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A B S T R A C T

The consequences of crowd behavior in high-density pedestrian flows, especially in response to exacerbating
incidents, can result in tragic outcomes such as trampling and crushing, making the active monitoring of
crowd motion crucial, to provide timely danger warnings and implement preventive measures. This paper
proposes a novel approach for crowd behavior monitoring and prediction of bridge loads based on the following
innovative solutions: (a) advanced optimized signal processing is leveraged for noise reduction; (b) novel data
fusion approaches are proposed to extract the most informative measurement features; (c) fine-tuned machine-
learning techniques are implemented for classification and regression tasks. Data from structure-based sensors
and wearable devices were utilized to capture movement- and load-sensitive data on a pedestrian bridge,
which facilitated the determination of crowd flow, density, and bridge loading information. The proposed
monitoring approach explores signal preprocessing methodologies, including variational mode decomposition
(VMD), downsampling, principal component analysis, and novel data fusion, to effectively minimize noise
and errors in the input data. Data fusion strategies were introduced to significantly enhance the learning
models and improve the overall efficiency and resilience of the system. For further analysis, a 2D-convolutional
neural network (CNN) approach was initially applied independently to the sensing sources and subsequently
extended to fuse multimodal raw, decomposed, and denoised data. The proposed monitoring method was
validated using experimental data obtained from crowd simulations conducted on a scaled-down bridge panel,
utilizing next-generation coupled structure-human sensing, fiber-optic sensing, and smartphone technology.
The results demonstrated a high level of accuracy for crowd monitoring predictions, with the peak testing
accuracy reaching 99.62% for single-class crowd flow classification, 98.69% for multiclass crowd flow and
density classification, and 98.42% in R2 score for load estimation when fusing denoised signals using VMD.
The proposed 2D-CNN model was compared with an existing adaptive Kalman filter (AKF) fusion technique
and various machine learning techniques, including random forest, k-nearest neighbor, support vector machine,
XGBoost, and ensemble methods. This comparison unequivocally confirmed the robustness and superiority of
the proposed monitoring approach.
. Introduction

The safety of crowds during events, such as festivals, religious cere-
onies, sports competitions, concerts, and political rallies has become

n issue of significant importance. These gatherings have the potential
o lead to large-scale assemblies where the probability of crowd-related
isasters is substantial. Numerous global festivals have encountered
ubstantial challenges related to crowd safety, primarily due to the
arge turnout of participants. On various occasions, the disregard for
rowd safety measures has resulted in the loss of numerous lives [1].

∗ Corresponding author.
E-mail address: sahar.hassani@unsw.edu.au (S. Hassani).

Therefore, understanding crowd safety and implementing related safety
measures are vital for planning the diverse array of events that occur
each year.

Pedestrian-related disasters often stem from inadequate crowd man-
agement, excessive crowd density, and limited entry points. The chaos
and panic that often ensue tend to aggravate the magnitude of in-
juries and casualties, which often surpass the impact of the initial
triggering event. Therefore, meticulous crowd management is essential
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Information Fusion 118 (2025) 102983 
for ensuring the overall safety and well-being of participants. The spec-
tators’ passion during events often leads to spontaneous or coordinated
umping motions, potentially generating harmful vibrations that can
affect structural integrity. Synchronized crowd movements instigated
by music can exacerbate these vibrations, further challenging structural
safety. The variability in the load distribution can also influence the
structural response. Consequently, vigilant monitoring during events
and assessment of structural behavior are essential to ensure spectator
comfort and safety [2].

A rare yet profoundly significant crowd-related catastrophe that can
occur during large gatherings is the failure of pedestrian bridges due
o excessive loads or deterioration. The factors contributing to such

a collapse may include overcrowding, design flaws, material deficien-
ies, inferior construction, insufficient maintenance, and unexpected
nvironmental conditions. In Phnom Penh, Cambodia, in 2010, approx-
mately 450 people died in a stampede caused by a swaying suspension
ootbridge [3]. In 2013, 89 people were killed in a stampede on a
ridge at the Ratangarh Temple, India [3]. In March 2018, near Florida

International University in Miami, U.S.A., six people died, and many
others were injured after a 53-meter footbridge collapsed over an eight-
lane road [4]. Other examples include a pedestrian bridge linking
n island in Prague, Czech Republic, which completely collapsed be-
ause of the corrosion of steel ropes [5] and in 2018, the Morandi
ridge in Genoa, Italy collapsed, making it one of the most prominent
edestrian bridges in history. A section of the bridge collapsed onto a
usy highway in this catastrophic event, causing numerous deaths and
njuries [6]. A framework for combined structure-crowd monitoring
as introduced by Mustapha et al. [7,8], whereby a joint methodology

was proposed for structural health monitoring (SHM) and crowd mon-
itoring by employing support vector machines (SVM) for classification
nd regression, using independent inputs from wearable devices and
tructural sensors.

This paper presents a novel methodology for crowd monitoring on
edestrian bridges by integrating a next-generation coupled structure
alled human sensing. Pedestrians are equipped with smartphones con-
aining embedded accelerometers, and strain fiber optic sensors (FOS)
re installed on the bridge structures. Strain measurements provide
nsights into the collective behavior of crowds and mobiles, whereas
cceleration measurements provide individual-level information. This
ethod uses artificial intelligence to determine pedestrian speeds and
redict the load levels on bridges. Data from various sensor sources
re fused to ensure redundancy and system robustness. Metrics are
urther introduced for evaluating machine learning techniques based
n multiple crowd attributes and data sources.

The remainder of this paper is organized as follows. Section 2
describes the background, outlining the motivation and objectives of
he proposed approach. Section 3 details the conceptual solution ap-
roach from a broader perspective, with emphasis on signal processing,

data fusion, and the 2D-CNN model. Section 4 describes the complete
xperimental setup, including the testbed, instrumentation, and crowd
eplication. Section 5 presents the results of the 2D-CNN classification

and regression models. Section 6 compares the proposed approach
ith existing methods, and Section 7 concludes the paper with closing

remarks and suggestions for future work.

2. Background, related work, and motivation

Crowd management [9] is a multifaceted endeavor, encompassing
ey elements such as crowd modeling for event planning, design of
uitable infrastructure, real-time crowd data acquisition to monitor
rowds, data analysis for decision-making, and effective implementa-
ion of crowd control solutions. The complexity of this process requires
he convergence of many fields including physics, computer science,
ivil engineering, and management. In crowd management, collection,
rganization, and analysis of crowd data during event execution are

f paramount importance in preventing potential crowd disasters. An

2 
effective crowd-management system relies on accurate crowd-related
information. While existing systems primarily implement vision-based
technologies [10] such as closed-circuit television (CCTV) monitoring,
a forward-looking perspective takes advantage of vision-based, wire-
less/radio frequency (RF), and web/social media data mining as three
key technologies for crowd information acquisition.

The vision-based approach to crowd monitoring utilizes sources,
uch as on-site CCTV cameras, aerial and satellite images, and infrared
ameras, to retrieve crowd-related information. Researchers have de-
eloped crowd counting, monitoring, and congestion analysis systems
sing advanced artificial intelligence (AI) image processing and com-
uter vision techniques [10,11]. Convolutional neural networks (CNNs)

significantly enhance the accuracy and efficiency of image classification
systems [12]. Early CNN applications for crowd density estimation
included the works of Fu et al. [13] and Wang et al. [14]. A mul-
ticolumn CNN was employed by Zhang et al. [15] to produce local
ensity maps, whereas Boominathan et al. [16] captured semantic

information to predict crowd density. Sindagi and Patel [17] proposed
a model to classify crowd images into various densities, offering a
coarse estimation of the number of individuals. Pattern recognition and
predictive modeling have also been conducted using SVM and decision
trees [18].

RF-based technologies, including mobile phones, radio frequency
dentification (RFID), wireless sensor networks (WSN), and near-field
ommunication (NFC) offer significant potential for improving crowd
anagement and safety in smart cities [19]. These technologies pro-

vide diverse solutions for enhancing urban efficiency such as real-
time crowd density, movement, and behavior prediction using mobile
phones with RF capabilities. The RF identification (RFID) technology
can streamline access control and optimize crowd flow in civil infras-
tructures and wearable devices. Advancements in noncontact sensing
techniques such as drones and robotic sensors, along with wearable
devices such as smartphones and smartwatches, can further support
crowd monitoring. Equipped with various sensors and wireless in-
terfaces, smartphones can assess the activity status of an individual,
facilitate human activity recognition (HAR), and monitor crowd dy-
namics [7]. These technological advancements offer new opportunities
for enhancing crowd management strategies and ensuring urban safety
in smart cities.

Data fusion is an effective solution for efficient analysis of the
ata recorded by diverse sensors, as described by Hassani et al. [20].

Different data-fusion hierarchies can be applied to address specific chal-
enges. The first hierarchy involves data acquisition, raw data fusion,
eature extraction, and decision-making using machine-learning out-
omes. The second hierarchy includes data acquisition, feature extrac-
ion, feature fusion, and machine learning-based decision making. The
hird hierarchy begins with data acquisition, followed by feature ex-
raction and decision-making using multiple machine learning models,
nd concludes with decision fusion to produce a final comprehensive
ecision.

Deep-learning techniques can automatically extract features
through intermediate layers; however, they require extensive datasets.
For limited datasets, manual design and feature extraction are ad-
vised. Feature extraction aims to extract relevant information from
aw sensor data for use in machine-learning algorithms. Time-domain
eatures are derived directly from sensor data to capture temporal
haracteristics [21] based on coefficients or residuals [22]. Frequency-

domain features are obtained using Fourier transforms and include
etrics such as power spectrum density, dominant and resonance

requencies. Time–frequency features analyze signals using short-time
ourier transform (STFT), wavelet transform (WT), empirical mode
ecomposition (EMD), and variational mode decomposition (VMD),
rovide joint time–frequency representations of the signals.

Table 1 compares the proposed approaches and solutions aimed at
addressing prevalent gaps in crowd analysis and response prediction.
These gaps include insufficient information, inaccurate results, noise,
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Information Fusion 118 (2025) 102983 
outliers, limited generalization, interpretability issues, dynamic envi-
onments, real-time performance constraints, and technical scalability
or which various novel advanced data preprocessing, data fusion,
nd optimized deep learning techniques have been proposed. In this

study, these solutions are integrated into a cohesive framework utilizing
multimodal data fusion, advanced preprocessing, and optimized deep
learning architectures to provide a comprehensive solution to these
challenges. This integrated approach aims to develop robust and ef-
fective crowd analysis systems capable of handling the complexities of
real-world scenarios. This innovative approach provides novel insights
into crowd monitoring, signal processing, data fusion, and optimized
deep learning models to enhance pedestrian safety and the management
of pedestrian bridge infrastructures.

1. Advanced signal processing techniques: In crowd manage-
ment, noisy and error-prone signals are challenging to han-
dle and affect decision-making accuracy. Our methodology ad-
dresses this problem using advanced signal processing tech-
niques for feature extraction and denoising, thereby enhancing
prediction accuracy. We employed the VMD algorithm for signal
decomposition to reveal the underlying characteristics, followed
by two denoising methods, VMD and downsampling, to mitigate
noise. Relevant features were extracted using VMD and inte-
grated with raw data through fusion methods, thereby improving
the robustness and informativeness of the data analysis.

2. Data fusion techniques: The proposed method employs data fu-
sion techniques at different levels (signal, feature, and decision)
to combine data from different sensors, including wearable and
fiber Bragg grating (FBG) sensors, utilizing four distinct methods
to enhance accuracy.

3. Deep learning model: For signal analysis, a robust 2D-CNN
architecture that achieves high accuracy across various classi-
fication and regression tasks is proposed. This framework ac-
commodates different combinations of raw data and processed
signals, to offer a versatile solution.

4. Comparison: The performance of the proposed 2D-CNN archi-
tecture on crowd analysis was compared with those of different
data fusion methods, such as adaptive Kalman filtering (AKF)
fusion and various machine learning models, including random
forest, k-nearest neighbors, support vector machines, extreme
gradient boosting (XGBoost), and ensemble methods.

5. Measurement signals: Effective decision-making in crowd man-
agement relies on accurate measurement data. This study fo-
cused on collecting essential signals for crowd analysis through
next-generation structural sensing by leveraging ubiquitous de-
vices such as smartphones and smartwatches for easy signal
measurement. The pedestrian safety during crowded events was
enhanced by utilizing wireless networks to handle the data from
wearable sensing devices. Structural sensing improves the sys-
tem accuracy by combining measurements from wearable sen-
sors with data from the fiber-optic sensors installed on bridges.
This method processes data in real time to assess crowd loads
and movement patterns, thereby significantly enhancing the
performance of advanced machine learning algorithms for crowd
monitoring, which improves pedestrian safety.

6. Experiment configuration: Validation of the proposed tech-
nique involved examining various types of pedestrian move-
ments, considering variations in speed, pedestrian numbers, and
their weights on a pedestrian bridge equipped with strain sen-
sors. Subsequently, data were collected using sensors such as
accelerometers, gyroscopes, and magnetometers from the smart-
phones carried by the pedestrians. The proposed approach for
predicting maximum load effects (MLEs) on bridges was subse-
quently confirmed using solely smartphones as wearable sensors.
3 
3. Methodological framework: Crafting the proposed approach

Fig. 1 provides an overview of the proposed approach, emphasizing
the integration of data collected from smartphones, smartwatches, and
structural sensors installed on bridges. This data merging collectively
enhances the accuracy and speed of load prediction for improved bridge
safety. In this framework, structure-based FBG-FOS strain networks
are installed on critical structures, such as bridges, and crowd par-
ticipants wear devices, such as smartphones and smartwatches. Data
collected from different sensors are uploaded to the cloud in real
time using existing communication infrastructures for processing and
decision-making. Advanced machine learning approaches are employed
to determine crowd flow classes and estimates, analyzing the data col-
lected from both structural sensors and mobile accelerometers. Crowd
flow classification is based on either a binary decision of motion speed
orresponding to fast or slow, or multiclass decision based on fast-
eavy, fast-light, slow-heavy, and slow-light, with heavy and light
eferring to crowd load designations. The total weight of the crowd on
he structure is estimated in kilograms based on regression modeling.

Deep learning methods [29,30], particularly CNNs, have gained
opularity for their ability to capture complex patterns in data. In
his study, we employed a 2D-CNN to address both classification and
egression problems. A key feature of our approach is the data fusion
f FBG-FOS and accelerometer data implemented at three levels: input
through concatenation and mean), feature (through feature fusion),
nd decision (through ensembling the results of different machine
earning models). For signal decomposition and denoising, the VMD
lgorithm and downsampling techniques are used. The VMD algorithm
lso helps extract statistical features from the signals, enhancing the
ccuracy and efficiency of data analysis by revealing hidden informa-
ion. The parameters of the 2D-CNN were optimized to improve crowd
oad predictions and accelerate the calculations with the aim of finding
he best set of hyperparameters for optimal model performance. To
valuate the performance and generalization ability of the model, five-
old cross-validation was used within the 2D-CNN framework. This
igorous validation method aids in model selection and hyperparameter
ptimization, thereby ensuring overall model robustness. The following
ections describe different aspects of the proposed methodology.

3.1. Artificial intelligence techniques

In recent decades, significant advances in AI, including machine and
deep learning, have substantially transformed the field of data analysis.
Machine learning techniques comprise a group of learning methods
that automate the process of building analytical models, whereas deep
earning methods, one of the most advanced subsets of AI systems, are
mployed to build intelligent systems and automation models [29,30].

With deep-learning systems, nonlinear relationships can be modeled
using a neural network architecture with multiple layers of neurons
o retrieve higher-level features from a large amount of data. Deep-
earning models have been successfully applied across a wide range of
echnological areas, including crowd management. In this study, differ-
nt data analysis tools, including the 2D-CNN deep learning model, and
achine learning techniques such as random forest, KNN, SVM, XG-

Boost, and ensemble methods were employed. The input data acquired
by FBG-FOS sensors comprised strain data samples, each spanning 10
s, captured at a rate of 100 Hz. These models were trained using data
originating from either a single sensor, resulting in 1000 data points
for each sample, or from an amalgamation of data from three sensors
located across the bridge, resulting in a sample dimension of 3000
data points. For both the classification and regression tasks, either
raw or unprocessed data or data that had undergone decomposition
and noise filtering were fed into the model. The smartphone-based
accelerometer data were preprocessed and only the magnitude of the
triaxial acceleration was analyzed. In both classification and regression
scenarios, the sum of the accelerometer data across all individuals

within the crowd was used as the input data.
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Table 1
Comparison of the proposed approach and solutions in crowd analysis and response prediction in recent literature.

Gaps Refs Solution Description

Insufficient
information

[23] Exploiting information
fusion

The proposed data fusion approaches integrate multimodal data sources to augment
ground truth data and facilitate robust model training.

Low accuracy [24] Improving model accuracy The proposed DL approach implements robust evaluation and validation to ensure
accurate results and mitigate errors in predictions.

Presence of noise
and outliers

[25,26] Advanced data
preprocessing

Advanced data preprocessing techniques such as the optimized VMD algorithm are
applied to remove noise and outliers from the input data, enhancing the reliability
and robustness of the predictive model.

Limited
generalization

[25,27] Robust data analysis The fine-tuned deep learning model (2D-CNN) employs transfer learning techniques
to enhance generalization across diverse crowd scenarios.

Dynamic
environments

[28] Minimizing environmental
effects

The proposed signal processing techniques dynamically adjust model parameters
based on real-time environmental inputs, improving adaptation to dynamic crowd
behavior.

Real-time
performance

[27] Improved computational
efficiency

The proposed approach utilizes optimized deep learning architectures and parallel
processing techniques to improve real-time performance in crowd analysis
applications.

Technical scalability [25,28] Novel model architecture The proposed approach leverages scalable deep learning architectures and distributed
computing infrastructure to efficiently handle large-scale crowd analysis tasks.
Fig. 1. Conceptualized merged structure and crowd monitoring framework.
3.1.1. Convolutional neural network model
Convolutional neural networks are specialized feed-forward neural

networks designed to automatically learn features through filter (or
kernel) optimization. They address issues such as vanishing and explod-
ing gradients observed during backpropagation in the earlier neural
networks by employing regularized weights across fewer connections.
The CNN architecture comprises three distinct layers: convolutional,
pooling, and fully connected. The input is transformed into a tensor
shape of (number of inputs) × (input height) × (input width) × (input
channel). In the convolutional layer, data are abstracted into a feature
map, also called an activation map, with the following dimensions:
(number of inputs) × (feature map height) × (feature map width) ×
(feature map channel).

Researchers have demonstrated that CNNs can be effectively used
for tasks involving vision-based classification, such as object recog-
nition and digit/character recognition [31,32]. By combining a deep
supervised learning architecture with back-propagation, features can
be automatically extracted from data without manual, handcrafted
feature-based selection [33]. CNNs can autonomously identify and
extract globally relevant discriminatory features from the data, thereby
eliminating the need for human intervention in the design process. A
significant advantage of extracting features from input images is that
the process is insensitive to shape distortions and shifts even when
textual image inputs are involved [34].

A CNN typically comprises one or more convolutional layers com-
posed of different layers of filters that compute different feature maps.
A feature map is generated by convolving each filter with the input
4 
and subsequently applying an element-wise nonlinear activation func-
tion. Common activation functions include sigmoid, tanh, and rectified
linear unit (ReLU). The complexity level of the feature representa-
tions increases as the number of convolutions increases. Following
the convolutional layer, the pooling layer decreases the resolution of
the feature map to introduce shift invariance and efficiency. Average
and maximum pooling are the most common pooling layers. After the
convolutional and pooling layers, a fully connected layer is integrated.
The output layer of a classification CNN typically uses softmax to com-
pute the probability distribution across predicted classes, followed by a
classification layer. In regression scenarios, the classification operation
is substituted with a regression layer. Notably, CNNs were initially
designed for image recognition. However, they can be applied to signals
via a one-dimensional variant referred to as 1D CNN [35], which differs
from the 2D-CNN [36] used for two-dimensional data.

2D-CNNs are widely used in computer vision tasks because of
their ability to capture spatial hierarchies and patterns in the data.
At its core, a 2D-CNN employs convolutional layers that apply sliding
filters across two-dimensional data, to identify local features, such
as edges and textures. Activation functions, often ReLUs, introduce
nonlinearity into the network, enhancing its capacity to learn intri-
cate patterns. Pooling layers downsample feature maps and maintain
essential information while reducing computational complexity. Fully
connected layers perform high-level decision making based on learned
features, whereas techniques such as dropout and batch normalization
mitigate overfitting and stabilize the training process. 2D-CNNs excel
at capturing spatial hierarchies and have become the cornerstone of
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Fig. 2. Proposed 2D-CNN architecture motion speed and load classification through regression of load estimation.
various computer vision tasks, including image classification and object
detection.

In this study, we employed a 2D-CNN framework to classify and
regress crowd attributes. The model architecture is depicted in Fig. 2.
The input to the 2D-CNN model is denoised strain and accelerometer
data in raw or decomposed data format. The model comprises an initial
input layer, followed by a convolution layer equipped with 32 2D
filters, a ReLU layer, and an average-pooling layer for both classifi-
cation and regression tasks. For classification tasks, the architectural
flow continues with a fully connected layer, a ReLU layer, and another
fully connected layer connected to a softmax operator, culminating
in the classification layer. When performing regression, the network
architecture continues with the inclusion of another convolution layer,
followed by a ReLU activation function layer, an average-pooling layer,
and a fully connected layer with one node, with the final layer sub-
stituted with a regression layer. Batch normalization is applied in the
classification setup to mitigate the impact of minor load variations,
which is a desirable feature for regression but less so for classification.

3.1.2. Cross-validation
Cross-validation is one of the most extensively employed techniques

for data resampling and serves two crucial purposes: estimating the
true predictive error of models and fine-tuning model parameters,
thereby playing a pivotal role in assessing the generalization capabili-
ties of predictive models, while effectively guarding against overfitting.
Falling under the umbrella of Monte Carlo methods, cross validation
resembles bootstrapping in its resampling approach. The dataset is first
decomposed into two subsets for validation and testing, with an 80%–
20% split ratio. The validation subset is further divided into five folds,
to perform five-fold cross-validation. Each iteration involves splitting
the dataset into two complementary subsets. The first subset, known as
the training set, comprises four of the five folds (80% of the validation
data) and serves as the foundation upon which the model is trained. The
model is tested on the second subset, which consists of the remaining
fold (20% of the data) against which the performance of the analysis
is assessed. This process is repeated five times, with each of the five
folds used for testing at each iteration. The validation outcomes yield
an optimized model that is further tested on the initial test set. This
procedure helps estimate the model performance more robustly than a
single train-test split, allowing a more comprehensive evaluation of the
optimized model performance on unseen data, providing insights into
the overall performance and mitigating the risk of overfitting.
5 
3.2. Signal processing methods

In this study, different signal processing techniques were applied
to decompose and denoise the raw data. The data were separated
into fundamental components and unwanted noise was removed to
enhance data quality. These preprocessing stages are crucial for ex-
tracting patterns and meaningful insights from the data. The following
section provides a detailed explanation of the specific signal processing
methods, their application to raw data, and the benefits they provide
for data analysis. Ultimately, these techniques enhance the extraction of
meaningful information and aid in the understanding of the underlying
information in a dataset.

3.2.1. Decomposition technique: VMD algorithm
In this study, a signal decomposition algorithm called VMD was

employed to decompose a signal into multiple narrowband oscillation
modes. This enables the extraction of relevant information across vari-
ous signal bands. VMD was further utilized for denoising and breaking
down the raw signal into multiple sub-signals to be input into the
2D-CNN model. This facilitates feature extraction from the constituent
intrinsic mode functions (IMFs) derived from a signal, whereby the
extracted features are used as inputs to train machine-learning mod-
els, enhancing their accuracy and effectiveness in classification or
regression tasks.

The VMD algorithm is a dynamic signal decomposition technique
that breaks down a signal 𝑓 (𝑡) into a set of 𝐾 narrow-band Amplitude-
Modulated Frequency-Modulated (AM-FM) or IMFs. An IMF can be
expressed in the following manner:

𝑢𝑘(𝑡) = 𝐴𝑘(𝑡) 𝐜𝐨𝐬(𝜙𝑘(𝑡)), (1)

In this context, 𝑢𝑘(𝑡) represents the 𝑘th IMF, with 𝐴𝑘(𝑡) and 𝜙𝑘(𝑡)
referring to instantaneous frequency and phase, respectively. Given
the narrow-band nature of each IMF, a Gabor analytical signal can be
created from the IMFs, allowing the determination of the instantaneous
phase. Each IMF is defined by its center frequency 𝜔𝑘. To compute 𝑢𝑘
and 𝜔𝑘, VMD optimizes the following augmented Lagrangian:

({𝑢𝑘}, {𝜔𝑘}, 𝜆) = 𝛼
∑

𝑘

‖

‖

‖

‖

𝜕𝑡

(
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)
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‖

‖

‖
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+
‖

‖

‖

‖
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∑

𝑘
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‖

‖

‖

‖

2

2
+
⟨

𝜆(𝑡), 𝑓 (𝑡) −
∑

𝑘
𝑢𝑘(𝑡)

⟩

(2)

where ‖.‖2 is the 𝐿2 norm; ∗ represents convolution; and 𝑗 is the
imaginary unit. The penalty factor 𝛼 is a denoising factor indicating
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Fig. 3. Procedure for obtaining the objective function of the VMD decomposition algorithm.
Table 2
Selected VMD parameters for the decomposition task.

Parameters Description Specified values

𝑝 Number of IMFs 3
𝛼 Denoising factor 10
𝜏 Time interval 0.1
𝜖 Convergence threshold 10−5

𝑖𝑛𝑖𝑡 Center frequency initializer 0
DC Boolean parameter 0

the importance of the first term with respect to the second and third
terms in (2).

Fig. 3 presents a hierarchical representation of the steps involved
in obtaining the VMD optimization objective outlined in Eq. (2). Con-
sequently, the VMD algorithm has a group of parameters that must be
specified a priori [37], as follows:

1. 𝐾 determines the number of IMFs the original signal will be
decomposed into.

2. 𝛼 is a quadratic penalty term and a denoising factor.
3. 𝜏 is a time step that determines the speed at which the La-

grangian multiplier accumulates the reconstruction error. Set-
ting 𝜏 to a small number, such as 0.1, affects 𝛼, rendering
denoising ineffective.

4. 𝜖 is a tolerance parameter and controls the convergence of the
algorithm.

5. 𝑖𝑛𝑖𝑡 initializes the center frequencies. Options are zero (𝑖𝑛𝑖𝑡 = 0),
uniform (𝑖𝑛𝑖𝑡 = 1), and random (𝑖𝑛𝑖𝑡 = 2).

6. 𝐷 𝐶, which is a Boolean parameter, determines whether the first
mode is set and maintained at DC (an IMF with zero center
frequency).

Fine-tuning of these parameters can be achieved through two main
approaches: the first involves the use of parallel optimization algo-
rithms to enhance the utility of VMD-derived features for machine
learning tasks, whereas the second relies on domain-specific knowledge
and experience. Each approach has its advantages and drawbacks, with
the former being ideal for large datasets in mitigating overfitting at
the expense of computational costs, whereas the latter is more suitable
for situations with limited data, requiring a deep understanding of the
problem domain. For this research, the second approach was selected
to assign the VMD parameters. The VMD parameters used in the study
are listed in Table 2.
6 
Table 3
The selected VMD parameters for the denoising task.

Parameters Description Specified values

𝑝 Number of IMFs 3
𝛼 Denoising factor 100
𝜏 Time interval 0
𝜖 Convergence threshold 10−5

𝑖𝑛𝑖𝑡 Center frequency initializer 0
DC Boolean parameter 0

3.2.2. Denoising methods
In the context of signal processing and data analysis, denoising

methods are employed to remove or reduce unwanted noise or interfer-
ence from a signal, dataset, or image while preserving the underlying
meaningful information. Noise is typically random and leads to un-
wanted variations in data that not only obscure the true signal but
also impede the extraction of useful information. Common denoising
techniques include the VMD algorithm, wavelet denoising, low-pass
filtering, and downsampling. To reduce the noise in input signals, this
study used the VMD algorithm and downsampling.

In addition to data decomposition, VMD can also be used as a
denoising technique to reduce noise features from signals or data.
There are two methods for performing denoising using VMD. The first
approach involves smoothing the input signal before decomposing it,
which requires the following:

1. The parameter 𝜏 needs to be set to zero. This allows denoising
to occur during decomposition.

2. Subsequently, a value larger than zero needs to be specified for
the denoising factor 𝛼. A larger value of 𝛼 introduces a more
severe denoising effect during decomposition.

The second approach relies on decomposing the signal without
smoothing it by setting 𝜏 to a small value such as 0.1 and then removing
the IMFs with higher-frequency content representing noise in the signal.
We used the first strategy to concurrently denoise and decompose
signals. Table 3 presents the selected and optimized hyperparameter
values for denoising using VMD. A moderate denoising factor of 𝛼 = 100
was considered in this study.

In downsampling, a denoising technique is employed to decrease the
volume of data by reducing the signal sampling rate. Downsampling,
also known as decimation, reduces the number of samples in a signal
by selecting a subset of the original samples at regular intervals. This
results in a lower sampling rate and consequently, a signal with reduced
data size. Downsampling operations were performed at different rates
as follows:
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• Downsampling I: This involves downsampling by a factor of
three, thereby reducing the number of samples in the signal to
one-third of the original sampling rate. In addition to reducing
high-frequency noise and conserving computational resources,
this can affect the fine-grained details.

• Downsampling II: This involves downsampling by a factor of
five, whereby every fifth sample of the original signal is re-
tained, discarding the rest, which significantly reduces high-
frequency noise by further reducing the data size. However, this
increases the risk of information loss, particularly if there are
high-frequency signal components.

• Downsampling III: This involves downsampling by a factor of
ten, which is a significant reduction in the sampling rate, retain-
ing only every tenth sample. This can be an effective method
for removing high-frequency noise; however, the risk of losing
critical signal information is greater, particularly if the original
signal contains fine details or rapid changes.

3.3. Data fusion

The primary goal of this study was to integrate and collectively
analyze data obtained from various sensing methods using machine
earning models to improve the estimation of crowd movement and
oad characteristics. Instead of relying on data from a single sensor
ource, combining information from wearable and structure-based sen-
ors provides a more comprehensive understanding of the interplay
etween the structure and the crowd. Successful fusion of crowd-

level strain data with individual-level acceleration is expected to yield
classification and regression models that are more resilient to sensor
ailures. If one sensor fails, the chosen machine learning fusion method
an produce reasonable results based on data from the other sources.
ltimately, this fusion can help distinguish between crowd overload,
nvironmental factors, and compromised structures.

Data fusion can occur at input, feature, and decision levels, which
ave all been investigated in this study. Input-level fusion involves
irectly combining data from different sensors as a single input for
achine learning algorithms. This study explores the concepts of sensor

usion, combining different data from FBG and accelerometer sensors,
s well as applying data and feature fusion to integrate data from
ifferent as well as within sensors. Decision-level fusion is performed

by ensembling different machine-learning models that were trained on
he following data:

1. Features extracted from a single input without any fusion.
2. Features extracted from the fusion of diverse raw sensor data.
3. Fused features extracted from diverse raw sensor data.
In our study, input-level fusion was accomplished in four different

ways:

• Concatenating each pair of observations from the FBG sensors and
accelerometers into a single signal vector.

• Calculating the mean of the three FBG datasets and concatenating
them to accelerometer data in a single signal vector.

• Concatenating each pair of observations from the FBG sensors into
a single signal vector.

• Calculating the mean of three FBG datasets into a single signal
vector.

The newly formed signal vector was then used in the same manner
as the individual FBG and accelerometer data for the 2D-CNN and other
machine learning models.

Feature-level fusion is accomplished in two ways:

• In a CNN, feature-level fusion occurs in the convolution layer,
which is designed to operate on two separate channels, one
per sensor. Similar to how individual FBG and accelerometer
 m
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signal data arrays are input into the CNN, fusion occurs by
concatenating the data arrays from individual sensors along the
channel dimensions. The features extracted from each channel are
concatenated after passing to the next layer for further processing.

• Feature-level fusion for the random forest, KNN, SVM, XGBoost,
and ensemble methods was achieved by concatenating the se-
lected features extracted via VMD decomposition, further sub-
jecting them to the principal component analysis (PCA)-based
algorithm discussed in [38].

Fig. 4 displays all the fusion processes executed in this study. As
previously stated, our study incorporated a three-level fusion approach
t the signal, feature, and decision levels. As shown in the figure,
e employed raw data fusion to explore four distinct methods based
n concatenation and averaging of different sources. In the realm of
eature fusion, we applied two strategies: one within the intermediate
ayer of a 2D-CNN, and the other by combining selected features
ased on PCA. Decision fusion is based on an ensemble of models.
e implemented this fusion across five scenarios encompassing diverse

ombinations of decision-, feature-, and raw data-level integration, as
llustrated in the figure.

Fig. 5 shows a flowchart of the proposed approach. As shown in
the figure, the proposed flowchart begins with data collection from
diverse sources including FBGs and smartphones. Subsequently, the
raw data are subjected to a series of signal processing techniques,
including decomposition and denoising based on VMD, as well as
downsampling. After data preprocessing, three distinct levels of fusion
are performed on the decomposed and denoised data. Following this
procedure, the proposed optimized 2D-CNN model can perform the
classification and regression tasks, with the objective of predicting load
values and determining pedestrian speed.

4. Experimental setup

An experimental test series was conducted to validate the devised
procedure for predicting crowd behavior and associated loads. The
experimental setup involved volunteers of different group sizes, who
were asked to walk across a pedestrian panel at different speeds (slow
and fast). Throughout the experiment, participants carried smartphone
devices equipped with accelerometers, which continually recorded ac-
celeration data. To simulate a crowd walking across the model bridge,
the measured data were wirelessly transmitted. In addition to wearable
evices, the test panel was equipped with three FBG-FOS sensors. To

analyze and store the data, both structural sensors and accelerometers
were connected to a database server. Fig. 6 shows an overview of the
xperimental setup.

4.1. Experimental bridge panel

A downsized model of a bridge was designed and constructed as
the experimental test structure, as illustrated in Fig. 7. The bridge
model measured approximately four meters in length and one meter
in width and comprised three steel C-beams. Steel plates were used to
connect the C-beams laterally at intervals of 0.95 m. The bridge was
supported by a pin and roller at each end. Its upper surface was covered
with wooden panels to ensure an even load distribution and provide a
comfortable walking surface for volunteer pedestrians.

4.2. Sensors

Small-sized optical fibers, known as FOS were used to instrument
he test bridge. FOS modulates the properties of a propagating light
ave, such as phase, intensity, wavelength, polarization, and fre-
uency, offering several advantages over traditional strain sensors,
wing to the silica core. These advantages include passive nature,
inimal losses at optical frequencies, dielectric properties, quasi-and
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Fig. 4. Proposed fusion process at different levels.
Fig. 5. Overall overview for the proposed framework.
fully distributed sensing points, immunity to electromagnetic inter-
ference, chemical inertness, biocompatibility, multiplexing capability,
high-temperature resistance, and a compact lightweight structure. De-
spite their high cost, FOS provides multiplexing and long-distance
capabilities of up to 20 km, which justifies the expense compared to
conventional sensors.

By incorporating FBG sensors into FOS, FBG-based FOS was ob-
tained, inscribing ‘‘wavelength-selective mirrors’’ into the fiber, to re-
flect only a specific wavelength from the input light wavelength spec-
trum. This specific wavelength is referred to as the Bragg wavelength.
8 
Changes in parameters, such as strain and temperature, cause alter-
ations in the grating period (𝛬), resulting in spectral shifts in the
Bragg wavelength, whereby the peaks can be identified and translated
into meaningful measurements using an interrogator (data acquisition
hardware).

For the test-bridge setup, the sensors were mounted underneath
the central C-beam of the bridge using epoxy-bonded brackets. The
FBG sensors were procured from Micron Optics and included three
Os3610 sensors (25 cm surface-mounted strain sensors). The sensors
were arranged in a daisy-chain configuration to collect the structural
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Fig. 6. Overview of the experimental framework.
Fig. 7. Experimental test bridge (a) technical drawing (cm) – overhead view, (b) technical drawing (cm) – frontal view.
strain data, as illustrated in Fig. 6. For further information on the
FBG-FOS data collection, the reader is referred to [7,8].

Body acceleration measurements were recorded along the x, y, and
z axes using a handheld smartphone equipped with built-in accelerom-
eters (Fig. 6). The smartphones were able to record the acceleration
forces on all three axes simultaneously, using a customized application.
These data, along with individual identification numbers, were trans-
mitted via Wi-Fi to a connected wireless access point at a rate of 20 Hz.
An SQL database was used to store and process the data locally.

4.3. Crowd data sampling

Generating a dataset suitable for training machine-learning models
requires simulating crowd flows on a pedestrian bridge. Consequently,
9 
we assembled diverse groups of volunteers to walk across the model
bridge under various conditions, including two distinct walking speeds:
leisurely (slow) and brisk (fast), and different group sizes (as indicated
in Table 4). Each volunteer was equipped with a smartphone while
walking across the bridge. The strain levels of the bridge were recorded
using three installed FBG sensors, and individual acceleration data were
simultaneously captured using smartphones.

In the dataset, each recorded instance was classified based on factors
such as number of pedestrians, number of groups, and speed of walking
(slow or fast). Each volunteer group traversed the bridge twice in both
forward and backward directions, resulting in a dataset comprising 488
observations. The recorded time stamps from the accelerometers were
synchronized with the GPS time, whereas those from the FBG were not.
The sensors were aligned using the network time protocol (NTP) [8]
to ensure a high degree of temporal accuracy between the two data



S. Hassani et al.

i

t
1
i
A
a
t
d
F
c
e
t
b
g

w

a

T
p
T
a

a
l
c
s
2
a
2

w
t
f

Information Fusion 118 (2025) 102983 
Table 4
Composition of volunteers employed for crowd simulation; detailing group sizes, overall
number of groups, and average mass associated with each group size.

Group size Total groups Mean mass (in kilograms)

1 10 78.3
2 10 154.3
3 10 225.5
4 10 291.8
5 10 392.4
6 10 444.3
8 1 605.9

streams. The minimal time difference between the two streams, which
is expected to be within a few milliseconds [39], had no significant
mpact on the application.

Fig. 8 shows the synchronized strain and acceleration patterns for
wo scenarios: a group of two individuals with a combined weight of
43.9 kg moving at both fast and slow speeds, and a group of eight
ndividuals with a total mass of 605.9 kg walking at the same speeds.
s shown in the figure, the strain signal from the FBG sensors and the
cceleration signal from the IMU exhibit distinct patterns influenced by
he dynamics of the crowd. The footfalls of the crowd corresponded to
iscernible peaks in the FBG strain signal as the volunteers crossed the
BG sensors. These peak strain readings are most pronounced over the
entral bridge sensor ‘‘FBG (2)’’. As expected, a difference in strain is
vident between the groups of two and eight individuals, regardless of
heir walking speed, based on the varying peak amplitudes registered
y the FBG sensors. Higher peak amplitude values are indicative of
reater total mass and generally larger group sizes.

Upon comparing fast and slow walking, a clear trend emerges: fast
alking generates higher-frequency oscillations and shorter activity

spans in the FBG strain readings, regardless of group size. Within the
same time interval, in the fast motion case, the accelerometer readings
along the 𝑥 and 𝑦 axes exhibit greater amplitudes than those for the
slow-motion case. The outcomes from both sensors underscore the
potential of employing sophisticated machine learning algorithms for
the accurate classification of motion speed and load, as well as precise
estimation of load values.

5. Results and discussions

Simulations were conducted on the crowd and structural movement
data recorded during the experiments for the training and evaluation
of the proposed crowd attribute estimation methods. The collected
dataset included both strain and acceleration data, each paired with
the respective labels and was used for the following purposes.

• Binary classification: A two-class classification model was em-
ployed to determine the speed of crowd motion, distinguish-
ing between fast and slow movements. The dataset was divided
evenly into two categories.

• Multi-class classification: To provide a more comprehensive
characterization of the crowd, multiclass classification models
were trained using a labeling system that considered crowd load
based on total weight. Categories included slow-light, slow-heavy,
fast-light, and fast-heavy, with a 250 kg threshold used to roughly
balance the distribution of data labels between light and heavy
loads.

• Regression: Regression models were utilized to estimate the total
crowd mass on the bridge. These models were trained using the
total mass data collected during the data acquisition phase.

In our approach, we utilized three different types of data: raw,
decomposed, and denoised, with each serving a specific purpose in
enhancing our analysis (see Fig. 9).
10 
• Decomposed data: To acquire valuable insights from the original
signals, we employed the VMD technique to decompose the sig-
nals into three distinct components. This decomposition created
a new input dataset with richer information than the original
signals. Fig. 10 provides a visual representation of this process,
displaying the raw strain and acceleration signals alongside the
three decomposed components. The figure shows how the original
signals were broken down into distinct components.

• Denoised data: To improve the quality of the signals, we applied
denoising techniques using VMD in combination with downsam-
pling. Fig. 10 illustrates the outcome of this denoising process,
in which the initially decomposed signals were subjected to de-
noising, resulting in three denoised signal components. These
denoised components were then combined to create the final
denoised signals. Fig. 11 illustrates the denoising process coupled
with various types of downsampling, namely, downsampling I,
II, and III. This comparison allowed us to study the impact of
downsampling on our data. We found that using a high down-
sampling factor can lead to loss of information, resulting in
reduced accuracy. However, when downsampling was applied
judiciously, it effectively removed noise from the input signals,
thereby enhancing the accuracy of the results.

As elaborated above and depicted in Fig. 4, six different data fusion
pproaches were investigated using the following strategies:

• Calculating the mean of the three FBGs.
• Concatenating the data from three FBGs.
• Averaging the data from three FBGs while incorporating acceler-

ation.
• Concatenating the data from three FBGs while incorporating ac-

celeration.
• Implementing feature fusion within the middle layer of a 2D-CNN

model.
• Employing feature fusion based on the concatenation of selected

features using PCA.
• Employing decision fusion based on the concept of an ensemble

model.

5.1. Overview of data analysis

In this study, the analyzed dataset consisted of FBG and accelerom-
eter data paired with the respective labels. For strain data, each obser-
vation was evenly distributed among the three FBG sensors. To ensure
temporal alignment, the accelerometer data were time-synchronized
based on the timestamps of the FBG strain data. The measurements
from the three FBG sensors were concatenated or averaged into a single
vector to create a sequential strain curve representing crowd flow.

o account for the variations in the way volunteers held their smart-
hones, the accelerometer data needed to be orientation insensitive.
his was achieved by summing the norms of the tri-axis smartphone
ccelerometer for each group size.

For data mining, 2D-CNN models were selected because of their
bility to automatically extract features. In this context, the Python
ibraries Scikit-learn and TensorFlow were employed to formulate the
lassification and regression problems. The raw FBG and accelerometer
ignal data served as one-dimensional image inputs for training the
D-CNN models. The VMD algorithm and downsampling models were
pplied to the raw sensor data to generate additional inputs for the
D-CNN models.

To ensure unbiased evaluation, the dataset was subjected to a
fivefold cross-validation procedure. During this process, the dataset

as randomly divided into training, validation, and test subsets. The
raining subset was employed for model training, the validation subset
or optimizing and fine-tuning of parameters, and the testing subset for

evaluating model performance and accuracy. The classification model
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Fig. 8. Examples of strain and acceleration recordings observed in a group of eight and two individuals during (a) high-speed and (b) low-speed motion.
evaluation was based on the percentages of accuracy, recall, precision,
and F1 score, whereas the regression model evaluation was determined
by the average percentage error between the estimated and actual loads
and R-squared (R2) score. The final assessment of model performance
was based on the mean and standard deviation of the resulting scores
for each fold. Higher values of recall, F1 score, precision, accuracy, and
R2 score indicate better performance.

To investigate the impact of data fusion, we first employed the
dataset from each sensor in isolation to develop individual models.
This approach enabled us to assess the independent capabilities of
11 
the FBG and accelerometer sensors in classifying and regressing crowd
attributes, encompassing parameters such as motion speed, load cate-
gorization, and load estimation. Subsequently, the fused signals were
analyzed at the signal and feature levels in various states (raw, decom-
posed, and denoised data).

The following nomenclature represents the different forms of data,
including the fusion techniques used to generate the results presented
in this section:

• Acc: acceleration data.
• CoS: concatenation of strains.
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Fig. 9. Decomposition of strain and acceleration signals using the VMD algorithm.
Fig. 10. Denoising of strain and acceleration signals using the VMD algorithm.
• MoS: mean of strains.
• DF-I: concatenation of strain with acceleration data.
• DF-II: mean of strain with acceleration data.
• FF: feature fusion.

5.2. Binary classification results

This section discusses the results of binary classification conducted
using different types of data combinations and denoising strategies.
Fig. 12 shows the validation scores of the binary-class motion speed
12 
classification task using both raw and decomposed data. The hyper-
parameters for the 2D-CNN models were optimized based on the val-
idation scores. For each data combination, the figure shows the mean
results for all the folds. For the raw data, the validation accuracy across
all inputs is approximately 96%, except for the accelerometer data
which have an accuracy of 94%. The F1, precision, and recall scores
for the raw data are also impressive, averaging approximately 93%,
92.5%, and 94.5%, respectively.

Notably, data fusion at each level yielded higher accuracy, recall,
precision, and F1 scores than using acceleration or strain data alone.
For instance, accuracy scores for DF-II and DF-I outperform those
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Fig. 11. Denoising of strain and acceleration signals through downsampling.
Fig. 12. Validation scores (%) for binary classification using both raw and decomposed data.
of other outcomes. The results for CoS, FF, and MoS followed, with
the lowest score attributed to Acc. Data fusion at the signal level
outperformed feature fusion. The figure also presents the results of the
decomposed data. Here, we observe that the scores in all states of the
data are higher than those of the raw data. The accuracy score for
decomposed data fusion (DF-II) reached 98.9%, whereas that for FF
reached 98.1%. Notably, the performance of DF-II surpasses that of DF-I
for both raw and decomposed data. Decomposition consistently led to
higher scores in all aspects of validation, including accuracy, precision,
recall, and F1 scores.

Fig. 13 shows the results of the raw and denoised signals across
all combinations of input data using the VMD algorithm. The de-
noised results outperformed both the decomposed and raw data. For
example, the accuracy score for DF-II reached an impressive 99.80%,
significantly surpassing that of the raw data. The precision scores are
also notably higher, exceeding 98.2%. Denoised signals for all data
combinations consistently achieved validation scores above 95%. The
highest scores in accuracy, precision, recall, and F1 score were achieved
13 
by DF-II followed by DF-I.
Fig. 14 further explores the outcomes of denoising, considering

three types of downsampling and various data combinations.
Downsampling-I consistently outperformed raw data signals, with an
accuracy score of 98% for DF-II. Downsampling-II exhibited mixed
results, with some scores surpassing those of the raw data and others
falling short. However, downsampling-III, yielded lower scores than
raw data as some useful information was lost. Overall, the results
suggest that for our dataset, downsampling-I and downsampling-II
demonstrate better performance in noise removal, aligning with our
goal of denoising input signals. The highest scores in accuracy, pre-
cision, recall, and F1 score were achieved by DF-I followed by DF-II.
Regarding the standard deviation of the results, downsampling-II intro-
duced consistent fluctuations across different folds, leading to unstable
accuracy results. However, slight or moderate downsampling can be
beneficial, and other metrics show less severe fluctuations in the
downsampling-II results.
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Fig. 13. Validation scores (%) for binary classification using both raw and denoised data with the VMD algorithm.

Fig. 14. Validation scores (%) for binary classification using both raw and denoised data from different types of downsampling.
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Table 5
Test scores for different combinations of raw, decomposed, and denoised data for the binary-class classification task.

Test accuracy (%)

Type Raw Decomposed with VMD Denoising with VMD Downsampling-I Downsampling-II Downsampling-III

Acc 94.45 96.85 98.17 97.41 95.22 91.89
CoS 98.19 99.28 99.39 98.50 98.20 97.82
MoS 97.43 97.99 98.39 98.18 98.20 97.12
FF 97.82 98.37 98.87 98.25 97.42 95.42

DF-I 98.98 99.33 99.53 99.36 98.88 98.34
DF-II 99.20 99.48 99.62 98.59 98.57 97.02

Test precision (%)

Acc 94.20 96.11 97.08 96.68 92.25 80.86
CoS 93.67 96.73 97.32 95.57 94.31 93.07
MoS 92.64 95.31 95.91 94.90 93.94 92.03
FF 96.44 96.93 97.12 96.92 94.84 93.58

DF-I 94.81 96.98 97.58 96.66 96.14 95.30
DF-II 96.13 97.29 98.89 97.08 96.59 95.85

Test recall (%)

Acc 94.60 95.69 96.89 95.41 90.43 83.82
CoS 97.56 97.75 97.95 96.33 96.10 95.58
MoS 94.86 96.97 96.83 96.45 96.41 95.64
FF 96.66 97.07 97.97 97.12 93.88 92.61

DF-I 97.17 97.69 97.83 97.13 96.73 96.63
DF-II 98.40 98.43 98.63 96.80 96.74 96.06

Test F1 (%)

Acc 94.40 95.05 96.65 95.80 91.29 82.25
CoS 95.55 96.36 97.16 95.99 94.99 94.89
MoS 93.73 95.62 95.88 94.93 94.66 94
FF 95.53 96.11 96.73 96.02 93.67 91.43

DF-I 96.33 96.68 96.85 96.42 96.19 95.22
DF-II 97.25 98.28 98.99 96.61 96.13 95.77
a

As detailed in Section 3.1.2, we employed five-fold cross-validation
o identify the optimal hyperparameters for the 2D-CNN model. The
ext step was to evaluate model performance on a separate test set
omprising 20% of the data which were excluded from the training
rocess. Table 5 provides an overview of the test scores for various
ombinations of raw, decomposed, and denoised data using VMD and
ownsampling. As shown in the table, the highest score (indicated by
he blue number) was achieved with denoised data using VMD for
ll data combinations. The next highest scores were associated with
ecomposed data and denoising using downsampling-I. For instance,
he highest accuracy scores are obtained by denoising the data using
MD for the states DF-II, DF-I, and FF, respectively. As previously
entioned, this study examined various data fusion states as inputs,

nd the results in the table demonstrate that data fusion also enhances
he test scores. Notably, DF-II achieved the highest scores on all tests
accuracy = 99.62%, precision = 98.89%, F1 = 98.63%, and recall =
8.99%).

5.3. Multiclass classification results

This section presents the results of the multi-classification con-
ducted on different types of data combinations and denoising strategies.
Fig. 15 shows the validation scores of multiclass motion speed and load
classification (fast-heavy, fast-light, slow-heavy, and slow-light) using
both raw and decomposed data. For raw data, the validation accuracy
across all inputs was consistently approximately 97%, except for ac-
celerometer data, which achieved 94% accuracy. The F1, precision, and
recall scores for the raw data were also approximately 92%, 93%, and
94%, respectively. Notably, the fusion of raw data at each level yielded
higher accuracy, recall, precision, and F1 scores than using acceleration
or strain data alone. The validation scores for the decomposed data
surpassed those for the raw data. Furthermore, the performance of the
fused data exceeded that of the individual data sources. For instance,
when comparing the accuracy scores, FF (98.25%), DF-I (98.02%), and
DF-II (97.90%) outperformed the other data combinations. Regarding

the standard deviation of the results across different folds, a smaller

15 
deviation is apparent in the decomposition results, confirming the
effectiveness of the decomposition strategy. However, in a handful of
instances decomposition was not as effective, as in the case of F1 scores
ssociated with MoS and recall obtained for CoS.

Fig. 16 illustrates the results of the input data denoised using the
VMD algorithm. Notably, the denoising process of VMD was conducted
concurrently along with decomposition. The results indicate that the
VMD algorithm is significantly more effective when used for denoising.
For example, when performing VMD denoising, the accuracy scores for
DF-I and FF reached 98.5% and 99%, respectively, significantly sur-
passing those of the raw data. The denoised signals for all combinations
of data states consistently achieved accuracy, F1, precision, and recall
scores above 99%, 93.34%, 94.28%, and 94.67%, respectively.

Fig. 17 further explores the outcomes of various data combinations
denoised via three types of downsampling. Downsampling-I consis-
tently outperformed raw data, with an accuracy score of 98.3% for
DF-II. Downsampling-II exhibited mixed results, with some scores sur-
passing raw data and others falling short. Downsampling-III, however,
yielded lower scores than raw data, as some useful information was
lost. Overall, the results suggest that on our dataset, Downsampling-
I and Downsampling-II demonstrated better performance in removing
noise, aligning with our goal of denoising input signals. In the mul-
ticlass context, the outcomes of Downsampling-III were less favorable
than those of Downsampling-I in the context of binary classification.
The underlying explanation for this discrepancy lies in the nature of
multiclass classification, which required handling four distinct classes.
For a comprehensive analysis, each class requires a substantial amount
of data, such that a high downsampling factor leads to data loss,
thereby reducing the available data for each class. In contrast, in binary
classification, which involves only two classes, the omission of some
data does not significantly impact the analysis since decision-making is
a simpler process with fewer classes to consider.

Table 6 presents an overview of the testing scores for various
combinations of raw and decomposed data for multiclass classification.
As depicted in the table, the top score (indicated by the blue num-
ber) corresponds to denoised data obtained using VMD for all data
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Fig. 15. Validation scores (%) for multiclass classification using both raw and decomposed data.

Fig. 16. Validation scores (%) for multiclass classification using both raw and denoised data with the VMD algorithm.
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Fig. 17. Validation scores (%) for multiclass classification using both raw and denoised data with downsampling.
Fig. 18. Validation R2 (%) for the regression task using both raw and decomposed data.
t

combinations. The highest scores are associated with the decomposed
data and denoised data using Downsampling-I. For instance, the highest
ccuracy scores are achieved by denoising the data using VMD for
F-I, DF-II, and FF, respectively. The results in the table demonstrate

that data fusion enhances the test scores for any type of data (raw,
decomposed, and denoised). Notably, DF-I achieves the highest scores
n all tests (accuracy = 98.69%, precision = 98.46%, F1 = 97.66%, and
ecall = 96.10%).
17 
5.4. Regression results

This section discusses the regression analysis results. Fig. 18 shows
he validation R2 of the regression task for load prediction on the bridge

using both raw and decomposed data. Regarding raw data, the valida-
tion R2 across all inputs is consistently approximately 93%. As depicted
in the figure, the R2 scores for the decomposed data outperform those

for the raw data, and data fusion also exhibits superior performance
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Table 6
Test scores for different combinations of raw, decomposed, and denoised data for the multiclass classification task.

Test accuracy (%)

Type Raw Decomposed with VMD Denoising with VMD Downsampling-I Downsampling-II Downsampling-III

Acc 96.26 97.12 97.92 96.45 95.49 92.79
CoS 98.03 98.24 98.61 98.19 97.61 96.02
MoS 98.21 98.42 98.65 97.80 97.79 96.02
FF 97.79 97.83 98.33 96.13 96.00 94.05

DF-I 98.19 98.39 98.69 97.02 96.18 95.18
DF-II 98.03 98.22 98.42 98.21 95.80 96.20

Test precision (%)

Acc 92.55 93.38 93.79 92.21 80.17 74.01
CoS 95.39 95.79 96.14 94.65 93.46 92.02
MoS 93.59 93.99 94.39 93.67 91.76 90.05
FF 94.96 95.18 95.79 93.75 93.67 93.08

DF-I 93.14 94.53 98.46 96.82 93.72 93.10
DF-II 96.94 96.74 97.94 97.58 95.29 95.07

Test recall (%)

Acc 93.24 93.83 94.64 90.79 82.19 77.00
CoS 95.66 96.05 97.45 96.14 95.21 93.01
MoS 93.58 96.18 96.78 96.33 95.66 95.02
FF 94.18 94.58 95.78 93.56 93.17 93.03

DF-I 95.67 96.06 97.66 95.74 95.20 95.23
DF-II 95.14 96.74 96.44 97.13 97.11 96.00

Test F1 (%)

Acc 91.18 92.18 92.97 89.60 79.20 75.00
CoS 93.06 93.66 94.46 93.21 92.36 91.00
MoS 92.76 93.16 94.36 93.22 93.01 93.00
FF 93.16 93.96 94.56 92.66 92.42 92.00

DF-I 95.10 95.70 96.10 94.63 93.09 92.10
DF-II 93.78 94.38 95.38 92.22 91.86 91.00
Fig. 19. Validation R2 (%) for the regression task using both raw and denoised data with the VMD algorithm.
compared to individual data sources. For instance, the highest R2 score
of 98% is achieved for DF-I with the decomposed data as input.

Fig. 19 shows the denoising results across all combinations of input
data using the VMD algorithm. The denoised results outperform both
the decomposed and raw data. For example, the R2 score for DF-I
eached 98% with the denoised data, significantly surpassing the raw
ata state. Denoised signals for all combinations of data consistently
chieved validation R2 scores greater than 96.5%.

Fig. 20 shows the results of denoising for three types of down-
ampling and various data combinations. Downsampling-I consistently
utperformed raw data signals, with a R2 score of 97.9% for DF-I.
18 
Table 7 provides an overview of the test R2 for various combina-
tions of raw and decomposed data for the regression problem of load
prediction. As depicted in the table, the top score (indicated by the
blue number) corresponds to the denoised data obtained using VMD
for all data combinations. The highest R2 scores are associated with the
decomposed data and denoising using Downsampling I. For instance,
for the data denoised using VMD, the R2 scores are: DF-I (98.42%), DF-
II (98.17%), and FF (97.00%). The results in the table demonstrate that
data fusion enhances the test scores at any level (signal and feature) for
any type of data (raw, decomposed, or denoised data).

Notably, the results in the table clearly indicate the superior per-
formance of DF-II compared to other forms of data combinations. This
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Fig. 20. Validation R2 (%) for the regression task using both raw and denoised data using downsampling.
Table 7
Test R2 score (%) for different combinations of raw, decomposed, and denoised data for the regression task.

Type Raw Decomposed with VMD Denoising with VMD Downsampling-I Downsampling-II Downsampling-III

Acc 95.57 95.97 97.30 95.78 85.20 80.20
CoS 93.51 95.03 96.78 94.60 89.40 85.00
MoS 92.30 93.43 96.28 93.29 89.80 81.80
FF 96.20 96.42 97.00 95.60 90.20 86.20

DF-I 97.54 97.74 98.17 97.00 91.60 89.00
DF-II 97.95 98.37 98.42 98.09 90.80 89.80
p
c
[

a
e
C
p
p

comparison is illustrated visually in a Taylor diagram in Fig. 21. The
aylor diagram is a specialized tool designed to evaluate datasets or
odels considering parameters such as the correlation coefficient, root
ean square error (RMSE), and standard deviation. In this diagram, we

nalyze four models, denoted as M1, M2, M3, and M4, representing DF-
I with raw data, DF-II with Downsampling-I, DF-II with decomposed
ata, and DF-II denoised using VMD, respectively.

Overall, the results indicate that M4 is the closest to the ground
ruth. The figure displays the correlation coefficient as a vital metric for
omparison. Notably, M4 exhibits the highest correlation coefficient,
ndicating a stronger alignment with the ground truth data. The dis-
ance of each model point from the origin on the Taylor diagram is the
oot mean square difference (RMSD), with shorter distances indicating
etter agreement with the reference. As observed in the figure, M4 has
he shortest distance from the reference, reinforcing its accuracy. In
ddition to RMSD, we considered the standard deviations of the models.
odels with lower standard deviations are generally preferable when

hey are in the proximity of the reference. In this context, M4 exhibits
ower standard deviations than the other models, further emphasizing
ts superiority. In summary, the results depicted in the Taylor diagram
alidate that M4, which represents DF-II for data denoised using VMD,
utperforms the other models, showing higher correlation coefficients,
ower RMSD, and reduced standard deviation, all collectively affirming
ts superior accuracy and alignment with ground truth data.

Fig. 22 shows the load predictions achieved using the denoised
ata with the DF-II model compared with the perfect regression line.

The aim was to highlight the outstanding accuracy achieved with
he proposed model using specially preprocessed input signals. The
‘perfect regression line’’ represents the ideal results, with every predic-
ion aligning perfectly with the actual load values. This hypothetical
ine served as a benchmark for accuracy in our analysis. Upon close
xamination of the figure, the regression results of the model based
n DF-II with denoised data consistently produced load predictions
 d

19 
that closely approximated this ideal ‘‘perfect regression line’’. That is,
the predictions of our model display an outstanding R2, mirroring the
actual load values with minor deviations.

6. Comparison with existing approaches

In this section, we compare the proposed approach with exist-
ing methodologies for condition monitoring. The goal is to evaluate
and emphasize the advantages of our method across various metrics.
First, our innovative data fusion techniques are compared with the
established AKF method, as detailed by Liu et al. [40] and Pellegrini
et al. [41]. This comparison showcases the effectiveness of our data
fusion approach relative to the traditional AKF methodology. Next, the
erformance of our finely tuned 2D-CNN model is evaluated against
onventional machine learning techniques employed by Mustapha et al.
7,8]. These techniques include random forest, KNN, SVM, XGBoost,

and ensemble methods. The objective was to demonstrate the superior
performance of the optimized 2D-CNN model compared to traditional
methods within the framework of the proposed approach.

6.1. Comparative assessment of existing data fusion models

In scenarios in which noise exhibits non-Gaussian or non-stationary
characteristics, AKF typically outperforms simple signal averaging. The
daptive nature of the Kalman filter dynamic parameter adjustment
ffectively filters out noise while preserving crucial signal components.
onsequently, we conducted a performance comparison between our
roposed data-fusion technique and the AKF-based signal-fusion ap-
roach. Recent studies, such as those by Liu et al. [40] and Pellegrini

et al. [41], highlight the use of AKF for sensor signal fusion, underscor-
ing their relevance in contemporary research. The AKF is an advanced
variant of the Kalman filter, with the variance parameter based on the
iscrepancy between the predicted and measured values. This adaptive
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Fig. 21. Taylor diagram for DF-II with different types of data.
Fig. 22. Comparison of the predicted load value for DF-II with denoised data vs. the perfect regression line.
mechanism helps manage the uncertainties associated with dynamic
system changes.

The AKF consists of two main stages:

1. Prediction Update: In this phase, the a priori estimate and error
covariance are updated according to the process variance.

2. Measurement Update: The blending factor is calculated using
the prior error covariance and measurement variance to deter-
mine the contribution of the measurement to the final estimate.
The updated estimate and error covariance are adjusted based
on the measurement and blending factor.

This adaptive filtering approach fine-tunes the process variance by
accounting for the deviation between the measurement and updated
estimate, to adjust to evolving system dynamics. We developed a
Python program to implement AKF to fuse multiple signals into a
unified estimate. The program iterates over subsets of input data while
optimizing the hyperparameters of the AKF algorithm to enhance the
accuracy of the fusion process.

The conventional Kalman filter can be expressed through the fol-
lowing equations [42]:
20 
𝑥̂𝑘𝑘|𝑘−1 = 𝑈𝑘−1
𝑘 𝑥̂𝑘−1 (3)

𝑃 𝑘
𝑘|𝑘−1 = 𝑈𝑘−1

𝑘 𝑃 𝑘−1(𝑈𝑘−1
𝑘 )𝑇 + 𝐶𝑘𝑄𝑘𝐶

𝑇
𝑘 (4)

𝐾𝑘 = 𝑃 𝑘
𝑘|𝑘−1𝐻

𝑇
𝑘 (𝐻𝑘𝑃

𝑘
𝑘|𝑘−1𝐻

𝑇
𝑘 + 𝑅𝑘)−1 (5)

𝑥̂𝑘 = 𝑥̂𝑘𝑘|𝑘−1 +𝐾𝑘𝑚𝑘 (6)

𝑃 𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃 𝑘
𝑘|𝑘−1 (7)

Here, 𝑚𝑘 represents the innovation (or measurement residual), given
by:

𝑚𝑘 = 𝑧𝑘 −𝐻𝑘𝑈
𝑘−1
𝑘 𝑥̂𝑘−1

In these equations, various variables are involved:

• 𝑥̂𝑘−1: State estimate at time step 𝑘 − 1.
• 𝑃 𝑘−1: Covariance matrix of estimation errors at time step 𝑘 − 1.
• 𝑈𝑘−1

𝑘 : State transition matrix from time step 𝑘 − 1 to 𝑘.
• 𝐶𝑘: Process noise matrix at time step 𝑘.
• 𝑄 : Process noise covariance matrix at time step 𝑘.
𝑘
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• 𝐻𝑘: Measurement matrix at time step 𝑘.
• 𝑅𝑘: Measurement noise covariance matrix at time step 𝑘.
• 𝐾𝑘: Kalman gain matrix at time step 𝑘.
• 𝑥̂𝑘𝑘|𝑘−1: Predicted state estimate at time step 𝑘, considering mea-

surements up to time step 𝑘 − 1.
• 𝑃 𝑘

𝑘|𝑘−1: Predicted covariance matrix of estimation errors at time
step 𝑘, considering measurements up to time step 𝑘 − 1.

• 𝑥̂𝑘: Updated state estimate at time step 𝑘, after incorporating the
measurement at time step 𝑘.

• 𝑃 𝑘: Updated covariance matrix of estimation errors at time step
𝑘, after incorporating the measurement at time step 𝑘.

In addition, a common AKF [42] based on current measurements is
often employed in the Russian aviation industry. This filter adapts the
estimate of the state noise covariance matrix 𝑄𝑘 using the Maximum
Likelihood (ML) criterion:

𝐶𝑘𝑄
𝑘𝐶𝑇

𝑘 = 𝐾𝑘𝑚𝑘𝑚
𝑇
𝑘𝐾

𝑇
𝑘 + 𝑃𝑘 − 𝑈𝑘−1

𝑘 𝑃𝑘−1𝑈
𝑘−1𝑇
𝑘 (8)

In engineering calculations, to ensure the positive semi-definiteness
of 𝑄 and simplify computations, the terms 𝑃𝑘−𝑈𝑘−1

𝑘 𝑃𝑘−1𝑈𝑘−1𝑇
𝑘 in Eq. (8)

ight be neglected, yielding the approximation:

𝐶𝑘𝑄
𝑘𝐶𝑇

𝑘 = 𝐾𝑘𝑚𝑘𝑚
𝑇
𝑘𝐾

𝑇
𝑘 (9)

Consequently, in implementing the algorithm, the term 𝐶𝑘𝑄𝑘𝐶𝑇
𝑘

n the second equation of the previous step can be replaced by an
pproximate estimate obtained in the preceding step. This adapta-

tion makes the algorithm suitable for implementation on onboard
omputers, owing to its swift response and minimal computational
equirements.

Table 8 presents a comparison of the test scores between the pro-
osed data fusion approaches and the AKF fusion method across dif-
erent tasks: binary and multiclass classification, as well as regression.
he results are shown for the denoised signals using VMD (see Sec-
ion 3.2.2), and the fine-tuned 2D-CNN model (see Section 3.1.1) is
sed for the analysis tasks, outlined as follows:

• Binary-class classification: The proposed data fusion
approaches consistently outperformed the AKF method in terms
of accuracy and F1 score. For instance, the proposed approach
achieved an accuracy of 98.17% compared to AKF’s 88.94%, and
‘‘DF-II’’ achieved the highest accuracy of 99.62%.

• Multi-class classification: Similar to binary-class classification,
the proposed methods demonstrated superior performance over
AKF, with ‘‘DF-II’’ achieving an accuracy of 98.42% compared to
AKF’s 83.12%.

• Regression: In regression tasks, the proposed data fusion ap-
proaches also outperformed AKF, with ‘‘DF- II’’ achieving an R2

score of 98.42%, in contrast to AKF’s score of 79.85%.

Overall, the results indicate that the proposed data fusion ap-
roaches consistently provided higher accuracy, F1 score, and R2 than
he AKF fusion method across all tasks. This suggests that the proposed
usion methods are more effective in handling noise and extracting
seful information from the data, leading to better performance in
arious types of tasks.

6.2. Comparative assessment of machine learning models

In this section, various machine learning techniques—random for-
est, KNN, SVM, XGBoost, and ensemble methods—are investigated to
evaluate the performance of the 2D-CNN. As in previous analyses,
these ML techniques were employed for classification and regression
tasks using different combinations of input and signal types. The inputs
included data from individual sources (FBGs and accelerometers) as
well as fused data from the input, feature, and decision levels. Feature
 a

21 
extraction was conducted using the VMD algorithm. The VMD param-
eters and their designated values are listed in Table 2. Seven statistical
features were extracted from the IMF decomposition results of a given
signal, as outlined below:

1. The first quartile of the instantaneous frequency (IF) signal is
defined as follows:

IF𝑘(𝑡) =
d𝜙𝑘(𝑡)

d𝑡 (10)

where 𝜙𝑘(𝑡) indicates the instantaneous phase of the 𝑘𝐭 𝐡 IMF, as
presented in (1).

2. second quartile of the IF signal,
3. third quartile of the IF signal,
4. center frequency (𝜔) of the IMF.
5. Kurtosis of the IF signal,
6. variance of the IF signal,
7. skewness of the IF signal,

The extracted features are labeled as presented in Table 9.
The raw signals were decomposed into three IMFs using the VMD

lgorithm, resulting in a total of 21 features. To select the most effective
nd uncorrelated features, a PCA-based feature selection algorithm
as applied, as discussed in [38], thereby selecting 15 features as the

optimal subset.
In our evaluation, we used Monte Carlo cross-validation [43–45]

with 100 iterations. Fig. 23 provides a comprehensive summary of the
ey metrics, including accuracy, precision, recall, and F1 scores, for

binary-class classification across various data combinations and models.
Our approach incorporates an ensemble model that combines the deci-
sions of the top-performing models using XGBoost as the metamodel.
Our findings indicate that both XGBoost and the ensemble model
onsistently outperformed the other models. Notably, the highest accu-
acy of 91% was achieved through decision fusion using the ensemble
ramework, particularly with the data fusion model DF-II. However, as
llustrated in the figures, the testing scores for binary classification fall
hort of the results obtained with the 2D-CNN models (Table 5).

In multiclass classification, as illustrated in Fig. 24, the highest
est accuracy reached 77% when using the ensemble decision model
decision fusion) in conjunction with the raw data fusion model (DF-
I). Despite this notable achievement, the results fall significantly short
f the multiclass testing scores obtained using the 2D-CNN models
Table 6).

In Fig. 25, the test 𝑅2 scores are displayed across all models.
Notably, the highest 𝑅2 score of 63% is achieved by the decision model
within the ensemble combined with the data fusion model (DF-II).
However, these results, although commendable, fall short compared
to the 𝑅2 scores achieved by the 2D-CNN models (Table 7). Fig. 26
presents the perfect regression line plot for all models. Our observations
based on the figure show that none of the models considered can
erfectly predict the load values when compared with the proposed
D-CNN model (Fig. 22).

These results highlight the superiority of the 2D-CNN model over
ther ML models [7,8] in binary and multiclass classification, as well

as regression tasks on crowd movement and bridge load prediction.

7. Conclusions

This paper proposes an innovative monitoring methodology for
coupled structure-human sensing. The overarching goal was to enhance
edestrian safety through the comprehensive monitoring of crowd

movement and structural performance. In our approach, the synergy
f the insights acquired from both structural responses and human
ehavior was integrated with state-of-the-art signal processing, ma-
hine learning, and multimodal sensor data fusion techniques at various
evels, opening new avenues for advanced data analysis. This novel
pproach facilitates improved crowd and structural management by
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Table 8
Comparison of proposed data fusion approaches with AKF fusion. The test scores are for the binary class, multilabel, and
regression tasks.

Type of data fusion Binary-class classification Multi-class classification Regression

Accuracy (%) F1 (%) Accuracy (%) F1 (%) R2 (%)

AKF 88.94 84.85 83.12 81.54 79.85
Acc 98.17 96.65 97.62 92.97 97.30
CoS 99.39 97.16 98.61 94.46 96.78
MoS 98.39 95.88 98.65 94.36 96.28
FF 98.87 96.73 98.33 94.56 97.00
DF-I 99.53 96.85 98.69 96.10 98.17
DF-II 99.62 98.99 98.42 95.38 98.42
Fig. 23. Testing scores (%) for binary classification using VMD features for Random Forest, KNN, SVM, XGBoost, and ensemble methods.
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Table 9
Description of features labels.

Index Features Description

1 p1_IF𝑖 First quartile of IF for IMF𝑖
2 p2_IF𝑖 Second quartile of IF for IMF𝑖
3 p3_IF𝑖 Third quartile of IF for IMF𝑖
4 k_IF𝑖 Kurtosis of IF for IMF𝑖
5 v_IF𝑖 Variance of IF for IMF𝑖
6 cf_IF𝑖 Center frequency of IMF𝑖
7 sk_IF𝑖 Skewness of IF for IMF𝑖

establishing effective early warning systems for predicting safety risks.
By leveraging an integrated understanding of crowd behavior and
tructural responses, the proposed methodology paves the way for
roactive measures, to mitigate potential hazards and ensure the safety
nd resilience of infrastructures in crowded environments.

This proof-of-concept study was validated through laboratory ex-
eriments involving diverse groups on a bridge model and simulations
onducted on crowd movements. The bridge behavior was monitored

using embedded FBG sensors, whereas crowd movements were tracked
using smartphone-integrated accelerometers. By leveraging fusion tech-
niques and employing 2D-CNNs, novel algorithms were developed to
classify crowd flow and density, as well as to estimate bridge load-
ing with enhanced robustness. Various data pre-processing strategies,
22 
including decomposition using VMD, denoising through VMD, and
different levels of downsampling, were explored to cleanse the data.
 comparative analysis was conducted with existing data fusion ap-
roaches, such as AKF fusion and various machine learning models,
ncluding random forest, KNN, SVM, XGBoost, and ensemble methods,
ighlighting the advantages of the proposed approach. The developed
ethodology not only facilitates the estimation of crowd load and
obility parameters but also lays the foundation for a comprehen-

ive crowd management system driven by artificial intelligence-based
ecision-making. The key findings of this study underscore the efficacy
f the proposed approach in enhancing crowd monitoring and manage-
ent capabilities, providing improved safety and efficiency in crowded

nvironments. As a result,

1. Data fusion emerged as a highly effective approach for achiev-
ing superior performance in crowd analysis. The most effective
fusion strategies were raw data fusion with the 2D-CNN model
(DF-I and DF-II), feature fusion using 2D-CNN (FF), decision
fusion employing an ensemble of machine learning models, and
feature fusion incorporating selected features through PCA.

2. Denoising, particularly using VMD decomposition demonstrated
remarkable effectiveness. Although low-level downsampling was
observed to enhance the results compared to VMD, aggres-
sive downsampling may compromise the model performance by
sacrificing information integrity.
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Fig. 24. Testing scores (%) for multiclass classification using VMD features for random forest, KNN, SVM, XGBoost, and ensemble methods.
Fig. 25. Testing R2 scores (%) for regression task using VMD features for random forest, KNN, SVM, XGBoost, and ensemble methods.
a

3. The fine-tuned and optimized 2D-CNN model exhibited superior
performance compared to other state-of-the-art machine learn-
ing models because of its ability to extract high-level features
from the input data.

Future research endeavors can focus on extending these strategies
to encompass advanced structural health monitoring, with particular
emphasis on structural degradation prognosis and performance as-
sessment. By leveraging the methodologies established in this study,
23 
researchers can develop techniques to predict the deterioration of
structures over time, evaluate their behavior under varying conditions,
nd acquire insights into the expected end-of-service life. With potential

to explore data-fusion strategies and observe how structures respond to
crowd distribution and motion, this research offers valuable insights
into the interaction between crowds and infrastructure, facilitating
the development of proactive measures, thereby enhancing structural
safety and resilience in crowded environments.
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Fig. 26. Comparison of the predicted load value using VMD features vs. the perfect regression line for random forest, KNN, SVM, XGBoost, and ensemble methods.
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