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A B S T R A C T

Cracks represent one of the common forms of damage in concrete structures and pavements, leading to safety 
issues and increased maintenance costs. Therefore, timely crack detection is crucial for preventing further 
damage and ensuring the safety of these structures. Traditional manual inspection methods are limited by factors 
such as time consumption, subjectivity, and labor intensity. To address these challenges, deep learning-based 
crack detection technologies have emerged as promising solutions, demonstrating satisfactory performance 
and accuracy. However, the field still lacks comprehensive scientometric analyses and critical surveys of existing 
works, which are vital for identifying research gaps and guiding future studies. This paper conducts a biblio
metric and critical analysis of the collected literature, providing novel insights into current research trends and 
identifying potential areas for future investigation. Analytical tools, including VOSviewer and CiteSpace, were 
employed for in-depth analysis and visualization. This study identifies key research gaps and proposes future 
directions, focusing on advancements in model generalization, computational efficiency, dataset standardization, 
and the practical application of crack detection methods.

1. Introduction

Cracks are a widespread problem in concrete structures and pave
ments, mainly caused by material fatigue, stress concentration, and 
other external factors. The development of cracks in concrete structures 
is attributed to factors such as concrete shrinkage, thermal expansion 
and contraction, external loads, and poor structural design. Further
more, the causes of cracks in pavement structures include material fa
tigue, traffic loading, climate change, and foundation instability. Cracks 
can lead to a reduction in structural strength and corrosion resistance, 
potentially resulting in structural collapse and pavement damage, 
thereby affecting both structural integrity and traffic safety. Therefore, 
timely crack detection in structures and pavements is crucial (König 
et al., 2022).

Manual inspection has been the dominant crack detection method in 
recent decades; however, it is constrained by inefficiency, subjectivity, 
and time-consuming processes. Furthermore, variability in inspectors’ 
skills and experience affects detection accuracy, leading to inconsistent 
results. To address these limitations, researchers have increasingly 
turned to image processing and computer vision (CV) techniques, which 

have seen significant advancements in recent years (Nyathi et al., 2024).
Crack detection methods based on image processing typically consist 

of several key steps: image acquisition, image preprocessing, and crack 
detection (Munawar et al., 2021). During the image acquisition phase, a 
variety of cameras are used to capture the necessary data, including 
photographs from standard cameras, infrared and thermal images, depth 
images, and ultrasound images (Alexander et al., 2022; Alipour et al., 
2019; Kalfarisi et al., 2020). Subsequently, image preprocessing is per
formed to enhance image quality and extract features. Techniques such 
as grayscale conversion, median and Gaussian filtering, and histogram 
equalization are commonly applied to improve quality (Lslam et al., 
2022). For feature extraction, methods include the Canny edge detector, 
Sobel operator, texture analysis techniques such as the Gray Level 
Co-Occurrence Matrix (GLCM) (Kabir and Rivard, 2007) and Local Bi
nary Patterns (LBP) (Zoubir et al., 2022), morphological features (Li and 
Zhao, 2021), and wavelet transforms (Akbari et al., 2020). After feature 
extraction, researchers use machine learning and deep learning-based 
algorithms to detect cracks, including Support Vector Machines (SVM) 
(Hasni et al., 2017), Random Forest (RF) (Peng et al., 2020), K-Nearest 
Neighbors (Wang, 2016), Convolutional Neural Networks (CNNs) (Ali 
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et al., 2021), and Recurrent Neural Networks (RNNs) (Ahmed et al., 
2019).

Although traditional image processing techniques have laid a solid 
foundation for crack detection, the evolution of CV techniques has 
profoundly transformed the field. As shown in Fig. 1, the upper portion 
of the timeline highlights key milestones in CV development, while the 
lower portion illustrates the parallel progression of crack detection 
methods. Additionally, notable crack datasets, including CFD (Shi et al., 
2016), CCIC (Özgenel and Sorguç, 2018), and CrackSC (Guo et al., 
2023), are also highlighted in the timeline. These datasets have played a 
pivotal role in improving model training and evaluation by providing 
diverse and complex crack samples across various surfaces and condi
tions. The advancements in CV, as marked by AlexNet’s (Krizhevsky 
et al., 2017) success in the 2012 ImageNet competition, demonstrated 
CNNs’ remarkable potential in achieving high image classification ac
curacy. This success paved the way for further innovations, such as 
VGGNet (Simonyan and Zisserman, 2014), ResNet (He et al., 2016), and 
U-Net (Ronneberger et al., 2015) significantly enhanced feature 
extraction capabilities and network depth. Building on these advance
ments, AlexNet was first applied to classification tasks by (Zhao and Li, 
2017), marking a pivotal moment in integrating deep learning into the 
field of crack detection. Meanwhile, the emergence of object detection 
networks like Faster R-CNN (Ren et al., 2017) and YOLO (Redmon, 
2016) offered new possibilities for detecting objects within images by 
using bounding boxes. Leveraging these developments, subsequent 
studies applied Faster R-CNN (Cha et al., 2018) and YOLOv2 (Mandal 
et al., 2018) to crack detection tasks, where bounding boxes were used 
to identify and localize cracks within complex backgrounds. As object 
detection methods evolved, semantic segmentation networks gained 
prominence, particularly with the introduction of DeepLabv3+ (Chen 
et al., 2018), which enhanced pixel-level predictions by incorporating 
Atrous Spatial Pyramid Pooling (ASPP) to capture multi-scale contextual 
information. Following this development, DeepLabv3+ was applied bt 
(Ji et al., 2020) to segment cracks, demonstrating its effectiveness in 
producing precise and pixel-level segmentation results.

Building on the success of Transformers in NLP (Vaswani, 2017), and 
their revolutionary ability to model long-range dependencies, re
searchers adapted them to CV field, leading to the development of Vision 
Transformers (ViT) (Dosovitskiy, 2020). Building on this advancement, 
various ViT-based variants have emerged in crack detection tasks, 
including CrackFormer (Liu et al., 2021). More recently, large-scale 
pre-trained models such as GPT-4 Vision (2023) and the 
segmentation-specificSegment Anything Model (SAM) (Ravi et al., 
2024) have emerged as versatile frameworks capable of addressing 
diverse visual tasks. These models are characterized by their large-scale 
training on diverse datasets, enabling strong generalization capabilities 
and adaptability to various downstream applications. The study by (Ye 
et al., 2019) demonstrated the potential of SAM in crack detection by 
efficiently segmenting crack regions within infrastructure monitoring 
tasks. This development highlights the increasing role of large-scale 

pre-trained models in solving specialized problems like crack detec
tion. As these models continue to evolve, crack detection methods will 
become increasingly diverse and effective.

Despite rapid advancements in crack detection methodologies, 
existing review articles lack a comprehensive synthesis of the field 
(Spencer Jr et al., 2019). Many reviews either narrowly focus on specific 
algorithms or offer overly broad overviews, lacking critical analysis of 
key aspects such as the evolving methodological innovations, the inte
gration of foundational models, and patterns of scholarly collaboration 
(Ali et al., 2022; Zhou et al., 2023). Moreover, with advances in CV, a 
growing array of innovative approaches has been applied to crack 
detection tasks (Awadallah and Sadhu, 2023; Chen et al., 2024; Hang 
et al., 2023; Hu et al., 2025; Wu et al., 2024; Yang et al., 2023; Ma et al., 
2024). These include hybrid network architectures, methods that inte
grate multimodal features, and large-scale pre-trained models. Despite 
their increasing relevance and potential, these methods remain under
explored and lack systematic review in existing scientometric literature. 
This gap in systematic analysis limits understanding of their broader 
impact and future potential.

To address these gaps, this review systematically examines ad
vancements in CV-based crack detection methods, focusing on research 
conducted between 2017 and 2024, a period marked by significant 
progress in computational power and methodological innovation. The 
main contributions of this review include: 

• Comprehensive bibliometric analysis: This review conducts a bib
liometric analysis of the collected deep learning-based crack detec
tion papers, identifying influential papers, journals, authors, 
countries, collaboration patterns, and research keywords within the 
field.

• Critical synthesis of methodologies: This review systematically ex
amines the advanced methods used in crack detection, focusing on 
key areas such as classification, object detection, and segmentation.

• Identification of challenges and future directions: This review sum
marizes the existing methodologies and identifies potential pathways 
to drive future advancements in crack detection.

2. Previous literature reviews

Crack detection is a critical issue in structural health monitoring, 
driving extensive research efforts. Numerous review papers have syn
thesized the literature on crack detection, providing comprehensive 
insights into methodologies, technologies, and challenges in the field. 
These reviews systematically analyze the progression of detection 
techniques, from traditional manual inspections to modern CV appli
cations. This section provides a concise synthesis of previous review 
findings and highlights their key contributions, as summarized in 
Table 1.

(Cao et al., 2020; Gopalakrishnan, 2018) focused on categorizing and 
tracing the evolution of crack detection methods, emphasizing the shift 

Fig. 1. Timeline of key advancements in CV and crack detection methods.
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from traditional 2D to 3D-based techniques. A key issue highlighted is 
the lack of suitable datasets to enable performance comparison between 
these methods (Ye et al., 2019).examined the development of deep 
learning in structural health monitoring (SHM) but overlooks the in
clusion of crack detection algorithms (Hsieh and Tsai, 2020). built on 
this by reviewing machine learning-based crack detection, identifying 
the challenges and trends in crack segmentation, but similarly fails to 
provide quantitative comparisons of models across different datasets 
(Hu et al., 2021; Deng et al., 2022). further contributed to the discussion 
by addressing deep learning-based crack detection techniques, intro
ducing lightweight models, attention mechanisms, and methods to 
address data limitations, such as semi-supervised learning and synthetic 
data. However, both studies noted the lack of focus on computational 
costs and real-time feasibility.

The more recent works by (Kheradmandi and Mehranfar, 2022; Ai 
et al., 2023) categorized detection approaches into rule-driven and 
data-driven methods and explore advanced image segmentation tech
niques for complex pavement images. Both studies pointed out key gaps, 
such as the absence of standardized evaluation frameworks for crack 
detection algorithms and the insufficient attention given to other 
pavement issues like potholes and rutting (Yuan et al., 2024; Yang et al., 
2024). explored the potential of integrating 3D imaging and dimen
sional data to enhance detection accuracy, with Yang specifically 
focusing on asphalt pavements and summarizing road maintenance 
strategies, though both studies lacked a systematic evaluation of algo
rithm performance. While existing review articles offer valuable insights 
into crack detection methods, they often lack a systematic approach to 
collecting and analyzing the relevant literature. Many reviews failed to 
employ bibliometric or statistical methods to quantify field trends, 
making it difficult for future researchers to gain a clear understanding of 
the research landscape. Consequently, significant gaps persisted in un
derstanding the progression and impact of research in this area. To 
address these gaps, a systematic review has been conducted to provide a 
clearer perspective on the advancements and methodologies in deep 
learning-based crack detection.

3. Previous literature reviews

This study adopts a mixed-methods approach to conduct both a 
bibliometric analysis and a critical review of the literature on crack 
detection algorithms. The analysis focuses on crack detection in concrete 
buildings, roads, and pavements. Fig. 2 presents a visual representation 
of the research methodology applied in this study.

In the initial phase, relevant literature is retrieved from the Scopus 
and Web of Science (WOS) databases, as depicted in Fig. 2. Subse
quently, a bibliometric analysis is performed using visualization tools 
such as CiteSpace and VOSviewer. This analysis examines annual pub
lication trends, influential authors, journals, and papers, as well as 
notable countries, collaboration patterns, and research keywords. In the 
final phase, a comprehensive review of the referenced papers is con
ducted, focusing on their abstracts, methodologies, and results.

In the literature retrieval process, relevant papers were systemati
cally retrieved by performing a keyword search in the Scopus and WOS 
databases. The decision to use Scopus and WOS was based on their 
comprehensive coverage of high-quality research articles and their 
established use in bibliometric analysis across various disciplines, 
ensuring access to a broad yet relevant dataset. The keywords used in the 
search, “deep learning,” “crack detection,” and “image,” were chosen to 

Table 1 
Highlights of previous review in deep learning-based crack detection methods.

Ref Major Contributions Limitations

Cao et al. (2020) • Compared traditional 
crack detection methods 
with 3D-based crack 
detection methods.

• Classified crack detection 
methods into three 
categories.

• Insufficient availability of 
suitable datasets for 
comparing the 
performance of 
traditional and 3D crack 
detection methods.

Gopalakrishnan 
(2018)

• Reviewed frameworks for 
crack detection 
algorithms.

• Emphasized the trend in 
crack detection shifting 
from 2D images to 3D 
analysis.

• Limited the introduction 
to performance 
evaluation metrics for 
crack detection.

Ye et al. (2019) • Conducted a 
comprehensive review of 
the development and 
utilization of deep 
learning techniques within 
the area of SHM.

• Failed to include a 
discussion or review of 
crack detection 
algorithms.

(Hsieh and Tsai, 
2020)

• Provided a systematic 
review of 68 ML-based 
crack detection papers.

• Highlighted key 
challenges and trends in 
crack segmentation 
research.

• Did not quantitatively 
compare models across 
different datasets.

Hu et al. (2021) • Provided a novel summary 
of the key challenges faced 
by deep learning-based 
crack detection.

• Discussed new directions 
for the future development 
of crack detection 
technology from three 
aspects.

• Limited discussion on the 
available algorithms.

Deng et al. (2022) • Categorized traditional 
image processing and deep 
learning approaches.

• Suggested future research 
on lightweight models and 
attention mechanisms.

• Addressed data deficiency 
through semi-supervised 
learning and synthetic 
data.

• Limited discussion on 
computational costs and 
real-time feasibility.

(Kheradmandi and 
Mehranfar, 
2022)

• Categorized approaches 
into rule-driven and data- 
driven techniques.

• Focused on the challenges 
of segmenting complex 
pavement images.

• Did not propose a 
standardized evaluation 
for diverse algorithms.

• Insufficient coverage of 
other pavement distresses 
beyond cracks, such as 
potholes or rutting.

Ai et al. (2023) • Discussed various data 
collection methods, 
available crack datasets, 
and performance 
evaluation metrics.

• Provided a new 
classification based on the 
development of automatic 
crack detection 
algorithms.

• Limited discussion on the 
balance between 
computational efficiency 
and accuracy.

Yuan et al. (2024) • Reviewed 120 research 
papers and categorized 
them into three groups.

• Emphasized that 
integrating additional 
dimensional data can 
improve crack detection 
accuracy.

• The articles are not 
collected in a systematic 
way.

Yang et al. (2024) • Focused on crack 
detection of asphalt 
pavements.

• Lacked an assessment of 
algorithm performance.

Table 1 (continued )

Ref Major Contributions Limitations

• Provided a systematic 
review summarizing 
methods for road 
maintenance.
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focus on studies utilizing deep learning techniques specifically for crack 
detection tasks based on image methods. These keywords were joined 
using the Boolean operator “AND” to capture papers addressing the 
intersection of these topics. Additionally, “concrete,” “pavement,” and 
“road” were joined using the Boolean operator “OR” to encompass a 
wide range of application scenarios within the domain of infrastructure, 
as shown in Table 2.

Following the application of keyword searches, 949 articles were 
retrieved from Scopus and 672 articles from the WOS. To ensure the 
relevance of these articles to the research topic and eliminate unrelated 
works, further filtering criteria were employed. The publication year 
was restricted to post-2016 for both databases to focus on recent ad
vancements in deep learning, which has experienced significant break
throughs in the past decade. Subject areas in Scopus were narrowed to 
Engineering and Computer Science, as these fields are most relevant to 
crack detection using computational methods. Similarly, in WOS, the 
subject categories were refined to include those most closely aligned 
with the research focus, such as Engineering Civil, Construction Building 
Technology, and Computer Science Artificial Intelligence. Additional 
restrictions were applied to maintain the quality and relevance of the 
dataset. In Scopus, only articles in the “Final” publication stage were 
considered to avoid pre-publication or incomplete studies. In WOS, the 
index was restricted to “SCI-EXPANDED” to ensure inclusion of articles 

published in high-impact journals. In both databases, only peer- 
reviewed articles written in English were included, as English is the 
dominant language of scientific communication. After applying these 
restrictions, a total of 994 articles were retrieved, of which 299 were 
duplicates. Following the removal of duplicates, a final dataset of 695 
articles was prepared for bibliometric analysis.

4. Bibliometric analysis

Bibliometric analysis is a quantitative approach to evaluate the 
scholarly impact of publications, sources, and authors, while simulta
neously uncovering research trends in a specific area through various 
statistical techniques, including publication rate, citation rate, collabo
ration patterns, and keywords occurrence. In this section, two visuali
zation tools, CiteSpace and VOSviewer, are employed to perform a 
bibliometric analysis of the collected papers. This analysis focuses on 
identifying the most productive publications, authors, and journals 
within crack detection field. Additionally, it will feature a scientific 
mapping analysis that includes several key subsections. Co-Citation 
analysis examines the relatedness of sources and authors, quantifying 
their proximity within the discipline. Co-Authorship analysis explores 
collaboration patterns among countries and institutions, shedding light 
on international research networks. Lastly, the analysis of keywords 
occurrence identifies emerging trends and significant terms related to 
crack detection.

4.1. Overview of the publications

4.1.1. Overview of the publications
Fig. 3 illustrates the trends in publication and citation numbers in 

crack detection research from 2017 to 2024. The data shows a steady 
rise in publication numbers, increasing from 4 papers in 2017 to a peak 
of 171 in 2023, highlighting the growing interest in this field. However, 
this upward trend in publications contrasts sharply with citation trends, 
which peaked at 5886 in 2020 and then declined significantly to 1180 in 
2023 and 206 in 2024. This divergence suggests that while more papers 
are being published, their overall academic impact, as measured by ci
tations, appears to be diminishing.

The contrasting trends between publication and citation numbers 

Fig. 2. Summary of the research approach.

Table 2 
The search terms, refinements, and outcomes from the Scopus and WOS 
repositories.

Search 
Engine

String and Refinement Results

Scopus (TITLE-ABS-KEY (“crack detection”) AND TITLE-ABS-KEY 
(“deep learning”) AND TITLE-ABS-KEY (image) AND 
TITLE-ABS-KEY (“concrete” OR “pavement” OR “road”))

949

AND PUBYEAR >2016 943
AND (LIMITED-TO (SUBJAREA, “ENGINEERING”) OR 
LIMITED-TO (SUBJAREA, “COMPUTER SCIENCE”))

868

AND (LIMITED-TO (DOCTYPE, “ARTICLE”)) 542
AND (LIMITED-TO (LANGUAGE, “ENGLISH”)) 506
AND (LIMITED-TO (PUBLICATION PHASE, “FINAL”) 471

WOS TOPIC: (“crack detection”) AND TOPIC: (“deep learning”) 
AND TOPIC: (“image”) AND TOPIC: (“concrete”) OR 
TOPIC: (“pavement”) OR TOPIC: (“road”)

672

AND PUBYEAR >2016
WOS Index: SCI-EXPANDED
Refined by: WOS CATEGORIES: (ENGINEERING CIVIL OR 
CONSTRUCTION BUILDING TECHNOLOGY OR 
ENGINEERING MULTIDISCIPLINARY

548

OR TRANSPORTATION SCIENCE TECHNOLOGY OR 
COMPUTER SCIENCE ARTICIAL INTELLIGENCE OR 
COMPUTER SCIENCE INTERDISCIPLINARY 
APPLICATIONS OR COMPUTER SCIENCE INFORMATION 
SYSTEMS OR IMAGING SCIENCE PHOTOGRAPHIC 
TECHNOLOGY)
Refined by: DOCTYPE: ARTICLE 523
Refined by: LANGUAGE: ENGLISH

Sum of papers = 994.
Duplicates = 299.
Remaining = 695. Fig. 3. Annual publications and citations trends.
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reveal several notable patterns worth examining. In the early years 
(2017–2020), fewer papers were published, but these had significantly 
higher citation rates. For instance, the 4 papers published in 2017 
generated 3270 citations, averaging 817.5 citations per paper. This in
dicates that research during this period introduced foundational theories 
and influential methodologies with lasting academic impact. By 2020, 
the field appeared to reach its peak, with influential studies contributing 
to a citation count of 5886 across 76 papers published that year. After 
2020, the number of publications continued to increase, with 102 in 
2021, 144 in 2022, and 171 in 2023, while citation numbers experi
enced a significant decline. In 2024, 150 papers were published and 
collectively received only 206 citations. This sharp decline is primarily 
due to the limited number of groundbreaking contributions in recent 
years. Much of the recent work focuses on extending or refining previous 
research rather than introducing fundamentally new concepts or 
methods.

Overall, the steady rise in publications demonstrates sustained in
terest in crack detection research, but the declining citation rates un
derscore the need for innovative and high-impact contributions. Moving 
forward, it is essential to prioritize not only the quantity of research 
output but also its quality to foster significant advancements in the field.

4.1.2. Overview of the publications
This section focuses on identifying and analyzing the most influential 

papers out of 695 articles, selecting the top ten based on citation 
numbers for detailed examination. Collectively, these ten papers have 
received 6947 citations, representing 27.27% of all citations. Table 3
summarizes these top-cited articles, including their publication sources, 
corresponding authors, publication years, citation counts, and average 

citations per year.
Among these, the study published in Computer-Aided Civil and 

Infrastructure Engineering (Cha et al., 2017) stands out with the highest 
citation numbers, totaling 2042 and averaging 291.7 citations per year. 
This study marked a significant milestone in crack detection research as 
it was the first to apply CNNs to the task of crack classification. By 
leveraging CNNs, the authors demonstrated their effectiveness in auto
mating crack detection with high accuracy, establishing a foundation for 
deep learning applications in this field. Another highly influential paper 
by (Cha et al., 2018), also published in the same journal, received 980 
citations. This study was pioneering in applying Faster R-CNN, an 
advanced object detection framework, to crack detection, enabling the 
localization and identification of cracks with bounding boxes. A notable 
contribution was made by (Dung, 2019) with 682 citations, adopting a 
fully convolutional network (FCN) for semantic segmentation in crack 
detection. Unlike earlier approaches that focused on classification or 
object detection, this study addressed pixel-level segmentation, 
providing a more granular understanding of crack morphology.

Other foundational studies, such as (Zhang et al., 2017) with 629 
citations (Zou et al., 2018), with 512 citations, and (Yang et al., 2019) 
with 490 citations, introduced or refined important methodologies. For 
example, Zou’s work emphasized the importance of data augmentation 
techniques to improve model robustness, while Yang demonstrated the 
application of lightweight architectures for efficient crack detection in 
real-time scenarios.

By comparison, some studies published in the same timeframe 
received fewer citations. For instance, although (Gopalakrishnan et al., 
2017) was published in the same year as Cha’s work, its average annual 
citation count is only 84. Similarly, the studies by (Dorafshan et al., 
2018; Li and Zhao, 2019; Huang et al., 2018) exhibited lower average 
citations per year at 81.7, 71, and 49.7, respectively. These differences 
highlight the varying impact of research contributions, with the most 
highly cited studies being those that introduced groundbreaking 
methods or demonstrated novel applications of deep learning in crack 
detection.

In summary, these findings highlight a trend where earlier articles, 
particularly those that introduced CNNs, object detection frameworks, 
or segmentation methods, tend to have significantly higher citation 
numbers compared to more recent studies. However, the relatively 
lower citation counts for more recent studies suggest that further inno
vation is needed to enhance the scholarly impact and visibility of 
research in this field. Specifically, future studies may benefit from 
integrating novel methodologies, such as multimodal approaches and 
large-scale pre-trained models, to address the growing complexity of 
crack detection tasks and increase their academic influence.

4.2. Influential journals, authors, and countries

4.2.1. The most productive journals
This section analyzes the data collected from 695 articles published 

across 182 journals, highlighting the top twenty journals by publication 
count. These journals collectively contributed 400 articles, accounting 
for 57.55% of the total publications, while the remaining 295 articles 
were distributed among 172 other journals. Table 4 summarizes these 
high publication journals, including their names, total publications 
(TPs), total citations (TCs), average citations (ACs), impact factor (IF), 
and H-index.

Automation in Construction leads with 52 publications, accumu
lating 2475 citations and an average of 47.5 citations per article, 
reflecting its significant influence in the field of crack detection.

The journal is further supported by a robust impact factor of 9.6 and 
an H-index of 23. Applied Science-Basel ranks as the second most pro
ductive journal, with 39 publications garnering 505 citations and an 
average of 12.95 citations per article, indicating a solid academic 
contribution. In third place, IEEE Transactions on Intelligent Trans
portation Systems contributes 31 publications and has received 1408 

Table 3 
Summary of the top-cited articles.

Ref Journal Corresponding 
Author

Citation Average 
Citation 
Year

Cha et al. (2017) Computer-Aided 
Civil and 
Infrastructure 
Engineering

Young-Jin Cha 2042 291.7

Cha et al. (2018) Computer-Aided 
Civil and 
Infrastructure 
Engineering

Young-Jin Cha 980 163.3

Dung (2019) Automation in 
Construction

Cao Vu Dung 682 136.4

Zhang et al. 
(2017)

Computer-Aided 
Civil and 
Infrastructure 
Engineering

Allen A, Zhang 629 89.9

Gopalakrishnan 
et al. (2017)

Construction and 
Building 
Materials

Kasthuriangan 
Gopalakrishnan

588 84

Zou et al. (2018) IEEE 
Transactions on 
Image Processing

Qin Zou 512 102.4

Yang et al. 
(2019)

IEEE 
Transactions on 
Intelligent 
Transportation 
systems

Fan Yang 490 122.5

Dorafshan et al. 
(2018)

Construction and 
Building 
Materials

Sattar 
Dorafshan

421 81.7

Li and Zhao 
(2019)

Computer-Aided 
Civil and 
Infrastructure 
Engineering

Xuefeng Zhao 305 71

Huang et al. 
(2018)

Tunnelling and 
Underground 
Space 
Technology

Hongwei Huang 298 49.7
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citations, averaging 45.42 citations per article, alongside an impact 
factor of 7.9 and an H-index of 14.

Given the consideration of citation counts, Computer-Aided Civil and 
Infrastructure Engineering stands out with the highest total citations, 
accumulating 6165 across 29 publications and achieving an exceptional 
average of 212.59 citations per article. This demonstrates the substantial 
impact of its published articles on subsequent research within the field 
of crack detection. Construction and Building Materials also demon
strates strong performance, with 28 publications and 1835 citations, 
averaging 65.54 citations per article, along with an impact factor of 7.4 
and an H-index of 14. Other notable journals include IEEE Access (30 
publications, 878 citations), Structural Health Monitoring - An Inter
national Journal (27 publications, 760 citations) and Sensors (25 pub
lications, 349 citations). The International Journal of Pavement 
Engineering published 18 articles with 388 citations, while Structural 
Control and Health Monitoring contributed 15 publications and 900 
citations.

These journals play a vital role in advancing crack detection research 
by disseminating influential studies and fostering technological inno
vation. Journals like Computer-Aided Civil and Infrastructure Engi
neering and Automation in Construction stand out as authoritative 
sources, reflecting their pivotal role in promoting foundational theories 
and methodologies. Their ability to attract and disseminate high-impact 
research underscores their influence in shaping advancements in crack 
detection. Overall, these journals provide a strong foundation for future 
interdisciplinary studies and contribute to the ongoing development of 
structural health monitoring technologies.

4.2.2. The most productive authors
In this section, the authors with the highest productivity in this field 

are analyzed. A total of 1124 authors were identified from the 695 ar
ticles collected. The top five authors were selected for detailed exami
nation based on publication numbers and citation numbers. Table 5
summarizes these most productive authors, including their total number 

of publications, total citations, average citations, the number of times 
they acted as first author, and H-index.

In terms of publication numbers, Allen A, Zhang leads with 13 
publications, accumulating 1352 citations and an average of 104 cita
tions per article. Additionally, Zhang has served as first author three 
times and has an H-index of 6, reflecting a high level of research activity 
and impact within the field of crack detection. K.C.P. Wang follows 
closely with 11 publications, totaling 1270 citations and an average of 
115.45 citations per article. However, Wang has not acted the first 
author role, and his H-index is 5. Niannian Wang has published 8 articles 
that have received a total of 122 citations, with an average of 15.25 
citations per article. Although both Lei Wang and Gye-Chun Cho have 
published 6 articles, their impact on the field differs significantly. Spe
cifically, Lei has 112 citations (averaging 18.67 citations per article) and 
an H-index of 4, having served as the first author three times. In contrast, 
Gye-Chun has 151 citations (averaging 25.17 citations per article) but 
has not published as the first author, and with an H-index of 6.

Regarding citation impact, Young-jin Cha stands out with 5 publi
cations and a remarkable total of 3667 citations, averaging 733.4 cita
tions per article, which highlights the significant impact of Cha’s work. 
Wooram Choi follows with only 3 publications but has garnered 3303 
citations, averaging 1101 citations per article, along with an H-index of 
3. Similarly, Oral Buyukozturk has only published two articles but has 
accumulated 3022 citations, averaging 1511 citations per article. This 
demonstrates the substantial impact of his research, reflected in his H- 
index of 2. Notably, both Allen A. Zhang and K.C.P. Wang appear in both 
categories, highlighting their versatility and sustained influence in crack 
detection research.

The analysis of the most productive authors highlights key contrib
utors to the field of crack detection, with several authors demonstrating 
both high publication counts and significant citation impact. While 
Allen A. Zhang and K.C.P. Wang exemplify sustained productivity and 
versatility, authors like Young-jin Cha, Wooram Choi, and Oral Buyu
kozturk have made substantial contributions through highly impactful 
individual publications.

4.2.3. The most productive countries
In this section, the authors have organized data from the 695 

collected articles to analyze the contributions of countries in this field. 
The analysis reveals that the articles originate from 61 different coun
tries or regions. Fig. 4 illustrates the distribution of these publications, 
with the size of the circles representing the number of articles published 
by each country or region. Notably, China has the highest publication 
count, accounting for 53.53% of the total articles, while the United 
States ranks second, contributing approximately 14.39%. Additionally, 
the authors have compiled statistics for the top ten countries by 

Table 4 
Details of the most productive journals.

Journal Name TPs TCs ACs IF H- 
Index

Automation in Construction 52 2475 47.5 9.6 23
Applied Science-Basel 39 505 12.95 2.5 12
IEEE Transactions on Intelligent 

Transportation systems
31 1408 45.42 7.9 14

IEEE Access 30 878 29.27 3.9 16
Computer-Aided Civil and 

Infrastructure Engineering
29 6165 212.59 8.5 19

Construction and Building Materials 28 1835 65.54 7.4 14
Structural Health Monitoring-an 

International Journal
27 760 28.15 5.7 12

Sensors 25 349 13.96 3.4 9
International Journal of Pavement 

Engineering
18 388 21.56 3.8 8

Structural Control and Health 
Monitoring

15 900 60 4.6 10

Engineering Applications of Artificial 
Intelligence

14 205 14.64 7.5 7

Measurement 13 293 22.54 5.2 9
Journal of Civil Structural Health 

Monitoring
12 256 21.33 3.6 7

Remote Sensing 11 130 11.82 4.2 6
Smart Structures and Systems 11 42 3.82 2.37 4
Journal of Computing in Civil 

Engineering
10 778 77.8 4.7 7

Journal of Transportation 
Engineering, 
Part B: Pavements

10 126 12.6 1.9 8

Tunnelling and Underground Space 
Technology

9 453 50.33 6.7 6

Advanced Engineering Informatics 8 331 41.38 8 4
Engineering Structures 8 169 21.13 5.6 4

Table 5 
Details of the most productive authors.

Author’s 
Name

TPs TCs ACs As 1st 
Author

H- 
index

Based on 
Publications

Allen A, 
Zhang

13 1352 104 3 6

K.C.P, Wang 11 1270 115.45 0 5
Niannian, 
Wang

8 122 15.25 1 5

Lei, Wang 6 112 18.67 3 4
Gye-Chun, 
Cho

6 151 25.17 0 6

Based on 
Citations

Young-jin Cha 5 3667 733.4 2 5
Wooram, 
Choi

3 3303 1101 1 3

Oral 
Buyukozturk

2 3022 1511 0 2

Allen A, 
Zhang

13 1352 104 3 6

K.C.P, Wang 11 1270 115.45 0 5
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publication volume, as detailed in Table 6. This table includes total 
publications, total citations, average citations, and the number of arti
cles with citations greater than or equal to 100, 50, and 10, as well as the 
H-index for each country.

According to Table 6, China leads significantly with 372 total pub
lications and an impressive 10024 citations, resulting in an average of 
26.95 citations per article. Additionally, China has the highest H-index 
of 49, indicating substantial impact within the field. The United States 
follows with 100 publications and 9571 citations, achieving an average 
of 95.71 citations per article and an H-index of 36. South Korea ranks 
third with 68 publications and 2829 citations, averaging 41.6 citations 
per article, and an H-index of 25. Moreover, China not only leads in total 
publications but also has 23 articles with over 100 citations and 49 ar
ticles with more than 50 citations, reflecting the high impact of its 
research. The United States has 21 articles cited over 100 times and 31 
articles exceeding 50 citations, demonstrating a strong influence in the 
field. In contrast, countries like India and the United Kingdom show 
limited high-impact publications, with India having no articles cited 
more than 100 times. While Canada has a notable average citation score, 
it has only 6 articles with over 100 citations.

Overall, China and the United States remain the most influential 
contributors, with China leading in total publications and citations, 
while the United States excels in average citations per article. South 
Korea ranks third, making significant research contributions, whereas 
countries like India and the United Kingdom demonstrate fewer high- 
impact publications. Despite Canada’s limited output, its high average 
citation performance reflects the quality and impact of its research.

4.3. Science mapping analysis

4.3.1. Co-citation analysis
Co-Citation Analysis is recognized as an important science mapping 

technique for evaluating the relationships between cited sources and 
authors. For instance, when Paper 3 concurrently cites Papers 1 and 2, it 

establishes a Co-Citation that signifies a scholarly linkage between the 
two works. Therefore, this section involves a Co-Citation analysis car
ried out by the authors to investigate the connections between journals 
and authors. Citing two sources or authors together suggests a shared 
research field and interest, thereby illuminating the intellectual land
scape surrounding crack detection methods in various structures. To 
ensure the relevance and interpretability of the analysis, a citation 
threshold of 20 was set. This threshold was chosen to focus on journals 
with substantial scholarly recognition, as sources with fewer citations 
often provide limited insights into the field’s intellectual structure. 
Consequently, 18 journals meeting this criterion were included in the 
analysis.

Table 7 presents the Co-Citation indices of the sources, including 
citation counts and Total Link Strength, where Total Link Strength refers 
to the overall measure of Co-Citation frequency. Furthermore, the au
thors used VOSviewer software to create a visual map of the journals’ 
Co-Citation networks, providing a more intuitive understanding of the 
link model, as illustrated in Fig. 5. This figure categorizes the different 
journals into four groups, represented by red, green, blue, and yellow. 
Each node symbolizes a particular source, with larger nodes denoting 
higher Co-Citations, and thicker links between nodes indicating a 
stronger connection between the associated sources.

The red cluster comprises five sources, in which Automation in 
Construction and Computer-Aided Civil and Infrastructure Engineering 
contribute the most significantly. These two journals exhibit 17 con
nections with other literature, although their contributions differ. Spe
cifically, Automation in Construction has 308 citations and a Total Link 
Strength of 4165, whereas Computer-Aided Civil and Infrastructure 
Engineering has 249 citations and a Total Link Strength of 3494. Their 
high Co-Citation link strength indicates their role as key nodes for 
foundational and interdisciplinary research, bridging civil engineering, 
computer vision, and advanced data analytics.

Similarly, the green cluster also contains five sources, in which 
Sensors is the most influential, generating 195 citations and a Total Link 
Strength of 2466. Construction and Building Materials follows closely, 
with 152 citations and a Total Link Strength of 2068. The blue and 
yellow clusters each include four sources, including Journal of 
Computing in Civil Engineering and IEEE Access, which have 124 cita
tions and a Total Link Strength of 1836, and 145 citations and a Total 
Link Strength of 1863, respectively.

Fig. 4. Geographical distribution of publications.

Table 6 
Details of the most productive countries.

Country TPs TCs ACs ≥100 ≥50 ≥10 H-Index

China 372 10024 26.95 23 49 162 49
United States 100 9571 95.71 21 31 59 36
South Korea 68 2829 41.6 6 18 45 25
India 32 414 12.94 0 2 10 10
United Kingdom 26 388 14.92 1 2 8 9
Australia 25 910 36.4 3 8 14 12
Canada 23 4219 183.43 6 8 15 13
Japan 19 1184 62.32 2 5 11 9
Vietnam 14 1260 90 2 3 9 9
Germany 11 105 9.54 0 0 3 5

Table 7 
Co-citation indices of the sources.

Source Citations Total Link 
Strength

Automation in Construction (Autom Constr) 308 4165
Computer-Aided Civil and Infrastructure Engineering 

(Comput-aided Civ Inf)
249 3494

Sensors 195 2466
Construction and Building Materials (Constr Build 

Mater)
152 2068

IEEE Access (IEEE Access) 145 1863
Journal of Computing in Civil Engineering (J Comput 

Civil Eng)
124 1836

IEEE Transactions on Intelligent Transportation 
Systems (IEEE T Intell Transp)

143 1570

arXiv (Arxiv) 107 1420
Proceedings CVPR IEEE (Proc CVPR IEEE) 100 1258
Structural Health Monitoring (Struct Health Monit) 86 1137
Applied Science (Appl Sci) 86 1111
IEEE Transactions on Pattern Analysis and Machine 

Intelligence (IEEE T Pattern Anal)
93 1059

Neurocomputing (Neurocomputing) 43 639
Measurement 40 622
Structural Control & Health Monitoring (Struct 

Control Monit)
34 569

Sustainability 35 519
Proceedings ICCV IEEE (Proc ICCV IEEE) 28 407
Communications of the ACM (Commun Acm) 22 335
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These findings highlight the critical role of journals like Automation 
in Construction and Computer-Aided Civil and Infrastructure Engi
neering in advancing foundational research in crack detection field. This 
analysis can help researchers identify high-impact journals for pub
lishing their findings, thereby driving innovation in the field of crack 
detection.

In addition, the authors also analyzed the Co-Citation network of the 
cited authors to identify key contributors and collaborative relationships 
within the field. Based on citation numbers, the top fifteen authors were 
selected and summarized in Table 8, which includes the cited authors, 
citation numbers, and Total Link Strength. Similarly, VOSviewer soft
ware was employed to generate a visual map of the authors’ Co-Citation 
networks, as presented in Fig. 6. The authors are grouped into three 
clusters, represented by red, green, and blue.

The red cluster consists of six authors, with Young-Jin Cha being the 
most prominent, having 421 citations and a Total Link Strength of 1943. 
In addition, Cha’s work has the highest citation number among all the 
authors, which indicates that Cha’s work is not only widely referenced 
but also significantly interconnected with other research in the field, 
suggesting his influential role in advancing the study of crack detection. 
The second-ranked author is Cao Vu Dung, who has been cited 180 times 
and has a Total Link Strength of 920. Other influential authors include 
Alex Krizhevsky, Karen Simonyan, Sattar Dorafshan, and Yann LeCun, 
with Total Link Strengths of 951, 938, 784, and 832, respectively.

The green cluster also comprises six authors, with K.C.P. Wang 
having the highest citation count at 325 and a Total Link Strength of 
1671. Additionally, Olaf Ronneberger and Lei Zhang demonstrate 

closely aligned impacts within the red cluster, with citation counts of 
219 and 218, respectively, and Total Link Strengths of 1146 and 1160. 
This proximity in their metrics suggests that both Ronneberger and 
Zhang have made comparable contributions to the field, highlighting 
their significance alongside Wang in advancing research on crack 
detection.

The blue cluster contains only three authors: Kaiming He, Joseph 
Redmon, and Ross Girshick. Kaiming He’s influence significantly sur
passes that of the others, with citation counts exceeding those of Red
mon and Girshick by 137 and 153, respectively. Similarly, Kaiming He’s 
Total Link Strength is higher by 833 and 831 compared to the others. 
This demonstrates Kaiming He’s prominent role in the cluster and em
phasizes the impact of his contributions to the field.

The Co-Citation analysis highlights the significant influence of deep 
learning advancements on crack detection research. Several authors in 
the clusters, such as Kaiming He, Alex Krizhevsky, and Yann LeCun, are 
prominent figures in the field of CV, having pioneered foundational 
architectures like ResNet and CNNs. Their contributions have been 
instrumental in shaping the methodologies applied in crack detection, 
particularly in areas like feature extraction, object detection, and se
mantic segmentation. Similarly, researchers like Young-Jin Cha and K.C. 
P. Wang have made creative use of deep learning techniques in crack 
detection, highlighting how innovative applications of these methods 
have significantly contributed to advancements in this field.

The analysis highlights the integration of CV and civil engineering, 
demonstrating that advancements in deep learning-based crack detec
tion are closely tied to the broader development of CV technologies. This 
connection underscores the importance of leveraging progress in CV to 
drive further innovation in structural health monitoring and crack 
detection.

4.3.2. Co-authorship analysis
Co-Authorship analysis is a vital bibliometric method to clarify the 

collaborative relationships among researchers. Collaboration is essential 
in research as it promotes the generation of innovative ideas and sim
plifies the implementation of research tasks. This section presents a Co- 
Authorship analysis of the gathered particles, with countries serving as 
the unit of analysis. A threshold of 20 published articles per country was 
established, and ten countries met this criterion, from which the top five 
were selected for detailed examination. Table 9 summarizes the number 
of articles published by these five countries along with their Total Link 
Strength.

Among all countries, China has published the most articles, totaling 
325. Its collaboration with other nations is also closer, with a Total Link 
Strength of 61, indicating that China occupies an important position in 
international cooperation in the field of crack detection. Australia 

Fig. 5. Network visualization of Co-Citation analysis of the sources.

Table 8 
Author’s Co-Citation indices.

Cited Author Citations Total Link Strength

Young-Jin, Cha 421 1943
K.C.P, Wang 325 1671
Kaiming, He 310 1716
Qin, Zou 268 1482
Olaf Ronneberger 219 1146
Lei, Zhang 218 1160
Yong, Shi 187 1008
Cao Vu, Dung 180 920
Alex Krizhevsky 178 951
Joseph Redmon 173 833
Karen Simonyan 171 938
Sattar Dorafshan 167 784
Ross Girshick 157 885
Yann LeCun 148 832
Vijay Badrinarayanan 140 809

Fig. 6. Network visualization of Co-Citation analysis of the authors.
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contributes 48 articles to the green cluster; however, its Total Link 
Strength is only 7, indicating limited academic cooperation with other 
nations. The United States contributes 111 articles, significantly fewer 
than China; however, its Total Link Strength is only 8 points lower than 
that of China. This indicates that the United States has closer collabo
ration with other countries in the field of crack detection. South Korea 
and the United Kingdom contributed 94 and 54 articles, with Total Link 
Strengths of 10 and 21, respectively.

4.3.3. Co-occurrence analysis of keywords
The Co-Occurrence analysis of keywords aims to reveal the re

lationships and trends among research topics. This is accomplished by 
examining the frequency with which keywords appear together in the 
literature, thus reflecting the hotspots and current issues in the research 
field. This section details a Co-Occurrence analysis conducted by the 
authors on the gathered articles, identifying a total of 2219 keywords 
from 695 articles. A threshold of 28 was established based on the fre
quency of keyword occurrence, resulting in 18 keywords that met this 
criterion. VOSviewer software was utilized to create a scientific land
scape of the Co-Occurrence networks, as shown in Fig. 7. The size of 
each node represents the frequency of keyword occurrence, larger nodes 
indicate that the keywords are used more frequently and are more sig
nificant. The lines connecting the nodes represent the frequency with 
which pairs of keywords co-occur. A thicker line suggests that the two 
keywords are mentioned together more often. All keywords were cate
gorized into three clusters: red, green, and blue, summarized in 
Table 10. Additionally, Table 11 presents the top ten keywords by fre
quency along with their corresponding Total Link Strengths.

All keywords were categorized into three clusters: red, green, and 
blue, as summarized in Table 10. Additionally, Table 11 presents the top 
ten keywords by frequency along with their corresponding Total Link 
Strengths. The red cluster comprises nine keywords, with “Deep 
Learning” having the largest node size, indicating that it appears most 
frequently, totaling 446 occurrences, and has a Total Link Strength of 
759. Other frequently occurring keywords include “Image Segmenta
tion” and “Semantic Segmentation,” which appear 75 and 43 times, 
respectively.

In the green cluster, “Crack Detection” is the leading keyword, 
appearing 216 times with a Total Link Strength of 529. Other keywords 
in this cluster include “Computer Vision,” “Image Processing,” “Crack 
Segmentation,” and “Machine Learning,” with frequencies of 57, 43, 32, 
and 28, respectively. The blue cluster contains only four keywords, with 
“CNN” appearing most frequently at 153 times and having a Total Link 
Strength of 370. This suggests that CNN-based algorithms continue to be 
a predominant method for crack detection.

The keyword analysis reveals the continuous progression of crack 

detection research, with deep learning and segmentation techniques 
remaining central to its development. Additionally, the significant role 
of machine learning and image processing across various fields high
lights potential opportunities for integrating advanced technologies, 
such as transformer-based models and multimodal data fusion.

5. Critical analysis

Following the analysis of the collected articles and the bibliometric 
examination of keywords, the authors concluded that deep learning- 
based crack detection technology remains a prominent research area, 
drawing considerable interest from researchers both now and in the 
future. Therefore, in this section, the authors conducted a comprehen
sive study of deep learning-based crack detection technology and per
formed a critical analysis of the relevant articles. They selected 40 
articles from the collected data and categorized them according to the 
type of computer vision employed, specifically classification, object 
detection, and semantic segmentation. Subsequently, the authors 
analyzed these articles based on their problem statements, research 
methods, and results, raising the following questions.

Q1. What deep learning-based method is used in the paper?
Q2. What backbones does the deep learning-based method use?
Q3. What dataset is used in the paper?
Q4. What defects does the paper consider?
Q5. Which loss function is used in the paper?
Q6. What performance levels are reached in the paper?
The answers to these questions are summarized in Tables 12–14 for 

papers in various categories.

Fig. 7. Network visualization of Co-Occurrence analysis of the keywords.

Table 9 
Co-Authorship indices of the countries.

Country Documents Total Link Strength

China 325 61
United States 111 53
South Korea 94 10
United Kingdom 54 21
Australia 48 7

Table 10 
Summary of the resulting clusters related to keyword analysis.

Cluster 
Color

Keywords No. of 
Keywords

Red Deep Learning, Image Segmentation, Attention 
Mechanism,

9

U-Net, Semantic Segmentation, Object Detection, 
Roads, Feature Extraction, Pavement Crack Detection

Green Crack Detection, Computer Vision, Image Processing, 
Crack Segmentation, Machine Learning

5

Blue CNN, Damage Detection, Transfer Learning, 
Structural Health Monitoring

4

Table 11 
Details of the top 10 keywords.

Keywords Frequency Total Link Strength

Deep Learning 446 759
Crack Detection 216 529
CNN 153 370
Image Processing 73 192
Convolution 43 172
Image Segmentation 43 159
Concretes 37 155
Semantic Segmentation 75 152
Computer Vision 57 139
Structural Health Monitoring 51 132
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5.1. Classification

Classification is a fundamental task in CV that involves categorizing 
input images into predefined classes. In crack detection, classification 
involves identifying and labeling regions in images that contain cracks, 
and distinguishing them from regions that do not. One of the pioneering 
efforts in this area was made by (Cha et al., 2017), who proposed a 
CNN-based method that achieved an impressive accuracy of 98%. This 
model used a sliding window technique to detect cracks under chal
lenging conditions, such as strong lighting, shadows, and thin cracks. 
This approach laid the groundwork for subsequent advancements in 
CNN-based crack detection. Following this (Gopalakrishnan et al., 
2017), introduced a pretrained VGG16 network on the ImageNet data
base, demonstrating transfer learning technique can improve network 
performance when dealing with diverse pavement surfaces. The VGG16 
architecture has stacked convolutional layers that allow it to capture 
hierarchical features in images, making it well-suited for recognizing 
crack patterns on varying surfaces. Building on the success of VGG16 
(Dung, 2019), compared multiple network architectures, including a 
shallow CNN, pretrained VGG16 features, and a fine-tuned VGG16 
model, to detect cracks. In the fine-tuned VGG16 model, only the final 
convolutional block and fully connected layer were trained, while the 
rest of the network was frozen to prevent overfitting and retain pre
trained knowledge. This approach was supported by data augmentation 
and highlighted the effectiveness of transfer learning and fine-tuning for 
complex crack detection tasks. Similarly, the VGG16 model was also 
utilized by (Silva and Lucena, 2018) for detecting cracks on concrete 

surfaces, focusing on transfer learning to address challenges posed by a 
small dataset. By fine-tuning the learning rate and the number of fully 
connected layer nodes, the model achieved a promising performance 
and demonstrated robustness across varying conditions such as lighting, 
surface texture, and humidity. Building upon the foundation established 
by VGG16 and other CNN-based methods, the introduction of residual 
learning with ResNet took crack detection to new heights by enabling 
deeper architectures without sacrificing accuracy.

The introduction of ResNet (He et al., 2016) was a groundbreaking 
development that addressed the limitations of traditional CNNs by 
enabling deeper networks without sacrificing accuracy, significantly 
advancing the field of crack detection. For instance, ResNet50 was uti
lized by (Billah et al., 2019) to detect cracks in civil infrastructure, 
achieving 94% accuracy on the dataset under varying conditions. 
Similarly, multiple pretrained networks for crack classification, 
including AlexNet, VGG16, VGG19, and ResNet50, were evaluated by 
(Paramanandham et al., 2022). The experiments demonstrated that 
ResNet50 achieved the highest accuracy among these models, high
lighting its advantages in terms of performance and efficiency for crack 
detection. Building on success of ResNet, various improved versions 
have been proposed to address specific challenges in crack detection. 
The introduction of ReCRNet by (Reis, et al., 2021) presented a light
weight architecture inspired by ResNet. This network features a 
streamlined structure, which includes a Stem block, two ResBlocks, a 
Conv Layers block, and a classifier block. This design enabled fast and 
accurate classification, outperforming AlexNet and VGG19 in different 
metrics such as accuracy, precision, recall, and F1-score. The extension 

Table 12 
Summary of Deep Learning techniques for crack classification.

Ref Method Backbone Dataset Surface Loss Function Performance

Cha et al. (2017) CNN – Own collection Concrete structure Softmax Accuracy = 98%
Gopalakrishnan et al. (2017) DCNN VGG16 Own collection Pavement, Concrete structure MSE Accuracy = 97%
Dung (2019) CNN VGG16 Own collection Concrete structure Binary Cross-Entropy Accuracy = 97%
(Silva and Lucena, 2018) CNN VGG16 Own collection Concrete structure – Accuracy = 92.27%
Billah et al. (2019) CNN ResNet50 Own collection Concrete structure, 

Road,
– Accuracy = 94%

Paramanandham et al. (2022) CNN ResNet50 Own collection Concrete structure Cross-Entropy Accuracy = 99.92%
(Reis, et al., 2021) ReCRNet ResNet50 REB dataset Concrete structure Binary Cross-Entropy Accuracy = 92.3%
Li et al. (2023) CNN ResNet50 Own collection Bridge SSD Accuracy = 96.24%,

Precision = 97.82%
Li et al. (2019) CNN AlexNet Own collection Bridge Softmax Accuracy = 99.09%
Palevičius et al. (2022) CNN AlexNet Own collection Concrete structure – Accuracy = 99.41%
Islam et al. (2022) CNN AlexNet CCIC Bridges, Pavement Cross-Entropy Accuracy = 99.9%,

Precision = 99.92%,
Recall = 99.8%,
F1-score = 99.89%

Table 13 
Summary of Deep Learning techniques for crack object detection.

Ref Method Backbone Dataset Surface Loss Function Performance

Cha et al. (2018) Faster R-CNN – Own collection Concrete structure, Steel Corrosion Regression Loss mAP = 87.8%
(Nie and Wang, 2019) YOLOv3 CSPDarknet53 Own collection Road Cross-Entropy Accuracy = 88%
Yao et al. (2021) YOLOv4 CSPDarknet53 Own collection Concrete structure Cross-Entropy mAP = 94.09%,

FPS = 44
Ren et al. (2023) YOLOv5 Customized CNN RDD2020 Road CIoU Precision = 79.8%
Su et al. (2024) MOD-YOLO CSPDarknet53 Own collection Concrete structure – mAP = 91.1%,

FPS = 118.8
Xing et al. (2023) YOLOv5 CSPDarknet53 Own collection Road CIoU mAP = 85%
Kao et al. (2023) YOLOv4 CSPDarknet53 SDNET 2018, Own collection Concrete structure CIoU Accuracy = 92%
(Qiu and Lau, 2023) YOLOv2 ResNet50 Own collection Concrete structure CIoU Accuracy = 94.54%,

FPS = 71.71
Li et al. (2023) Faster R-CNN VGG16 Own collection Concrete structure RPNLogLoss, 

RCNNLogLoss, 
RPNL1Loss, 
RCNNL1Loss

Precision = 91.8%, 
Recall = 93%, 
F1-score = 92.4%

He et al. (2023) MUENet YOLOX-S Own collection Road RegLoss, mAP = 83.1%
ClsLoss,
ObjLoss
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of ResNet application by (Li et al., 2023) involved using ResNet34 and 
ResNet50 for binary and multi-label classification of pavement distress. 
The results showed ResNet50 achieved 96.24% accuracy in binary 
classification and 90.257% in multi-label classification, meeting the 
Chinese standard (JTG H202018) for road distress detection.

AlexNet, a foundational network in crack detection classification 
tasks, has been widely employed and optimized for enhanced perfor
mance in various specialized applications. The study by (Li et al., 2019) 
explored the impact of different parameter settings, such as learning 
rates, on the performance of AlexNet. Through extensive 

experimentation and continuous adjustments to the architecture and 
hyperparameters, the network achieved a validation accuracy of 99.06% 
on high-resolution images, demonstrating its robust crack detection 
performance. The model was further integrated into a smartphone 
application, offering a mobile tool for on-site crack detection. The 
generalization of AlexNet under complex lighting conditions was 
improved by (Palevičius et al., 2022) through the introduction of a 
shadow augmentation technique, which generated a dataset rich in 
shadowed crack samples. By training AlexNet on this augmented data
set, the network demonstrated superior performance in classifying 

Table 14 
Summary of Deep Learning techniques for crack segmentation.

Ref Method Backbone Dataset Surface Loss Function Performance

Cheng et al. (2018) U-Net – CFD, 
AigleRN

Concrete structure, 
Pavement

Cross-Entropy Precision = 92.12%, 
Recall = 95.7%, 
F1-score = 93.88%

Yu et al. (2022) RUC-Net Customized CNN DeepCrack, 
Crack500, 
CFD

Concrete structure, 
Pavement

Focal Loss Precision = 88.33%, 
Recall = 81.2%, 
F1-score = 84.61%, 
IoU = 73.33

Al-Huda et al. (2023) ADDU-Net Customized CNN DeepCrack, 
Crack500, 
CFD, 
CrackSC

Concrete structure, 
Pavement

Dice Loss Precision = 90.7%, 
Recall = 92.4%, 
F1-score = 91.5%, mIoU = 92%

Ali et al. (2024) RS-Net Customized CNN DeepCrack, 
CrackTree, 
Crack500, 
CFD

Concrete structure, 
Pavement

Binary 
Cross-Entropy

Accuracy = 97.8%, 
Precision = 72.06%, 
Recall = 64.41%

Fu et al. (2021) DeepLaBv3+ – Own collection Pavement – mIoU = 82.37%
Li et al. (2024) DeepLaBv3+ – Crack500, 

GAPs384
Pavement Dice Loss Accuracy = 98.62%, 

IoU = 54.91%, 
Precision = 68.87%, 
Recall = 72.38%

Dung (2019) FCN VGG16 Own collection Concrete structure Binary 
Cross-Entropy

F1-score = 89.3%, 
AP = 89.3%

Yang et al. (2023) PHCF-Net U-Net DeepCrack, 
CFD

Concrete structure, 
Pavement

Binary 
Cross-Entropy

Precision = 96%, 
Recall = 95.5%, 
Dice = 90.7%, mIoU = 90.3%

(Wang and Su, 2022) SegCrack PVT Own collection Concrete structure, 
Pavement

Dice Loss Precision = 96.66%, 
Recall = 95.46%, 
F1-score = 96.05%, mIoU = 92.63%

Xiao et al. (2023) CrackFormer Transformer Crack500, 
CrackTree260, 
CRKWH100, 
CrackLS315, 
Stone331, 
GAPs384

Concrete structure, 
Pavement

Equalized Focal Loss Precision = 93.76%, 
Recall = 93.52%, 
F1-score = 93.64%

Yu et al. (2024) CSTF Swin 
Transformer

Crack500, 
CrackTree260, 
CRKWH100, 
CrackLS315, 
DeepCrack, 
CFD

Concrete structure, 
Pavement

Focal Loss mIoU = 81.3%

Wang et al. (2024) SwinCrack Swin 
Transformer

Crack500, 
Crack260, 
CrackLS315, 
Stone331, 
WHCF218

Concrete structure, 
Pavement

– AP = 80.8%, 
ODS = 74.8%, 
OIS = 78.1%

Wang et al. (2024) Crackmer – DeepCrack, 
CrackForest, 
CrackTree260

Concrete structure, 
Pavement

Binary 
Cross-Entropy

Accuracy = 98.49%, 
F1-score = 85.68%, mIoU = 87.04%

Xiong et al. (2024) DefNet – CrackLS315, 
CrackTree260, 
DeepCrack537

Concrete structure, 
Pavement

BCE_Loss 
Dice_Loss

Precision = 91.31%, 
F1-score = 85.57%

Lu et al. (2024) Crack_PSTU – CFD Concrete structure, 
Pavement

BCELoss Precision = 96.95%, 
F1-score = 95.61%, 
Recall = 94.83%

Zhao et al. (2021) PANet – Own collection Concrete structure – Accuracy = 80.95%, 
F1-score = 66.12%, 
IoU = 48.82%

Beckman et al. (2019) Faster R-CNN – Own collection Concrete structure – AP = 90.79%
Lin et al. (2023) YOLACT++ – Own collection Pavement – mAP = 82%, 

mIoU = 75%
Pan et al. (2023) 3D crack detection – CFD, 

Crack500
Concrete structure – mIoU = 53.73%
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cracks, outperforming its performance on non-augmented datasets. 
Additionally, the effectiveness of transfer learning was demonstrated by 
comparing AlexNet with deeper networks like ResNet18 and Dense
Net161 (Islam et al., 2022). By leveraging a pretrained AlexNet on a 
large-scale dataset, the network achieved superior accuracy of 99.90% 
on the CCIC dataset.

In conclusion, advancements in crack classification have been 
significantly influenced by the integration of CNNs, transfer learning, 
and data augmentation techniques. Transfer learning has proven 
particularly effective, with pretrained models like VGG16 and AlexNet 
achieving strong performance across varying pavement surfaces. The 
introduction of deeper architectures such as ResNet has further 
advanced the field by enabling deeper models without sacrificing ac
curacy. Additionally, data augmentation techniques have proven 
essential in improving network performance. By increasing the dataset’s 
diversity through transformations like shadow enhancement, rotation, 
and others, the network will exhibit more generalization and robustness 
across varied scenarios.

5.2. Object detection

The application of object detection techniques in crack detection has 
gained significant attention due to their ability to localize damage 
through bounding-box predictions. Pioneering works like Faster R-CNN 
and YOLO revolutionized object detection by introducing bounding- 
box-based localization, making it possible to simultaneously identify 
and localize cracks within large-scale images. Faster R-CNN adopts a 
two-stage process, where a region proposal network first generates po
tential object regions, followed by a classification step. In contrast, 
YOLO streamlines the process using a single-stage detection framework, 
enabling real-time object detection. Building on these foundational in
novations, a crack detection network based on Faster R-CNN was 
developed by (Cha et al., 2018) to detect five types of structural damage, 
including concrete cracks. By generating bounding boxes around regions 
of interest (ROIs) and identifying the most likely damage areas through a 
defined threshold, the proposed network demonstrated superior per
formance across various defect categories, achieving an average preci
sion of 87.8%. In contrast, a YOLOv3-based method was proposed by 
(Nie and Wang, 2019) to overcome the limitations of traditional 
detection techniques, which often suffer from lower accuracy and slower 
real-time performance. Compared to previous CNN-based methods and 
conventional approaches, the YOLOv3 model demonstrated faster 
detection speeds and improved accuracy, highlighting its effectiveness 
for crack detection in road maintenance applications.

With the continuous development of the YOLO series of networks, 
more crack detection studies based on YOLO have been widely pro
posed. A lightweight crack detection network based on YOLOv4 with 
CSPDarknet53 as its backbone was introducted by (Yao et al., 2021). By 
incorporating separable convolutions and an optimized spatial pyramid 
pooling (SPP) module, the model achieved a mAP of 94.09%. Separable 
convolutions reduce computational complexity by breaking down the 
standard convolution operation into smaller, more efficient tasks. 
Meanwhile, the optimized SPP enhances the model’s ability to capture 
multi-scale features, improving overall performance in detecting cracks. 
YOLOv5 was enhanced for large-scale road inspection by (Ren et al., 
2023) through the incorporation a Generalized Feature Pyramid 
Network (Generalized-FPN), which facilitates effective cross-scale 
feature fusion. The Generalized-FPN uses two types of connections: 
skip-layer and cross-scale connections. The skip-layer connection pre
serves low-level features, while the cross-scale connection fuses infor
mation from different layers, enhancing the model’s ability to detect 
road damage at multiple scales. MOD-YOLO was developed by (Su et al., 
2024) through the introduction of innovative modules, including the 
Maintaining the Original Information-Deeply Separable Convolution 
(MODSConv) and Global Receptive Field-Space Pooling Pyramid-Fast. 
These modules improved channel information retention and 

multi-scale feature extraction, leading to a 27.5% accuracy increase 
compared to YOLOX while reducing computational complexity.

As the YOLO series continues to evolve and improve, its integration 
with unmanned aerial vehicles (UAVs) has opened up new possibilities 
for large-scale and real-time crack detection in infrastructure. UAVs 
offer mobility and high-resolution imaging, making them ideal for ap
plications where traditional inspection methods are limited. Recent 
developments have explored the potential of integrating UAVs with 
YOLO models to perform crack detection tasks. The YOLOv5 architec
ture was enhanced by (Xing et al., 2023) through the integration a Swin 
Transformer and Bidirectional Feature Pyramid Network (BIFPN) for 
multi-scale feature fusion, enabling pixel-level precision in detecting 
cracks as narrow as 1.2 mm. The proposed method achieved a crack 
detection accuracy of 90% and a real-time processing speed of 43.5 FPS 
during performance evaluation using UAV-captured highway pavement 
images. Challenges in bridge inspections, such as poor lighting and 
limited accessibility, were addressed by (Kao et al., 2023) through the 
use of a UAV-mounted camera and a YOLOv4 model to detect cracks and 
quantify their dimensions using image processing and scaling methods. 
Expanding on this concept, a UAV-based crack detection system using 
YOLO was developed by (Qiu and Lau, 2023), who investigated the 
impact of different YOLO architectures on detection performance. The 
authors replaced YOLO’s feature extraction network with ResNet50 and, 
through ablation experiments, demonstrated that YOLOv2 and 
YOLOv4-Tiny exhibited superior performance. In addition, both models 
achieved real-time detection speeds of over 80 FPS, making them suit
able for real-time monitoring tasks. In bridge inspections, the DJI 
M210-RTK UAV was utilized by (Li et al., 2023) in combination with the 
Faster R-CNN model based on VGG16 to detect structural cracks and 
investigate the optimal flight distance of the UAV for capturing surface 
details of the structure. Experimental results demonstrated that the 
proposed method outperformed other networks used for comparison 
across various performance metrics. Additionally, the study concluded 
that the optimal flight distance for the UAV is 8.2 m, at which the 
network is capable of detecting cracks as small as 0.2 mm. Meanwhile, a 
UAV-based road crack detection algorithm utilizing the advanced 
MUENet architecture was proposed by (He et al., 2023). The network 
leverages the proposed Main and Auxiliary Dual-Path Module (MADPM) 
to effectively extract the complex morphological features of cracks and 
enhance detection accuracy. Evaluated on UAV-captured near-far scene 
images, MUENet demonstrated significantly superior performance in 
both accuracy and detection speed compared to other detection 
algorithms.

Overall, crack detection through object detection has evolved into a 
rapidly advancing domain, driven by innovations in network design, loss 
optimization, and real-world deployment strategies. CSPDarknet53 has 
been widely adopted in YOLO-based models due to its ability to balance 
high-resolution feature extraction and computational efficiency. This 
backbone enhances detection accuracy by capturing both fine-grained 
and global features while maintaining real-time processing capabil
ities, making it ideal for complex crack detection tasks. Another critical 
factor is the strategic use of loss functions like CIoU and Cross-Entropy, 
which have effectively addressed the challenges of accurate object 
localization and robust classification by minimizing false positives and 
improving precision. Moreover, the integration of UAVs has expanded 
the practical applications of crack detection systems. UAV-based sys
tems equipped with advanced object detectors like YOLOv5 and Faster 
R-CNN allow for the inspection of hard-to-reach areas, improving 
operational efficiency and enabling large-scale, real-time monitoring. As 
research continues with hybrid architectures and feature fusion tech
niques, future crack detection systems are expected to be more adaptive 
and seamlessly integrated into broader structural health monitoring 
frameworks.
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5.3. Segmentation

Semantic segmentation plays a crucial role in crack detection tasks 
by providing pixel-level classification, where each pixel in an image is 
assigned a label corresponding to either crack or non-crack regions. 
Unlike object detection methods that rely on bounding boxes for local
ization, segmentation approaches allow for precise delineation of crack 
boundaries, making them particularly effective for applications in civil 
infrastructure maintenance, where accurate crack morphology is critical 
for quantification and structural assessments. Recent research has 
introduced various deep learning models and their extensions to effec
tively detect cracks across diverse environmental conditions and struc
tural scenarios.

An automatic crack detection method using the U-Net architecture 
was introducted by (Cheng et al., 2018), leveraging an encoder-decoder 
structure to process entire images without the need for mini-patches. To 
enhance pixel-level segmentation precision, a novel cost function based 
on distance transform was employed. Evaluations on road crack datasets 
demonstrated accuracies exceeding 92%, outperforming traditional 
methods. Despite its success, U-Net exhibited limitations, such as blurry 
feature maps and errors in skip connections, which hindered perfor
mance in more complex scenarios. To address these limitations, 
RUC-Net was developed by (Yu et al., 2022), combining U-Net with 
ResNet and introducing spatial-channel squeeze and excitation (scSE) 
attention modules to enhance relevant feature extraction. Additionally, 
RUC-Net employed a focal loss function to mitigate class imbalance is
sues commonly found in crack segmentation tasks, resulting in improved 
segmentation performance under complex backgrounds. Building on 
attention-based improvements, the Asymmetric Dual-Decoder U-Net 
(ADDU-Net) was introducted by (Al-Huda et al., 2023) to tackle the 
segmentation of both thick and thin cracks on pavement surfaces under 
diverse environmental conditions. By integrating a dual attention 
module and an asymmetric dual-decoder design, ADDU-Net effectively 
captured features of both large and fine cracks. Its comprehensive design 
demonstrated superior segmentation accuracy and robustness across 
various datasets, further extending the capabilities of U-Net-based ar
chitectures. The Residual Sharp U-Net (RS-Net) was proposed by (Ali 
et al., 2024) to address remaining challenges related to feature extrac
tion and skip connections. RS-Net incorporated residual blocks to 
enhance feature extraction and replaced standard skip connections with 
a sharpening kernel filter to refine feature maps. This design resulted in 
significant performance improvements, and demonstrated superior re
sults in both crack segmentation and severity assessment compared to 
previous U-Net variants.

In parallel, the DeepLab family of architectures has also made sig
nificant contributions to crack segmentation. The DeepLabv3+ network 
was enhanced by (Fu et al., 2021) by incorporating a densely connected 
ASPP module to expand the receptive field and improve pixel-level 
detail extraction. The model demonstrated superior segmentation ac
curacy in bridge crack detection. A pavement crack segmentation 
approach was propsoed by (Li et al., 2024) through the integration of an 
External Attention Block into the ASPP module of the DeepLabV3+. This 
modification allowed for improved long-range feature extraction and 
better context aggregation, which is critical for accurate segmentation in 
complex environments. Additionally, Fully Convolutional Network 
(FCN)-based models have also been influential in advancing crack seg
mentation. A deep FCN model was explored in (Dung, 2019), which used 
VGG16 as the encoder backbone for semantic segmentation of concrete 
cracks. To further address issues related to incomplete and discontin
uous cracks, PHCF-Net was proposed in (Yang et al., 2023), which in
tegrates progressive context fusion (PCF) and hierarchical context fusion 
(HCF) blocks. By aggregating local and global context information 
efficiently and enhancing feature extraction at various scales using a 
multi-scale context fusion (MCF) block, PHCF-Net consistently out
performed mainstream segmentation networks on publicly available 
datasets.

Although CNN-based models have demonstrated strong performance 
in crack segmentation, they still face limitations in capturing long-range 
dependencies and contextual information due to their relatively small 
receptive fields. To address these challenges, recent advancements have 
turned toward transformer-based architectures, which can effectively 
model global dependencies while maintaining pixel-level detail. A 
transformer-based model SegCrack was proposed by (Wang and Su, 
2022) to focus on diverse field inspection scenarios. The hierarchically 
structured transformer encoder of SegCrack generates multiscale fea
tures that are progressively up-sampled and fused through a top-down 
pathway with lateral connections. An online hard example mining 
strategy was applied to prioritize difficult samples during training, 
improving detection accuracy in challenging environments. SegCrack 
laid the foundation for integrating multiscale feature extraction and 
robust training strategies into transformer-based segmentation net
works. Building on this concept, CrackFormer, a transformer-based 
hybrid-window attentive vision framework, was introduced by (Xiao 
et al., 2023) to address challenges posed by complex pavement crack 
patterns and environmental conditions. CrackFormer’s hybrid-window 
self-attention mechanism combines dense local windows for 
fine-grained feature extraction with sparse global windows for capturing 
contextual information. Further extending the capabilities of hybrid 
attention mechanisms, CSTF, a segmentation network that leverages the 
Swin Transformer encoder, was proposed by (Yu et al., 2024). Unlike 
traditional models that struggle with detecting long and thin cracks, 
CSTF utilizes hierarchical and shifted window attention mechanisms to 
capture both local and global semantic information. A feature pyramid 
pooling module and dual-branch decoder further enhance its ability to 
detect cracks at multiple scales while preserving crucial details. Swin
Crack, an end-to-end detection network proposed by (Wang et al., 2024, 
simulates long-range interactions while preserving local details through 
adaptive spatial aggregation. SwinCrack differs from CSTF by inte
grating advanced convolutional modules, such as the Convolutional 
Patch Embedding Layer (CPEL) and Convolutional Swin Transformer 
Block (CSTB), to improve spatial context modeling. The 
Depth-convolution Forward Network (DFN) enhances local feature 
extraction, while the Convolutional Attention Gated Skip Connection 
(CAGSC) suppresses background interference, leading to superior per
formance in complex real-world crack segmentation tasks.

While CNNs and transformers have individually driven significant 
advancements in crack segmentation, they face inherent limitations: 
CNNs struggle with limited receptive fields, and transformers often fail 
to capture fine local details, which can hinder performance in complex 
real-world scenarios. CNNs are effective in extracting localized features 
but have difficulty capturing global context, while transformers excel in 
modeling long-range dependencies but often underperform in extracting 
fine-grained details. By combining these strengths, recent studies high
light the potential of hybrid networks for more effective crack seg
mentation. A dual-path network for pavement crack segmentation was 
developed by (Wang et al., 2024), demonstrating the benefits of 
combining CNNs and transformers. The network pairs a lightweight 
CNN encoder, which efficiently captures localized features, with a 
transformer encoder using a fully convolutional high-low frequency 
attention (FCHiLo) mechanism for long-range contextual information. 
Experimental results revealed that this hybrid architecture out
performed both CNN-based and transformer-based models, achieving 
superior segmentation accuracy and robustness. The need for effective 
local and global feature extraction was addressed by (Xiong et al., 2024) 
through the proposal of DefNet, a multi-scale dual-encoding fusion 
network. DefNet integrates a dual-branch attention transformer (DBAT) 
that combines large kernel attention (LKA) and channel attention to 
capture rich global context. Meanwhile, the CNN encoding branch uses 
depthwise separable convolutions to extract fine-grained local details. A 
feature enhancement module further integrates multi-scale features by 
aggregating spatial and channel information from different receptive 
fields. Crack_PSTU, proposed by (Lu et al., 2024), integrates the U-Net 
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framework with a pre-trained Swin Transformer encoder to handle the 
complexity of irregular crack patterns. The Swin Transformer focuses on 
long-range feature extraction, while the U-Net decoder refines seg
mentation boundaries. This combination enables the network to capture 
both global context and local details, enhancing segmentation 
performance.

Accurate crack segmentation provides detailed contours of damage, 
but in real-world structural health monitoring, it is equally vital to 
quantify the geometric characteristics of cracks. Measurements such as 
crack width, depth, and length play a crucial role in assessing damage 
severity and informing targeted maintenance and repair strategies. To 
address these challenges, recent works have explored diverse quantifi
cation techniques, ranging from segmentation-based 2D measurements 
to integrating depth data and 3D crack profiling. One of the foundational 
approaches in 2D crack quantification was introduced by (Zhao et al., 
2021), who extended the PANet model with a semantic branch to 
enhance crack segmentation and ensure continuous representations. 
This refinement reduces errors caused by discontinuous crack geome
tries, addressing a common challenge in traditional segmentation-based 
methods. A key innovation of this approach is the integration of the A* 
algorithm, which accurately calculates crack length and width from 
segmented binary images. Unlike traditional methods that often face 
difficulties in handling fragmented or complex crack paths, the A* al
gorithm excels in tracing optimal paths along crack contours, enabling 
precise and continuous 2D measurements.

Expanding beyond 2D segmentation, several studies have explored 
3D quantification techniques to provide more comprehensive geometric 
measurements. An early approach for detecting and quantifying con
crete spalling using a Faster R-CNN model integrated with a depth sensor 
was proposed by (Beckman et al., 2019). Unlike methods limited to 2D 
crack measurements, this approach automatically detects multiple in
stances of spalling and computes their respective volumes. By merging 
segmentation outputs with depth data and generating 3D point clouds, 
the method enables precise volume estimation through geometric 
reconstruction techniques, offering an efficient and scalable solution for 
monitoring surface damage in concrete structures. Building on the use of 
depth data, a cost-effective crack detection and quantification method 
was developed by (Lin et al., 2023), integrating an RGB-D camera with 
an instance segmentation algorithm. The 2D segmentation provides 
precise crack contours, while the depth data from the RGB-D camera 
enables the generation of 3D point clouds. This combination bridges the 
gap between traditional 2D methods and depth-based quantification, 
allowing for accurate measurements of crack length, width, and depth 
and significantly improving the accuracy of pavement distress evalua
tion. Further advancing the use of 3D spatial data, A one-stage crack 
detection and quantification method was proposed by (Pan et al., 2023), 
utilizeing high-resolution 3D pavement profiles generated by a low-cost 
stereo imaging system. This method directly extracts crack maps and 
measures length, width, and depth from the 3D profiles. Crack depth is 
calculated using point cloud fitting and depth estimation techniques, 
providing precise measurements that outperform traditional 2D-based 
approaches. The integration of stereo disparity data with crack con
tours further enhances the accuracy of crack morphology representa
tion, making the method highly effective for practical applications in 
real-world scenarios.

In conclusion, the evolution of crack segmentation methods reveals a 
progression from CNN-based methods to advanced transformer-based 
and hybrid models. Initially, CNN-based approaches focused on local
ized feature extraction, but their limitations in capturing long-range 
dependencies and global context were gradually addressed through 
the development of transformer architectures. Transformers introduced 
the ability to model global dependencies, but they encountered chal
lenges in preserving local details. To overcome these limitations, hybrid 
models that combine the strengths of CNNs and transformers have 
emerged, offering superior performance by balancing local feature 
extraction with global context understanding. This integration has 

enhanced segmentation robustness, particularly under challenging 
conditions involving discontinuous or irregular cracks. Simultaneously, 
traditional 2D measurements have evolved into comprehensive 3D crack 
profiling through the integration of depth information, such as that 
provided by RGB-D cameras, stereo imaging systems, and depth sensors. 
These technologies enable accurate assessments of crack width, depth, 
and length, which are essential for evaluating damage severity and 
developing targeted maintenance strategies. As segmentation and 
quantification methods converge, advanced systems are now capable of 
transforming pixel-level classifications into actionable geometric in
sights, bridging the gap between surface-level analysis and holistic 
structural health monitoring.

6. Future outlook

6.1. Enhancing model generalization

A key challenge in current crack detection research is the limited 
generalization of models across diverse environments and materials. 
Most existing models are optimized for specific datasets, leading to 
performance degradation when applied to new scenarios, such as 
different infrastructure types or varying environmental conditions. 
While techniques like data augmentation and transfer learning have 
been employed to improve generalization, they are insufficient for 
addressing the full scope of this issue. To address this limitation, future 
research should focus on the development of generalized architectures 
capable of handling diverse environments. One promising approach is 
the application of large-scale pre-trained models, such as SAM and GPT- 
4 Vision, which are trained on extensive datasets and provide rich, 
transferable feature representations. By fine-tuning these models for 
crack detection tasks, their generalization capabilities across various 
structure types and environmental conditions can be significantly 
enhanced, reducing the reliance on task-specific data collection and 
model retraining.

6.2. Improving computational efficiency

Many existing crack detection models face computational chal
lenges, including large parameter sizes, high memory consumption, and 
slow detection speeds. These issues limit the ability of models to perform 
real-time processing and hinder their deployment in practical engi
neering applications. Current methods often require crack images to be 
collected on-site and processed offline using high-powered computers, 
leading to delays in decision-making. Future research should prioritize 
the development of lightweight, real-time models optimized for 
deployment on devices and mobile platforms. By designing models with 
reduced parameter sizes and computational requirements, on-site crack 
detection can be achieved efficiently without the need for high-powered 
external hardware. Techniques such as model pruning, quantization, 
and knowledge distillation could be explored to create compact models 
capable of delivering precise results while ensuring fast response times.

6.3. Advancing multi-modal data fusion models

Current crack detection approaches primarily rely on visual data, 
limiting their ability to detect hidden or subsurface cracks and reducing 
robustness under challenging environmental conditions. Incorporating 
multiple data modalities could provide a more comprehensive under
standing of crack characteristics and progression. Future work should 
explore multi-modal data fusion by combining visual data with com
plementary inputs from depth sensors, thermal cameras, LiDAR, and 
others. By integrating information from multiple sources, crack detec
tion systems could achieve enhanced accuracy, even in scenarios where 
visual cues are insufficient.
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6.4. Developing crack predictive and decision-making models

Current crack detection and quantification models often provide 
geometric measurements such as crack width, depth, and length. How
ever, these outputs are frequently disconnected from practical repair 
strategies or risk assessment frameworks, limiting their effectiveness in 
real-world maintenance planning. Furthermore, most existing models 
are static, detecting cracks at a specific point in time without accounting 
for future crack progression or structural deterioration.

Future research should prioritize the development of integrated 
systems that link crack quantification outputs with risk evaluation 
models and decision-making algorithms. These systems would auto
matically translate geometric measurements into actionable mainte
nance recommendations or prioritize repair actions based on the 
severity and expected progression of crack.

Additionally, crack evolution prediction models integrating machine 
learning with CV techniques should be developed to anticipate how 
cracks will progress over time. By accurately forecasting future damage 
trajectories, these models can provide maintenance strategies, reducing 
the risk of structural damage and ensuring long-term infrastructure 
safety. The combination of predictive models and decision-making 
frameworks will enable smarter, data-driven interventions, improving 
the efficiency and reliability of infrastructure maintenance.

6.5. Establishing standardized and large-scale datasets

The field of crack detection currently lacks standardized and large- 
scale datasets that cover diverse surface types, environmental condi
tions, and crack morphologies. Current datasets are often limited in 
scope, preventing models from learning robust representations appli
cable to varied real-world conditions. Additionally, inconsistencies in 
data collection and annotation limit the reproducibility and hinder fair 
performance comparisons across various crack detection approaches. 
Hence, the establishment of comprehensive, standardized datasets is 
essential for improving model generalization and robustness. These 
datasets should include a wide range of real-world conditions and 
infrastructure types, ensuring that models can be effectively trained and 
evaluated. Standardized data collection protocols and annotation 
guidelines will further enhance consistency and reproducibility across 
studies.

7. Conclusion

In this paper, the authors present a comprehensive review of deep 
learning-based crack detection research from 2017 to 2024, combining 
bibliometric and critical analyses. The bibliometric analysis highlights 
influential articles, key authors, major journals, and international col
laborations that have shaped the field, while keyword analysis confirms 
deep learning as the dominant approach in crack detection research. The 
critical review focuses on the significant contributions of deep learning 
models, including CNNs, YOLO-based object detectors, and transformer 
networks, in addressing crack classification, object detection, and se
mantic segmentation tasks. Techniques such as attention mechanisms, 
feature pyramid networks, and multi-scale context fusion have signifi
cantly enhanced detection accuracy and robustness under diverse 
environmental conditions.

Despite significant advancements, key challenges persist in areas 
such as model generalization, computational efficiency, multi-modal 
data integration, and the practical use of crack quantification outputs 
for decision-making. Addressing these challenges requires the develop
ment of generalized models through large-scale pre-trained architec
tures, lightweight, real-time solutions to improve computational 
efficiency, and multi-modal data fusion to enhance detection accuracy 
under diverse conditions. Equally important is the establishment of 
standardized and large-scale datasets with consistent collection and 
annotation protocols, which will improve model robustness, 

reproducibility, and fair performance evaluations. Additionally, inte
grating crack prediction models with decision-making frameworks and 
maintenance planning will ensure long-term infrastructure safety and 
reliability.

Overall, this review offers researchers a comprehensive framework 
for understanding the evolving landscape of deep learning in crack 
detection. It summarizes key findings in the field while also identifying 
critical areas for future investigation, including existing research gaps. 
The findings of this review are poised to inform both academic pursuits 
and practical applications, ultimately contributing to the advancement 
of the crack detection field. By highlighting unresolved challenges and 
potential directions, this review serves as a valuable resource for future 
researchers, guiding them in addressing current limitations and 
inspiring innovative methodologies to enhance the accuracy, robust
ness, and efficiency of crack detection technologies.
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