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Abstract 

This study aimed to compare and evaluate the prediction accuracy and risk of bias (ROB) of post-traumatic stress 
disorder (PTSD) predictive models. We conducted a systematic review and random-effect meta-analysis summariz-
ing predictive model development and validation studies using machine learning in diverse samples to predict PTSD. 
Model performances were pooled using the area under the curve (AUC) with a 95% confidence interval (CI). Hetero-
geneity in each meta-analysis was measured using I2. The risk of bias in each study was appraised using the PROBAST 
tool. 48% of the 23 included studies had a high ROB, and the remaining had unclear. Tree-based models were the pri-
marily used algorithms and showed promising results in predicting PTSD outcomes for various groups, as indicated 
by their pooled AUCs: military incidents (0.745), sexual or physical trauma (0.861), natural disasters (0.771), medical 
trauma (0.808), firefighters (0.96), and alcohol-related stress (0.935). However, the applicability of these findings is lim-
ited due to several factors, such as significant variability among the studies, high and unclear risks of bias, and a short-
age of models that maintain accuracy when tested in new settings. Researchers should follow the reporting standards 
for AI/ML and adhere to the PROBAST guidelines. It is also essential to conduct external validations of these models 
to ensure they are practical and relevant in real-world settings.
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Introduction
A long-lasting mental disease may develop after expe-
riencing a very stressful event such as a violent crime, 
a natural disaster, or severe assault and is known as 

post-traumatic stress disorder (PTSD) [1, 2]. PTSD is 
defined by symptoms that extensively persist and affect 
relating to others and participation in social activities. 
Many people with PTSD remain through unwanted, 
continuous memories of their traumatic event, an 
increased state of alertness, a tendency to avoid any-
thing that may remind them of the trauma, and harmful 
patterns of thought. These symptoms of psychosis can 
substantially impair the quality of relationships they 
have in their personal lives and everyday social inter-
actions [3]. World Health Organization (WHO) catego-
rizes PTSD as a delayed, possibly prolonged response 
to a harmful, shattering incident or series of occur-
rences [4]. All of these will lead to significant health 
problems of a physical and mental nature, long-term 
disability, and cost to society and the individual [5]. The 
worldwide occurrence of PTSD in some countries has 
been calculated to be 3.9% [6]. In 2018, it was estimated 
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that the overall excess economic cost of PTSD in the 
United States was $232.2 billion, which is equivalent 
to $19,630 for each person who suffers from PTSD [5]. 
This is of immense value, not only to the patient but to 
the whole healthcare system, as it allows them to start 
PTSD treatment on time by identifying them at an early 
stage. Early intervention in treating PTSD can enhance 
outcomes for affected individuals. Specifically, this is 
because treatment can commence before severe symp-
toms and signs appear [7]. Moreover, research indicates 
that treatment costs and the length of hospital stays for 
patients with stress disorders increase by 80%. Thus, 
initiating treatment early could substantially reduce the 
expenses related to trauma insurance [8].

With emerging artificial intelligence (AI) and machine 
learning (ML) technologies in recent years, an opportu-
nity has been availed for dealing with health problems, 
one of which is PTSD, through improved diagnosis and 
prediction of diseases. However, the effectiveness of 
such models depends on the quality of the studies and 
bias management [9]. Another advantage is the integra-
tion of ML into PTSD research with a potential better-
ment of study characteristics for personalized medicine 
[10]. The studies employed ML techniques to help make 
sense of complex patterns in clinical and neuroimaging 
data and are to be applied in developing these therapeu-
tic strategies [11]. This represents a leap to understanding 
and applying ML in managing PTSD [12]. However, ML 
promises also come with biases that might draw inappro-
priate conclusions and hinder its effective application in 
clinical practice. In addition, some sources of bias exist 
in data collection, algorithm design, and analysis tech-
niques, with all their potential consequences for reducing 
the validity of research findings [13].

The interest in applying machine learning (ML) tech-
niques to PTSD research is on the rise. This increas-
ing focus shows the importance of critically examining 
the potential biases within these studies. Our system-
atic review employs the Prediction model Risk Of Bias 
ASsessmenT (PROBAST) tool [14], a validated instru-
ment created to evaluate biases in research that develop 
predictive models. This tool plays a crucial role in ensur-
ing the reliability and accuracy of conclusions drawn 
from ML studies in PTSD. This tool allows for a detailed 
examination of the methodological quality of ML stud-
ies and helps pinpoint areas susceptible to bias. The main 
goal of this review is to critically analyze the current 
practices in machine learning within the context of PTSD 
research. It evaluates the effectiveness of these studies 
by examining how accurately the ML models perform 
across different PTSD populations. Through highlighting 
strengths and weaknesses, this review aims to support 

improving predictive models, ultimately enhancing clini-
cal practice and patient outcomes in PTSD care.

Method
The methodology of the current systematic review and 
meta-analysis has been developed in accordance with the 
PRISMA guidelines [15].

Eligibility criteria
The eligibility criteria for our review were articles writ-
ten in English, which used machine learning techniques 
to predict PTSD among various populations, irrespective 
of gender, age, or ethnicity. We focused on peer-reviewed 
papers on machine learning, excluding review arti-
cles, non-English-language articles, non-peer-reviewed 
resources, conference papers, letters, abstracts, proto-
cols, errata, and comments. The inclusion criteria for the 
predictive models under review included those describ-
ing the use of standard machine learning or deep learning 
techniques toward forecasting PTSD across all patient 
groups and demographic contexts.

Search strategy
We searched comprehensively in three electronic data-
bases, PubMed, Scopus, and Web of Science, for articles 
published in 2018 or later up to 14 December 2023. The 
search syntaxes for each database are detailed in S1.

Screening and data extraction
First, studies were retrieved from each electronic data-
base and saved in an Excel file. Duplicates were identi-
fied and removed using the DOI numbers of the articles. 
Titles were used instead where DOI numbers were not 
available. Two reviewers (M.V and H.M.N) indepen-
dently screened the articles in two phases: title/abstract 
and full-text. Initially, the title and abstract of the stud-
ies were screened based on the eligibility criteria by both 
reviewers. In the next step, articles that passed the first 
phase underwent full-text screening, where their full 
texts were reviewed independently by the two reviewers. 
In both phases, disagreements between the two review-
ers were resolved by consensus. When a disagreement 
arose, the two reviewers reviewed the relevant data and 
the inclusion/exclusion criteria to arrive at a mutually 
agreed decision.

The following data was extracted from the final eligi-
ble articles: the name of the first author and publication 
year, journal, population characteristics and their age 
and gender, the type of algorithm used for prediction, 
areas under the curve (AUCs) and their 95% confidence 
intervals (CIs), and other performance indicators. Sub-
sequently, the data was analyzed and presented using 
descriptive statistics and cross-tabulation.
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Data analysis
We sort the reported AUCs from the studies with the 
following types of populations before we conduct the 
meta-analyses: War and military experiences, pandemic-
related stress, Sexual and Aversive/Physical assaults, 
Medical trauma, general populations of PTSD, Commer-
cially insured adults, Firefighters, Alcohol use and related 
stress. Then, within each population, we pooled AUCs 
from similar types of models: linear models, support vec-
tor machines (SVM), tree-based models, ensemble meth-
ods, Bayesian models, and neural networks.

To conduct a meta-analysis, at least two studies must 
be available to combine their AUCs. We employed quali-
tative evidence synthesis because a meta-analysis cannot 
be performed with only one AUC. AUCs were pooled 
separately for each population, with distinct pools for 
internal, external, and algorithm types using random-
effect meta-analysis. AUCs were aggregated without 
regard to the structure of the model or its characteristics 
[16]. When studies did not provide the 95% CI for AUC-
ROC findings, we used the following formula to calculate 
them [17]:

Each meta-analysis employed Higgins I2 to assess the 
overall heterogeneity and variability among the AUCs. 
Forest plots displaying an I2 value greater than 50% indi-
cate significant heterogeneity [18, 19]. Since the studies 
were drawn from wide-ranging populations, a random-
effects meta-analysis was performed [20]. In the case of 
reporting the internal and the external AUCs together, 
the algorithm was considered an independent study [21]. 
The Egger test [22] was used to assess the presence of 
publication bias in the meta-analyses. However, accord-
ing to guidelines, testing for publication bias is not rec-
ommended in meta-analyses with fewer than ten studies 
[23, 24]. Therefore, we did not assess publication bias in 
meta-analyses with fewer than ten studies. Sensitivity 
analyses were performed in meta-analyses, including at 
least three studies to evaluate the effect of any specific 
study on the pooled effect sizes or heterogeneity. Meta-
analyses were conducted using the Medal® Statistical 
Software, version 22.014 (MedCalc Software Ltd, Ostend, 
Belgium) [25]. Statistical significance was considered at a 

CI = AUC ± Z1−
α
2

× se

se =
q1 + (n1 − 1)q2 + (n2 − 1)q3

n1n2

q1 = AUC(1− AUC), q2 =
AUC

2− AUC
− AUC2

, q3 =
2AUC2

1+ AUC
− AUC2

confidence level of 95%, and p-values of < 0.05 were used 
to denote statistical significance. Forest plots were built 
with the help of MedCalc software and Python.

Risk of bias assessment
One of the tools that may be applied for conducting a 
critical evaluation of studies that are engaged in estab-
lishing, validating, or updating prediction models for cus-
tomized predictions is the PROBAST tool [14]. A total 
of twenty signaling questions are included, and they are 
arranged into four distinct categories: participants, pre-
dictors, outcomes, and analysis. It is possible to respond 
to each signaling inquiry with “yes,” “probably yes,” “no,” 
“probably no,” or “no information.” To indicate that a 
domain is at high risk of bias, at least one of the signaling 
questions should be answered with a “no” or a “probably 
no.” The PROBAST checklist was used to evaluate the 
risk of bias and the applicability of the studies included in 
the analysis. Concerns about the article’s applicability and 
potential for bias were assessed independently by the two 
authors (H.M.N and M.V). A low risk of overall bias can 
only be evaluated once all domains have been reviewed 
and shown to have a low risk [26].

Result
Three thousand forty-nine documents were retrieved 
from PubMed, Scopus, and Web of Science, accounting 
for 989, 975, and 1,085, respectively. Following dedupli-

cation, 1750 duplicates had been removed, leaving 1299 
articles that underwent screening based on the estab-
lished inclusion/exclusion criteria.

Thus, 1,091 articles were excluded after screening titles 
and abstracts based on a preliminary assessment that 
considered them irrelevant for inclusion in this review. 
Hence, 208 articles were considered for further evalua-
tion through full-text screening. The screening resulted 
in 208 articles, which underwent full-text screening, and 
only 18 final studies were considered after excluding 190 
ineligible for review. To improve precision and find all 
related studies, the reference lists of the 18 studies were 
also reviewed. Furthermore, a similar search using the 
keywords in Google resulted in five other relevant stud-
ies, totaling 23. For more details, see Fig. 1, which gives a 
PRISMA process of screening and selecting studies.

Characteristics of the included studies
A significant proportion of the articles (39%, n = 9) were 
published in 2022 [11, 27–34], with 2019 [35–38] and 
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2021 [39–42] each contributing four articles (17%). Pub-
lications from 2018 accounted for three articles (13%) 
(Nicholson et al., 2018; Papini et al., 2018; Rosellini et al., 
2018), while 2023 saw two publications (9%) (Dell et al., 
2023; Papini et al., 2023) and one article (4%) published 
in 2020 [48]. Most of these articles (65%, n = 15) origi-
nated from researchers in the United States [11, 31–33, 
35–39, 42, 44–48] and China (17%, n = 4) [27, 28, 30, 40]. 
Canadian [34, 43] and Turkish researchers [29, 41] con-
tributed two articles each (9%). Four articles (17%) were 
published in the Journal of Affective Disorders [30, 35, 
41, 46], while BMC Psychiatry [34, 48] and the Journal of 
Traumatic Stress [11, 33] each presented two articles (9% 
each). Additionally, two articles (9%) were published in 
Psychological Medicine [31, 43]. The remaining 14 arti-
cles (57%) were published in 13 journals.

The articles reviewed had various population sam-
plings of people exposed to differing stressors to pre-
dict PTSD. Several studies focused on populations 
with medical trauma 26%, n = 6) [11, 27, 31, 39, 42, 44]. 
Other research works were carried out aimed at under-
standing the PTSD predictors in individuals exposed 
to sexual or physical/aversive experiences (17%, n = 4) 
[29, 32, 41, 43]. Additionally, the impact of natural dis-
asters (13%, n = 3), such as earthquakes and hurricanes 

[40, 45, 46], was examined in specific populations. 
Three studies (13%) have introduced models for pre-
dicting PTSD in individuals exposed to war or military 
[37, 38, 47]. Three additional papers (13%) focused on 
the general population affected by PTSD [33, 35, 36]. 
The studies also included specific professional groups 
like pandemic-related stress (4%, n = 1) [28], firefight-
ers (4%, n = 1) [30], alcohol use and related stress (4%, 
n = 1) [48], and insured adults (4%, n = 1) [34].

One study assessed the validation of a model exter-
nally that employed a gradient boosting machine 
method, achieving an AUC of 0.74 with 95% CIs of 
0.71 to 0.77 [47]. Another article also employed both 
internal and external validations using extreme gradi-
ent-boosting algorithms [11]. Fourteen articles utilized 
tree-based models to conduct prediction studies [5, 19, 
34]– [37, 21, 23, 25]– [27, 30, 31], 33]. Additionally, 
among the included articles, linear models were the 
focus of eight articles for developing prediction models 
for PTSD [27, 32, 33, 36, 44–46, 48]. Regarding other 
methodologies, SVM [35, 36, 38, 40, 45] and neural net-
works [28, 29, 31, 38, 40] were implemented in five arti-
cles each, ensemble methods in three [36, 39, 45], and 
Bayesian models [35, 43] In two studies. Table 1 shows 
the details of the included studies.

Fig. 1  PRISMA screening
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Risk of bias
The assessment of 23 articles using the PROBAST tool 
reveals that for the participant questions (data source 
and inclusion/exclusion criteria), there was a unanimous 
agreement on the adequacy of participant selection, with 
most articles receiving a “yes” or “probably yes.” Predic-
tor questions (2.1 to 2.3) received “probably yes” and 
“yes” responses, indicating generally acceptable predic-
tor handling. For outcome-related questions (3.1 to 3.6), 
responses were consistently “yes,” except for question 3.6, 
where “no information” was the majority response, indi-
cating a lack of detail in reporting. In the analysis domain 
(4.1 to 4.9), responses varied more, with a mix of “yes,” 
“probably yes,” and “no information.” The final question 
(4.9) saw a unanimous “yes,” reflecting consistency across 

the studies’ final analysis. Please go to Fig. 2 for further 
details.

The Risk of Bias (ROB) was conducted in four domains 
for individual studies: participants, predictors, outcome, 
analysis, and the overall ROB. As for the domain of par-
ticipants, the risk of bias was low, with 96% (n = 22) of 
the articles showing low ROB, while only 4% (n = 1) had 
reached a high ROB [34]. No uncertainty was reported in 
this domain. In the predictors’ domain, the results were 
identical to the participants’ domain, with 96% (n = 22) of 
studies presenting a “low” risk and 4% (n = 1) a “high” risk 
[46], reinforcing the robustness of predictor variables in 
the evaluated research. The outcome domain presented 
more varied results, with most studies (70%, n = 16) 
exhibiting an “unclear” risk of bias [11, 28–30, 32–34, 

Fig. 2  The assessment of the risk of bias of the studies across 20 PROBAST questions. Where: (1.1) Were appropriate data sources used, e.g., 
cohort, RCT, or nested case–control study data? (1.2) Were all inclusions and exclusions of participants appropriate? (2.1) Were predictors defined 
and assessed in a similar way for all participants? (2.2) Were predictor assessments made without knowledge of outcome data? (2.3) Are all 
predictors available at the time the model is intended to be used? (3.1) Was the outcome determined appropriately? (3.2) Was a prespecified 
or standard outcome definition used? (3.3) Were predictors excluded from the outcome definition? (3.4) Was the outcome defined and determined 
in a similar way for all participants? (3.5) Was the outcome determined without knowledge of predictor information? (3.6) Was the time interval 
between predictor assessment and outcome determination appropriate? (4.1) Were there a reasonable number of participants with the outcome? 
(4.2) Were continuous and categorical predictors handled appropriately? (4.3) Were all enrolled participants included in the analysis? (4.4) Were 
participants with missing data handled appropriately? (4.5) Was the selection of predictors based on univariable analysis avoided? (4.6) Were 
complexities in the data (e.g., censoring, competing risks, sampling of control participants) accounted for appropriately? (4.7) Were relevant model 
performance measures evaluated appropriately? (4.8) Were model overfitting, underfitting, and optimism in model performance accounted for? 
(4.9) Do predictors and their assigned weights in the final model correspond to the results from the reported multivariable analysis?
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37, 38, 40–45, 47], while 26% (n = 6) were assessed as 
“low” risk [27, 31, 35, 36, 39, 48]. , and a minimal number 
(4%, n = 1) as “high” risk [46]. Analysis was the domain 
with the highest observed risk, where 43% (n = 10) of the 
articles were classified as “high” ROB [11, 29, 31–38], 
and a substantial proportion (52%, n = 12) were rated as 
“unclear.” [27, 28, 30, 39–46, 48]. Only one study (4%) [47] 
was judged to have a “low” risk of bias in this domain. 
Overall, the ROB for the collected articles revealed that 
48% (n = 11) of them exhibited a “high” ROB [11, 29, 31–
38, 46], and 52% (n = 12) were judged as “unclear.” [27, 28, 
30, 39–45, 47, 48], with none of the articles being scored 
as “low” risk, indicating a substantial degree of uncer-
tainty and potential bias within the reviewed studies, 
emphasizing the necessity for more rigorous methodo-
logical standards and transparent reporting to enhance 
the validity and reliability of research findings in this 
field. Please refer to Fig. 3 for further information.

Performance of different types of algorithms in various 
populations
Meta-analytical results from various studies suggest the 
superiority of tree-based models over neural network 
models in predicting (PTSD among individuals with war 
and military experiences. Specifically, tree-based models 
achieved a pooled AUC of 0.745 (95% CIs 0.572–0.917, 
I2 = 97.31%), compared to 0.615 (95% CIs 0.552–0.768, 
I2 = 0%) for neural networks. Additionally, only one study 
applied a SVM model in this demographic, yielding an 
AUC of 0.67 (95% CIs 0.59–0.75) [38]. External validation 
of a tree-based model in a study within this group indi-
cated an AUC of 0.74 (95% CIs 0.71–0.77) [47]; however, 
the limited number of studies precluded further meta-
analytical efforts.

For individuals with experiences of sexual or physical 
trauma, the employment of tree-based models resulted 
in a pooled AUC of 0.861 (95% CIs 0.723–1, I2 = 96.78%). 

Fig. 3  The risk of bias in the studies in terms of PROBAST domains and ROB overall
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A linear model in this context revealed an AUC of 0.91 
(95% CIs 0.83–0.99) [32], though the scarcity of simi-
lar studies hindered a meta-analysis. Regarding natural 
disasters, meta-analysis encompassed three algorithms: 
linear models, SVM, and tree-based models. Tree-
based models led with a pooled AUC of 0.771 (95% CIs 
0.755–0.787, I2 = 90.41%), closely followed by linear 
models with an AUC of 0.768 (95% CIs 0.764–0.771, 
I2 = 78.76%). On the other hand, SVM models showed 
the most minor efficacy, with a pooled AUC of 0.593 
(95% CIs 0.55–0.636, I2 = 99.39%). A super learner algo-
rithm with an AUC of 0.79 (95% CIs 0.78–0.80) was also 
reported in a study [45]. However, we did not conduct 
a meta-analysis of this model because of the insufficient 
number of AUCs available. Additionally, deep learning 
was applied in another study to predict PTSD in popula-
tions affected by natural disasters, but the AUC was not 
reported in this study [40].

In the context of medical trauma, analyses were con-
ducted for two algorithms, revealing pooled AUCs of 
0.828 (95% CIs 0.717–0.939, I2 = 98.18%) for linear mod-
els and 0.808 (95% CIs 0.761–0.855, I2 = 95.25%) for tree-
based models. External validation of tree-based models in 
this demographic reported a pooled AUC of 0.591 (95% 
CIs 0.47–0.712, I2 = 93.61%). The meta-analysis of neural 
networks and ensemble methods in this population was 
impossible because of a lack of AUCs, with a reported 
AUC of ensemble method 0.79 (95% CIs 0.78–0.8) [45]. 

The AUC of neural network in another study of this pop-
ulation was not reported [40].

In general PTSD populations, the meta-analysis 
included SVM, ensemble methods, and linear models, 
recording pooled AUCs of 0.824 (95% CIs 0.778–0.871, 
I2 = 0%), 0.841 (95% CIs 0.783–0.898, I2 = 0%), and 0.768 
(95% CIs 0.608–0.928, I2 = 60.06%), respectively. Lim-
ited AUC availability constrained the meta-analysis of 
Bayesian and tree-based methods in this population, as 
reported in a study [36].

Among firefighters, tree-based models achieved the 
highest pooled AUC across all examined demograph-
ics, at 0.96 (95% CIs 0.918–1, I2 = 99.98%). Similarly, in 
populations with alcohol-related stress, these models 
produced a pooled AUC of 0.935 (95% CIs 0.914–0.956, 
I2 = 97.55%). In insured adults, only one study utilizing a 
random forest model was available, with a reported AUC 
of 0.75 (95% CIs 0.747–0.752) [34]; consequently, a meta-
analysis could not be conducted. Figure  4 displays the 
pooled internal AUCs of different algorithms across vari-
ous populations.

Publication bias was assessed in two meta-analyses: 
one in general PTSD populations (linear models) and the 
other in medical trauma (tree-based models), as the other 
meta-analyses had an insufficient number of studies. The 
results of the Egger test in both meta-analyses indicated 
no publication bias (P-value > 0.05). Sensitivity analyses 
revealed a significant reduction in heterogeneity in three 

Fig. 4  Forest plot of pooled internal AUCs in different populations and algorithms
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meta-analyses, including linear-based models in natural 
disasters (reducing I² from 78 to 57%), tree-based models 
in natural disasters (reducing I² from 90 to 41.4%), and 
tree-based models in war populations (reducing I² from 
97 to 0%).

Discussion
We conducted a systematic review and meta-analysis of 
machine learning studies to predict PTSD across diverse 
populations. A total of 23 studies were included in the 
systematic review. The studied populations included the 
following: War and military engagement experiences, 
sexual and physical/aversive trauma, natural disasters, 
pandemic-related stress, medical trauma, general PTSD, 
insured adults, firefighters, and alcohol-related stress. In 
each group, we conducted meta-analyses using different 
types of algorithms.

Tree-based methods were the main algorithms used 
in the studies to predict PTSD. We could conduct meta-
analyses of tree-based methods in all the populations 
exempt from general PTSD populations. The results 
obtained from the present study showed that tree models 
generally performed better in prediction than other mod-
els, regardless of architecture or features. This result can 
be observed in some populations, such as those affected 
by alcohol consumption, sexual harassment, or war or 
military experiences. Nevertheless, this evidence over-
looks the significant or ambiguous risk of bias inherent 
in all studies and the outcomes from external validation. 
The main contributors to the high risk of bias in the stud-
ies were small sample sizes, including all participants in 
the final analysis, and evaluating model performance. The 
substantial variability in clinical outcomes across studies 
complicates the comparison of performance. This vari-
ability can be attributed to differences in the timelines 
of outcomes, characteristics of the research population, 
predictive factors, and model architectures [16]. On the 
other hand, training machine learning models unavoid-
ably involve a considerable amount of heterogeneity 
[49, 50]. High heterogeneity in meta-analyses can often 
be attributed to the variability in the models used across 
studies, as well as the specific types of populations exam-
ined. Differences in methodological approaches, such as 
the predictive variables included in the models and the 
demographic characteristics of the populations (e.g., age, 
gender, and comorbid conditions), can lead to substan-
tial variation in effect sizes. This variability is a primary 
reason for the observed high heterogeneity in our analy-
sis, as it reflects the complex nature of PTSD prediction 
across diverse contexts.

Only two articles conducted external validation, which 
is essential for reliable comparisons. The lack of external 

validation remains a persistent methodological prob-
lem in research employing machine learning and deep 
learning techniques [51–53], and the current evidence 
confirms that validation by independent researchers 
is uncommon [54], and only a small number of mod-
els undergo external validation [49]. Tree-based models 
were the only algorithm used in the studies that included 
external validation. When examining the pooled AUC 
from external validations in medical trauma and the sin-
gle AUC from a survey focused on war and military expe-
riences, external validation showed poorer results than 
internal validation. This may be explained by the follow-
ing reasons: Tree-based models are prone to overfitting 
the training data, capturing noise as if it were a signal. 
These results in high performance in internal validation 
but poor generalization to new datasets [55]. If the exter-
nal validation data differs extensively in distribution from 
the training data, the model will represent unacceptable 
accuracy [56]. Complex models that employ numerous 
parameters may also become overly fitted to the training 
data and undermine their performance on externally var-
ied datasets [57].

Some of the included studies exhibited a high risk of 
bias attributable to small sample sizes. In PTSD predic-
tion, the dataset size is more than just a number [10]; it 
also affects the quality of the data [57]. Inadequate sam-
ple size can lead to overfitting, where models perform 
well on training data but fail on new, unseen data [58]. 
This issue is particularly alarming in clinical contexts 
such as PTSD prediction, where the imperative is the 
precise identification of individuals requiring interven-
tion [10]. Consequently, this may result in biased predic-
tive models and may demonstrate low efficacy in clinical 
environments. In a study that assessed the risk of bias in 
prediction models for adults with heart failure, the results 
indicated significant biases in the studies because of the 
sample size [59]. Furthermore, similar results were iden-
tified in another study that evaluated the risk of bias in 
prediction models developed using supervised machine-
learning techniques [9].

Excluding some participants from the final analysis 
contributed to a significant risk in some studies. Attrition 
bias can happen for various reasons, such as participants 
losing contact, withdrawing, or being excluded because 
of incomplete data. In machine learning development, 
this selective inclusion of data can negatively affect the 
training of models. Therefore, the model’s accuracy may 
be reduced, leading to unreliable predictions in real-
world settings [60]. Attrition bias was also identified as 
a source of risk of bias in studies on prediction models 
developed employing supervised machine learning tech-
niques [9]. Some included studies also failed to report 
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the performance of their models. Ethically, it is essential 
to document the performance of machine learning mod-
els with different indicators because of transparency and 
to ensure their efficacy in real-world data [61]. Inaccu-
rate or incomplete reporting can result in misinformed 
decisions, especially in fields that directly impact human 
lives. Therefore, machine learning studies related to PTSD 
prediction must disclose all performance indicators and 
adhere to established reporting standards in machine 
learning. It was found that most studies did not report the 
racial description and information of the populations. Dis-
crimination based on race acts as a stress-inducing factor, 
influencing how individuals respond to traumatic events. 
The available evidence implies a link between racial bias 
and the development of symptoms associated with PTSD 
[62, 63]. Hence, it is crucial to conduct in-depth exami-
nations that capture the complete demographic profile of 
the entire cohort in PTSD prediction studies.

The best prediction models were tree-based models for 
populations related to alcohol use and firefighters, show-
ing the appropriateness of tree-based models in these 
populations. In populations affected by natural disasters, 
linear and tree-based models presented more accurate 
models than SVM models, showing their superiority over 
SVM in this context. However, the risk of bias, high het-
erogeneity, and lack of external validation of the included 
studies limit the interpretation of results. The use of 
various supervised machine learning algorithms for dis-
ease prediction was investigated in a study. The findings 
revealed that the SVM algorithm was the most com-
monly used, followed by the Naïve Bayes algorithm. The 
Random Forest (RF) algorithm also demonstrated the 
highest accuracy compared to other models [64]. Recent 
research focused on the effectiveness of machine learning 
and deep learning models in predicting long-term out-
comes for patients with chronic obstructive pulmonary 
disease (COPD). The findings reveal moderate predic-
tive accuracy for both exacerbation and mortality risks, 
with AUC statistics around 0.77, though these models 
did not significantly outperform existing disease severity 
scores [16]. In another similar article, the efficacy of some 
machine learning algorithms in predicting ischemic heart 
disease (IHD) was studied. The study showed the excel-
lent performance of specific machine learning models. 
The XGBoost model demonstrated high accuracy with 
an AUC of 0.98. Moreover, the CatBoost model showed 
high predictive performance, with an AUC of 0.87. Other 
models, like logistic regression and SVM, were also intro-
duced with AUCs of 0.963 and 0.76, respectively [65].

Implementing the models in a clinical setting is also 
greatly important [66]. Consider a practitioner who 
wants to use a model to predict a patient’s PTSD. If the 

model requires, for instance, 50 or more predictors, it 
may pose challenges in actual clinical practice. There-
fore, in such cases, practitioners might prefer to use tra-
ditional PTSD risk assessment tools, such as the PCL-5 
[67]. The selection and use of predictors and features in 
models for predicting PTSD across different popula-
tions should be a focus of future research. For instance, it 
would be valuable to examine which algorithm achieves 
the highest accuracy in predicting PTSD using data on 
electrical activity [68] or heart rate [69] in specific popu-
lations. Finally, forecasting diseases remains challenging, 
and there is no certainty that machine learning models 
will successfully predict patient outcomes, even though 
machine learning holds significant promise. Internal and 
external validation studies are insufficient to confirm the 
therapeutic effectiveness of these models [16]. Investigat-
ing the impact of these models on patient outcomes may 
necessitate conducting interventional trials, subtle inter-
ventions, and impact assessments [70].

To the best of our knowledge, this study is the first 
meta-analysis aimed at comparing machine learning 
algorithms for predicting PTSD across all populations. 
In our systematic review and meta-analysis, we searched 
three significant databases to identify relevant studies. 
Moreover, the PROBAST tool was employed to assess 
the risk of bias in the included studies. Furthermore, 
we utilized meta-analysis, a robust method for synthe-
sizing evidence, to identify the most accurate model by 
pooling the AUCs of similar algorithms. The screening, 
study selection, data extraction, and risk of bias assess-
ments were conducted independently by two reviewers 
to enhance the study’s quality. On the other side, a sig-
nificant limitation of our study is the high heterogeneity 
among the included studies, which limits the interpret-
ability of the results. Moreover, excluding non-English 
literature may overlook relevant studies and impact the 
results of this review. Although we searched in three of 
the most comprehensive databases, including PubMed, 
Scopus, and Web of Science, we did not search other 
databases such as EMBASE and the Cochrane Library. 
Consequently, some eligible studies may have been over-
looked. Our study did not explicitly analyze how PTSD 
outcomes may differ across various trauma types, which 
could affect model performance. Additionally, the per-
formance of machine learning algorithms varied based 
on the indicators used (e.g., AUC, accuracy), complicat-
ing direct comparisons. Future research should address 
these aspects for a more nuanced understanding of PTSD 
prediction. In some cases, we observed that the mod-
els included in the meta-analysis originated from a sin-
gle study but employed different variables and settings. 
This variation may contribute to the high heterogeneity 
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observed in some meta-analyses. Therefore, we suggest 
that future research should consider meta-regression 
when sufficient and homogeneous data become available.

Conclusions
Overall, the best performance in terms of PTSD outcome 
prediction was shown by tree-based models. However, 
the evidence from these studies proved highly limited due 
to several factors, such as high heterogeneity, high and 
unclear risk of bias, and the need for more external vali-
dation models in the studies. Tree-based models tend to 
perform very well across various populations, particularly 
in those with particular trauma types such as alcohol use-
related stress or firefighters, despite the high heterogene-
ity, indicating the need for careful model selection and 
tuning specific to each study. Linear and ensemble meth-
ods are more consistent and sometimes more effective 
in more generalized populations. High heterogeneity in 
many meta-analyses suggests that while a specific model 
type might be effective on average, its performance can 
vary greatly, indicating that contextual factors, such as 
the specifics of the dataset and model tuning, play critical 
roles. To enhance the quality of future research, it is rec-
ommended that researchers adhere to AI/ML reporting 
and PROBAST guidelines. Furthermore, researchers in 
this field should prioritize the external validation of these 
models to confirm their effectiveness and applicability.
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