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Abstract: Waste glass (WG) is a solid waste with increasing reserves, and its disposal
has become a global issue. The application of WG in the construction industry is one of
the promising pathways for recycling WG while reducing high-cost WG landfills. This
study is conducted to systematically review the potential effects of WG as both a cement
and aggregate replacement on the mechanical and durability properties of cementitious
composites. Different waste glass powders (WGP) can lead to various effects on both the
workability and hydration of cementitious composites. 10 to 20 wt% WGP as supplementary
cementitious materials (SCMs) is the optimal dosage to promote the mechanical and
durability properties of the WGP–cement composites. The presence of WGP can promote
the chemical resistance, freeze–thaw resistance, and elevated temperature resistance of
WGP–cement composites. However, more studies and experiments are needed to provide
conservative conclusions on how WGP would affect the durability properties of both
normal and high-strength concrete. Sustainable concrete technology requires the use of low-
carbon materials while maintaining long-term structural resilience. There is an increasing
trend in recycling WGP as a cement or aggregate replacement in designing green concrete.

Keywords: waste glass powder; mechanical properties; durability; sustainability; review

1. Introduction
Global rapid civilisation progress and continuous development of living standards

poses a raising demand in glass across different sectors. For example, waste glass (WG)
accounts for approximately 7% of the total solid waste in China [1]. Furthermore, the
global annual amount of WG landfills is approximately 200 million tons [2,3]. Thus, proper
treatment of WG has been an important environmental issue around the globe.

Recycling WG in the construction sector could not only alleviate the demand in land
resources and economic burden due to WG landfills but also promote a sustainable resource
utilisation and low-carbon development of building designs. Since Schmidt and Saia first [4]
used WG as building materials, extensive studies have been conducted to investigate WG as
a favourable alternative to replace cement or fine aggregates. Due to the diversity in types,
particle sizes, and chemical compositions of WG, different effectiveness and performances
are observed. Borhan [5] ground waste glass into waste glass powder (WGP) to partially
replace fine aggregates. He found that the mechanical properties of concrete with WGP
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decreased when the dosage of WGP increased, having a good agreement with Yu et al. [6].
However, several studies [7,8] reported that the addition of WGP could improve the
mechanical properties of concrete when compared to the reference group. Replacing
cement with 30% WGP, Serelis et al. [9] reported that a similar compressive strength
was achieved for lightweight-aggregate concrete with and without WGP. Madanoust and
Ghavell [10] observed that the potential effects of WGP on the mechanical properties
of cementitious composites were correlated with the curing age. Although the addition
of WGP reduced the early-age mechanical properties, the pozzolanic reactivity of WGP
improved the mechanical properties in the long term. Lam et al. [11] added 3 wt% ultra-fine
WGP (<0.7 µm) to a cementitious composite and found that the compressive strength of
the WGP–cement composites was increased by 10%.

Meanwhile, when WG is used as supplementary cementitious materials (SCM), the
workability and durability of WGP–cement composites were improved [12]. Several stud-
ies [13,14] reported that WGP with irregular shape reduced the workability of the cementi-
tious composites. Islam et al. [15] 25 wt% WGP replacing cement led to a light increase (up
to 3% increase) in the flow. Baikerikar et al. [16] conducted a rapid chloride penetration
test (RCPT) on concrete with WGP replacing both cement and sand. They observed a
13.39% reduction in charge passing in samples with 15% cement replacement with WGP
and 30% fine aggregate replacement with WG when compared to the control group. More
noteworthy, many studies [17,18] suggested that when the particle size of WGP was less
than 20 µm, the alkali-silica reactions (ASR) of WGP–cement composites were reduced. Sim-
ilarly, Shayan and Xu [19] reported that WGP addition promoted satisfactory performance
against shrinkage and ASR. The primary reason is that WGP leads to a denser microstruc-
ture and better bonding in the interfacial transition zone (ITZ) [20]. Schwarz et al. [21]
mentioned that the optimal addition of WGP was approximately 10%, having favourable
durability properties.

Since it could be widely used in concrete structures, it is crucial to understand the
engineering characteristics of WGP–cement composites. This study aimed to summarise
existing studies to examine the physiochemical properties of WGP and analyse the potential
effects of WGP on both the mechanical and durability properties of concrete. Finally, the
shortcomings and challenges in current applications of WGP in concrete are discussed. As
a result, this study could provide valuable data for researchers involved in WGP-related
studies, improving the understanding of potential effects of WGP on the mechanical and
durability properties of sustainable concrete.

2. Physiochemical Properties
Figure 1 shows scanned electron microscopy (SEM) images of different types of glass

powder. It could be found that although different types of WGP are investigated [13,22–24],
similar characteristics are observed, including smooth surfaces and sharp edges. Lu et al. [13]
mentioned that due to the sharp edges in WGP, it promoted a better interlocking with the
cementitious matrix, providing higher bonding forces. However, since the grinding process
in each study is different, the particle size of WGP varies significantly (Figure 1a–d).

Table 1 depicts the chemical compositions of WG originated from different glass
sources. The main oxides are SiO2, Na2O, and CaO. In particular, the content of SiO2 is
generally higher than 60% (Table 1), revealing potentially a high pozzolanic reactivity. In
other words, WGP may have sufficient amorphous silica. There are only small percentages
of K2O, MgO, and Al2O3 in WGP (Table 1). However, it could be noted that the silica
content in the study by Muhedin et al. [25] and Ban et al. [26] is 59.7% and 54%, respectively,
being lower than those mentioned in other studies. This difference highlights the variety
of glass types designed for different commercial purposes. The second highest oxide
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contents are Na2O and CaO, located between 8.7–14.7% and 7.62–11.84%, respectively.
However, Ban et al. [26] reported that the CaO was only 0.85%, being significantly different
from the content of CaO mentioned in other studies. Pereira et al. [27] reported that the
pozzolanic reactivity of WG was highly related to its particle size. Similarly, Mirzahosseini
and Riding [28] found that relatively finer WGP (<25 µm) had better pozzolanic reactivity
than coarser WGP (25~38 µm and 63~75 µm).
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Figure 1. SEM images of different waste glass powders. (a) Waste flat glass [23]; (b) Waste brown
glass [22]; (c) Waste green glass [24]; (d) Waste transparent glass [13].

Table 1. Chemical compositions of WG.

SiO2 Na2O CaO Al2O3 K2O MgO LOI Refs.

20.3 0.23 63.8 4.68 0.82 1.98 8.19 Cement [29]
70.65 11.72 10.59 1.58 0.52 0.68 4.26 Waste glass fume [29]
59.7 14.7 18.2 1.31 0.35 3.59 2.15 Waste window glass [25]

74.11 12.4 10.01 0.01 0.25 2.6 0.62 Waste glass bottle [30]
67.7 14.75 11.7 2.4 0.81 0.49 2.15 Waste glass bottle [31]

72.75 12.45 7.62 1.48 0.43 3.1 2.17 Waste glass bottle [32]
69.3 14.7 9.1 2.7 0.8 1.5 1.9 Waste brown glass [22]
68.4 13.5 10.8 0.9 0.3 1.8 4.3 Waste soda-lime glass [33]
54 8.7 0.85 2.5 8.5 0.4 25.05 Waste tube glass [26]

72.68 10.6 11.84 1.57 0.5 1.69 1.12 Waste glass [3]
73.6 12.6 8.04 1.44 0.34 2.78 1.2 Waste green glass [24]

72.23 12.9 9.58 0.13 0.32 3.43 1.41 Commercial glass powder [34]
72.59 11.61 9.42 1.41 0.72 1.55 2.7 Commercial glass powder [23]
72.4 12.25 10.32 1.85 0.65 2.09 0.44 Commercial glass powder [35]

87.46 5.8 2.68 0.25 0.1 2.46 1.25 Commercial glass powder [36]
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According to several studies [37,38], at an early age, WGP used as SCM reduces
the cement hydration due to the dilution effect of cement. However, at a later curing
age, the pozzolanic reactions of WGP consume calcium hydroxide generated by cement
hydration, forming more C-S-H gels [37,38]. Du et al. [39] reported that complete pozzolanic
reactions were achieved when the content of WGP was in the range of 30–45 wt%. As
depicted in Figure 2, many needle-like gels were observed on the surface of WGP, indicating
that amorphous silica reacted with calcium hydroxide to form additional C-S-H gel [19].
Maraghechi et al. [40] reported that the calcium to silicon ratio (C/S ratio) was in the range
of 0.6–1.4 in the presence of WGP, being different from the C/S ratio (1.2–2.3) in the C-S-H
gel from cement hydration [41,42].
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3. Influence on Wet-State Cementitious Composites
3.1. Workability

Table 2 summarises the potential effects of WGP used for both cement or fine aggregate
replacement on the workability of the cementitious composites, highlighting different
effects of WGP addition on the workability. Using WGP as SCMs, Lu et al. [13] reported
that 20 wt% WGP to replace cement led to a 29% reduction in the flow, due to the sharp
edge of the WGP (0.5 h grinding with size < 800 µm). Similarly, Shayan & Xu [19] observed
that, when replacing cement with 30 wt% WGP, up to a 14.3% reduction in flow was
found. However, Schwarz et al. [43] reported that an increase in cement replacement by
WGP (size < 88 µm) led to an increase in the flow. They mentioned that the flow increase
was attributable to the low water adsorption of WGP, leading to more free water in the
cementitious mixture.

Table 2. Effects of WGP on the fresh properties.

Type Replacement (wt%) Effects Standard Ref.

Supplementary
cementitious

materials (SCMs)

20 Flow reduced by 29.0% BS EN1015 [44] Lu et al. [13]
20–30 7.1–14.3% flow reduction Not mentioned Shayan & Xu [19]
5–30 Flow increased by 20–100% ASTM C 1437 [45] Schwarz et al. [43]

Fine aggregates

25~100 Increased by 8.3–26.9% BS EN1015 [44] Lu et al. [46]

10–50 Slump increased by 4.7–37.5% ESS 2421/2005 [47] Ali & Al-Tersawy [48]
18–24 Reduced the workability IS: 1199-1959 [49] Bisht & Ramana [50]
30–70 Workability reduced by 19.6–44.3% KS F 2402 [51] Park et al. [14]

For fine aggregates replaced by WGP, Lu et al. [46] reported that using WGP to replace
sand up to 100 wt%, the flow was increased up to 26.9%. Maglad et al. [52] replaced sand up
to 50 wt%, and they observed that the slump increased by 3.22% for the sample with 30 wt%
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WGP. Maglad et al. [52] revealed that the workability improvement was attributed to the
smooth texture and finer particle size of WGP when compared to natural sand. Similarly,
Bahadur et al. [53] found that, after replacing river sand by 20 wt%, the workability of
the WGP–cement composites increased. They suggested that due to the finer particle size,
the addition of WGP increased the slump value of the cementitious composites. Ali &
Al-Tersawy [48] found that the slump was increased by 37.5% for samples with 50 wt%
WGP replacing river sand. They mentioned that due to the low water absorption ratio, the
presence of WGP led to an increase in slump. However, Bisht & Ramana [50] observed that,
due to the angular shape of WGP replacing fine aggregates, the workability of WGP–cement
composites was reduced. Park et al. [14] found that the workability was reduced up to
44.3% for samples with 70 wt% WGP replacing sand when compared to the control group.
Steyn et al. [54] also reported that after replacing sand by 15–30 wt%, the WGP–cement
specimens had a reduced slump. They highlighted that, due to the uneven surface texture
of WGP, higher flow resistance was observed when compared to WGP-free samples. A
similar conclusion was drawn by Tan et al. [55], reporting that the sharper edge of WGP
when compared to normal sand led to a reduction in the flowability of the WGP mortar.
Several studies [55,56] explained that when using WGP as fine aggregates, the slump of
concrete reduced due to the polygonal shape of WGP with more edges and a higher aspect
ratio. As a result, the friction between WGP and the cementitious mixture is increased,
reducing the workability of the concrete.

To sum up, it could be noted that the differences in particle size, texture, and shape
of WGP could lead to opposite effects on the workability of the WGP–cement composites.
Smaller and round-shaped WGP would promote the workability, while larger and sharper
WGP would reduce the workability.

3.2. Setting Time and Hydration

Chandra et al. [57] reported that using up to 30 wt% WGP to replace fine aggre-
gates increased both the initial and final setting time of the cementitious composites.
Maglad et al. [52] also found that, after replacing natural sand with 30 wt% WGP, the final
setting time increased. They pointed out that, due to the low water adsorption and poor
binding between WGP and the fresh cementitious mixture, the presence of WGP slowed
the cement hydration, prolonging the setting time of the WGP–cement composites, being
in good agreement with other studies [58,59]. When using WGP as a cement replacement,
Kamali et al. [37] observed that for up to 20 wt% WGP replacing cement, there were no
obvious differences in both initial and final setting times.

Several studies [37,38] found that the presence of WGP as SCMs reduced the heat of
the cement hydration. Tiwari et al. [60] pointed out that due to a low pozzolanic reactivity
and the cement dilution effect of early age, the setting time of the concrete was increased
with the content increase in WGP. Meanwhile, a small content of phosphorus and zinc in
WGP acted as retarders in the cement hydration [61]. However, if the particle size of WGP is
smaller than 41 µm, there were fewer negative effects on the setting time of the cementitious
composites, which may be attributed to the nucleation effects. In general, lower hydration
heat would be beneficial for reducing cracks due to excessive temperature during the
pouring process of large-scale concrete structures. However, Poutos et al. [62] observed that
while using green waste glass powder containing a high amount of Cr2O3 to replace river
sand, the heat generated during cement hydration increased due to the low heat adsorption
and pozzolanic reaction of WGP, having a good agreement with Kamali et al. [37].
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4. Influence on Mechanical Properties
4.1. Compressive Strength

Table 3 summarises the potential effects of WGP on the mechanical properties of the
WGP–cement composites, highlighting significant differences depending on how WGP are
used in cementitious composites. For cement replacement by WGP, Omran & Hamou [63]
replaced cement with 20 wt% WGP and found that WGP led to a 15.6% compressive
strength increment when compared to WGP-free samples. However, after replacing cement
by 10–30 wt%. Similarly, Taha & Nounu [64] reported that a 16% strength reduction
was found in samples with 20 wt% WGP (cement replacement) when compared to the
reference group, being consistent with other studies [48,65]. He et al. [66] observed that
although 10–20 wt% cement replacement by WGP led to a slight compressive strength
reduction at 7 days and 28 days, the 90-day compressive strengths of these two groups
were increased due to pozzolanic reactions at later ages. Several studies [17,66] pointed out
that in the long term, the pozzolanic reactivity of WGP was activated, consuming calcium
hydroxide generated from cement hydration to form more C-S-H gel, leading to a denser
cementitious microstructure.

Table 3. Effects of WGP as fine aggregates and cement replacement on the mechanical properties of
the cementitious composites.

Type Replacement
Percentage (%)

Age
(Days) Testing Programme Strength

Increment Ref.

Mortar
Fine

aggregates

20–100 28
Compressive strength 11.5–16.4%

Penacho et al. [67]Flexural strength 5–22.7%

10–40 28 Compressive strength −(4–75%) Li et al. [68]

20 28
Compressive strength 15.6%

Omran and Tagnit-Hamou [63]Tensile strength 22.5%
Flexural strength 13.8%

10–25 28 Compressive strength −(5–13%) SadiqulIslam et al. [15]

Concrete
Fine

aggregates

10–20 28
Compressive strength −8.4~4.3%

Ismail and AL-Hashmi. [69]Flexural strength 3.57–11.2%

20–50 28
Compressive strength 2–30% Limbachiya et al. [70]

Flexural strength 40–150%
50 28 Compressive strength −(1.3–2.6%) Taha and Nounu. [64]

10–40 28 Compressive strength 10~60% Chen et al. [71]

For WGP to replace fine aggregates, Chen et al. [71] observed strength increments of
17% and 43% in 28-day and 365-day compressive strength, respectively, in concrete with
40 wt% GWP as fine aggregates. Ismail and AL-Hashmi [69] explained that in the early
curing age, the smooth texture of WGP had relatively weak adhesion with the cementitious
matrix, reducing the early-age strength development. Another reason for the lower strength
development was attributed to the low pozzolanic reactivity of WGP, promoting only filler
effects [69]. Furthermore, in geopolymer concrete, the 3-day and 28-day compressive
strengths were 55 MPa and 78 MPa, respectively, showing no obvious sign of alkali-silica
reactions [72].

4.2. Tensile and Flexural Strength

Several studies [10,48,55] reported that the tensile and flexural strengths were reduced
due to WGP addition replacing cement or fine aggregate. Limbachiya [70] found that
when only a small amount of WGP (<10%) was used to replace fine aggregate, there was
no obvious impact on the flexural strength development of WGP–cement composites.
However, the author reported that when the WGP content was higher than 20 wt%, the
flexural strength gradually reduced, having a good agreement with [73,74]. Ismail and
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AL-Hashmi [69] found that, if fine aggregates were replaced by 10–20 wt% WGP in the
WGP–cement composites, the flexural strength was increased by 3.6–11%, and similar
results were found for tensile strength.

Several studies [63,75] observed that using WGP to replace 5 to 25% of cement, the
flexural strength of the cementitious composites at a later age was improved by 21 to 49%.
Based on the aforementioned results, there is no formal agreement on the potential effects
and optimal dosage of WGP on the tensile and flexural strengths of concrete. However, the
differences are mainly related to the source, particle size, and type of WGP.

4.3. Elastic Modulus

Ali and Al-Tersawy [48] reported that the elastic modulus of concrete with WGP
replacing fine aggregates gradually reduced when the WGP content was increased. Lim-
bachiya [70] revealed that there was no obvious difference in elastic modulus between
concrete samples with and without WGP. However, He et al. [66] found that when com-
pared to reference concrete, the 28-day elastic modulus of cementitious composites with
10 wt% WGP slightly reduced by 8.6% at an early age. However, at a later age (90 days), the
presence of WGP increased the elastic modulus of the concrete specimens by 2.785–4.17%,
and 20 wt% WGP as a cement replacement was the optimal dosage to improve the elastic
modulus of WGP–cement composites [66]. This is primarily attributed to the pozzolanic
reactivity of WGP at a later age, leading to an increase in both strength and elastic modu-
lus. Other studies [63,76] also made a similar conclusion that WGP increased the elastic
modulus of WGP concrete, especially at long term (e.g., 90 days).

4.4. Dynamic Mechanical Properties

Liu et al. [77] investigated the thermodynamic properties of mortar with WGP as a
fine aggregate replacement subjected to different vibration frequencies and temperatures.
They found that the presence of WGP led to a reduction of 36.5 to 68.5% in the storage
modulus of WGP–cement mortar, and the vibration frequency had only a limited influence
on the storage modulus. Meanwhile, the loss tangent of the WGP–cement mortar was
reduced when the dosage of WGP increased. Figure 3 depicts the potential effects of WGP
on the stiffness of asphalt concrete [78]. It could be noted that samples with 15 wt% WGP
achieved the best stiffness modulus. Furthermore, Arabani [78] established a stiffness model
(Equation (1)) for asphalt concrete with WGP based on WGP dosage and temperature.

S = 596 + 13.1α − 10.0T (1)

where S refers to the stiffness modules of the asphalt concrete (MPa); α means the dosage
of WGP (%), and T refers to the temperature (◦C).

Similarly, Shafabakhsh and Sajed [79] also observed that using WGP as fine aggregates
to partially replace sand increased the stiffness module of asphalt concrete. It is attributed
to the sharp edges of WGP, promoting both internal friction and an interlocking effect
between WGP and the asphalt matrix.

Aly et al. [80] analysed the potential effects of WGP as a cement replacement on the
impact resistance of mortar. They found that, when compared to the reference group, the
impact strength was increased by 39% and 75% for samples with 20 wt% and 40 wt% WGP,
respectively. Mastali et al. [81] found that the initial crack impact resistance (Figure 4a) and
ultimate crack impact resistance (Figure 4b) were improved by 2.53 to 5.06 times and 2.94 to
6.14 times, respectively, after adding glass fibre.
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Figure 4. The effect of glass fibre on the impact resistance [78]. (a) First crack impact resistance;
(b) Ultimate crack impact resistance.
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4.5. Discussion Regarding the Effects of WGP on Mechanical Properties

Based on the aforementioned literature, it appears that the mechanism governing the
mechanical properties of the WGP–cement composites is not fully understood. Overall,
using WGP as SCMs seems to have positive effects on the mechanical properties of WGP
concrete, and the main mechanisms are as follows:

Filler effect: When the particle size of WGP is smaller than that of cement powder,
the filler effect attributes to blocking pores and voids in the cementitious matrix as well as
the interfacial transition zone (ITZ) [82], leading to a reduction in the porosity and critical
pore size in WGP concrete. MIP test results [66] indicated that the total porosity of concrete
was reduced when the cement was replaced by 10 to 20 wt% WGP, especially the porosity
of pores being larger than 100 nm. Similarly, Sobolev et al. [83] also reported that WGP
reduced the porosity of WGP mortar. However, excessive content of WGP would increase
the porosity of the WGP–cement composites [66].

Pozzolanic reaction [61,71]: Due to the presence of a large amount of amorphous
silica in WGP, WGP has the proper potential for pozzolanic reactivity [84]. The pozzolanic
reactivity of WGP is related to the particle size [28]. Mirzahosseini and Riding [28] reported
that the pozzolanic reactivity of fine WGP (0–25 µm) was higher than that of coarse WGP
(25~38 µm or 63~75 µm). Schwarz and Neithalath [85] found that the pozzolanic reactivity
of WGP was similar to that of fly ash. A complete pozzolanic reaction could be achieved
when the content of WGP is in the range of 30 to 45 wt% [39]. At a later age (90 days),
calcium hydroxide (CH) in the cementitious matrix is totally consumed by WGP to form
C-S-H gel [86], promoting a denser microstructure [39]. As depicted in Figure 5, when
compared to the reference group (Figure 5a), samples with 10 wt% WGP had a more
uniform distribution of C-S-H gel and smooth CH crystals, refining the dispersed pores
and gel pores (Figure 5b) [66]. He et al. [66] found that when the content of WGP increases,
there is a higher degree of pozzolanic reactions, consuming more CH crystal and forming
more C-S-H gel [87]. As a result, the hydration products are interconnected and overlapped,
leading to a denser microstructure [66]. Meanwhile, WGP promoted pozzolanic reactions,
reducing the CH content to form more C-S-H gel, leading to a decrease in the Ca/Si ratio
of the cementitious matrix.

Proper ITZ bonding: As shown in Figure 6a,b, when using WGP to replace fine
aggregates, samples with WGP show no obvious pores or cracks near the WGP particle,
indicating a strong ITZ in the WGP–cement matrix [88]. Several studies [50,89] provided
similar conclusions. When using WGP to replace cement, an improvement in the bond
between the binder and fine aggregates was reported, indicating that WGP could improve
the ITZ of the cementitious matrix [39].

In alkali-activated materials: Due to the large content of silica and alkali metal oxides
(e.g., Na2O), solid silica particles would react with Na2O to form sodium silicate gel in
geopolymer concrete with WGP [90]. Tho-In et al. [91] observed that the presence of
WGP led to an increase in the Si/Al ratio, inducing more formation of aluminosilicate
materials and reducing the strength of geopolymer concrete. They also found that samples
with 20 wt% WGP had less shrinkage and porosity, having a good agreement with other
studies [92,93].
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5. Influence on Durability
5.1. Porosity

WGP used as SCMs can reduce the total porosity of concrete [76]. Yavuz et al. [94]
used 5 to 20 wt% WGP to replace cement and found that the apparent porosity of the
WGP–cement concrete reduced when the WGP content was increased (Figure 7) based on
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ASTM C1754. They reported that the apparent porosity was reduced by 5% in samples with
20 wt% WGP. Using Mercury Intrusion Pressure (MIP), You et al. [95] observed that the
volume of capillary pores (0.05–0.1 µm) and large pores (>0.1 µm) of samples with WGP
reduced when compared to WGP-free samples, due to the formation of additional C-S-H
gel refining the pore structure. Vaitkevicius et al. [89] reported that the largest pore was
reduced from 700 µm to 70 µm with WGP addition. When the dosage of WGP increases,
the void content was firstly reduced and then increased in the cementitious matrix, and
the optimal dosage of WGP was 30 wt% [96]. XRD results [89] indicated that the addition
of WGP reduced the peaks of CH, C2S, and C3S, revealing that the cement hydration
was increased, reducing the porosity and improving the durability of the WGP concrete.
Similarly, Yuan et al. [97] pointed out that using WGP to partially replace cement led to the
reduction in the porosity.
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Figure 7. Apparent porosity of samples with WGP addition (Note: M0 means reference group,
M1-M4 mean samples with 5 to 20 wt% FA, and M5–M8 refer to samples with 5 to 20 wt% WGP) [94].

5.2. Water Absorption

Du and Tan [39] found that concrete water absorption was reduced when using WGP
to replace cement, having a good agreement with other studies [57,98]. Patel et al. [99] re-
ported that samples with 20 wt% WGP had a lower water absorption when compared to the
WGP-free samples, due to a denser microstructure and lower porosity. Wright et al. [100]
completely replaced fine aggregates with WGP and also observed a lower water ab-
sorption, being attributed to a lower water permeability due to WGP’s impermeability.
Wright et al. [100] found that 1-day water adsorption of samples with WGP was higher
than that of samples without WGP, and the 91-day water adsorption was reduced due
to WGP addition, being in good agreement with [21,101]. The main reason is that the
pozzolanic reactions are activated at later days, refining the cementitious matrix [75,102].

Saberian et al. [103] reported that, with a curing temperature of 50 ◦C, the water
absorption of reference (WGP-free) samples was significantly higher than samples cured
at room temperature. By contrast, due to a limited water retention on the surface of WGP,
no differences in water absorption of WGP concrete were observed for different curing
temperatures [103].
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5.3. Volume Stability
5.3.1. Shrinkage

Although numerous studies investigated the shrinkage behaviour of WGP–cement
composites, contradictory results are reported when using WGP as an SCM or fine aggregate
replacement. Limbachiya [70] reported that using 5 to 10% WGP to replace river sand
leads to a reduction in 90-day shrinkage, and excessive dosage of WGP would not have
a significant effect on shrinkage. Ling and Poon [104] found that the shrinkage results of
samples with and without WGP were very similar up to 28-day exposure, and samples
with WGP as fine aggregates showed lower shrinkage. They mentioned that this was
attributed to the good cohesion between WGP and the cementitious matrix and the higher
elastic modulus of WGP mitigating shrinkage deformation. Similarly, the addition of WGP
leads to a reduction in shrinkage of geopolymer concrete [105,106]. Ban et al. [26] found
that using WGP as fine aggregates led to the reduction in shrinkage deformations up to
150 days (Figure 8), due to lower water evaporation and a denser microstructure.
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Figure 8. Drying shrinkage of samples with and without WGP [26].

While using WGP to replace cement, Abellan et al. [23] found that the addition of
WGP did not lead to a proper mitigation of shrinkage deformation (Figure 9). Likewise,
Shayan and Xu [19] observed that when the cement replacement was less than 20 wt%, the
shrinkage results of the reference group was similar to those of samples with WGP. When
the WGP dosage is higher than 20 wt%, shrinkage gradually increases [19], having a good
agreement with the study by Patel [99]. However, Paul et al. [107] reported that using WGP
as SCM led to an increase in drying shrinkage when compared to the reference group.

5.3.2. Alkali-Silica Reactions

Due to the large content of amorphous silica in WGP, alkali-silica reactions (ASRs)
can be easily triggered, forming expansive siliceous gel, leading to cracks and structural
damages in the cementitious composites [108]. Maraghechi et al. [109] noted that the ASRs
of WGP were related to residual cracks in the cementitious matrix, and the particle size of
WGP affected the reactivity. They reported that no ASRs were found in the microcracks
of samples with small-size WGP (<2.5 µm), and ASRs were observed in the microcracks
of samples with large-size WGP (>2.5 µm), indicating that samples with larger-size WGP
were more prone to ASRs [109]. As shown in Figure 10, Idir et al. [61] supported that small-
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size WGP would completely dissolve to contribute to pozzolanic reactions and a denser
microstructure, and large-size WGP was involved in ASR expansion. Park and Lee [110]
reported that the expansion of the cementitious composites increased when the dosage
of WGP increased. When compared to samples with green glass, the 14-day expansion
of samples with 10 wt% brown glass was increased by 40%, which was attributed to the
presence of Cr2O3 in green glass mitigating the expansion. When the specific surface
area of WGP is higher than 4.5 m2/kg, the ASR would be mitigated in the WGP–cement
composites. Ismail and Al-Hashmi [69] replaced fine aggregates with 10–20 wt% WGP and
found that the 14-day ASR expansion of samples with WGP was reduced when compared
to the control group. Furthermore, using WGP as SCMs would also reduce the ASR, and
the mechanism is that the pozzolanic reactions consume CH and reduce the content of free
alkali ions in the pore solution [111], being consistent with the study by Kamali [112].
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5.3.3. Creep

There are limited studies on the long-term creep performance of WGP–cement com-
posites. He et al. [66] analysed the influence of WGP as SCMs on concrete compressive
creep. They reported that when compared to the control group, the creep of samples with
10 wt%, 20 wt%, and 30 wt% WGP was reduced by 16.1%, 33.6%, and 19.6%, respectively.
The main mechanism is that the cementitious microstructure is refined by the filler effect
and pozzolanic reactions, leading to a denser microstructure with high-density C-S-H
gel [66].

5.4. Chemical Resistance
5.4.1. Chloride-Ion Penetration

The pore size distribution, the permeability of aggregates, and the ITZ between aggre-
gates and the cementitious matrix affect the chloride-ion permeability of the cementitious
matrix. Table 4 summarises the potential effects of WGP as both SCMs or aggregate re-
placement on the chloride-ion ingress of WGP–cement composites. Jain et al. [113] found
that using WGP as SCM could promote the resistance against chloride-ion ingress of the
cementitious matrix. Cassar and Camilleri [114] found that 10 wt% WGP to replace cement
led to a 41% reduction in charge passed at 28 days (Figure 11), indicating an improved
resistance against chloride-ion ingress. The primary mechanism is that the presence of
WGP promotes the pozzolanic reactions, forming more C-S-H gel to reduce the porosity of
the cementitious matrix, leading to a reduction in the total charge passing [115]. Matos and
Sousa-Coutinho [116] found that, when compared to the reference group, the chloride ion
diffusion coefficient of the sample with 10 to 20 wt% WGP as SCM decreased by up to 50%,
having a good agreement with Tan and Du [55].

Table 4. Chloride-ion ingress of WGP concrete.

Usage Percentage (%) Age
(Days)

Resistance
Improvement Testing Programme Refs.

SCMs

10 28 41% Rapid chloride penetration test (RCPT) [114]
30 380 53% RCPT [19]
10 90 14% RCPT [21]
15 56 91% RCPT, rapid chloride migration (RCM) [39]

Fine aggregates
60 45 17.5% RCPT [117]
50 28 7% RCPT [55]
20 28 61% RCPT [118]

Coarse
aggregates 100 210 −20% Chloride ion diffusion [119]

Lee et al. [120] reported that, when using 20 wt% WGP to replace cement, the lowest
chloride-ion permeability and total charge passing rate was achieved, being consistent with
other studies [15,39,85]. However, Schwarz et al. [21] mentioned that the optimal dosage of
WGP to replace cement was 10 wt%, highlighting different performances of WGP–cement
composites, which is closely related to the type of WGP, the water-to-binder ratio, and the
concrete mix design. Abellan et al. [23] found that using WGP as a cement replacement led
to a reduction in chloride permeability at 28 days and 90 days.

For using WGP as a fine aggregate replacement, Liu et al. [117] found that the chloride
ion penetration reduced when the dosage of WGP was increased. Liu and Wang [119] also
reported that the addition of WGP improved the resistance against chloride-ion penetration
of WGP–cement composites. Khan and Sarker [121] suggested that, when using WGP as
a fine aggregate, the smooth and water-repellent surface led to a higher impermeability
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of water and chloride ions. However, Guo et al. [122] observed that using WGP as a fine
aggregate did not lead to any significant reduction in the chloride-ion penetration.

Materials 2025, 18, x FOR PEER REVIEW 15 of 25 
 

 

15 56 91% RCPT, rapid chloride 
migration (RCM) 

[39] 

Fine 
aggregates 

60 45 17.5% RCPT [117] 
50 28 7% RCPT [55] 
20 28 61% RCPT [118] 

Coarse 
aggregates 

100 210 −20% Chloride ion diffusion [119] 

 

Figure 11. Electrical conductivity results [114]. 

Lee et al. [120] reported that, when using 20 wt% WGP to replace cement, the lowest 
chloride-ion permeability and total charge passing rate was achieved, being consistent 
with other studies [15,39,85]. However, Schwarz et al. [21] mentioned that the optimal 
dosage of WGP to replace cement was 10 wt%, highlighting different performances of 
WGP–cement composites, which is closely related to the type of WGP, the water-to-binder 
ratio, and the concrete mix design. Abellan et al. [23] found that using WGP as a cement 
replacement led to a reduction in chloride permeability at 28 days and 90 days. 

For using WGP as a fine aggregate replacement, Liu et al. [117] found that the chlo-
ride ion penetration reduced when the dosage of WGP was increased. Liu and Wang [119] 
also reported that the addition of WGP improved the resistance against chloride-ion pen-
etration of WGP–cement composites. Khan and Sarker [121] suggested that, when using 
WGP as a fine aggregate, the smooth and water-repellent surface led to a higher imper-
meability of water and chloride ions. However, Guo et al. [122] observed that using WGP 
as a fine aggregate did not lead to any significant reduction in the chloride-ion penetra-
tion. 

Liu and Wang [119] used WGP to completely replace coarse aggregates and found 
that the chloride-ion permeability was increased by 20%, indicating the different perfor-
mance of WGP in resisting chloride-ion penetration. 

5.4.2. Sulphate Attack 

Harbi et al. [123] reported that using WGP to replace cement by 5 to 25 wt% led to a 
compressive strength increase up to 180 days, which was attributed to a denser micro-
structure to resist the sulphate permeability of the cementitious matrix. Özkan and Yüksel 
[124] observed that, due to the pozzolanic reaction by WGP, the resistance against sul-
phate attack was increased in WGP–cement composites. However, when the cement re-
placement was 50 wt%, higher sulphate-ion concentration was found when compared to 
the reference group [124]. Meanwhile, the presence of WGP negatively affects the re-
sistance to magnesium sulphate due to the transformation of C-S-H gel into magnesium 

0% 10% 20% 30% 40% 50%
0

2000

4000

6000

8000

10000

12000

14000

16000

Ch
ar

ge
 p

as
se

d 
co

ul
om

bs

 Control
 Crushed
 Imploded glass

Figure 11. Electrical conductivity results [114].

Liu and Wang [119] used WGP to completely replace coarse aggregates and found that
the chloride-ion permeability was increased by 20%, indicating the different performance
of WGP in resisting chloride-ion penetration.

5.4.2. Sulphate Attack

Harbi et al. [123] reported that using WGP to replace cement by 5 to 25 wt% led
to a compressive strength increase up to 180 days, which was attributed to a denser
microstructure to resist the sulphate permeability of the cementitious matrix. Özkan and
Yüksel [124] observed that, due to the pozzolanic reaction by WGP, the resistance against
sulphate attack was increased in WGP–cement composites. However, when the cement
replacement was 50 wt%, higher sulphate-ion concentration was found when compared to
the reference group [124]. Meanwhile, the presence of WGP negatively affects the resistance
to magnesium sulphate due to the transformation of C-S-H gel into magnesium silicate gel,
reducing the WGP–cement bond. Matos and Sousa-Coutinho [116] assessed the expansion
of sample with and without WGP as SCM immersed in a sulphate solution. They reported
that samples with WGP had lower expansion when compared to WGP-free samples. In
a similar immersion experiment, Carsan et al. [125] found that WGP as SCMs had the
lowest expansion at 1-year immersion when compared to samples with fly ash or GGBFs.
However, Wang [126] found that when the cement replacement exceeded 40 wt%, the
WGP–cement composites experienced significant mass loss during sulphate immersion
(Figure 12), due to both the cement dilution effect and delayed cement hydration.

Wang et al. [127] found that using WGP as a fine aggregate replacement improved
the resistance against sodium sulphate ingress, and a better resistance was also observed
at a later curing age. The mass loss of samples with 20 to 80 wt% as fine aggregate was
reduced by 27 to 61% when compared to WGP-free samples. However, Saccani et al. [128]
concluded that using WGP to replace fine aggregate led to no significant improvement in
the sulphate resistance of WGP–cement composites.
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Figure 12. Mass loss of the cementitious samples in sulphate immersion [126].

5.4.3. Acid and Alkali Resistance

Wang [126] reported that using 10 wt% WGP to replace cement led to a higher re-
sistance in sodium hydroxide solution exposure with less mass loss, but the resistance
improvement was reduced when the WGP dosage was increased. Similarly, Matos and
Sousa-Coutinho [116] found that the optimal dosage to replace cement was 20 wt% WGP
in the expansion test with sodium hydroxide immersion, since the resistance was gradually
improved when the replacement dosage was up to 20 wt%. Meanwhile, they suggested
that WGP–cement composites had better resistance when immersed in calcium hydroxide
solution when compared to that in sodium hydroxide, which may be attributed to calcium
ions mitigating the dissolution of WGP.

Siad et al. [129] compared the acid-resisting performance of samples using different
SCMs to replace cement, such as WGP, limestone powder, fly ash, and slag. They found
that samples with 45 wt% WGP had the best resistance to sulphuric acid after 12 weeks
of immersion. As shown in Figure 13, the sulphuric acid resistance is increased when the
WGP dosage increases up to 45 wt% [129]. However, Wang et al. [126] pointed out that
an excessive dosage of WGP can lower the sulphuric acid resistance due to a less dense
microstructure by the cement dilution effect. Lu et al. [41] used WGP as a fine aggregate
replacement immersed in 3% sulphuric acid. They found that WGP–cement samples
had lower mass loss when compared to WGP-free specimens. In particular, Lu et al. [41]
suggested that the reduction in WGP’s particle size could further improve the sulphuric
acid resistance of the WGP–cement composites. The main reason is that the formation of
additional C-S-H gel densifies the microstructure, and the synergistic effects of polygon-
shaped WGP promote the sulphuric acid resistance, having a good agreement with the
study by Wang and Huang [130].

5.4.4. Freeze–Thaw Cycle

Yi [131] used WGP as a fine aggregate replacement and found that the presence of
WGP led to less freeze–thaw cycle damage in the temperature range of −10 ◦C to 4 ◦C,
indicating an improved freeze–thaw resistance of WGP–cement composites. Furthermore,
Saccani et al. [128] replaced river sand with 20 wt% WGP in geopolymer concrete. They also



Materials 2025, 18, 734 17 of 24

found that the freeze–thaw resistance was improved in the temperature range of −10 ◦C to
4 ◦C.
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Figure 13. Mass loss of the cementitious samples in 5% sulphuric acid [128]. (Note: M0 refers to
control group, MGP15–MGP45 means samples with 15–45 wt% WGP, MGPLP refers to samples with
limestone power, MGPSG means samples with GGBFs, and MGPFA means samples with FA).

Abendeh et al. [132] found that when using WGP as a cement replacement (5 to
15 wt%), samples with WGP had lower mass loss after 300 freeze–thaw cycles in the
temperature range of −16 ◦C to 6 ◦C when compared to WGP-free samples, being consistent
with the study by Lee et al. [120]. They reported that the freeze–thaw resistance depended
on the porosity and strength of the cementitious composites, rather than the filler effects
and pozzolanic reactions by WGP. Other studies [101,133,134] reported that using WGP as
SCMs (<20 wt%) increased freeze–thaw resistance.

Mardani-Aghabaglou et al. [135] found that when the dosage of WGP replacing cement
increased, the dynamic elastic modulus of WGP–cement composites reduced after the
freeze–thaw cycle. Dong et al. [136] reported that the primary reason was that temperature
variance led to degradation of the cementitious matrix, leading to a strength loss. However,
Kim et al. [137] pointed out that using WGP as a fine aggregate replacement did not lead to
any significant differences in freeze–thaw resistance.

Therefore, the presence of WGP as a fine aggregate replacement is beneficial in freeze–
thaw resistance, while contradictory results were observed when using WGP as SCM.

5.4.5. Elevated Temperature

Belouadah et al. [138] reported that using WGP as a cement replacement up to 10 wt%
led to higher initial and residual compressive strength of WGP–cement composites cured
in a chamber with a temperature of 600 ◦C for 1 h. They explained that the elevated
temperature accelerated the cement hydration and increased the pozzolanic reactivity of
WGP, leading to a lower compressive strength loss. Similarly, Pan et al. [139] found that
when the testing temperature was lower than 500 ◦C for 1.5 h, the strength loss of samples
with and without WGP was 15% and 33%, respectively, indicating an improved resistance
to elevated temperature of the WGP–cement composites. Meanwhile, Pan et al. [139] added
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that in curing temperatures of 500–800 ◦C for 1.5 h, the strength of the WGP sample was
21% higher than that of the WGP-free samples, having a good agreement with the study
by Lu et al. [41]. Ali et al. [140] mentioned that when compared to samples with silica
fume, samples with WGP had higher strength after being exposed to elevated temperatures,
showing less matrix degradation.

Yang et al. [141] found that when using WGP as fine aggregates, samples with small-
size WGP had better resistance to elevated temperatures, being consistent with the study
by [142]. The primary reason is that under high temperatures (>500 ◦C), the melted surface
of the WGP particle could fill cracks and voids to refine the cementitious matrix, reducing
the high-temperature damage in the ITZ between WGP and the cementitious matrix [143].
Zhang et al. [144] also reported that the presence of WGP reduced the strength loss of the
cementitious samples subjected to elevated temperatures.

6. Conclusions and Outlook
This study systematically analyses the potential effects of using WGP to partially

replace cement or aggregates on both the mechanical and durability properties of WGP–
cement composites, aiming to reduce the carbon footprint and sustainability of concrete
structures. The main conclusions are as follows:

1. The differences in WGP’s particle size, texture, and shapes could lead to various effects
on the workability and hydration of the WGP–cement composites.

2. 10–20 wt% WGP as SCMs seems to be the optimal dosage to improve the mechanical
strength of WGP–cement composites. Moreover, at a later age, WGP could promote
more strength improvements, being attributed to activated pozzolanic reactions and
filler effects.

3. The addition of WGP as SCMs reduces the porosity and lowers the water adsorption
of the WGP–cement composites.

4. When replacing cement by up to 20 wt% WGP, the shrinkage, ASRs, and creep are
reduced, being attributed to the formation of more C-S-H gel reducing the porosity.

5. The presence of WGP as SCM promotes the resistance to chloride-ion penetration,
sulphate attack, acid and alkali resistance, freeze–thaw damage, and elevated temper-
ature damage.

By considering the aforementioned literature, even though numerous studies were
conducted to investigate the potential effects of WGP on the properties of WGP–cement
composites, there are still many issues related to the durability of concrete with WGP, since
contradictory conclusions are reported. Thus, the perspectives are as follows:

1. The chemical composition of WGP can be very different, leading to different pozzolanic
reactivity, concrete durability, and ASR reactivity. Hence, it is necessary to establish a
comprehensive WGP classification (composition, processing, mixing, etc.) and link
them to specific potential concrete applications.

2. There are contradictory conclusions on the effects of WGP on the durability properties
of cementitious composites. As a result, it is suggested that more studies are needed
to provide conservative conclusions and guidance on how WGP may affect concrete
durability depending on the WGP characteristics.

3. Studies on the usage of WGP in high-strength concrete are limited; further investiga-
tions are required.

4. There is a lack of quantitative evaluation of both economic and environmental impacts
of WGP. More studies on life cycle analysis are recommended.

5. It is suggested to conduct numerical analyses to establish models allowing to predict
the performance of WGP–cement composites.
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6. The outlooks for WGP applications are as follows:
7. Due to the intensive use of concrete in structural and infrastructure design, there is a

need for improved concrete properties with lower shrinkage and permeability while
promoting the structural resilience of the concrete structure.

8. The needs of sustainable concrete design require the usage of low-carbon and green
materials to reduce the carbon footprint. There would be an increasing trend in
recycling WGP as both a cement and aggregate replacement, considering the reduction
in cost and resources in the WGP landfill process.
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