fig. 1. This framework uses chaotic maps to 
encrypt images and ICO-HO to select optimum parameters for chaoctic maps. The chaotic maps are selected for 
the encryption due to their properties: fast processing, determinism, aperiodic behavior, pseudo-randomness, 
boundedness, and dynamical nature. Encryption methods based on chaotic maps are also more robust because 
control parameters and initial conditions highly influence these maps. The complete process is divided into two 
stages i.e., the parameter optimization stage and the encryption stage. A description of each stage is given in the 
following subsections.

Parameter optimization stage
In this stage, the proposed ICO-EHO has been used to solve the parameter optimization problem of the chaos-
based encryption methods. The initial and the control parameters of chaotic maps are optimized using the ICO-
EHO algorithm. In the proposed encryption method, two chaotic maps have been utilized: the Piecewise Linear 
Chaotic Map (PWLCM) and the Piecewise Chaotic Map (PWCM). The mathematical formulation for PWLCM 
and PWCM maps are presented in Eqs. (20) and (21) respectively.
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xi = F (xi−1, η 1) =




xi−1
η 1

, for 0 ≤ xi−1 < η 1
xi−1−η 1
0.5−η 1

, for η 1 ≤ xi−1 < 0.5
0, for xi−1 = 0.5

F (1 − xi−1, η 1) , for 0.5 < xi−1 ≤ 1

� (20)

where the initial condition xi ∈ [0,1] and the control parameter η 1 ∈ [0,0.5] respectively

	

yi =




yi−1
η 2

, for 0 < yi−1 < η 2
(yi−1 − η 2)

(0.5 − η 2) , for η 2 ≤ yi−1 < 0.5
(1 − η 2 − yi−1)

(0.5−η 2) , for 0.5 < yi−1 < (1 − η 2)
(1 − yi−1)

η 2
, for (1 − η 2) < yi−1 < 1

� (21)

where the PWCM map parameters η 2 and yi are defined as η 2 ∈ [0,0.5] and yi ∈ [0,1], respectively. The 
parameters of both chaotic maps i.e., xi , yi, η 1, and η 2 are optimized using the ICO-EHO algorithm.

A bifurcation diagram of the chaotic maps shows the dynamic change in the behavior of the maps in terms of 
the control parameters. This diagram is used to analyze changes in the chaotic sequence in the whole definition 
of the control parameters. In Fig. 2, bifurcation diagrams of the PWLCM and PWCM maps are shown for the 
control parameter η ?[0, 0.5] and initial parameter X? [0,1].

The bifurcation diagram shows that both maps exhibit chaotic behavior across the entire range of the control 
and initial parameters. In Fig. 2(a), PWLCM maps show the period-doubling cascade behavior, characterized 

Fig. 1.  Framework for the image encryption.
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by two bifurcation divisions. In contrast, the PWCM map presented in Fig. 2(b) shows a smoother and more 
continuous change in the behavior as control parameters vary, reflecting its abrupt and less predictable transitions.

Lyapunov Exponent (LE) is used as a quantitative measure to analyze the perturbations in time series data. 
The positive value of the Lyapunov exponent reflects that neighboring trajectories are diverged with each other, 
showing instability within the time series. The negative values show that the neighboring trajectories converge to 
a single point, representing a stable trajectory. For the chaotic maps, the value of the Lyapunov exponent greater 
than 0 indicates that the map is reflecting the chaotic behavior. The change in the Lyapunov exponent values 
based on the control parameter is shown in Fig. 3.

Figure 3 indicates that the Lyapunov exponent of PWLCM maps is consistently greater than 0, indicating 
that the maps exhibit chaotic behavior in the entire range of control parameters. The LE values of the PWCM 
are higher than the PWLCM map values. Also, the PWCM map reaches its highest LE value at η 2 = 0.25 after 
that, LE values decline but remain above 0.

Encryption stage
After optimizing the parameters of the chaotic maps, those parameters are utilized in the encryption process to 
enhance the security of the images. The encryption phase is divided into two phases: Confusion and diffusion 
phase. The confusion phase is responsible for breaking the correlation between the image pixel values by shuffling 
or scrambling the image pixel values. In the confusion phase, an optimized PWLCM map was used to shuffle 
the image pixel values. The map values have been generated with a size equal to the image size using the optimal 
parameters. Thereafter, the generated values of the map are sorted to give the scrambled indexes. The original 
image is rearranged using the scrambled index generated through sorted chaotic map values. The pseudocode 
of the confusion process is as follows:

Fig. 3.  Lyapunov exponent (a) PWLCM (b) PWCM.

 

Fig. 2.  Bifurcation diagram (a) PWLCM map (b) PWCM map.
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After the confusion phase, the diffusion phase has been applied to the scramble image (scr_img) pixels 
values. The optimized PWLCM and PWCM maps have been applied to modify the image pixel values in both 
row-wise and column-wise order. Firstly, the values of the chaotic map are generated using the optimized 
parameters, and then generated values are changed into discrete form using Eq. (22).

	 value =?
(
valuei × 1014)

?% (max (inputvalue))� (22)

where max (inputvalue), is the maximum value of the input image. The pseudocode of the diffusion phase is 
as follows:

The analysis of the work has been done in the next section.

Results and analysis
The results and corresponding discussions have been explained in two subsections. Subsection 1, i.e., analysis 
of the ICO-HO algorithm, analyses the performance of the ICO-HO algorithm on CEC-2017 functions. The 
Friedman mean rank, analysis using qualitative metrics, and the convergence curve comparison are used for 
the performance analysis of ICO-HO. Subsection 2, i.e., analysis of the image encryption approach, comprises 
different attack analyses, key space analysis, and the comparison against different state-of-the-art techniques.

Analysis of ICO-HO algorithm
The performance of ICO-HO is compared with seven state-of-the-art algorithms namely HO24, WOA25, 
Arithmetic Optimization Algorithm (AOA)26, SCA27, MFO28, African Vultures Optimization Algorithm 
(AVOA)29, and RIME optimization algorithm (RIME)30 on CEC-2017 functions. The analysis has been done by 
comparing the best, average, and worst values and the Standard Deviation (SD), as shown in Table 1.

Table 1 shows the performance comparison of ICO-HO with seven state-of-the-art techniques using average, 
best, worst, and standard deviation values. The rank for each function is assigned for every algorithm based on 
the average value. It can be easily analyzed that ICO-HO achieved the first rank for twelve functions, while ICO-
HO gives a competitive solution for the remaining functions. Friedman mean rank analysis is applied to analyze 
the performance of each algorithm, which results in 1.93, 3.68, 6.17, 7.62, 5.89, 3.82, 4.34, and 2.51 values for 
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Average ICO-HO HO WOA AOA SCA MFO AVOA RIME

C17_F1

Average 10032.05 19645.82 2,950,103 8.62E + 09 8.68E + 08 1.34E + 08 3183.948 6144.983

SD 11748.67 33930.79 5,027,612 3.49E + 09 3.4E + 08 3.99E + 08 3351.859 3663.503

Best 572.0408 673.912 81256.52 4.07E + 09 3.54E + 08 206.7003 100.1482 1256.231

Worst 42625.33 132512.2 19,659,938 1.75E + 10 1.86E + 09 1.6E + 09 12738.8 14244.02

Rank 3 4 5 8 7 6 1 2

C17_F3

Average 308.1496 397.8387 1669.347 11145.24 2030.393 6368.661 311.5693 308.1837

SD 43.07663 100.4892 1271.698 2463.444 556.1126 7173.071 19.42854 0.128031

Best 302.7104 300.9601 409.6693 6793.901 1380.234 300 300 300.0295

Worst 441.7912 665.4157 5023.522 15496.14 3549.512 23556.71 369.2791 300.4607

Rank 1 4 5 8 6 7 3 2

C17_F4

Average 408.5707 434.6272 437.8194 1117.241 450.2514 416.2374 412.6407 412.5813

SD 32.07912 37.68755 48.26765 594.7307 21.49669 20.6758 22.35402 22.21465

Best 400.257 400.1631 400.3183 517.9173 423.4422 403.6003 400.0578 400.8401

Worst 499.4128 512.8749 569.4064 2833.728 496.9436 475.2809 480.5764 491.1705

Rank 1 5 6 8 7 4 3 2

C17_F5

Average 530.2469 538.4561 551.5749 559.4188 553.329 527.2206 537.8326 518.1173

SD 11.90459 17.93958 22.63705 23.76553 5.137278 11.65595 19.01879 7.140284

Best 520.8945 513.9295 519.9687 527.9753 542.8197 505.9698 509.9496 501.9937

Worst 566.6622 572.6324 615.5233 618.4109 562.129 547.0116 590.5407 532.8361

Rank 3 5 6 8 7 2 4 1

C17_F6

Average 604.8605 623.6262 630.6644 642.7526 622.2771 601.6499 616.8276 605.1076

SD 9.530594 10.29718 12.10532 6.714907 5.391947 4.349247 11.10042 0.053136

Best 600.8532 611.1294 610.0029 633.1757 611.0247 600 601.7968 600.0445

Worst 644.2599 652.4915 654.9993 660.0947 632.0914 617.7367 642.6253 600.2505

Rank 2 6 7 8 5 1 4 3

C17_F7

Average 761.9636 762.1628 784.2739 800.3603 779.2819 735.7803 764.2323 755.76

SD 13.92278 17.15086 28.77084 13.6912 8.909798 10.21436 19.55945 6.003813

Best 740.2605 726.0081 734.2367 769.0804 761.1076 720.045 727.8699 712.0166

Worst 790.3632 784.1074 856.7039 823.7258 799.6738 765.2244 796.9996 734.5806

Rank 3 4 7 8 6 1 5 2

C17_F8

Average 821.293 822.241 842.0626 831.2885 845.2505 828.0353 833.623 819.4559

SD 4.27885 4.805375 17.15654 8.364541 7.867443 14.4076 11.5436 7.90988

Best 813.9301 809.9499 814.0009 816.9623 826.0757 805.9697 816.9143 805.9713

Worst 832.8338 828.8542 891.6088 848.6541 857.9848 860.9836 862.552 837.8143

Rank 2 3 7 5 8 4 6 1

C17_F9

Average 1066.82 1154.74 1449.127 1393.627 1037.89 948.6505 1209.757 900.3799

SD 133.4051 136.9636 383.0117 159.4001 54.16431 140.734 259.646 1.2124

Best 918.5424 932.9554 957.8474 1140.097 954.9829 900 925.5092 900.0011

Worst 1344.605 1405.395 2588.32 1626.386 1218.797 1661.86 1826.779 905.4755

Rank 4 5 8 7 3 2 6 1

C17_F10

Average 1735.444 1909.224 2117.373 2170.142 2403.684 1836.051 2011.75 1483.618

SD 133.3492 205.5764 334.8568 320.0934 256.6815 328.7047 294.3816 213.1922

Best 1644.607 1518.602 1323.805 1638.399 1781.716 1151.821 1426.475 1010.33

Worst 2093.052 2247.228 2643.931 2625.874 2720.402 2367.483 2514.838 1895.653

Rank 2 4 6 7 8 3 5 1

C17_F11

Average 1111.189 1173.981 1215.654 3398.495 1234.822 1211.334 1146.053 1113.785

SD 31.2681 49.79625 85.13215 3616.072 49.56309 336.4117 27.66517 7.876421

Best 1104.848 1110.373 1118.888 1188.99 1157.478 1102.133 1110.093 1105.825

Worst 1258.318 1309.789 1467.571 11190.95 1332.295 2966.228 1236.842 1130.967

Rank 1 4 6 8 7 5 3 2

C17_F12

Average 55248.89 903454.9 3,878,271 1.49E + 08 20,146,718 3,131,227 1,204,554 35273.48

SD 102,692 1,417,342 5,794,507 3.41E + 08 18,153,246 4,630,822 1,108,377 29138.85

Best 3272.805 2769.581 17055.68 30084.76 5,278,934 2035.524 7905.968 4318.387

Worst 376094.8 6,230,518 21,028,645 1.55E + 09 66,697,549 17,095,033 3,454,601 121156.7

Rank 2 3 6 8 7 5 4 1
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Average ICO-HO HO WOA AOA SCA MFO AVOA RIME

C17_F13

Average 1893.149 3135.278 19411.16 12332.75 57897.41 14986.92 16719.58 9597.665

SD 538.6321 1443.776 9356.39 7766.325 51370.72 11551.48 10634.37 9099.895

Best 1411.424 1520.73 6184.687 3649.982 5604.004 1536.661 3316.809 1317.108

Worst 3650.611 6658.623 45487.85 28151.86 200434.1 34803.86 34994.21 29209.92

Rank 1 2 7 4 8 5 6 3

C17_F14

Average 1472.299 1502.367 1860.926 10077.41 2154.41 3446.668 1872.674 4578.689

SD 19.74287 25.23012 897.7745 8705.482 1104.695 2773.087 617.4258 4322.276

Best 1441.584 1466.149 1458.029 1488.821 1508.383 1448.236 1463.359 1404.102

Worst 1515.773 1558.612 5196.362 26797.22 5371.562 13189.37 3416.18 17214.08

Rank 1 2 3 8 5 6 4 7

C17_F15

Average 2123.374 2848.772 6472.51 16912.16 3687.485 6873.928 4600.647 4960.371

SD 653.0414 1087.589 4065.96 5078.372 2439.629 7563.927 1758.751 3855.296

Best 1682.612 1664.072 1921.679 3447.759 1614.153 1615.894 1809.69 1532.311

Worst 4508.466 5155.553 17475.45 21729.13 11976.26 32516.18 8304.92 17848.4

Rank 1 2 6 8 3 7 4 5

C17_F16

Average 1797.229 1826.87 1866.867 2045.021 1764.008 1753.562 1860.764 1757.983

SD 100.2903 94.18259 151.6341 144.7012 63.24585 102.7175 141.7337 109.0694

Best 1605.299 1694.855 1633.389 1747.342 1655.376 1613.253 1622.768 1611.852

Worst 2002.308 2067.148 2188.81 2327.506 1881.417 1991.643 2146.174 1975.509

Rank 4 5 7 8 3 1 6 2

C17_F17

Average 1757.445 1760.713 1791.802 1920.994 1790.669 1784.881 1784.096 1767.784

SD 11.21124 10.22898 47.0718 113.8063 12.81915 63.75041 40.71103 49.83215

Best 1735.165 1747.446 1742.443 1789.989 1770.568 1703.571 1731.536 1703.743

Worst 1778.158 1781.754 1937.894 2117.084 1818.679 1908.636 1874.717 1897.723

Rank 1 2 7 8 6 5 4 3

C17_F18

Average 1917.528 2099.678 16294.8 19061.25 346523.9 23473.67 16915.03 8805.213

SD 51.35381 555.8699 10731.74 12624.2 318249.3 12808.68 9639.937 7255.108

Best 1856.165 1839.14 2082.594 2361.728 55589.23 3930.069 2860.699 1848.471

Worst 2050.587 4357.48 48869.53 47197.27 1,189,112 46287.21 35681.38 27334.25

Rank 1 2 4 6 8 7 5 3

C17_F19

Average 2556.519 3442.259 21623.47 63908.73 9090.571 10291.59 8282.266 6143.657

SD 918.616 4069.32 23740.47 44226.47 5952.071 10904.96 8444.079 5620.29

Best 1923.626 1921.763 2521.89 2066.882 2169.212 1985.685 1921.244 1904.914

Worst 4682.196 17924.68 100,946 158100.5 17871.93 32938.84 29124.01 19611.75

Rank 1 2 7 8 5 6 4 3

C17_F20

Average 2107.785 2136.049 2169.988 2187.979 2115.931 2092.709 2130.946 2141.452

SD 60.39016 53.68585 72.50514 55.09885 35.08344 66.03487 55.53927 53.09002

Best 2037.472 2048.704 2058.489 2045.916 2078.449 2001.307 2038.715 2000.191

Worst 2216.556 2214.54 2361.341 2305.49 2214.698 2281.444 2219.053 2162.184

Rank 2 5 7 8 3 1 4 6

C17_F21

Average 2242.999 2260.74 2310.927 2332.03 2301.675 2304.044 2291.535 2315.283

SD 62.22632 66.50344 64.3621 36.8606 67.31293 52.25288 69.84209 28.10286

Best 2203.951 2202.595 2207.133 2218.834 2206.455 2200 2201.976 2202.149

Worst 2345.716 2350.481 2390.386 2372.89 2355.37 2357.671 2377.025 2343.591

Rank 1 2 6 8 4 5 3 7

C17_F22

Average 2310.781 2314.001 2340.898 2927.926 2377.175 2307.627 2348.669 2302.975

SD 21.14068 6.920783 126.2987 299.0046 60.38978 14.2347 198.8712 1.690643

Best 2227.465 2304.611 2305.552 2365.592 2280.407 2300.398 2241.799 2301.233

Worst 2330.459 2332.357 3008.196 3742.582 2524.45 2351.221 3191.049 2307.212

Rank 3 4 5 8 7 2 6 1

C17_F23

Average 2633.2 2638.227 2645.988 2740.437 2661.824 2626.354 2644.558 2619.842

SD 11.26014 14.65185 22.49151 43.04086 9.439614 9.77881 16.92285 8.173376

Best 2614.019 2609.214 2617.377 2682.19 2648.372 2610.726 2609.139 2605.176

Worst 2651.938 2673 2702.175 2824.289 2681.176 2645.491 2686.508 2635.974

Rank 3 4 6 8 7 2 5 1
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ICO-HO, HO, WOA, AOA, SCA, MFO, AVOA, RIME algorithms respectively. The p-value for the Friedman 
mean rank analysis is 3.56E-24, which is less than 0.05, resulting in the rejection of the NULL hypothesis, i.e., 
there is a significant difference between the performance of algorithms. On the basis of the mean value obtained, 
ICO-HO has obtained the first position, indicating better performance than the other existing state-of-the-art 
algorithms. ICO_HO has shown better performance due to its high and balanced exploration and exploitation 
capabilities. RIME and HO algorithms have obtained the second and third positions, respectively.

Convergence comparison of ICO-HO with HO algorithm
The comparison of the convergence curve for ICO-HO with the HO algorithm is shown on the randomly 
selected CEC-2017 functions, i.e., F5, F6, F8, F16, F20, and F26 in Fig. 4. The x-axis denotes the iterations, while 
the y-axis denotes the fitness value. A comparison was made with the 1000 iterations. The better convergence is 
exhibited by the ICO-HO as compared to the HO algorithm for all F5, F6, F8, F16, F20, and F26 functions. The 
better convergence is due to the newly added phase 4, which includes the position update based on ICO and 
opposition-based learning. The better exploration capabilities due to ICO at initial iterations in the ICO-HO 
show faster convergence by ICO-HO than the HO algorithm.

Average ICO-HO HO WOA AOA SCA MFO AVOA RIME

C17_F24

Average 2502.569 2612.545 2766.578 2895.324 2780.833 2760.748 2763.127 2725.642

SD 26.13108 109.7154 70.74965 75.40721 50.71567 11.3152 65.249 96.13567

Best 2500.023 2500.051 2505.189 2743.267 2567.533 2743.606 2500 2401.398

Worst 2614.987 2809.125 2834.145 2992.625 2801.272 2788.586 2819.376 2779.353

Rank 1 2 6 8 7 4 5 3

C17_F25

Average 2931.315 2928.88 2939.051 3324.418 2967.703 2934.63 2934.965 2927.841

SD 24.64206 26.26078 55.46868 189.6134 14.69449 24.62887 24.12026 24.36049

Best 2898.005 2898.401 2674.756 3076.171 2948.477 2898.318 2898.47 2898.272

Worst 2955.727 2969.908 3029.894 3797.308 3015.477 2972.644 2972.24 2953.043

Rank 3 2 6 8 7 4 5 1

C17_F26

Average 2946.9 2967.849 3491.274 4052.892 3104.902 2989.406 3201.352 2980.129

SD 292.0065 171.8731 525.3182 346.7445 48.25863 54.18153 495.4758 229.8812

Best 2600.259 2600.421 2817.982 3256.685 3032.253 2800 2600 2802.295

Worst 3961.089 3224.237 4407.501 4593.257 3218.55 3112.164 4360.15 3909.271

Rank 1 2 7 8 5 4 6 3

C17_F27

Average 3100.369 3123.31 3130.405 3249.985 3105.208 3093.444 3100.507 3103.93

SD 24.94538 37.81637 32.70263 54.41311 2.232078 2.358467 9.08241 24.2242

Best 3091.257 3092.511 3090.425 3186.108 3101.815 3089.297 3092.217 3089.374

Worst 3183.637 3216.724 3202.673 3377.093 3110.625 3098.501 3130.711 3192.888

Rank 2 6 7 8 5 1 3 4

C17_F28

Average 3276.112 3338.84 3376.678 3804.762 3338.961 3336.497 3328.576 3240.441

SD 107.8746 102.7604 163.1624 177.7299 85.76557 83.72238 132.6038 132.9288

Best 3100.041 3173.365 3115.721 3506.761 3245.936 3196.836 3100 3100.184

Worst 3419.422 3571.698 3749.371 4255.533 3453.316 3457.998 3411.822 3411.822

Rank 2 5 7 8 6 4 3 1

C17_F29

Average 3207.364 3272.969 3346.013 3394.744 3236.345 3235.99 3294.483 3202.466

SD 59.23586 67.89653 111.1383 131.1819 27.03826 50.90261 98.78095 36.58038

Best 3148.484 3177.548 3192.108 3184.759 3206.952 3163.257 3155.898 3148.332

Worst 3383.994 3413.839 3807.624 3699.993 3324.49 3338.936 3487.477 3288.074

Rank 2 5 7 8 4 3 6 1

C17_F30

Average 240030.5 1,200,690 866,758 34,466,452 1,528,433 594299.7 491331.6 172,600

SD 259345.3 1,107,869 1,353,645 38,682,718 942762.4 535968.1 586906.5 301516.4

Best 5697.543 5888.888 15541.3 567971.3 350202.7 7321.186 12103.88 8822.405

Worst 865978.6 3,639,497 6,601,609 1.34E + 08 4,111,892 1,941,753 1,683,573 879893.1

Rank 2 6 5 8 7 4 3 1

Friedman mean 
rank 1.931034 3.689655 6.172414 7.62069 5.896552 3.827586 4.344828 2.517241

Rank 1 3 7 8 6 4 5 2

Table 1.  Performance analysis of ICO-HO on CEC-2017 functions.
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Analysis of proposed image encryption approach
The proposed encryption approach is tested on different types of medical images, including grayscale, RGB, 
and hyperspectral images. The medical images used for experimentation vary in size, file format, and bit depth, 
including both 8-bit and 16-bit images. The performance analysis has been done using visual analysis, statistical 
attack analysis (histogram, correlation analysis, variance analysis, chi-square analysis), differential attack analysis 
(NPCR and UACI), qualitative analysis (information entropy, MSE, and PSNR), key space and key sensitivity 

Fig. 4.  Convergence comparison of ICO-HO with HO algorithm on (a) F5 (b) F6 (c) F8 (d) F16 (e) F20 (f) 
F26 functions.
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analysis. The visual analysis has been utilized to show the visual difference between the original, encrypted, and 
decrypted medical images31. Table 2 depicts the visual analysis of original, encrypted, and decrypted medical 
images.

The encrypted images in Table 2 clearly show that the visual information of the original images is completely 
hidden in the encrypted images generated using the propounded encryption method. This proves that the 
proposed encryption method effectively hides all the visual data of the images. Also, the visual appearance of 

Figure 4.  (continued)
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Image name/type/size Original image Encrypted image Decrypted image

MRI image32,33

Grayscale
630 × 630

Ultrasound image34

Grayscale
471 × 562

Diabetic retinopathy image35

RGB
565 × 584 × 3

Skin image36

RGB
1064 × 1736 × 3

Continued
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the decrypted image is identical to the original image, indicating that the decrypted image maintains the same 
visual depiction as the original.

Statistical attack analysis
The presence of the relationship between the pixel values of the encrypted image, obtained using the encryption 
approach is analyzed through statistical methods. This analysis uses techniques such as histogram, variance, 
chi-square, and correlation coefficient measureo compute the pixel relationships in the encrypted images39. 
Histogram plots are used to visually analyze the uniformity of pixel values in the encrypted images. The 
uniformly distributed histogram of the encrypted images indicates that attackers cannot infer any information 
about the original image. Histogram plots of the original, encrypted, and decrypted images are depicted in Fig. 5 
to analyze the uniformity of the encrypted images.

From Fig. 5, it can be observed that the pixel values of the encrypted images are uniformly distributed, in 
contrast to the pixel distribution of the original images. Moreover, the histograms of the original and decrypted 
images are visually identical, indicating a similarity in the pixel distributions of the decrypted images. The 
variance and chi-square techniques are used to calculate the uniformity analysis of the encrypted images by 
analyzing the pixel distribution of the histogram40. The mathematical formulation of variance and chi-square is 
given by Eq. (23) and Eq. (24), respectively.

	
var (x) = 1

k2

∑
k
i=1

∑
k
j=1

1
2(xi − xj)2� (23)

where x be the vector of histogram values and x = {x1, x2, . . . , x256}, xi and xj  represent the number of 
pixels with gray values equal to i and j, respectively.

	
χ 2

test =
∑

M
i=1

(obi − exi)
exi

� (24)

where exi is the expected frequency in a uniform distribution which is calculated as exi = width× length
256 . The 

obi is the observed occurrence frequency of each gray level (0 − 255) in the histogram of the encrypted image 
and M  represents the number of gray levels.

Table 3 shows the variance and chi-square values of the original as well as encrypted images. The variance of 
the encrypted images must remain below 5000, and the chi-square value should not exceed 29340.

Table 3 indicates that the encrypted images’ variance and chi-square values meet the required thresholds of 
5000 and 293, respectively. The correlation plot analysis is used to visualize the relationship among the encrypted 
images’ pixel values. In Fig. 6, the correlation plots of the encrypted and original images are shown to depict pixel 
relationships horizontally, vertically, and diagonally.

The correlation plots of encrypted images are scattered and squared-shaped, showing no negative relationship, 
which ensures security from information leakage. The correlation coefficients of the original and encrypted 
images are listed in Table 4.

Image name/type/size Original image Encrypted image Decrypted image

Human brain tissue image37

Hyperspectral
400 × 582 × 826

Cholangiocarcinoma image35

Hyperspectral
1280 × 1024 × 60

Table 2.  Visual depiction of original, encrypted, and decrypted images.
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The correlation coefficient values of the encrypted images, which are close to zero or negative, indicate that 
the pixel values in the encrypted images have no relationship with neighboring pixels.

Differential attack analysis
A number of Pixel Change Rate (NPCR) and Unified Averaged Changed Intensity (UACI) methods are used to 
analyze the differential attack resistance of the encryption methods41. The NPCR and UACI values are calculated 

Fig. 5.  Histogram plots of (a,b) grayscale, (c,d) RGB, and (e,f) Hyperspectral images.
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by generating two encrypted images, one from the original image and the other by changing a pixel value in the 
original image. The mathematical formulation of NPCR and UACI is presented by Eqs. (25) and (27) respectively.

	
N (enc1, enc2) =

∑
i,j

D (i, j)
T

× 100 %� (25)

where D (i, j) is given by Eq. (26)

Figure 5.  (continued)
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D (i, j) =

{ 0, if enc1 (i, j) = enc2(i, j)
1, if enc1 (i, j) ̸= enc2(i, j) � (26)

enc1 and enc2 are two encrypted images, where enc1 is generated before and enc2 is generated after a one-
pixel change in the original images. T denote the total number of pixels in each encrypted image.

	
U (enc1, enc2) =

∑
i,j

|enc1(i, j) − enc2(i, j)|
F × T

× 100 % � (27)

where T  is the total number of pixels and F  is the largest supported pixel value of an image of an encrypted 
image. enc1 and enc2 are the encrypted images generated before and after the one-pixel change in the original 
image. For NPCR and UACI to be considered acceptable, their values should exceed 99.60% and 33.40%, 
respectively42. The computed values of the UACI and NPCR for the encrypted images are given in Table 5.

The UACI and NPCR values of the encrypted images show that values are within the desired range and 
successfully resist differential attacks.

Quantitative analysis
The information entropy, Peak Signal-to-Noise Ratio (PSNR), and Mean Square Error (MSE) metrics are used 
to quantify the encrypted images generated using the encryption methods43. The information entropy is used 
to measure the degree of unpredictability present in the information content of the encrypted images. For 
an encrypted image to exhibit pixel randomness, the entropy value should be close to 8 or 16. The MSE and 
PSNR are used to show discrepancies between the original and encrypted images to measure the image quality. 
An encryption algorithm having small PSNR values and high MSE values shows the presence of noise in the 
encrypted image. Table 6 shows the computed results of the metrics for the images.

Table 6 reveals that the proposed encryption approach is extremely efficient due to the small PSNR values and 
large MSE values. This illustrates the robustness, safety, and efficacy of the propounded encryption approach.

Key space analysis
The key space analysis is used to check the resistance of the encryption approach against brute-force attacks. 
The key space of the encrypted approach should be greater than the required 2128 bits44. The key space of the 
propounded approach is 1016× 6 = 1096, as it uses six secret keys, each with a precision of 1016. Therefore, the 
proposed encryption approach is secure from brute force attacks.

Comparison with other state-of-the-art techniques
The performance effectiveness of the ICO-HO algorithm utilized in the proposed encryption method has been 
evaluated through comparisons with other state-of-the-art optimization algorithms, i.e., PSO12, BES13, Cheetah 
Optimization (CO)45, Self-adaptive Bald Eagle Search (SABES) optimization22, Brown Bear Optimization 
(BBO)46, and Hippopotamus optimization (HO)24algorithms. In this evaluation process, only parameter 
selection of the chaotic maps was made using different optimization algorithms. Table 7 presents the achieved 
values of the performance metrics (correlation coefficient, entropy, NPCR, UACI) for the DICOM lung CT scan 
16-bit images47.

Table 7 shows that the proposed encryption method based on ICO-HO achieved the highest entropy value, 
which ensures randomness in the pixel values of the encrypted image. Also, all correlation coefficient values, i.e., 
H, V, and D are lower compared to the other comparative methods, indicating a weak relationship among the 
pixel values of the encrypted image. The efficacy of the proposed encryption approach is analyzed by comparing 
the results with existing encryption methods for DICOM lung CT scan images. Entropy, UACI, NPCR, and 
correlation coefficient metrics are used for the comparison, given in Table 8.

The proposed encryption method achieves competitive results across key performance metrics. It exhibits low 
correlation coefficients, ensuring weak pixel correlation among the encrypted pixel values. In the propounded 
approach, the entropy values are 7.9995 for 8-bit images and 15.8124 for 16-bit images, which are close to their 
respective ideals. Also, NPCR values were attained using the proposed encryption approach, which showed 
high sensitivity to pixel changes, while UACI values indicated strong encryption performance. The proposed 
technique maintains high entropy levels, ensuring that the encrypted images are nearly indistinguishable from 
random noise, thus providing robust protection against potential attacks and making it comparable to other 
state-of-the-art techniques.

Image name

Variance Chi-square

Original Image Encrypted Image Original Image Encrypted Image

MRI image 4.8732E + 07 1.1431E + 03 8.0152E + 06 188.0190

Ultrasound image 3.5208E + 05 767.2627 8.6830E + 04 189.2200

Diabetic retinopathy image 1.2995E + 07 932.5925 2.5709E + 06 184.5061

Skin image 8.3892E + 07 521.0213 2.9649E + 06 184.1363

Table 3.  Analysis of variance and chi-square values for encrypted and original image.
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Conclusions and future scopes
This paper proposes an adaptive encryption approach based on the optimized chaotic maps. The initial and 
control parameters of the chaotic maps are optimally selected utilizing the proposed Iterative Cosine Operator-
based Hippopotamus Optimization (ICO-HO) algorithm. The efficacy of the ICO-HO algorithm is compared 
with seven state-of-the-art algorithms namely Hippopotamus Optimization (HO), Whale Optimization 
Algorithm (WOA), Arithmetic Optimization Algorithm (AOA), Moth Flame Optimization (MFO), Sine Cosine 
Algorithm (SCA), African Vultures Optimization Algorithm (AVOA), and RIME algorithm (RIME) on CEC-

Fig. 6.  Correlation plots for original and encrypted images.
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2017 functions. Friedman mean rank analysis gives 1.93, 3.68, 6.17, 7.62, 3.82, 5.89, 4.34, and 2.51 values for 
ICO-HO, HO, WOA, AOA, MFO, SCA, AVOA, RIME algorithms respectively with p-value 3.56E-24. This shows 
better performance of the ICO-HO algorithm than other comparative algorithms. The proposed encryption 
approach is applied to medical images of different modalities and sizes. The effectiveness of the proposed 
encryption approach is evaluated in RGB, grayscale, and hyperspectral medical images. The effectiveness of 
the adaptive encryption approach is analyzed using various performance metrics such as visual, histogram, 
chi-square, variance, NPCR, UACI, correlation coefficient, entropy, PSNR, and MSE. The histogram, chi-
square, variance, and correlation coefficient analyses demonstrate the uniform distribution of the pixel values 
of encrypted images and show the security from the statistical attacks. The UACI and NPCR values for the 
encrypted images generated using the encryption approach are greater than 33.40% and 99.60%, respectively, 
which ensure security against differential attacks. The entropy values of 8-bit and 16-bit images are 7.9995 and 

Methods Year

Correlation coefficient

Entropy NPCR UACIH V D

PSO 1995 0.0107 -0.0053 0.0075 15.8063 99.9989 33.3826

BES 2020 -0.0175 0.0090 0.0403 15.8113 99.9989 33.3440

CO 2022 -0.0188 0.0087 0.0315 15.8056 99.9977 33.3291

SABES 2023 -0.0027 -0.0055 -0.0370 15.8113 99.9985 33.3537

BBO 2024 -0.0040 0.0314 -0.0017 15.8118 99.9989 33.3031

HO 2024 0.0196 -0.0288 0.0196 15.8111 99.9989 33.3070

ICO-HO (proposed) 2024 -0.0020 -0.0042 -0.0034 15.8124 99.9969 33.3892

Table 7.  Performance comparison with the other metaheuristic optimization technique.

 

Image name

Information entropy

PSNR MSEOriginal image Encrypted image

MRI image 5.4028 7.9997 5.9942 23.7733

Ultrasound image 7.7208 7.9995 8.6597 121.7036

Diabetic retinopathy image 7.3862 7.9996 7.4071 67.8370

Skin image 7.3245 7.9999 8.4595 143.5535

Human brain tissue image 5.3208 15.7855 4.7845 1.4643

Cholangiocarcinoma image 8.3110 15.9643. 6.6008 3.5291E + 03

Table 6.  Analysis of information entropy, PSNR, and MSE.

 

Image name NPCR (%) UACI (%)

MRI image 99.6001 33.4620

Ultrasound image 99.6105 33.5191

Diabetic retinopathy image 99.6192 33.4746

Skin image 99.6121 33.4777

Human brain tissue image 99.9970 33.4733

Cholangiocarcinoma image 99.9962 33.4284

Table 5.  UACI and NPCR values of encrypted images.

 

Image name

Original image Encrypted image

H D V H D V

MRI image 0.9880 0.9853 0.9747 -0.0143 -0.0261 -0.0212

Ultrasound image 0.9762 0.9875 0.9660 0.0294 -0.0009 -0.0035

Diabetic retinopathy image 0.9964 0.9920 0.9706 -0.0074 -0.0166 0.0176

Skin image 0.9875 0.9896 0.9908 -0.0051 0.0176 0.0122

Human brain tissue image 0.9487 0.9622 0.8884 0.0031 0.0336 -0.0337

Cholangiocarcinoma image 0.9533 0.9516 0.9236 -0.0195 -0.0043 -0.0181

Table 4.  Correlation coefficient for original and encrypted images.
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15.8124, respectively, which are closer to 8 and 16, which show the randomness of pixel values. Additionally, the 
propounded encryption approach is compared to the existing encrypted techniques, showing more randomness 
in the encrypted image than the other encrypted techniques. This work is being extended by designing new 
hybrid chaotic maps. The proposed ICO-HO algorithm can be applied to other optimization problems like band 
selection in hyperspectral images.

Data availability
All data used for analysis in this research is publically available on the National Institution of Health (NIH) 
websites (https://openi.nlm.nih.gov/gridquery? it=xg), Cancer imaging archive (https:// ​w​i​k​i​.​c​a​n​c​e​r​i​m​a​g​i​n​g​a​r​
c​h​i​v​e​.​n​e​t​/​d​i​s​p​l​a​y​/​P​u​b​l​i​c​/​C​B​I​S​-​D​D​S​M​)​, Kaggle (https://www.kaggle. com/), Visual health IT ​(​h​t​t​p​s​​:​/​/​w​w​w​​.​v​i​s​u​
s​​.​c​o​m​/​e​​n​/​d​o​w​n​l​o​a​d​s​/​j​i​v​e​x​-​d​i​c​o​m​-​v​i​e​w​e​r​.​h​t​m​l​)​, Grand Challenge (https://drive.grand-challenge.org/DRIVE/), 
and University Medical Center Groningen (UMCG) website (http://www.cs.rug.nl/~imagi ​n​g​/​d​a​t​a​b​a​s​e​s​/​m​e​l​a​
n​o​m​a​_​n​a​e​v​i​/​)​.​​
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