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A B S T R A C T   

Recently, there has been a significant advancement in the water quality index (WQI) models utilizing data-driven 
approaches, especially those integrating machine learning and artificial intelligence (ML/AI) technology. 
Although, several recent studies have revealed that the data-driven model has produced inconsistent results due 
to the data outliers, which significantly impact model reliability and accuracy. The present study was carried out 
to assess the impact of data outliers on a recently developed Irish Water Quality Index (IEWQI) model, which 
relies on data-driven techniques. To the author’s best knowledge, there has been no systematic framework for 
evaluating the influence of data outliers on such models. For the purposes of assessing the outlier impact of the 
data outliers on the water quality (WQ) model, this was the first initiative in research to introduce a compre
hensive approach that combines machine learning with advanced statistical techniques. The proposed framework 
was implemented in Cork Harbour, Ireland, to evaluate the IEWQI model’s sensitivity to outliers in input in
dicators to assess the water quality. In order to detect the data outlier, the study utilized two widely used ML 
techniques, including Isolation Forest (IF) and Kernel Density Estimation (KDE) within the dataset, for predicting 
WQ with and without these outliers. For validating the ML results, the study used five commonly used statistical 
measures. 

The performance metric (R2) indicates that the model performance improved slightly (R2 increased from 0.92 
to 0.95) in predicting WQ after removing the data outlier from the input. But the IEWQI scores revealed that 
there were no statistically significant differences among the actual values, predictions with outliers, and pre
dictions without outliers, with a 95 % confidence interval at p < 0.05. The results of model uncertainty also 
revealed that the model contributed <1 % uncertainty to the final assessment results for using both datasets 
(with and without outliers). In addition, all statistical measures indicated that the ML techniques provided 
reliable results that can be utilized for detecting outliers and their impacts on the IEWQI model. The findings of 
the research reveal that although the data outliers had no significant impact on the IEWQI model architecture, 
they had moderate impacts on the rating schemes’ of the model. This finding indicated that detecting the data 
outliers could improve the accuracy of the IEWQI model in rating WQ as well as be helpful in mitigating the 
model eclipsing problem. In addition, the results of the research provide evidence of how the data outliers 
influenced the data-driven model in predicting WQ and reliability, particularly since the study confirmed that the 
IEWQI model’s could be effective for accurately rating WQ despite the presence of the data outliers in the input. 
It could occur due to the spatio-temporal variability inherent in WQ indicators. 

However, the research assesses the influence of data input outliers on the IEWQI model and underscores 
important areas for future investigation. These areas include expanding temporal analysis using multi-year data, 
examining spatial outlier patterns, and evaluating detection methods. Moreover, it is essential to explore the real- 
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world impacts of revised rating categories, involve stakeholders in outlier management, and fine-tune model 
parameters. Analysing model performance across varying temporal and spatial resolutions and incorporating 
additional environmental data can significantly enhance the accuracy of WQ assessment. Consequently, this 
study offers valuable insights to strengthen the IEWQI model’s robustness and provides avenues for enhancing its 
utility in broader WQ assessment applications. 

Moreover, the study successfully adopted the framework for evaluating how data input outliers affect the data- 
driven model, such as the IEWQI model. The current study has been carried out in Cork Harbour for only a single 
year of WQ data. The framework should be tested across various domains for evaluating the response of the 
IEWQI model’s in terms of the spatio-temporal resolution of the domain. Nevertheless, the study recommended 
that future research should be conducted to adjust or revise the IEWQI model’s rating schemes and investigate 
the practical effects of data outliers on updated rating categories. However, the study provides potential rec
ommendations for enhancing the IEWQI model’s adaptability and reveals its effectiveness in expanding its 
applicability in more general WQ assessment scenarios.   

1. Introduction 

In the field of environmental science and water resource manage
ment, comprehending water quality dynamics is imperative due to the 
intricate interplay between anthropogenic activities and the natural 
environment (Parween et al., 2022; Uddin et al., 2022a, 2020, 2018, 
2017, 2023c, 2021). This understanding is facilitated by WQ models 
designed to simulate and predict various parameters (Burigato Costa 
et al., 2019; Chidiac et al., 2023; Ding et al., 2023; Uddin et al., 2023c; 
2023b, 2021). Nevertheless, the increasing complexity and data in
tensity of these models underscore the challenge of identifying outliers, 
which significantly deviate from the norm (Jeong and Park, 2019; Lee, 
2017; Najafabadi et al., 2015; Sivarajah et al., 2017; Smiti, 2020; Wu 
et al., 2021; Zhang and Thorburn, 2022). These outliers can skew model 
predictions, impair accuracy, and obstruct decision-making processes 
(Kang et al., 2017; Lee, 2017; Sivarajah et al., 2017). Recent studies have 
underscored the substantial impact of outliers on model outputs, thereby 
introducing significant uncertainty in final assessments (Jin et al., 2019; 
Lee, 2017; Liang et al., 2022; Orouji et al., 2013; Talagala et al., 2019). 
As consequence, the model(s) produces a considerable uncertainty to the 
final assessment (Angiulli and Fassetti, 2021; Harrington et al., 2021; 
Lee, 2017; Liang et al., 2022; Sharma and Seal, 2021; Wu et al., 2021; 
Zhang and Thorburn, 2022). 

The Water Quality Index (WQI) serves as a widely adopted technique 
for assessing and monitoring WQ (Burić et al., 2023; Ding et al., 2023; 
Georgescu et al., 2023; Gupta and Gupta, 2021; Manna and Biswas, 
2023; Mogane et al., 2023; Uddin, 2023; Uddin et al., 2020b; Uddin 
et al., 2023h; 2023b, 2023a, 2023c). This model adeptly converts spe
cific WQ indicator data into dimensionless numbers while preserving 
essential information from raw measurements (Parween et al., 2022; 
Uddin et al., 2022a; 2022b; 2023d; 2021). The WQI model comprises 
five key components: (i) The indicator selection process is designed for 
selecting crucial WQ indicators, prioritizing them based on their relative 
significance; (ii) sub-index functions are used to transform diverse WQ 
data into a uniform, dimensionless form, ensuring there is no loss of 
essential information about each indicator; (iii) a weight generation 
technique is implemented for assigning weights to indicators based on 
their influence on overall water quality; (iv) an aggregation function is 
utilized to combine these weighted sub-index values into a single, 
comprehensive WQI score; and (v) a classification scheme interprets this 
score, categorizing WQ into levels such as "good," "fair," or "marginal," 
providing a clear and interpretable assessment of water conditions 
(Uddin et al., 2022a, 2023g, 2023e, 2023f, 2023d). Comprehensive in
formation on the model’s components is detailed in the study by Uddin 
et al. (2023d). 

The development of numerous WQI models globally has facilitated 
WQ assessment in diverse aquatic environments including rivers, lakes, 
and groundwater (Gani et al., 2023; Georgescu et al., 2023; Mogane 
et al., 2023; Uddin et al., 2023d, 2023b, 2023c, 2021). An overview of 
these approaches, their model architectures, applications, and limita
tions, can be found in Uddin et al. (2021). These models’ simplicity and 

accessibility have led to their widespread adoption (Burić et al., 2023; 
Ding et al., 2023; Uddin et al., 2023b, 2023h). However, recent research 
has brought to light uncertainties stemming from various aspects of 
these models, including indicator selection, weighting methods, 
sub-indexing functions, aggregation functions, and model interpretation 
schemes, as discussed in Uddin et al. (2022a, 2023c, 2023h, 2023b, 
2023d, 2023f, 2023e, 2023g, 2021). 

Addressing these challenges, an innovative approach, the "Irish 
Water Quality Index (IEWQI) model," has been introduced, focusing 
particularly on marine waters. Details of the model development process 
are presented in Uddin et al. (2022c, 2023d), while the IEWQI model’s 
architecture and applications are outlined in Uddin et al. (2023d). Its 
effectiveness in assessing and monitoring surface WQ in different set
tings demonstrates its utility. To the best of the authors’ knowledge, the 
IEWQI model represents the first instance of incorporating 
state-of-the-art machine learning (ML) and artificial intelligence (AI) 
techniques into WQI development. Since its development, the Irish 
Water Quality Index (IEWQI) model, it has garnered considerable na
tional and international attention and adoption. In Ireland, it has been 
effectively used for assessing river, lake, and marine waters, as detailed 
in Uddin et al. (2023b, 2023d). The UK, particularly Northern Ireland, 
has utilized this model to compare with existing approaches like the 
"One-out, all-out" method (Uddin et al., 2023c). In Romania, the model’s 
effectiveness and reliability were favorably compared to other WQI 
approaches (Georgescu et al., 2023), while China reported successful 
applications in sea water assessment and highlighted its bias-free 
assessment capabilities (Ding et al., 2023). Montenegro’s application 
of the model in lake water assessments was noted in Burić et al. (2023), 
and South Africa’s use of the model for lotic and lentic ecosystems was 
reported in Mogane et al. (2023). In India, a study emphasized the 
model’s effectiveness in groundwater quality assessment (Manna and 
Biswas, 2023), and in Bangladesh, its efficacy for sub-tropical marine 
waters was outlined in Uddin et al. (2023h). Additionally, two recent 
studies, Gani et al. (2023) and Sajib et al. (2023, 2024), demonstrated its 
effectiveness in river water and real-time groundwater quality assess
ment, respectively. 

Moreover, recent studies, including those by Uddin et al. (2021, 
2022a, 2023) and supported by other researchers (Gupta and Gupta, 
2021; Sutadian et al., 2016, 2018), have emphasized the need to address 
"eclipsing" in Water Quality Index (WQI) models, acknowledging its 
considerable impact on model precision. Eclipsing in WQI models is a 
phenomenon where scores overestimate water quality, often due to 
inappropriate sub-indexing aggregated rules and parameters weight 
values (Sutadian et al., 2016; Uddin et al., 2021). This can result in 
misleading representations of water quality, concealing actual instances 
of poor quality, as further detailed by Uddin et al. (2022c, 2023d). A few 
studies have revealed that the aggregation function(s) are the major 
source of the eclipsing problem in WQI computation. Several studies 
have reported that the actual scenarios of WQ do not reflect the 
computed WQI scores due to inaccurate WQI scores. It may occur if 
individual indicators exceed critical thresholds or are outliers. In that 
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case, the model produced higher WQI scores, which indicates the WQ 
was acceptable, despite some WQ indicators breaching the guideline 
values. Consequences result in a significant discrepancy between the 
actual state of WQ and the model’s output, which can lead to inconsis
tent and unreliable assessments. Therefore, to avoid the model eclipsing 
problem, removing data outliers from the model’s input could be one of 
the most effective approaches, particularly those at the lower end/ 
higher tail (extreme higher) of the dataset (lower/higher outlier points). 
For example, the current study focuses on DOX levels in Cork Harbour, 
typically ranging between 70.8 (lowest concentration) and 115.75 
(highest concentration), whereas the guideline values ranged from 72 % 
to 128 % of saturation (details in Table S4). Based on the DOX data 
points outliers (as shown in Fig. 4), in total four data points were found 
as outliers, whereas three were on the lower end (70.8, 78.68, and 81.5) 
and one on the higher end (115.75) of the DOX dataset. According to the 
methodology of the IEWQI model, these lower data points (outliers) can 
lead to an overestimation of WQ with breached indicator(s). Uddin et al. 
(2022c) provide details of the eclipsing issues in the IEWQI model, its 
nature, and how to determine this issue. Moreover, Figure S1 presents 
the relationship between data point(s) outliers, and eclipsing and their 
collective impact on the reliability of the IEWQI model. Therefore, as a 
data-driven model, it is essential to investigate the model sensitivity to 
high-dimensional WQ data (outliers). 

For the purposes of the accurate assessment/modelling/simulating/ 
forecasting, data outlier’s detection and treatment are essential across 
various fields, including cyber security, healthcare, environmental 
monitoring, finance, etc. (Balamurali and Melkumyan, 2018; Beren
drecht et al., 2022; Choi et al., 2021; Garces and Sbarbaro, 2009; Gui 
et al., 2017; Ha et al., 2014; Misra et al., 2020; Shah et al., 2023; Smiti, 
2020). Outliers, often representing rare and unusual occurrences, can 
profoundly influence the quality and reliability of data-driven model(s) 
outcomes (Choi et al., 2023a, 2023b; El Alaoui et al., 2018; Gui et al., 
2017; Harrington et al., 2021; Kim et al., 2022; Rahman and Harding, 
2016; Yuan et al., 2018). To address this difficulty, the data scien
tists/analysts/researchers used a range of tools and techniques, from 
sophisticated ML and AI algorithms to traditional statistical approaches 
(Budhlakoti et al., 2020; Domański, 2020a; Duraj and Szczepaniak, 
2021; Hansen et al., 2023; Kwak and Kim, 2017; Ojo et al., 2022; Shi
mizu, 2022; Smiti, 2020). Over the years, many tools and techniques 
have been developed to address this challenge, including typical sta
tistical/mathematical approaches like Mahalanobis Distance (Cabana 
et al., 2021; Dashdondov and Kim, 2023; Etherington, 2021; Gyebnár 
et al., 2019; Leys et al., 2018; Todeschini et al., 2013), Robust Z-Score 
(Aggarwal et al., 2019; Berendrecht et al., 2022; Green, 2021; Haj-
Hassan et al., 2020; Rousseeuw and Hubert, 2011; Templ et al., 2020; 
Yuen and Ortiz, 2017), and Histogram-Based Outlier Detection (HBOS) 
(Aguilera-Martos et al., 2023a, 2023b; Fahim et al., 2022; Fernández 
et al., 2022; Kalaycı and Ercan, 2018; Pei et al., 2021; Samariya and Ma, 
2022; Smiti, 2020), Local Outlier Factor (LOF) (Alsini et al., 2021; 
Auskalnis et al., 2018; Chiu and Fu, 2003; Johannesen et al., 2022; 
Meenakshi and M, 2022; Mishra et al., 2019; Peng et al., 2021; Petkovski 
and Shehu, 2023a; Qiu et al., 2022; Wang et al., 2023; Xu et al., 2022, 
2019) and Statistical Process Control (SPC) (Al Suwaidi et al., 2023; 
Baroudi et al., 2023; Raveendran et al., 2023; Tan et al., 2023; Yeganeh 
and Shongwe, 2023; Zeng et al., 2023) to cutting-edge Machine Learning 
(ML) and Artificial Intelligence (AI) approaches (Adeoye et al., 2023; 
Albahra et al., 2023; Ali et al., 2023; Chander and Kumaravelan, 2022; 
Chang et al., 2022; Hassan et al., 2022; Jamshidi et al., 2022a; Kokat
noor et al., 2022; Luley et al., 2023; Mentis et al., 2023; Milić et al., 
2023; Nasir et al., 2022; Prasad et al., 2022; Sejr and Schneider-Kamp, 
2021; Sikder and Batarseh, 2023; Varadharajan et al., 2022; Wei 
et al., 2023) like Isolation Forest, One-Class SVM, boosting algorithms, 
and Deep Learning (Albahra et al., 2023; Hassan et al., 2022; Ragab 
et al., 2022; Wei et al., 2023). 

Recent several studies have revealed that the IF (AbuAlghanam et al., 
2023; Carletti et al., 2023; Chen et al., 2023, 2022; Feng et al., 2022; 

Kabir et al., 2023; Liu et al., 2008; Mensi et al., 2023; Petkovski and 
Shehu, 2023b; Wang et al., 2023; Xu et al., 2023; Yin et al., 2023) and 
KDE (Choi et al., 2022; Hewitt et al., 2022; Lei et al., 2023; Matioli et al., 
2018; Modak, 2023;Rosenberger et al., 2022; Zeng et al., 2023) out
performs other machine learning techniques when it comes to detecting 
data anomalies, outliers, or system defaults in various fields, including 
water research (Liu et al., 2020; Shi et al., 2023; Yin et al., 2023). 
Moreover, a number of research have successfully applied these tech
niques for detecting data outlier in various field including 
decision-making and risk management with extensive sensor data using 
IF technique (Tan et al., 2022); improved cybersecurity by detecting 
cyber anomalies by adopting IF (Ripan et al., 2021); credit card fraud 
detection utilizing IF (Krishna et al., 2023); anomalies detection in oil 
producing by applying IF (Fernandes et al., 2023) in order to optimize 
the impact of the data outlier in data-driven mode. Mensi et al. (2023) 
utilized IF approaches for identification outliers based on pairwise dis
tances between two objects, while Xu et al. (2023) used the IF for 
detecting and mitigate the data anomalies in various data types. 
Buschjäger et al. (2022) adopted the IF for comparative analysis of 
detecting data outliers in fourteen different datasets successfully. 
Moreover, several recent studies have utilized the IF in water research, 
for examples- Yin et al. (2023) utilized this approaches for detecting the 
anomalies in simulation data within water level measurements a bore
hole groups, while Liu et al. (2020) and Wang et al. (2023) used the IF 
for detecting WQ anomaly and early warning. However, a few recent 
studies have revealed that the IF could be effective to detect the WQ 
anomaly or detect the data outliers in big WQ monitoring datasets in 
order to develop the data-driven model (Liu et al., 2020; Wang et al., 
2023). 

In functional data outlier detection, many studies have utilized the 
KDE technique successfully in various domain. Hernández et al. (2023) 
successfully used this technique for detecting data outliers in electro
cardiogram signals and mortality curves datasets. Latecki et al. (2007) 
demonstrated its versatility in fields like network intrusion detection 
and video analysis. Tang and He (2017) used the KDE techniques for 
detecting data outliers in various real life datasets. Zhang et al. (2022) 
successfully demonstrated that the KDE algorithm effectiveness for 
improving predictive outcomes in datasets related to public safety, 
commodity trade, and network security. Several studies have utilized 
the KDE approaches for detecting WQ anomalies and early warning 
system (Rosenberger et al., 2022; Liu et al., 2020). However, the use of 
IF and KDE has not been investigated widely for detecting outliers or 
anomalies in WQ data-driven model(s) whereas most studies have 
focused on detecting the anomalies or outliers at particular WQ indi
cator(s). Therefore, the application of anomaly detection or outlier 
techniques in various fields has prompted the emergence of innovative 
methods in order to improve the reliability of WQ models through 
data-driven approaches (Aliashrafi et al., 2021; Jeong and Park, 2019; 
Jin et al., 2019; Kang et al., 2017; Orouji et al., 2013; Petkovski and 
Shehu, 2023a; Sarker, 2021).As discussed earlier, the research carried 
out a comparative investigation of between typical statistical ap
proaches, and ML/AI approaches for detecting and removing data 
outlier from the data-driven IEWQI model in order to determine the 
impact of data-outlier on the model performance. For the purposes of 
detecting data outlies in input (WQ indicators) of the IEWQI model, the 
research also utilized five traditional statistical/mathematical ap
proaches like Mahalanobis Distance, Robust Z-Score, Local Outlier 
Factor (LOF), Histogram-Based Outlier Detection (HBOS), and Statistical 
Process Control (SPC), alongside two novel ML/AI algorithms: the 
Isolation Forest, and Kernel Density Functions. By contrasting these 
diverse approaches, is to provide a comprehensive understanding of 
their strengths, limitations, and applicability for detecting input outliers 
of the IEWQI model and that can be helpful for investigating the 
anomalies in data-driven model across various domains particularly 
water research and management. 

Therefore, the research aim was to investigate the impact of input 
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(various WQ indicators) outliers on newly developed advanced data- 
driven IEWQI model performance in predicting WQI scores. The study 
also proposed a comprehensive framework for handling data outliers in 
WQ models, especially WQI approaches. Fig. 1 presents the compre
hensive conceptual framework of the research. In order to obtain the 
research aim, the study carried out by following objectives:  

• To detect data outliers in input of the IEWQI model utilizing two 
identical including IF and KDE ML algorithms.  

• To develop IEWQI model outcomes scenarios with outliers and 
removing them from the input.  

• To evaluate the IEWQI model’s performance under two distinct 
scenarios (with and without data outliers).  

• To validate the outlier results by comparing them with the outcomes 
of five advanced statistical/mathematical techniques.  

• To provide practical recommendations for improving/revising the 
IEWQI model’s architecture and its effectiveness 

As was pointed in previous section, the ultimate goal of the research 
was to investigate impact of data outliers on the IEWQI model by ana
lysing the results of various techniques. For the purposes of the under
standing the outlier’s impacts on the IEWQI model, the research 
assumed hypothesis as follows: 

Null Hypothesis (H0): Input data outliers treatment are important into 
WQ modelling, particularly in the case of the Irish WQ Index (IEWQI) 

Fig. 1. A comprehensive conceptual framework for detecting data outliers in WQI approaches.  
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Model, will have a significant impact on model accuracy and reli
ability for providing accurate information of water quality. 
Alternative Hypothesis (Ha): Input data outlier will not lead to a sig
nificant impact on model accuracy and reliability in terms of rating 
WQ accurately. 

However, the research have been carried out to validate the alter
native hypothesis (Ha) by utilizing the two robust algorithms and 
comparing a range of statistical/mathematical measures that could be 
improved the IEWQI model accuracy and reliability for assessing and 
predicting WQ accurately. The findings of the research could be helpful 
for understanding the data outlier’s effects on WQ model like IEWQI, 
and also may offer valuable insights into the benefits of utilizing state-of- 
the-art outlier detection methods in WQ modelling, highlighting their 
significance in water resources management practices. 

2. Materials and method 

2.1. Model application domain 

This study focuses on Cork Harbour, located on the southwestern 
coast of Ireland, and represents a significant focal point within the field 
of geography and environmental research. Cork Harbour is character
ized by its distinction as the largest natural Harbour in Ireland, and it 
exhibits the characteristics of a macro-tidal estuary (Comer et al., 2017; 
Hartnett and Nash, 2015; Uddin et al., 2020, 2023d). Its coastal envi
ronment is marked by a typical spring tide range of 4.2 m at the Har
bour’s entrance, resulting in relatively shallow water depths within the 

Harbour, particularly during spring tides (Hartnett et al., 2012; Uddin 
et al., 2022a). This phenomenon leads to the exposure of extensive 
mudflats and sandflats during low tide, significantly influencing the 
Harbour’s ecological dynamics (Hartnett et al., 2012, 2011a; Uddin 
et al., 2023b). As one moves further towards the Harbour’s mouth, the 
main channel deepens significantly, reaching depths of approximately 
30 m. The Harbour is nourished by several rivers, with the River Lee 
being the most prominent contributor, accounting for approximately 75 
% of the freshwater inflow into the estuary (Uddin et al., 2022a, 2023b). 
These freshwater inputs play a pivotal role in shaping the Harbour’s 
environmental dynamics. 

In addition, Cork Harbour is also notable for its substantial popula
tion and industrialization. Cork City, situated at the confluence of the 
River Lee and the Harbour, is home to approximately 125,000 residents. 
This urban center serves as a critical industrial hub for the south-western 
region of Ireland (Uddin et al., 2023e, 2023d). The surrounding hin
terlands are characterized by intensive agricultural activities, exerting a 
direct influence on the WQ within the region. Moreover, Cork Harbour 
contends with WQ challenges stemming from effluent discharges origi
nating from seven wastewater treatment plants (WWTPs) located within 
its catchment area. These WWTPs contribute to the intricate array of 
factors affecting WQ in the Harbour. 

For the purpose of comprehensive regional assessment and analytical 
purposes, Cork Harbour has been partitioned into three distinct zones 
(see Fig. 2): (1) Upper Harbour, encompassing regions such as the River 
Lee, River Glashaboy, North Channel, and River Owenacurra; (2) Lower 
Harbour, comprising localities such as Passage West and Passage East; 
and (3) Outer Harbour, encompassing the River Owenboy and the 

Fig. 2. Study area- monitoring sites and wastewater discharge points in Cork Harbour.  
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primary channel of the Harbour. 
This study employs a proposed framework to evaluate coastal WQ 

within Cork Harbour, utilizing the Irish Water Quality Index (IEWQI) 
model. It also examines the outliers in data pertaining to various WQ 
indicators. The selection of Cork Harbour as the research site was 
motivated by its previous utilization in an IEWQI model study conducted 
by the authors, ensuring the availability of pertinent data for validation 
purposes. Furthermore, the designation of Cork Harbour as a Special 
Protection Area (SPA) underscores its significance in the realm of 
environmental conservation (Hartnett et al., 2011b; Olbert et al., 2017; 
Uddin et al., 2022a). The Harbour’s substantial economic potential, 
coupled with the challenges posed by population density, industriali
zation, agriculture, and wastewater discharges, accentuates the 
complexity of managing its WQ and ecological well-being (Uddin et al., 
2022a, 2023d). Ongoing efforts to monitor and mitigate these chal
lenges are imperative for the sustainable stewardship of this invaluable 
coastal ecosystem. 

2.2. Data description 

To compute IEWQI scores, the research considered into account nine 
key WQ indicators, including pH, dissolved oxygen (DOX), salinity 
(SAL), biological oxygen demand (BOD5), water temperature (TEMP), 
transparency (TRAN), total organic nitrogen (TON), molybdate-reactive 
phosphorus (MRP), and dissolved inorganic nitrogen (DIN) by adopting 
the methodology proposed by (Uddin et al., 2023d). Table 1 provides a 
comprehensive list of these selected WQ indicators, along with their 
units and guideline values. The guideline values for several WQ in
dicators, excluding DOX, MRP, and DIN, were sourced from a variety of 
national and international guidelines. Conversely, the guideline values 
for DOX, MRP, and DIN were established using the methodology out
lined in Uddin et al. (2022c, 2023d). Details of the methodology can be 
found in Uddin et al. (2023d). 

The data for these WQ indicators was collected in the year 2022 from 
29 out of 37 monitoring sites within the EPA database. This data is 
publicly accessible at https://www.catchments.ie/data/. The EPA up
holds data reliability and accuracy through a stringent quality control 
system (refer to EPA 2021). The selection of monitoring sites was based 
on data availability and the coverage of geographical attributes within 
the domain, aligning with the requirements of the IEWQI model input. 
Fig. 2 presents the locations of these sites and wastewater discharge 
points. Detailed information regarding each WQ indicator across 
different monitoring sites in Cork Harbour can be found in Table S2. 

To ensure data consistency, the study considered on the annual 
means of indicator measurements for the year 2022. The depth-averaged 

concentrations of these WQ indicators were determined by calculating 
the annual means for each respective indicator. It’s important to note 
that SAL was exclusively used to establish guideline values for the 
moving thresholds of nutrient enrichment indicators (DOX, MRP, and 
DIN). It is noted that, the study primarily focused on analysing data from 
a single year (2022) obtained from the EPA database. It also utilized 
annual averages, a method that could potentially overlook short-term 
fluctuations in water quality. 

2.3. IEWQI scores computation 

To calculate WQI scores, various WQI approaches are currently in 
use. However, recent studies have revealed that these existing ap
proaches introduce a significant level of uncertainty into the final as
sessments (Ding et al., 2023; Uddin, 2023; Uddin et al., 2022a, 2023d, 
2023f, 2023h, 2023b, 2023c, 2021). To the best of the authors’ 
knowledge (Uddin et al., 2023d), have developed an improved approach 
known as the "Irish Water Quality Index (IEWQI) model" especially 
focusing the marine waters. This model has proven effective in assessing 
marine waters, reducing uncertainty, and enhancing the reliability of 
assessment results (Ding et al., 2023; Uddin et al., 2023c, 2023h, 
2023b). 

Furthermore, several recent research studies have reported that the 
IEWQI model can significantly reduce uncertainty when assessing ma
rine (Uddin et al., 2023c, 2023h), transitional, and coastal waters 
(Uddin et al., 2022a, 2023b, 2023f, 2023g, 2023e), as well as river 
waters (Ding et al., 2023; Gani et al., 2023; Georgescu et al., 2023; 
Mogane et al., 2023), compared to other existing approaches, with an 
uncertainty level of less than 1 % (Burić et al., 2023; Ding et al., 2023; 
Georgescu et al., 2023; Uddin et al., 2023h, 2023b, 2023c, 2023f). 
Numerous recent studies have also indicated that the IEWQI model is 
efficient in providing bias-free results, minimizing eclipsing and ambi
guity issues compared to other methods (Ding et al., 2023; Gani et al., 
2023; Mogane et al., 2023; Uddin et al., 2023b, 2023h, 2023c). 

As the aim of the research, the research utilized the IEWQI model for 
computing WQI scores, following the methodology outlined in Uddin 
et al. (2023d). Detailed of the model’s attributes and functions can be 
found in Uddin et al. (2022a, 2023c, 2023d, 2023e). Like other WQI 
approaches, the IEWQI model also consists of five crucial elements, and 
Fig. 3 presents the foundational architecture of the IEWQI model, as 
shown below: 

Here, we presents the IEWQI model’s attributes and functions of 
various components as below: 

2.3.1. Input selection technique 
The initial step in the WQI model involves the selection of essential 

WQ indicators (input) (Parween et al., 2022; Uddin et al., 2022a, 2022e, 
2021). This process commonly uses various tools and techniques such as 
Principal Component Analysis, correlation analysis, based on literature 
suggestions, Delphi technique, expert judgment, and analytical hierar
chical process (Gupta and Gupta, 2021; Uddin et al., 2021). Recent 
studies highlight the impact of inappropriate indicator selection on 
introducing model uncertainty, leading to the adoption of machine 
learning algorithms like gradient boosting and random forest to enhance 
the selection process (Uddin et al., 2022a, 2022d). In the IEWQI model, 
the random forest technique was recommended to select the crucial 
input indicators, the model recommended eight indicators including 
DOX, MRP, DIN, TON, BOD5, pH, TEMP, and TRAN, for computing 
IEWQI scores (for indicator details, refer to Section 2.2), with compre
hensive procedures outlined in Uddin et al. (2023d). 

2.3.2. Sub-index function 
Sub-index functions are another crucial components that are widely 

used in standardizing WQ indicators to a uniform scale (Uddin et al., 
2021, Uddin et al., 2022a). Many approaches, including linear inter
polation and rating curve functions, have been widely used for this 

Table 1 
Guidelines values of various WQ indicators for marine waters.  

WQ indicators Unit Standard threshold 

Lower Upper 

TEMPa ◦C – 25 
pHb – 5 9 
TRANc m/depth >1 – 
DOXd % sat 72 128 
BOD5

a mg/l 0.0 7 
DINd mg/l 0.0 1.14 
TONe mg/l as N 0.0 2 
MRPd mg/l as P 0.0 0.5  

a EPA-Ireland (2001) recommended values for surface water. 
b Estuary Monitoring Manual for pH, EPA, USA. 
c EPA Bathing Water Quality Regulations 2008 (Ref. No. 79/2008). 
d ATSEBI guide values, standard values were obtained based on median value 

of SAL. In this study, SAL median value was found 22 psu, 25 psu, 20 psu, 20 psu, 
24 psu and 21 ppt during 2017, 2018, 2019, 2020, 2021 and 2022 respectively. 

e The European Communities Regulations for quality of surface water inten
ded for the abstraction of drinking water, 1989 (S.I. No. 294/1989). 

M.G. Uddin et al.                                                                                                                                                                                                                               

https://www.catchments.ie/data/


Water Research 255 (2024) 121499

7

purpose. However, recent several research revealed that these methods 
have been produces a considerable amount of uncertainty due to the 
ambiguity, and eclipsing issues (Gupta and Gupta, 2021; Sutadian et al., 
2016; Uddin et al., 2021). To mitigate this problem, the authors devel
oped a set of new linear interpolation rescaling functions, ensuring 
precision and removing ambiguity from the model (Uddin et al., 2022c). 

In the IEWQI model, three newly developed linear interpolation 
functions, accompanied by specific binary rules (see Table S1), were 
utilized to convert the various WQ indicators into the Sub-index scores 
(unit less). These functions are as follows: 

SI = (SI u − SI l) −
(SI u × WQm)

(STDu − STDl)
(1)  

SI =
(WQm − STDl)

(STDu − STDl)
× SI u (2)  

SIi = (SI u − SI l) −
(WQm − STDl)

(STDu − STDl)
(3)  

where, SI represents the sub-index value of the indicator (s), SI u denotes 
the upper threshold value (100 for “excellent”) for the respective water 
class, SI l is threshold lower value (0 for “poor”) of the respective water 
class, STDu indicates the upper limit threshold for the standard con
cerning the indicator, STDl represents the lower limit threshold for the 
standard concerning the indicator, and WQm corresponds to the 
measured or actual concentration of the WQ indicator. Details of 
threshold ranges are provides in Table 1. 

2.3.3. Obtaining indicator weight values 
The weighting of WQ indicators is another important components, 

and existing WQI approaches utilized a range of tools and techniques for 
generating indicators weight values based on their relative importance, 
including subjective methods and objective mathematical functions 
(Gupta and Gupta, 2021; Sutadian et al., 2016; Uddin et al., 2021, 
2022c, 2022d). Recently, several studies have reported that ambiguous 
weight values produced due to the in appropriate weighting approaches 
(Uddin et al., 2022c, 2022b). To mitigate this situation, the authors 
developed a novel approach combining ML and objective-based math
ematical functions, resulting in more accurate weight values (Uddin 
et al., 2022c), whereas the random forest was used to rank of the in
dicators, with rank sum mathematical functions effectively reducing 
model uncertainty (Uddin et al., 2022d). Weight computation can be 
defined as follows: 

wi =
n + 1 − i
∑n

j=1j
=

2(n + 1 − i)
n(n + 1)

, i = 1, 2, 3……., n (4)  

where n represents the total number of ranked indicators; i denotes the 
rank of the ith indicator rank; j signifies the summation of ranks, and w 
represents the associated weight value. It is noted that using the in
dicators weight values are provided in Table S3. 

2.3.4. Aggregation function 
The final component of the IEWQI model is aggregation function that 

is used to combine SI and weight values into a single WQI score. Various 
aggregation functions, including weighted and unweighted methods, 

have been used in existing WQI approaches. A number of research have 
reported that the ambiguity issues in existing aggregation functions 
could be generated the misclassification of WQ in final rating system due 
to the over estimation or under estimation problems of the aggregation 
process (Uddin et al., 2021, 2022c, 2023d, 2023f). For the purposes of 
avoiding the this problem, the IEWQ model introduced the weighted 
quadratic mean (WQM) aggregation function, which outperformed 
other approaches in order to minimize ambiguity and uncertainty (Ding 
et al., 2023; Georgescu et al., 2023; Manna and Biswas, 2023; Sajib et al., 
2023, 2024; Uddin et al., 2022a, 2023f). The IEWQI aggregation func
tion can be defined as follows: 

IEWQI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i
wis2

i

√

(5)  

where si is the sub-index value for indicator i; wi is weight value of 
respective WQ variables, and n is the number of indicators. 

2.3.5. IEWQI score translation 
The ultimate goal of the Water Quality Index (WQI) approach is to 

assess and rate the quality of water (Georgescu et al., 2023; Parween 
et al., 2022; Uddin et al., 2022a, 2022b; 2023b, 2023d, 2023f) lighted a 
significant issue known as the "metaphoring problem" resulting from 
inappropriate classification schemes (Burić et al., 2023; Ding et al., 
2023; Mogane et al., 2023; Uddin et al.,2023g, 2023d). Details of the 
“metaphoring problem” can be found in Uddin et al. (2023g). To address 
this issue, the authors have introduced a novel classification scheme for 
evaluating marine waters. The process of developing this classification 
scheme is detailed in Uddin et al. (2022c), and the validation results are 
presented in Uddin et al. (2023g). For the purpose of assessing WQ using 
IEWQI scores, the research has adopted the classification schemes out
lined in Uddin et al. (2023e). Table S4 provides the details classification 
schemes. 

2.4. Outlier detection techniques 

Outlier detection is a vital issue for exploring or identifying the 
extreme data points in a dataset(s) (Garces and Sbarbaro, 2009; Luo and 
Paal, 2023; Rousseeuw and Hubert, 2011;Rahman, 2019; Smiti, 2020). 
Gradually, this topic has gained much more attention for detecting data 
anomalies/ outliers in any datasets across various fields including health 
care systems, finance, natural resources management, cybersecurity and 
it anomalies detection, fault detection etc. In recent years, there has 
been an increasing interest in detecting outliers for developing the 
data-driven models, at particularly in water resources research and its 
modelling with big monitoring datasets. A range of tools and techniques 
have utilized to detect data anomalies/outliers like as Z-Score, 
Percentile-based, Isolation Forest, and Local Outlier Factor use statisti
cal methods (Domański, 2020b; Ha et al., 2015; Obikee et al., 2014; 
Smiti, 2020; Yuen and Ortiz, 2017). Recently several studies have widely 
utilized various ML techniques for detecting data outliers or anomalies 
across various fields, the IF and KDE one of them outperformed algo
rithms compared to others techniques (Chen et al., 2022; Kabir et al., 
2023; Mensi et al., 2023, 2021; Tokovarov and Karczmarek, 2022; 
Hewitt et al., 2022; Rosenberger et al., 2022; Zeng et al., 2023). In the 
context of modelling WQ, data outliers are crucial issue for monitoring 

Fig. 3. Architecture of the IEWQI model’ according to Uddin et al. (2023d).  
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and management water resources more accurately, especially large 
simulation model(s) or data-driven approaches (Garces and Sbarbaro, 
2009; Ragab et al., 2022; Shah et al., 2023). Commonly, the research 
have used some basics statistical approaches such as Z-Score and 
Interquartile Range for detecting the anomalies in WQ indicators like 
dissolved oxygen, pH, and water temperature (Aggarwal et al., 2019; Pei 
et al., 2021). Recently, a few research have utilized ML algorithms such 
as IF, Local Outlier Factor, and KDE to identify the changing the con
centration level of conductivity and it contaminates level (Abdulghafoor 
and Mohamed, 2022; Mensi et al., 2023; Tokovarov and Karczmarek, 
2022). Many studies have revealed that these techniques could be 
effective compared to others algorithms to detect the data outliers in 
terms of enhancing model accuracy as well as accurate assessment of 
WQ (Chen et al., 2022; Hewitt et al., 2022; Jin et al., 2019b; Kabir et al., 
2023; Mensi et al., 2023, 2021; Najman and Zieliński, 2021; Ripan et al., 
2021; Tokovarov and Karczmarek, 2022; Tan et al., 2022). 

However, as discussed in earlier section, in the domain of data- 
driven modelling, particularly for the IEWQI, the implementation of IF 
and KDE techniques presents a sophisticated approach to managing 
complex datasets. The IF algorithm is particularly use at handling high- 
dimensional data, a common characteristic of various indicators in the 
WQ model(s) (Chen et al., 2022; Kabir et al., 2023; Mensi et al., 2023, 
2021; Najman and Zieliński, 2021; Ripan et al., 2021; Tan et al., 2022); 
that could be potential for efficiently managing the multi-dimensional 
nature of environmental data (Mensi et al., 2021; Najman and Zie
liński, 2021; Toufigh and Ranjbar, 2023; Yin et al., 2023). Moreover, a 
few studies have revealed that the IF may an integrated approaches for 
its computational efficiency (due to its sensitivity to anomalies) in order 
to detect the data outliers/anomalies in multi-dimensional data such as 
large datasets typically associated with environmental monitoring (Liu 
et al., 2020; Mensi et al., 2021; Tan et al., 2022). A few studies have 
reported that the IF is particularly sensitive anomalies even in the 
detection of small deviations, this approaches could be effective to 
develop a strong early warning systems for the management of envi
ronment by reducing data anomalies in datasets. (Toufigh and Ranjbar, 
2023; Xu et al., 2023). 

Contrary, the KDE offers a non-parametric approach to data analysis, 
a significant advantage when dealing with environmental data that may 
not adhere to standard distributions (Cao et al., 2023; Latecki et al., 
2007; Villa and Lozano, 2020; Zhao et al., 2022). This flexibility allows 
KDE to model the probability density function of various WQ parameters 
comprehensively (Cao et al., 2023; Gallego et al., 2022; Han et al., 2019; 
Hernández et al., 2023). Furthermore, KDE’s flexibility in responding to 
variances in data is especially effective in dynamic datasets such as 
environmental monitoring database, where seasonal and environmental 
variables can cause fluctuations in WQ indicators (Han et al., 2019; 
Hernández et al., 2023; Latecki et al., 2007). 

Therefore, the research utilized IF and KDE techniques for detecting 
the data outliers and their impacts on the IEWQI model, because a 
number of recent studies revealed that these techniques outperformed in 
detecting water quality. Details of the conceptual framework for 
detecting the data outliers are provided in Fig. 1. The following sections 
briefly discussed the IF and KDE below: 

2.4.1. Isolation forest (IF) algorithm 
IF is an innovative and powerful approaches to detect the rare and 

abnormal data points in multidimensional dataset. (Kabir et al., 2023; 
Petkovski and Shehu, 2023b; Wang et al., 2023). Unlike traditional 
methods relying on complex metrics, it leverages the uniqueness and 
rarity of outliers in WQ data (Chen et al., 2023; Petkovski and Shehu, 
2023b; Wang et al., 2023; Yin et al., 2023). Several recent studies have 
reveals that this approach efficiently detects anomalies by recursively 
partitioning the data, outperforming established methods (Feng et al., 
2022; Liu et al., 2008; Oliveira et al., 2022; Tokovarov and Karczmarek, 
2022). A number of recent studies have revealed that the IF algorithms 
outperformed compared to other techniques for detecting data 

outliers/anomalies across various domain (Misra et al., 2020; Shah 
et al., 2023; Wang et al., 2023; Yin et al., 2023). Therefore, the research 
utilized this algorithm to detect/identify outliers in various WQ in
dicators and model them following Yin et al. (2023). The IF algorithm 
mathematical can be defined as follows: 

Given a dataset X (herein is the WQ indicators dataset, as mentioned 
in Section 2.2) with n data points (current research used 29 points) of 
each WQ indicators, where each data point is represented as xi in d- 
dimensional space, the IF algorithm can be described using the following 
steps:  

• Random Partitioning: Select a random feature f from the d features 
(various WQ indicators). Choose a random split value v between the 
minimum and maximum values of f.  

• The dataset is partitioned into two subsets: one comprising data 
points with feature values less than v, and the other containing 
values greater than or equal to v. This partitioning process is then 
recursively applied to each subset until a predetermined depth is 
attained or the subset comprises only a single data point.  

• Path Length Calculation: For each data point of xi, calculate the path 
length h(xi) from the root node to the terminal node containing xi.  

• Scoring: once the calculate the average path length for each data 
point to each WQ indicator: E(h(xi)) = c(n), where c(n) is a 
normalization factor based on the average path length for balanced 
binary trees. 

Following a rule of thumb, data points displaying notably shorter 
average path lengths than the normalized average are indicative of po
tential outliers. Usually, the IF algorithm is very efficient and scalable to 
detect data outliers compared to other techniques for managing high- 
dimensional datasets without relying on the predetermined distance 
metrics between the root node(s) and terminal node(s) (Carletti et al., 
2023; Chen et al., 2023, 2022; Feng et al., 2022; Kabir et al., 2023). It 
should be noted that several recent studies have successfully applied IF 
techniques for detecting data outliers or anomalies across various fields. 
This is the first initiative, and the research utilized this approach for 
detecting outliers and the impact of them on the WQ model, particularly 
the IEWQI model. Therefore, its applicability might vary across various 
datasets, necessitating meticulous parameter tuning for optimal 
performance. 

2.4.2. Kernel density estimation (KDE) 
KDE is an effective statistical method that is widely used for esti

mating the probability density function for continuous random variable 
based on given dataset(s). Currently, this technique is not used only for 
estimating the probability density function, but also recently this 
approach widely utilized for detecting the data outliers/anomalies in 
various high-dimension dataset(s) by addressing the region(s) of low 
data density (Humbert et al., 2022; Rosenberger et al., 2022). 
Commonly, it measures data point concentration in feature space re
gions to detect lower-density areas where outliers tend to occur (Hewitt 
et al., 2022; Matioli et al., 2018). Being non-parametric, KDE flexibly 
adapts various data distribution function(s), making it valuable for 
complex and multi-modal datasets (Lei et al., 2023; Liu et al., 2020b; 
Zeng et al., 2023a). Recently several studies utilized this approach for 
detecting the data outliers across various field such as streaming data, 
various real-field sensor data, network fault analysis data etc. (Liu et al., 
2020; Rosenberger et al., 2022; Wahid et al., 2018; Xu et al., 2016; 
Zheng et al., 2017). while a very limited studies can be found in WQ or 
its indicators (Jiang et al., 2022; Panjei et al., 2022; Piñeiro Di Blasi 
et al., 2015; Talagala et al., 2019; Tang and He, 2017). Recent a few 
studies have revealed that it can be used to detect outliers in a WQ model 
by highlighting areas of low data density (Oliveira et al., 2022; Rose
nberger et al., 2022; Zeng et al., 2023). Consequently, the study per
formed this approach for detecting the data outliers in WQ dataset by 
adopting the methodology of Zeng et al. (2023). Details of the 
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methodological outlined are presented in Zeng et al. (2023). The 
mathematical expression of the KDE’s function as follows: 

Given a dataset of WQ measurements x = {x₁, x₂, …, xₙ}, the kernel 
density estimates at a specific point x is given by: 

KDE(x) =
(

1
n × h

)

×
∑

K
(x − xi

h

)
(6)  

where n is the number of data points (the research considered 29 data 
points) of various WQ indicators in the dataset, h is the bandwidth, a 
smoothing parameter that determines the width of the kernel function, xᵢ 
represents individual data points of different WQ indicators from the 
dataset, and K is the kernel function, typically a symmetric probability 
density function (e.g., Gaussian or Epanechnikov kernel). It is noted that 
the kernel function K is chosen to be a positive function that integrates to 
1 and has its maximum at 0. It "spreads" the influence of each data point 
xᵢ to nearby points, allowing the KDE to provide a smooth estimate of the 
underlying data distribution. 

2.5. Advanced statistical approaches 

For the purposes of the validation of the outlier detection results of IF 
and KDE, the research utilized five advanced statistical tools and tech
niques including (i) Mahalanobis distance, (ii) Robust Z score, (iii) Local 
Outlier Factor (LOF), (iv) Histogram-Based Outlier Detection scores 
(HBOS), and (iv) Statistical Process Control (SPC); these have widely 
used for detecting data outliers in various field including water research 
domain (Aggarwal et al., 2019; IAguilera-Martos et al., 2023b; Alsini 
et al., 2021; Etherington, 2021; Fahim et al., 2022; Johannesen et al., 
2022; Leys et al., 2018; Pei et al., 2021; Zeng et al., 2023). These 
techniques effective to identify observations that deviate significantly 
from the normal pattern(s) (Cabana et al., 2021; Pei et al., 2021). While 
traditional methods like mean and standard deviation-based approaches 
are commonly used, advanced statistical techniques offer more accurate 
and effective solutions for detecting data outliers/anomalies in a dataset 
(Panjei et al., 2022; Wang et al., 2023; Meenakshi and M, 2022). These 
methods consider various factors, such as correlation among variables 
within a dataset, local data density, and resistance to extreme values 
(Panjei et al., 2022). Usually, the Mahalanobis distance measures 
multivariate distances, considering variable correlations but assuming 
multivariate normality of various variables (Cabana et al., 2021; Leys 
et al., 2018), whereas the robust Z score is adaptable to outliers and 
non-normal distributions, offering a standardized deviation measure 
from the median, making it suitable for skewed or heavy-tailed data (Pei 
et al., 2021; Yin and Liu, 2022). On the other hand, the LOF is effective 
to identify the local anomalies by assessing or comparing the local 
density deviations, adapting to diverse data attributes, although this 
approach effectively utilized for detecting clustered outliers in 
high-dimensional datasets (Wang et al., 2023; Meenakshi and M, 2022). 
It is noted that principally the LOF requires parameter selection for 
dealing high-dimensional spaces (Alsini et al., 2021). In general, the 
HBOS relies on thresholding histogram bins, providing a straightforward 
approach for univariate or low-dimensional data with skewed distribu
tions, contingent on the selection of appropriate bin width and thresh
olds (Fahim et al., 2022; Pei et al., 2021). Most commonly this technique 
used for detecting data anomalies/outlier using the histograms nature 
and patterns in univariate data (Fahim et al., 2022). Moreover, the study 
used the SPC technique for detecting the outlies in IEWQI model. 
Commonly, this method is used in process monitoring, utilizing control 
charts and historical data to detect systematic changes or any sudden 
anomalies at any data point, which could be effective in pinpointing 
specific sources of data outliers within the system(s) or model(s) (Gessa 
et al., 2022; Minne et al., 2012). These methods collectively contribute 
to enhancing the reliability and integrity of research findings in terms of 
detecting the data outliers. 

However, utilizing these advanced techniques could be enhanced the 

accuracy of the analyses and assure the reliability of the results. Several 
recent studies have revealed that these methods are useful for validating 
the detection of outliers and ensuring the stability of the data over time 
(Aggarwal et al., 2019; Aguilera-Martos et al., 2023b; Aliashrafi et al., 
2021; Alsini et al., 2021; Balamurali and Melkumyan, 2018; Berendrecht 
et al., 2022; Choi et al., 2023b; Etherington, 2021; Fahim et al., 2022; 
Johannesen et al., 2022; Lee, 2017; Leys et al., 2018; Ottosen and 
Kumar, 2019; Parra-Plazas et al., 2023; Pei et al., 2021; Rangeti et al., 
2015; Shah et al., 2023; Sivarajah et al., 2017; Yin and Fang, 2021; Yuan 
et al., 2018; Zeng et al., 2023). Therefore, based on the literature, the 
study utilized these techniques for validating the results of incorporating 
into ML outlier detection approaches. Details of the each technique are 
presented in below:  

(i) Mahalanobis Distance 

Mahalanobis distance is a versatile metric that considers the corre
lations among variables. It measures the number of standard deviations 
an observation is away from the mean (Etherington, 2021). Mostly this 
approach used for dealing with complex inter-variable relationships 
datasets (Cabana et al., 2021). Data outliers are determined based on 
high Mahalanobis distances that indicate their distinctness from the rest 
of the data points (Etherington, 2021; Leys et al., 2018). The research 
implemented this technique according to the approaches of Leys et al. 
(2018). The Mahalanobis distance can be defined as follow: 

DM(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅{
(x − μ)T Σ{− 1}(x − μ)}

√

(7)  

where x is the data point of WQ indicators being considered, μ is the 
mean vector of the indicator’s dataset, and Σ is the covariance matrix of 
the input dataset. 

Commonly, high Mahalanobis distances indicate that a data point is 
far from the mean, considering the correlations among variables, while 
data outliers are identified by setting a threshold on the Mahalanobis 
distance (Cabana et al., 2021; Etherington, 2021; Leys et al., 2018; 
Todeschini et al., 2013).  

(i) Robust Z-Score 

Usually, Z-scores are used to normalize data and assume that data 
distribution is normal, while robust Z-scores are sensitive to extreme 
values in a dataset that could be effective in addressing the data outliers 
or abnormally distributed data points in datasets (Aggarwal et al., 2019; 
Pei et al., 2021). Instead of using the mean and standard deviation, it 
employs the median and the median absolute deviation (MAD) (Leys 
et al., 2013; Owolabi et al., 2021; Yin and Liu, 2022). The MAD provides 
a robust measure of variability, making the Z-score calculation more 
resistant to the influence of outliers or non-normally distributed data 
(Jamshidi et al., 2022; Leys et al., 2013; Prabhakar et al., 2022; Singh 
and Kundu, 2022). Several recent studies have revealed that robust 
Z-score approach could be more effective to detect the data outliers 
compared the typical Z-score (Aggarwal et al., 2019; Leys et al., 2013; 
Prabhakar et al., 2022). Therefore, the study utilized the robust Z-score 
approach for further validation of the ML outcomes by adopting the 
framework of Jamshidi et al. (2022) for computing the robust Z score. It 
can be mathematically defined as follow: 

ZR(x) =
|x − Median(X)|

MAD(X) × 1.4826
(8)  

where x is the data point (each WQ indicators) being considered, median 
(X) is the median value of the dataset, and MAD(X) is the median ab
solute deviation of various WQ indicators in the given dataset.  

(i) Local Outlier Factor (LOF) 
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LOF assesses the local density deviation of a data point with respect 
to its neighbours (Alsini et al., 2021; Fredianto and Putri, 2023) while 
data points with significantly lower density compared to their neigh
bours are considered outliers or anomalies (Lee et al., 2011; Qiu et al., 
2022). Recently many studies have revealed that the LOF is particularly 
effective for identifying outliers in data that exhibit varying densities, 
clusters, or subclusters (Auskalnis et al., 2018; Lee et al., 2011; Mee
nakshi and M, 2022; Wang et al., 2023). . The research used the meth
odology for estimating the LOF scores in approaching of Alsini et al. 
(2021). It can be defined as follows: 

LOF(x) =
μ
μx

(9)  

where μ is the average local density of neighbors’ indicators, and μx is 
the local density of xth WQ indicator.  

(i) Histogram-Based Outlier Detection (HBOS) 

To detect the data outliers, recently several studies have utilized the 
HBOS leverages histogram information method (I. Aguilera-Martos 
et al., 2023b; Fahim et al., 2022; Pei et al., 2021). Compared to the 
typical approaches, it constructs histograms for each feature (WQ indi
cator) and calculates a score based on the combined density of features 
(WQ indicators) (Berendrecht et al., 2022; Fahim et al., 2022; Kwak and 
Kim, 2017). Recent a number of research has reported that this method 
could be efficient and suitable for detecting the data outliers in 
high-dimensional data (Aguilera-Martos et al., 2023a; Berendrecht 
et al., 2022; Smiti, 2020). Consequently, the research utilized this 
approach according to the methodology of Aguilera-Martos et al. 
(2023a) for obtaining the HBOS scores. It calculates the product of the 
densities of each feature that can be presented as: 

HBOS Score(x) =
∏

from i = 1 to d [ P(xi)] (10)  

where xi represents each WQ indicator of the data point, and P(xi) is the 
density of the indicator.  

(i) Statistical Process Control (SPC) 

The SPC is widely used to identify process problems or anomalies in a 
system, although this technique is not primarily designed for outlier 
detection. In recent years, a few studies successfully have utilized this 
approach for detecting outliers or anomalies across various field in long- 
term monitoring datasets or any systematic process (Knoth and Schmid, 
2004; Minne et al., 2012; Qiu, 2020, 2019; Seim et al., 2006; Tegegne 
et al., 2022). In addition, in recent studies, this technique has been 
widely adopted to improve data accuracy, identify abnormal attributes 
in data, maintain process stability, and detect anomalies that may 
signify outliers or deviations that could potentially enhance under
standing and be helpful for making decisions across various domains 
(Gessa et al., 2022; Minne et al., 2012; Pérez-Benítez et al., 2023; von 
Rosing et al., 2015; Zhang and Liu, 2019). Usually, the SPC process in
cludes a range of tools and techniques including control charts, run 
charts, Pareto charts, histograms, box plots, process capability analysis, 
exponential smoothing, time series analysis, multivariate control charts, 
capability analysis, process behavior Charts, CUSUM (Cumulative Sum) 
control charts, and EWMA (Exponentially Weighted Moving Average) 
control charts (Gorsky, 2020; Jin et al., 2019; Knoth and Schmid, 2004; 
Minne et al., 2012; Seim et al., 2006). Most studies have revealed that 
particularly (i) Shewhart Control Charts (X-bar average), (ii) CUSUM 
Control Charts, and (iii) EWMA Control Charts are effective for detecting 
the data outlier or any abnormal pattern in both (long-term and short 
term) monitoring dataset(s) (Boaventura et al., 2022; Gessa et al., 2022; 
Gorsky, 2020; Jin et al., 2019; Qiu, 2020, 2019; Seim et al., 2006; Zhang 
and Liu, 2019). Therefore, the research utilized these approaches in 
order to validate outlier results from IF and KDE algorithms (Baseman, 

2020; Boaventura et al., 2022; Gessa et al., 2022; Gorsky, 2020; Jin 
et al., 2019; Minne et al., 2012; Zhang and Liu, 2019). The research 
adopted these techniques following the methodology of Minne et al. 
(2012). Details of the approaches can be found in Minne et al. (2012). 

2.6. Comparison the impact of outliers on IEWQI model 

To evaluate the impact of data outliers on the model, the study 
compared IEWQ scores between datasets with outliers and datasets 
where outliers were eliminated. To substantiate these comparative re
sults, hypotheses were formulated, as disscussed in Section 1. For the 
purposes of the statistical validation of the comparison results and hy
pothesis, the research utilized the F-test, incorporating Tukey’s Honestly 
Significant Difference (HSD), because several recent water research 
studies have used this approach (Festus Biosengazeh et al., 2020; Gessa 
et al., 2022; Uddin et al., 2022a, 2022b; 2023f, 2023e, 2023h, 2023b, 
2023c, 2023d) . The F-test, also termed analysis of variance (ANOVA), 
evaluates group mean differences among multiple groups, this technique 
mostly used for the comparison the variance or variability between 
groups or among groups across various field (Dobie and Wilson, 1996; 
Mayer et al., 1994; Sureiman and Mangera, 2020; Wilcox, 2003). Con
trary, Tukey’s HSD test, a prevalent post hoc method, identifies signif
icantly distinct group means when the F-test yields significance. 
Commonly, the Turkey HSD test utilize for the comparison among 
datasets/tests/methods/models’ outputs (Midway et al., 2020; Nanda 
et al., 2021; Rouder et al., 2016). In this research follows the approach 
outlined in Uddin et al. (2023f). Details of the methodology can be found 
in Uddin et al. (2023f). 

It is noted that, for visualizing spatiotemporal data, ArcGIS Pro 3.1.1 
was used in this research. All statistical and ML/AI analyses were con
ducted using the Python programming language within the Google 
Colab framework, which offers advantages including cloud-based 
accessibility, pre-installed libraries, powerful hardware acceleration, 
and seamless integration with Google services. 

2.7. Sensitivity analysis 

In the domain of WQ modelling, understanding how input parame
ters influence model outcomes is essential for effective water resources 
management and policy development (He et al., 2015; Singh and 
Rashmi, 2014). Sensitivity analysis plays a crucial role in assessing the 
robustness and reliability of data-driven WQ models, particularly in 
understanding the intricate relationships between model inputs and 
outputs. A range of tools and techniques are used for assessing model 
sensitivity, and the coefficient of determination (R2) is one of the most 
widely adopted and effective methods (Chen et al., 2020; Chicco et al., 
2021; Hamby, 1995, 1994; He et al., 2015; Suvarna et al., 2022; Zhang 
et al., 2022). Utilizing R2 in WQ modelling provides a comprehensive 
understanding of how input parameter changes affect model outcomes, 
enhancing model reliability for addressing critical issues in WQ man
agement (Chicco et al., 2021; Hamby, 1995). Commonly, R2 score 
ranges from 0 to 1, higher R2 values indicate a better fit between the 
model and the data, demonstrating how well the model captures data 
variation (Chicco et al., 2021; Hamby, 1995, 1994; He et al., 2015; 
Suvarna et al., 2022; Zhang et al., 2022). In recent several water 
research studies have widely utilized the R2 incorporating the ML ap
proaches for assessing the model sensitivity (Ding et al., 2023; Ibrahim 
et al., 2023; Uddin et al., 2022a; 2022b, 2023b, 2023c, 2023h, 2023e, 
2023f, 2023d; Zhang et al., 2022; Zhang et al., 2022). Therefore, the 
current research follows the established methodology outlined by Uddin 
et al. (2022a) for leveraging R2 in analysing IEWQI model’s sensitivity. 
Detailed insights into the methodology can be explored in the compre
hensive work of Uddin et al. (2022c). 
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2.8. Uncertainty analysis 

Uncertainty analysis is a critical component of WQ modelling, much 
like other modelling approaches, especially when utilizing water quality 
index (WQI) methodologies. Understanding and quantifying the level of 
uncertainty within a WQI model is an essential step in improving the 
reliability of WQ models in order to rate the WQ accurately. Several 
recent studies have revealed that existing WQI models produced a sig
nificant amount of uncertainty due to their model architectures (Burić 
et al., 2023; Ding et al., 2023; Georgescu et al., 2023; Mogane et al., 
2023; Parween et al., 2022; Uddin et al., 2023f, 2023h, 2023b, 2023c, 
2021). As results, the existing approaches are contributed uncertainty to 
the final assessment results (Sutadian et al., 2016; Uddin et al., 2021, 
2023d, 2023f). To address the estimation of IEWQI model uncertainty, 
this study used the approaches outlined by Uddin et al. (2023f). To the 
best of the authors’ knowledge, Uddin et al. (2023f) provides the first 
comprehensive approach to systematically and mathematically compute 
WQI model uncertainty at each step. Additionally, numerous recent 
studies in the field of water research have reported the effectiveness of 
this approach in computing model uncertainty, especially within the 
context of WQI models (Burić et al., 2023; Ding et al., 2023; Georgescu 
et al., 2023; Mogane et al., 2023; Parween et al., 2022; Sajib et al., 2023; 
Uddin et al., 2023f, 2023h, 2023b, 2023c, 2024; 2021. Detailed infor
mation about this framework can be found in Uddin et al. (2023f). 

3. Results 

3.1. Overview of the various WQ indicators in CORK harbour 

The research employed boxplot analysis according to the approaches 
of Kwak and Kim (2017) to assess the distribution and identify outliers 
within a dataset encompassing various WQ indicators, specifically DOX, 
MRP, DIN, SAL, BOD, pH, TEMP, TON, and TRAN. This approach has 
been increasingly adopted in recent studies for the detection and com
parison of WQ attributes against recommended guideline values. 
Recently, several studies have revealed that this could be helpful for 
identifying the extreme concentrations in the measured values (Dovoedo 
and Chakraborti, 2015; Li et al., 2016; van Zoest et al., 2018; Zhao and 
Yang, 2019). 

Additionally, the presented boxplots in Fig. 4 provided a visually 

informative depiction of the central tendencies and the spread of these 
indicators. This visualization facilitated the precise identification of 
potential outliers by highlighting data points that fell outside the 
interquartile range represented by the boxplot whiskers. Notably, with 
the exception of MRP, SAL, and pH (Fig. 3), most WQ indicators 
exhibited potential outliers. These outliers signify significant deviations 
in the concentrations of these indicators, either surpassing or falling 
below the expected range for Cork Harbour waters. Furthermore, the 
statistical summary in Fig. 4, coupled with a comprehensive examina
tion of WQ attributes, revealed that the majority of these indicators 
adhered to permissible limits with the exception for TRAN, DIN, and 
TON. Similar findings have been reported in numerous recent studies in 
the literature (EPA, 2022, 2021; Uddin et al., 2023g, 2023d, 2023b). 
However, the results of the boxplot offered a robust means of identifying 
and subsequently investigating values that deviated significantly from 
the expected ranges for each indicator, contributing valuable insights 
into the WQ dynamics of the studied environment. 

Correlation analysis is widely used as an effective approach that 
could be helpful for understanding the relationship between or among 
variables, determining patterns and trends that are useful to improve the 
data, and developing any model(s). Many recent water research studies 
have utilized this technique for pre-possessing the data in order to 
develop various WQ models (Haas et al., 2018; Jayaweera and Aziz, 
2018; Qian et al., 2024). In addition, this method has been increasingly 
used in recent studies to assess the influence of various input attributes 
on model outputs in water research. Therefore, for the purposes of the 
dependency analysis of the IEWQI score, this research utilized the 
Pearson correlation technique to investigate the relationship between 
WQ indicators and the IEWQI score. Fig. 5 presents the correlation re
sults of various WQ indicators between IEWQI scores in Cork Harbour 
over the study period. From the Fig. 5, the correlation results indicate 
that most WQ indicators have a significant impact on IEWQI scores, with 
the exceptions being TEMP and DOX. In comparison to the results, pH, 
SAL, and TRAN exhibit higher positive influences on IEWQI scores, 
while the remaining indicators reveal more substantial negative effects. 
The result of the correlation reveals that water pH, Sal and TRAN have a 
significant positive impact on maintaining overall “good” water quality. 
Contrary to this, TON, DIN, BOD5, and MRP show a significant negative 
impact on overall WQ (IEWQI scores), which indicates these indicators 
should be monitored regularly. Negative relationships between 

Fig. 4. Statistical summary with data outliers of various WQ indicators in Cork Harbour.  
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indicators and IEWQI scores suggest that these initiators can be lead 
overall WQ in Harbour. However, based on the correlation results, it 
affirms the IEWQI scores’ computation using reliable dependencies in 
indicators. 

Furthermore, the research employed SPC techniques, including three 
well-established Shewhart Control Charts for central tendency moni
toring, CUSUM Control Charts for detecting subtle mean deviations, and 
EWMA Control Charts for effectively tracking trends and shifts over time 
in various WQ indicators at diverse monitoring sites within Cork 
Harbour. Through the continuous monitoring of critical parameters such 
as pH, turbidity, and chemical levels of various indicators such as DIN, 
TON, MRP etc., SPC aids in the early detection of variations (deviations 
from standards), maintenance of safety standards, and prompt issue 
resolution, that could be helpful for maintain “good” WQ status. 
Figure S2 illustrates the SPC results for various WQ indicators in Cork 
Harbour. The SPC results indicate a general improvement trend for most 
WQ indicators, with the exception of SAL and pH, both of which exhibit 
no discernible trend (Fig. S5; Fig. S7). For example, the correlation re
sults indicate that increasing DIN, MRP, TON, and BOD5 concentrations 
can lead to higher pollution levels in Cork Harbour. It could be 
controlled by continuous monitoring these indicators Integration of 
these control charts (Fig. S2- Fig. S11) establishes a robust and 
comprehensive monitoring framework for these WQ indicators that 
could be effective in detecting anomalies in monitoring data and 
furnishing timely information for proactive WQ management and 
enhancement in Cork Harbour. 

3.2. Initial screening of data outliers in input dataset 

To facilitate a comprehensive investigation of the relationships be
tween WQ indicators, we employed the Isolation Forest algorithm. This 
method has gained prominence in recent studies for its effectiveness in 
detecting data outliers across various fields. In Fig. 6, we present the 
results of pairwise comparisons of outliers among different WQ in
dicators in Cork Harbour. 

Notably, in Fig. 6(1), when examining the association between DOX 
and MRP, the study identified a total of 2 outliers (whereas the red dot(s) 
indicates the data outlier). Remarkably, these outliers exhibited con
sistency across all pairs of indicators, suggesting a shared source or an 
underlying correlation among these anomalous data points. These 
findings offer valuable insights into the interconnections among outliers 
across diverse WQ parameters. This understanding can play a pivotal 
role in diagnosing potential issues related to inputs for the IEWQI model, 
ultimately enhancing its accuracy and reliability, which holds signifi
cant academic and practical importance. 

3.3. ML models performance 

In the domain of ML/AI model evaluation, the comprehensive 
assessment of predictive models stands as a critical endeavour, essential 
for their effectiveness in real-world applications. A range of meticu
lously devised evaluation techniques and metrics is available to facili
tate a thorough scrutiny of model performance. For the purposes of the 
detecting outliers, the research utilized two widely used algorithms: (i) 

Fig. 5. Pearson correlation of among WQ indicators and between IEWQI scores over the year.  
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IF, and (ii) KDE techniques in order to predict IEWQI scores included 
outliers and after outlier’s removal. To evaluate the model performance 
in predicting IEWQI scores under both (with outliers and without out
liers), the research used three widely recognized evaluation metrics: 
mean squared error (MSE), root mean squared error (RMSE), and mean 

absolute error (MAE). These metrics were selected due to their extensive 
use in recent water research, specifically in the context of evaluating 
predictive models while accounting for the influence of outliers—a 
crucial facet of data pre-processing. Fig. 7 presents the comparative 
results of the various performance metrics for the both algorithms. 

Fig. 6. Pair-wise comparison of outlier in various WQ indicators in Cork harbour.  
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In the presence of outliers, it can be seen from the Fig. 7, the IEWQI 
model exhibited performance metrics that included an MSE of 21.52, 
indicating a notable dispersion of prediction errors, accompanied by a 
RMSE of 4.64 and a MAE of 3.32. These metrics offer valuable insights 
into the model’s predictive capabilities under such conditions (Ding 
et al., 2023; Georgescu et al., 2023; Uddin et al., 2022b). However, the 
removal of outliers led to a significant transformation in its performance 
profile (Fig. 7). Notably, the MSE showed substantial improvement, 
registering at 12.57, reflecting heightened accuracy with fewer in
stances of scattered errors (Fig. 8). Concurrently, the RMSE saw a 
marked reduction to 3.355, signifying an elevation in prediction preci
sion, while the MAE contracted to 2.1, underscoring consistent accuracy 
in predictions (Fig. 8). 

This comparative analysis effectively underscores the pivotal role 
that the detection and removal of outliers play in elevating the model’s 
accuracy, thus reinforcing the centrality of these processes in data pre- 
processing. The results of the evaluation metrics hold particular signif
icance in scenarios where precision in predictions and informed 
decision-making is of paramount importance, a common requirement in 

domains such as WQ modelling and related fields. 

3.4. Model sensitivity analysis 

To assess the model sensitivity, the research utilized the coefficient 
of determination (R2), because recently a few studies have used this 
technique to evaluate the sensitivity of the water model to variations in 
input data. Commonly, this metric quantifies the proportion of the 
variance in a model’s predictions that can be explained by its indepen
dent variables. In this study, we utilize this approaches to evaluate the 
sensitivity of two distinct outlier detection techniques: the IF Algorithm 
and KDE function. Fig. 8, and Figs. 9 presents the R2 results for the IF, 
and KDE, respectively. It can be seen from the Fig. 8, when the IF al
gorithm was applied with outliers present, it yielded an R2 of 0.92 that 
indicates 92 % of the variability in the model’s predictions can be 
attributed to the independent variables, while the remaining 8 % is 
either unaccounted (unexplainable) for or attributed to other factors, 
potentially including the presence of outliers (Fig. 8a). However, upon 
the removal of outliers, the R2 increased to 0.95, signifying a substantial 
enhancement in the model’s sensitivity (Fig. 8b). 

Similarly, when employing KDE, the R2 value with outliers present 
was 0.92, aligning with the IF Algorithm’s initial result (Fig. 9a). Yet, 
after the removal of outliers, the R2 improved to 0.95, echoing the 
sensitivity enhancement observed with the IF Algorithm (Fig. 9b). This 
results of R2 indicates that the presence of outliers significantly impacted 
the model’s performance, and their removal led to more accurate and 
sensitive predictions. However, these results underscore the substantial 
influence of outliers on model sensitivity and highlight the importance 
of robust outlier detection techniques in refining model performance, 
particularly when precision in predictions is crucial. 

However, the increase in R2 using both techniques (IF and KDE) 
revealed that the model’s reliability and accuracy improved after out
liers were removed from the input. In addition, it indicates that the 
selected input of IEWQI (indicators) can explain a larger proportion of 
the overall WQ (IEWQI score) attributes. Moreover, the results of the 
sensitivity analysis reveal that the performance of the IEWQI model 
could be enhanced after removing the input outliers from the model in 
order to rate the accurate water quality. 

Fig. 7. Comparison of models performance with outliers and after 
removing outliers. 

Fig. 8. Performance of the IF algorithms for predicting IEWQI score.  
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3.5. Comparison of IEWQI prediction results 

The advanced IEWQI model was harnessed in this research to 
compute WQI scores, with comprehensive details about the IEWQI 
methodology available in Uddin et al. (2023d). For the prediction of 
IEWQI scores, two distinct approaches, as discussed in Section 2.4, were 
employed. Fig. 10 provides a comparative insight into the IEWQI scores 
resulting from both techniques (IF and KDE), considering datasets with 
and without outliers at various monitoring sites within Cork Harbour. 
The findings in Fig. 10 reveal minimal disparities between the actual 
(computed) IEWQI scores and those with outliers removed across most 
monitoring sites, except for LE030, LE170, LE450, LE810, and LE820. 
The negligible changes in IEWQI scores between actual, predicted (with 
outliers), and predicted (outliers removed) datasets indicate that, in 
terms of model robustness, the IEWQI model is effective in handling the 
input data outliers without significantly affecting the model’s accuracy. 
It is noted that the real-world WQ data is varied and can be subject to 
outlier patterns due to various factors such as measurement errors, 
extreme events, and existing pressures like agricultural, domestic, etc. 
However, the IEWQI score had minimal discrepancies between both 
datasets, indicating that the model is effective for overall WQ assessment 

and can be utilized as a global tool for monitoring water quality. 

3.6. Validation of ML outlier’s results 

The research employed a range of statistical techniques to investigate 
the influence of outliers on IEWQI scores across nine WQ indicators: 
DOX, MRP, DIN, SAL, BOD5, pH, TEMP, TON, and TRAN. These 
methods are fundamental tools for detecting and assessing outliers and 
are commonly used in various scientific and data-driven fields. To 
validate and cross-check the results obtained from machine learning 
approaches, in this study, we applied nine statistical methods (see de
tails in Section 2.5). 

Fig. 11a presents the boxplot analysis, providing a visual summary of 
computed, predicted (with outliers), and predicted (remove outliers) 
IEWQI scores, highlighting significant deviations in raw data. Fig. 11b 
illustrates the histogram analysis, revealing unusual spikes or gaps in 
score distributions, indicating atypical WQ conditions, whereas Fig. 11c 
shows the scatter plots, helping to identify monitoring sites where scores 
did not align with expectations based on contextual information. 
Fig. 11d displays Quantile-Quantile (Q-Q) plots, exposing subtle de
viations from expected statistical patterns, while Fig. 11e visualizes 

Fig. 9. Performance of the KDF algorithms for predicting IEWQI score.  

Fig. 10. Point-based comparison between actual, predicting with outliers, and after removing outliers of IEWQI score across various monitoring sites in 
Cork harbour. 
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modified Z-scores, pinpointing scores significantly differing from the 
dataset’s median. Fig. 11f presents the prediction errors of IEWQI scores 
at each monitoring site using a residual error bar plot. These analyses 
collectively offered a comprehensive perspective on outliers, facilitating 
informed decisions regarding their significance and impact. 

Data outliers affect the model(s) in various ways. In most cases, 
outliers induce bias in parameter estimation, particularly for linear 
regression models, whereas the extreme data point(s) can lead the model 
to bias estimation. Consequently, the developed model(s)/tool(s) may 
not accurately capture the underlying relationships (coefficients) in the 
data. Notably, the boxplot analysis in Fig. 11a presents statistical sum
maries for actual (computed), predicted (with outlier), and predicted 
(remove outlier) IEWQI scores, revealing significant deviations from 
computed IEWQI scores, indicative of potential outliers in the raw data. 

Histograms in Fig. 11b illustrated score distributions, showing irregular 
spikes or gaps that signalled unusual WQ conditions. Scatter plots in 
Fig. 11c compared computed IEWQI scores with predicted scores (with 
and without outliers), pinpointing a few monitoring sites with score 
inconsistencies based on their context. Quantile-Quantile (Q-Q) plots in 
Fig. 11d displayed slight deviations from expected statistical patterns, 
while modified Z-scores in Fig. 10e identified scores significantly 
different from the dataset’s median. 

To calculate modified Z-scores, the research employed the median 
and Median of Absolute Deviations (MAD), a robust alternative to the 
standard deviation, particularly suitable for datasets containing outliers 
or non-normal distributions. In the computed IEWQI scores, the median 
score was 73, with a MAD of 1. In contrast, the predicted IEWQI scores 
(with and without outliers) exhibited a median score of 74 and a MAD of 

Fig. 11. Outlier’s results visualize using various advanced statistical techniques.  
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2 (Fig. 11e), indicating that the typical deviation of data points from the 
median was 2 units. In comparison, the MAD for actual IEWQI scores 
was 1. 

Finally, residual bar plots in Fig. 11f assessed the performance of 
IEWQI predictive models, highlighting sites with unusually large pre
diction errors. Noteworthy, higher prediction errors were observed at 
monitoring sites LE220, LE420, LE430, LE500, and LE510. The residual 
results indicate that it is expected that there are higher prediction errors 
at the highest outlier’s data point monitoring sites (Table 2; Fig. 11f). 
Most statistical models assume that the provided data follows a normal 
distribution pattern. Data outliers can breach this assumption, as results 
from other statistical measures like validity tests, confidence intervals, 
etc. can also be disrupted. It is noted that data outliers also can disrupt or 
destroy the patterns and trends of the data. These types of attributes of 
data can reduce the model’s prediction capabilities as well as prediction 
accuracy because models struggle to generalize the model due to hidden 
patterns or the presence of outliers in the dataset. 

Furthermore, the study utilized the power of three advanced statis
tical techniques, Mahalanobis Distance, Robust Z-Score, and LOF, to 
determine the presence of outliers at various monitoring sites in Cork 
Harbour. The outcomes of this outlier detection endeavour are meticu
lously detailed in Table 2. Notably, the LOF algorithm computed nega
tive LOF scores (− 1), with the exception of the LE200 site, suggesting 
the absence of outliers in its dataset. In contrast, both the Mahalanobis 
Distance and Robust Z-Score methods detected potential outliers in 
specific instances. A comparison of these techniques reveals slight var
iations in their results. In a collective sense, these findings underscore 
the presence of data outliers in several WQ indicators across most 
monitoring sites. However, it’s important to acknowledge that a handful 
of sites deviate from this overarching trend, as highlighted by the bold 
entries in Table 2. 

However, the findings from the array of statistical measures under
score the significant influence of extreme values in WQ indicators at 
various monitoring sites on IEWQI scores. When these techniques are 
applied within the context of IEWQI scores, they collectively assume a 
pivotal role in outlier detection. This identification process is instru
mental in enabling precise management and the enhancement of WQ in 

specific areas, thereby providing invaluable insights for targeted in
terventions. Furthermore, it’s worth noting that the results obtained 
through these advanced statistical approaches align with those from the 
machine learning outcomes, enhancing the effectiveness of the research 
conclusions. 

3.7. Results of uncertainty in assessing impact of outliers on IEWQI scores 

In our pursuit of estimating the uncertainty associated with our 
predictive models, this study utilized the inferential error bar techniques 
with a 95 % confidence interval according to the approach of Uddin 
et al. (2023f). Fig. 9 shows the results of the 95 % confidence interval 
error bars at each monitoring site in Cork Harbour, providing valuable 
insights into the inherent uncertainty of the predictive models con
cerning IEWQI scores. Table 3 presents a comparative analysis of the 
statistical summary that was conducted to assess model uncertainty 
using a 95 % confidence interval, with the significance level (alpha) set 
at p < 0.000, and the degrees of freedom for this analysis determined to 
be 28. Through a meticulous process, the study computed confidence 
intervals for the expected IEWQI scores following the precise inclusion 
of outliers and their removal from the dataset. 

Fig. 12 presents that there were no significant differences in IEWQI 
scores between the actual, predicted (with outliers), and predicted 
(outliers removed) data across various monitoring sites in Cork Harbour. 
Moreover, the length of the error bars mostly appears shorter, indicating 
minimal variation. These results suggest that there is no significant 
uncertainty associated with IEWQI scores in both models, with outliers 
and after their removal from the input data. Furthermore, Table 3 re
veals that there were no significant deviations in IEWQI scores from the 
mean of the actual (71.76 ± 16.86), predicted with outliers (71.72 ±
16.48), and predicted with outliers removed (72.10 ± 15.92). Notably, 
the standard deviation of IEWQI scores slightly decreased after 
removing outliers from the input data, suggesting that the IEWQI model 
could introduce less than 1 % uncertainty in assessing and predicting 
water quality. 

To validate the error bar results, t-statistics were utilized. Table 4 
presents the t-test results of IEWQI models for the comparison of 
different datasets. These results offer valuable insights into the com
parison between ’Actual IEWQI’ values and two sets of predicted values: 
’Predicted IEWQI before outlier removal’ and ’Predicted IEWQI after 
outlier removal.’ For the first comparison, the t-test yielded a t-statistic 
of approximately 0.050 and a corresponding p-value of about 0.961. 
These values indicate that there is minimal difference between the 
means of the ’Actual IEWQI’ and ’Predicted IEWQI before outlier 
removal’ datasets, and this difference is not statistically significant. 
Similarly, for the second comparison, the t-test produced a t-statistic of 
approximately − 0.423 and a p-value of around 0.676, once again 
signifying negligible differences between the ’Actual IEWQI’ and ’Pre
dicted IEWQI after outlier removal’ datasets, without statistical signif
icance. In both cases, the p-values are considerably greater than the 
conventional significance level of 0.05, suggesting that any disparities 

Table 2 
Outlier’s detection results across various monitoring sites in Cork Harbour.  

Sites Mahalanobis distance Robust Z-Score LOF Score Total outliers 

LE030 4.264430036 3.012725392 − 1 2 
LE040 2.722021896 1.217878456 − 1 1 
LE110 3.206944796 1.209253254 − 1 1 
LE120 2.613896288 1.217878456 − 1 1 
LE130 2.655958883 1.124151266 − 1 1 
LE140 3.892577676 3.372453797 − 1 2 
LE150 2.481435526 3.519942443 − 1 1 
LE160 2.298308742 2.293268582 ¡1 0 
LE170 1.663939993 0.965870768 ¡1 0 
LE180 2.704684441 1.348981519 − 1 1 
LE200 3.377469814 4.046944557 1 2 
LE210 3.711430268 3.276097975 − 1 2 
LE220 3.29670053 2.233913395 − 1 1 
LE310 1.822379878 0.789647718 ¡1 0 
LE330 2.375760935 2.518098835 − 1 1 
LE340 2.38813437 1.487847264 ¡1 0 
LE380 2.655402387 0.832771258 − 1 1 
LE420 4.268769366 2.908050324 − 1 2 
LE430 4.115057178 3.147623544 − 1 2 
LE450 3.955184662 1.595746431 − 1 1 
LE500 5.138108549 16.26871712 1 2 
LE505 3.227999724 4.046944557 − 1 2 
LE510 2.870098421 0.674490759 − 1 1 
LE540 2.805895524 1.093574351 − 1 1 
LE550 2.491468557 0.764422861 ¡1 0 
LE620 2.086780424 3.027273232 − 1 1 
LE630 2.101291728 2.924115822 − 1 1 
LE810 3.199304842 4.65398624 − 1 2 
LE820 2.61630713 4.039009371 − 1 2  

Table 3 
Comparative analysis of statistical summary for model uncertainty with 95 % 
confidence interval at p < 0.000 whereas degree of freedom was 28.  

Statistical attributes IEWQI Scores 

Actual Predicted 

with outliers remove outliers 

mean 71.76 71.72 72.10 
Std. 16.86 16.48 15.92 
min 48.00 47.00 46.00 
25 % 54.00 57.00 57.00 
50 % 73.00 74.00 74.00 
75 % 91.00 84.00 84.00 
max 95.00 95.00 95.00  
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observed are likely due to random variation rather than meaningful 
distinctions in the data. 

However, considering the results of model uncertainty under 
different scenarios, it is evident that if the analysis were to be conducted 

repeatedly on numerous samples drawn from the same population, we 
could expect the actual mean IEWQI score to fall within this interval for 
approximately 95 % of those samples. In terms of reliability, the results 
indicate that the IEWQI model could be highly effective in predicting 
and assessing marine waters with minimal bias, contributing to less than 
1 % of uncertainty in the assessment. 

For the purposes of testing the hypothesis, Tukey’s Honestly Signif
icant Difference (HSD) comparison analysis was utilized to compare the 
different datasets obtained from the IF and KDE approaches (predicted 
IEWQI scores with and without outliers), which is an effective analysis 
to identify the differences among datasets. Tukey’s HSD test is widely 
used advanced statistical approach for multiple comparisons (Midway 

Fig. 12. Comparison of IEWQI scores (computed with predicted including outliers and without outliers) means with 95 % CI bars when n is 29, p < 0.000.  

Table 4 
t-test results for comparing the predicting accuracy of IEWQI model.  

Input scenarios t-statistic p-value 

Actual vs. Predicted (with outliers) 0.04995 0.9605 
Actual vs. Predicted (remove outliers) − 0.42263 0.6757  

Fig. 13. Comparison of outliers impacts on IEWQI scores among three approaches with 95 % confidence interval from Turkey HSD analysis (the vertical dashed line 
indicates the point where the difference between the means is equal to zero or similarity of both approaches statistical attributes, the refers to the means are equal of 
both techniques. 
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et al., 2020; Nanda et al., 2021). It could be effective to identify the 
significant differences between or among models, techniques/me
thods/datasets (Midway et al., 2020; Nanda et al., 2021; Rouder et al., 
al.,2016; Uddin et al., 2023). This technique is widely adopted in various 
scientific fields for the comparison of various test results (Esnaola et al., 
2018; Kim, 2015; Lee and Lee, 2018; Midway et al., 2020; Nanda et al., 
2021; Rouder et al., 2016). Recently, several water research studies have 
utilized this approach for the comparison of various WQ models (Uddin 
et al., 2023f, 2022a, 2022b, 2023h). Fig. 13 presents the comparison 
results among three approaches. It can be observed from the figure that 
there were no statistically significant differences (p < 0.05) among the 
three techniques at a 95 % confidence level, with F = 0.0047 and df = 2. 
The mean IEWQI scores showed variation ranging from +0.3793 to 
− 0.0345 (Fig. 13). Based on the results of the ANOVA analysis, the null 
hypothesis was rejected, indicating that input data outliers do not 
significantly impact the IEWQI scores. 

3.8. Comparison of WQ status 

For the purpose of assessing WQ status, a novel classification scheme 
(Table S4) utilized in this study. Fig. 14 provides a statistical summary of 
the WQ status, while Fig. 15 presents spatial distribution of IEWQI 
scores and point-based representation of WQ status across various 
monitoring sites in Cork Harbour. Both approaches classified WQ into 
"good," "fair," and "marginal" categories. Recent research has consis
tently reported similar WQ patterns across various monitoring sites in 
Cork Harbour (EPA, 2022; Uddin et al., 2023b, 2023d). When 
comparing these quality states among computed IEWQI, predicted (with 
outliers), and predicted (remove outliers), slight variations were 
observed. In terms of reliable assessment of water quality, this vari
ability of WQ classes has a practical impact on the correct rating of the 
water quality. Due to the inaccurate assessment of water quality, it may 
influence the decision-makers to take proper initiative to manage water 
resources. In the case of actual scores, 34 % (10) of sites fell into the 
"good" class, 62 % (18) into the "fair" class, and 3 % (1) into the "mar
ginal" class, respectively. Comparatively, minor differences were found 
in the results of the other approaches. 

Table S5 provides a comprehensive comparison of the number and 

percentage of sites categorized as "Good," "Fair," and "Marginal" across 
different models. The comparison highlights the distribution of sites 
across various status categories (Good, Fair, and Marginal) for the Actual 
IEWQI, Predicted IEWQI (with outlier), and Predicted IEWQI (remove 
outliers) models. It’s evident that each model predicts a different num
ber of sites within each status category, resulting in variations in the 
percentage distribution. For example, the "Fair" category comprises 18 
sites (62.07 %) in the Actual IEWQI model, 14 sites (48.28 %) in the 
Predicted (with outlier) model, and 15 sites (51.72 %) in the Predicted 
IEWQI (remove outliers) model, indicating that input data outliers had a 
slight impact on the model-predicted WQ classifications. As depicted in 
Fig. 15, the spatial variation of IEWQI scores and the influence of out
liers on WQ classifications are evident. In general, most monitoring sites 
exhibited similar WQ states compared to the computed ratings, with the 
exception of LE500 and LE505 (Table S5). 

Fig. 15 highlights that in the case of computed classes, only "mar
ginal" WQ was assigned to monitoring site LE500 (User ID 21). This 
classification remained consistent when using data with outliers. How
ever, a notable difference (its shows "fair") emerged after removing 
outliers from the input data. Additionally, LE505 also received a "mar
ginal" rating for both datasets, while the computed rating was "fair" 
(Fig. 15d, f). A comparison of the newly assigned ratings with and 
without outliers clearly indicates that these sites exhibited severe 
eclipsing problems, following the approach proposed by Uddin et al. 
(2022a). By comparing the determined rating of water quality, and the 
indicators guidelines values, it can be seen from Table 1, in the cases of 
LE500 and LE505 respectively four indicators (TRAN, DIN, DOX, and 
TON), and (TRAN, DIN, TON, and MRP) has breached for both sites. 
According to the methodology of Uddin et al. (2022a), both sites should 
be ranked "poor" categories, but models ranked it "fair" to "marginal" 
classes. It seems that both models (actual, predicted with and without 
outliers) have significantly suffered overestimation problems. According 
to the classification schemes, as provided in Table S4, if the "Fair (IEWQI 
scores = 50− 79)", and "marginal (IEWQI scores = 30 − 49)" schemes 
score intervals revised according to the finding of this research, the 
eclipsing problem may be resolved from the IEWQI approach that could 
be effective for assessing or rating the WQ accurately and final assess
ment would be more reliable in terms of their actual observation. 
However, the suggested revision of the classification schemes would be 
updated, and the IEWQI model could be utilized for assessing the WQ 
and monitoring more accurately in terms of the presence of data outliers. 
This approach could be globally acceptable for rating WQ as well as a 
potential tool for sustainably managing water resources. 

However, a comprehensive analysis of WQ status from three 
different aspects suggests that the classification of "fair" and "marginal" 
should be revisited and updated to address this issue, incorporating 
outlier detection techniques. Furthermore, the results reveal that data 
input outliers had no significant impact on the IEWQI model architec
ture, indicating that the model remains effective in rating marine waters 
while optimizing data input anomalies. 

4. Discussion 

The research was conducted to investigate the data outliers’ impact 
on the recently developed data-driven Irish Water Quality Index (IEWQ) 
model. Recently several studies have revealed that data outliers or 
anomalies have a significant impact on model performance. Conse
quently, the data outlier’s treatments/solutions gradually increased in 
data-driven modelling approaches (Lee, 2017; Liang et al., 2022; Orouji 
et al., 2013). To date, a range of statistical and mathematical tools and 
techniques developed for detecting data outliers/anomalies in datasets 
(Choi et al., 2021; Garces and Sbarbaro, 2009; Gui et al., 2017; Ha et al., 
2014; Misra et al., 2020; Shah et al., 2023). Recently, state-of-the-art 
ML/AI technology is widely used to detect the data anomalies/outliers 
in high-dimensional datasets across various fields in order to improve 
the data accuracy for the decision-making process (Duraj and 

Fig. 14. Comparison of WQ rating between actual (computed), with and 
without Outliers. 
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Szczepaniak, 2021; Hansen et al., 2023). Specially, long-term moni
toring database should require investigating the data patterns, hide 
structure of data and trend of data. The presence of the data outliers or 
extreme values or anomalies disrupted the data patterns and trend of the 
historical datasets (Ojo et al., 2022; Smiti, 2020). Therefore, it is 
essential to detect the data outliers or anomalies. For the purposes of 
detecting data outliers in input of the IEWQI model, the study was uti
lized the IF and KDE algorithms, because several recent research espe
cially focusing water research studies have reported that these 
techniques outperformed compared to others approaches in terms of 
dealing monitoring water quality datasets (Liu et al., 2020; Yin et al., 
2023; Wang et al., 2023). Therefore, the research adopted these ap
proaches for detecting data outliers/anomalies in water quality moni
toring dataset in Cork Harbour, Ireland – as a case study. 

According to the IEWQI model architecture, eight water quality in
dicators (see Section 2.2) used as model inputs. By comparing the WQ 

indicators’ measured concentration with regarding guideline values (see 
Table 1), most indicators found within the guideline values except for 
the TRAN, DIN, and TON (Table S4). For the purposes of initial inves
tigation for determining the individual WQ indicators, the study utilized 
the boxplot, correlation and SPC analysis techniques, because recently 
several research used these approaches to assess the data distribution 
and detect outliers in various WQ indicators. The boxplot analysis re
sults revealed potential outliers in most indicators, while significant data 
deviation was found from the expected values (Fig. 4). The Pearson 
correlation results also highlighted the influences of these indicators on 
the overall WQ (IEWQI scores), emphasizing their role in assessing WQ 
in Cork Harbour (Fig. 5). Additionally, statistical process control (SPC) 
techniques were employed to monitor trends and shifts in water quality 
indicators over time. Most indicators exhibited improvement trends, 
with a few exceptions (Fig. S2 – Fig. S11). The SPC results revealed that 
particularly DIN, MRP, TON and BOD5 should be monitored frequently 

Fig. 15. Comparison of spatial distribution of IEWQI scores and WQ status among actual IEWQI, Predicted (with outliers), and Predicted (remove outliers) across 
different monitoring sites in Cork Harbour. 
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for maintain the “good” water quality status in Cork Harbour. The re
sults of various WQ indicators are in line with previous studies in Cork 
Harbour (Uddin et al., 2022a, 2022b, 2023d, 2023g). 

For further investigation of the data outliers in water quality data
sets, the IF and KDE ML algorithms utilized to predict IEWQI scores with 
and without outliers. The removal of outliers significantly improved 
model performance, reducing MSE (21.52, and 12.57), MAE (3.32, and 
2.10), and RMSE (4.64, and 3.35) respectively for prediction model with 
data outliers and without outliers (Fig. 7), demonstrating improved 
accuracy and sensitivity (R2 from 0.92 to 0.95) after outlier removal 
(Figs. 8 and 9). Sensitivity results revealed that both (IF and KDE) 
techniques could be effective to remove data outliers significantly from 
the IEWQI model input in order to enhance model performance for 
rating water quality accurately. It’s also reported that the IEWQI model 
could be explained the more 95 % of variability of the input features 
(Fig. 8; Fig. 9). In literature, recent several studies have also reported 
similar results for detecting data outliers in WQ datasets (Jiang et al., 
2022; Panjei et al., 2022; Piñeiro Di Blasi et al., 2015; Talagala et al., 
2019; Tang and He, 2017) 

Comparison of the IEWQI scores among models outputs (actual, 
predicted with and removal outliers), the IEWQI model exhibited min
imal discrepancies among them, indicating its effectiveness in handling 
input data outliers (Figs. 10 and 12). In addition, the study also assessed 
the impact of outliers on water quality assessment using a range of 
statistical techniques as discussed in Section 2.5; revealing their influ
ence on IEWQI scores. All statistical tools revealed that a slight 
improvement (nearly 3 % of explainable features increased) of the 
model after removal outliers (Figs. 8 and 9). The research also assessed 
the uncertainty of the model under various scenarios (actual, predicted 
with and without outliers), the uncertainty results showed minimal 
uncertainty associated with IEWQI scores (<1 %) for both models, even 
in the presence of outliers, reinforcing the reliability of the assessment 
(Fig. 12). These results are in line with those of previous studies on 
IEWQI model in adopting various domain in the world (Ding et al., 2023; 
Manna and Biswas, 2023; Sajib et al., 2023; Uddin et al., 2023d;2023f; 
2023h). 

However, the ultimate goal of the IEWQI model is to rate WQ. By 
comparing, both models were classified WQ into "good," "fair," and 
"marginal" categories. Minor differences were observed across various 
monitoring sites in Cork Harbour through these categories when 
considering input data outliers except for the LE500 and LE505 
(Table S4). The results of rating WQ indicates the challenges in accu
rately rating water quality with data outliers. The results also revealed 
that the model had suffered the severe eclipsing problem (over estima
tion) at particular sampling sites. Based on the analysis, the study sug
gested revisiting and updating the classification schemes, especially for 
the "fair" and "marginal" categories, to address the issue of outliers and 
improve the accuracy of water quality assessment using the IEWQI 
approach. 

Furthermore, the research compared the results obtained from ma
chine learning and statistical methods to validate the outlier detection 
process and their impact on the IEWQI model. The findings from both 
approaches aligned, and revealed that effectiveness of IEWQI model for 
assessing the WQ considering the input data outliers. Therefore, the 
results and findings of the research are concluded that removal outliers 
from the model input can enhance the model accuracy. Although, the 
study considered only short term WQ dataset for investigating the data 
outliers, in future research should be focused using long-term and spatial 
variability of WQ datasets. However, this comprehensive analysis of WQ 
indicators, outlier detection, model performance, and classification 
schemes highlights the importance of outlier removal for accurate WQ 
assessment. The study’s findings contribute to improve WQ monitoring 
and management practices, emphasizing the need for revisiting and 
updating classification schemes to address outlier-related challenges in 
IEWQI model for generalized application across global aspects. 

5. Conclusion 

Data-driven model(s) are significantly impacted by data outliers. In 
recent years, treatment and remedies for it have drawn a lot of attention. 
As a result, numerous methods and instruments, encompassing statisti
cal, mathematical, and empirical techniques, have been created thus far 
to identify data outliers or abnormalities within datasets. Recently, the 
state-of-the-art technology of ML and AI has been widely used to detect 
data outliers across various fields. Several recent studies across various 
fields, including water research, have reported that data outliers have a 
substantial impact on the performance of the model. Therefore, it is 
essential to investigate the data outliers/anomalies in any data-driven 
model(s) that can be helpful for identifying hidden information, data 
patterns, and trends, especially in long-term monitoring datasets, in 
order to improve the data quality as well as increase the model perfor
mance. As part of the advancement of the world’s first data-driven “Irish 
Water Quality Index (IEWQI) model,” which is widely used for assessing 
and rating water quality, particularly that which is designed for marine 
waters. Hence, the aim of this research was to investigate the impact of 
data input outliers on the output of the data-driven IEWQI model. Being 
a data-driven WQI approach and the first systematic mathematical tool 
for assessing and monitoring marine waters, it is crucial to analyse its 
response to various outliers in WQ indicators. A number of research 
objectives were considered in order to obtain the research goal (see 
Section 1). For the purposes of the research aim, a case study was con
ducted in Cork Harbour, Ireland. This involved incorporating advanced 
two ML algorithms (IF and KDE) to detect data outliers and predict WQ 
within Cork Harbour. For the validation purposes of the ML outcomes, 
the research also utilized a series of advanced statistical and mathe
matical tools and techniques. From the research results, several key 
findings are outlined below: 

• The analysis demonstrated a significant improvement in the coeffi
cient of determination (R2), increasing from 0.92 to 0.95 when data 
outliers were removed from the model input. This improvement 
suggests that outliers have a substantial impact on the predictive 
performance of the IEWQI model. The results of the model’s sensi
tivity highlight the importance of effectively identifying and treating 
oultiers when assessing water quality using data-driven approaches. 
The findings also place emphasis on the data pre-processing in 
developing the prediction model(s) for water quality. Therefore, the 
results can be supported to the environmental managers that could 
be utilized, enhancing the model’s accuracy to assess water quality 
accurately, leading to more informed decisions regarding environ
mental management strategies.  

• A comparative analysis of IEWQI scores revealed that there were no 
significant differences in IEWQI scores among the three techniques 
(actual, predicted with and withour outliers), despite the presence of 
data outliers in model’s input, suggests that the IEWQI model ar
chitecture remains robust and resilient to variations in input data. 
This findings indicates that although outliers can affect specific data 
points, the overall assessment of WQ that the IEWQI model provides 
is not significantly alter by them. This findings affirms that the 
IEWQI model could be effective reliably assess WQ even in the 
presence of outliers in input attributes, providing consistent and 
accurate results that may contribute to sustainable water resources 
management. End-users/stakeholders/environmental managers can 
be utilized the IEWQI model for assessing WQ in any geographical 
extent with confidence in the model’s ability to generate reliable 
assessments regardless of data outliers/anomalies. It should be noted 
that the WQ indicators attributes and their anomalies can differ in 
terms of geospatial resulotion of the domains.The interpretation of 
scores (translated into the rating WQ) within the three approaches 
showed a slight difference, indicating that outliers indeed play a role 
in influencing the rating of WQ. This variation in categorization 
highlights the sensitivity of WQ ratings to the presence of outliers in 
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the model data. The findings of the rating variation underscore the 
importance of considering outliers in the assessment process to 
ensure consistency and accuracy in categorizing WQ. This finding 
can be helpful for environmental managers/policymakers to handale 
data outliers with extra care in rating WQ more accurately.  

• Additionally, the results of newly assigned ratings, with and without 
outliers, clearly indicated that a few monitoring sites exhibited se
vere eclipsing problems due to the impact of outliers, have practical 
implications for WQ assessment as well as aquatic environment 
management. Therefore, the study suggests that the "fair" and 
"marginal" categories of the rating schemes for the IEWQI model 
should be revised in terms of data reliability and updated to ensure 
bias free assessments. In addition, by updating rating schemes to 
reflect more accurate assessments of WQ, environmental managers/ 
policymakers can mitigate the risk of misinterpretation (bias free) 
and ensure more informed decision-making regarding water 
resource management and its pollution control measures. This 
findings supports to understanding of the challenges associated with 
WQ assessment with data outliers, emphasizing the require for 
adaptive rating framework to further advancement of the IEWQI 
model reliability with evolving data dynamics attributes. 

Future research in WQ assessment should prioritize integrating 
spatio-temporal data and exploring the model’s sensitivity to using 
various factors including hydrodynamics attributes of domains. It is 
important to note that although the research utilized short-term WQ 
data (only one year of water quality WQ data considering average of 
each indicators), future research should consider a range of spatio- 
temporal data (long-term monitoring data) to investigate the model’s 
sensitivity to input outliers in terms of spatio-temporal resolution of 
water bodies. The research also recommends, by incorporating 
comprehensive data from additional monitoring sites and employing 
advanced modelling techniques that could be effective to understand of 
how WQ varies across different geo-spatial resolution and over time. In 
addition, it could be potentially benefited for further improving model 
should investigating the model’s sensitivity to other WQ indicators like 
biological WQ indicators like faecal coliform, algae information etc., and 
anthropogenic activities such as different pressures - agricultural, do
mestic, industrial etc., that can help identify key factors of WQ dynamics 
and improve the model’s predictive accuracy. Furthermore, exploring 
hybrid modelling approaches that combine IEWQI model with hydro
dynamics models can lead to more holistic analyses and facilitate more 
effective environmental management strategies. Overall, using the 
research findings and considering these highlighted areas in future 
research endeavours would be contributed to the advancement of more 
accurate and reliable WQ modelling tools for monitoring and managing 
water resources. 

However, the study highlighted the critical impact of outliers on 
water quality assessment, emphasizing the necessity for robust outlier 
detection methods in environmental modelling including WQ models 
like IEWQI. By revealing the significant influence of outliers on the 
IEWQI model’s performance, it recommends for revised and updating 
existing rating schemes to enhance reliability in order to assess accurate 
WQ. The research findings and results clearly demonstrated how data 
outliers affect the model performance that could be utilized widely in 
any environmental modelling approaches including predicting models 
to further advancement of the sustainable environment management 
along water resources. Moreover, the findings of the research may 
support to identifying the outlier-related challenges in predictive 
modelling to obtain reliable information using data-driven approaches. 

In conclusion, this study underscores the efficiency of predictive 
models in WQ evaluation while acknowledging the need for ongoing 
research to address limitations and unravel the complexities of Cork 
Harbour’s aquatic environment. The research findings have profound 
implications for sustainable WQ governance, contributing to the pres
ervation of this vital ecosystem for future generations. These insights 

also have broader relevance in the field of environmental science, 
bridging the gap between predictive modelling and effective ecological 
conservation. Moreover, the findings of the research highlighted the 
importance of ongiong research in advancing the existing WQ models to 
affirm their effectivnees in sustainable environment management with 
focusing water resources. In addition, the research also revelas that the 
addressing the impact of data outliers on environmental modelling such 
as IEWQI model, the proposed framework could be an effective ap
proaches for furtherther improvement of environmental moddeling ap
proaches in terms of increasing accuarcy and reliability. However, these 
findings offer significant support for environmental managers/policy
makers to practice the sustainable environmental resources manage
ment by advancing their exiting approaches considering data outliers 
role in modelling approaches. 
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Domański, P.D., 2020a. Study on Statistical Outlier Detection and Labelling. 
International Journal of Automation and Computing 17, 788–811. https://doi.org/ 
10.1007/s11633-020-1243-2. 
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