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A B S T R A C T

Due to its fast-curing process, asphalt binder has been increasingly used to replace conventional cementitious 
materials and to produce asphalt-based self-sensing sensors (ASS). The asphalt mixture does not require 
consideration of curing age, as asphalt-based samples can be cured at room temperature. This is because the 
asphalt binder transitions from a Newtonian liquid to a solid state upon cooling. The relationship between strain 
and electrical response is one of the factors that influences the self-sensing performance. In this study, four- 
electrode method was applied to ASS and 10 V of applied voltage was used to measure the piezoresistivity. 
The percolation thresholds of ASS, in the range of 0.5–1.0 wt%, was found based on study results. In order to 
analyse the strain of ASS, digital image correlation (DIC) method was applied, and the cyclic loading process was 
used to simulate the practical pavement situation. Furthermore, to enable the application of ASS and enhance the 
efficiency of the self-sensing system, a machine learning approach was applied in this study to establish the 
relationship between strain changes and the electrical response of ASS. The trained algorithm, exhibiting a high 
determination coefficient (reached 0.965), can be utilized to predict strain changes in self-sensing sensors based 
on fractional resistance changes. Artificial intelligence significantly enhanced the application potential of self- 
sensing sensors.

1. Introduction

Asphalt concrete composites are composed of cement, cationic 
emulsified bitumen, water, and fine aggregate fillers, forming an 
organic-inorganic material through the processes of cement hydration 
and asphalt demulsification [1,2]. While asphalt is prone to temperature 
variations and permanent deformations due to overuse, concrete pave-
ments require extended curing times and joint installations to prevent 
cracking, which can result in a noisy driving experience. Combining 
these two materials into a composite addresses their respective draw-
backs. Although cold mix asphalt is cost-effective, its lengthy curing 
process limits its application in heavy-duty pavements [3–5]. The 
cement in the composite enhances the mechanical properties of the 
pavement [6], however, its performance under traffic loads has not been 
thoroughly investigated. Significant advancements in asphalt concrete 
pavement are needed to align with the development of ’smart pavement’ 
technologies [6–8]. The monitoring of the pavement health is to be 
taken into consideration.

Traditional asphalt material is insulation material [9], however, 
according to the previous study, with the help of conductive fillers, the 
enhancement of the conductivity of asphalt mixture has been success-
fully achieved [10]. The conductive asphalt specimen exhibits a strong 
electrical response to loading changes; however, the piezoresistivity 
response may weaken over time due to specimen deterioration [11–14]. 
One of the foundation materials of a smart pavement system is 
conductive filler [15–17], by adopting conductive fillers, including 
carbon fibres (CF) [10], carbon nanotubes (CNTs) [18], carbon black 
(CB) [19], etc., which affect the mechanical properties of the mixture 
besides changing conductivity to the composite. These fibrous fillers 
improve the conductivity of otherwise non/semi-conductive asphalt 
cement mixture and respond effectively to load change [20]. Previous 
research has shown that the sand volume and generated noise can affect 
the performance assessment of composites containing CF [21,22]. On 
the other hand, carbon black (CB) enhances the electrical conductivity 
and self-sensing capability of the mixture, while increasing the silica 
fume content further improves the composite’s piezoresistivity [23]. 
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Another functional filler material, carbon nanotubes (CNTs), can 
enhance the conductivity of specimens while also improving the 
compressive strength of the composite [24]. However, the sandwiched 
model design for CNTs predicts smoother agglomeration boundaries, 
which have minimal impact on the composites’ mechanical properties 
while significantly enhancing their conductivity [25]. These conductive 
materials can help improve the mechanical properties of the composites. 
To address the durability and strength requirements of asphalt concrete 
pavement, this research selected carbon fibers (CFs) as the conductive 

filler to analyze the self-sensing capabilities of asphalt cement-based 
composites.

The operational mechanism of self-sensing pavements is illustrated 
in Fig. 1, featuring a self-sensing system based on the piezoresistivity 
effect, as outlined in a previous research [26]. As the load changes, the 

Fig. 1. Working method of self-sensing pavement.

Fig. 2. The architecture of artificial neural network.

Table 2 
The properties of the C450 bitumen, RTFO (Rolling thin film oven) (AS 2008- 
2013).

Bitumen 
Type

Viscosity at 
135 ℃, PA.S

Flash 
point / 
℃

Viscosity after RTFO 
treatment at 60 ℃, 
Pa.S

Mass change, 
percentage

C450 Max: 0.70 Min: 
250

Min: 750; Max: 1300 − 0.6 ~ 0.6

Table 1 
Specifications of high temperature furnace.

Maximum 
Temp / ℃

Capacity / 
L

Temp 
Accuracy / ℃

Temp 
Fluctuation / ℃

Heating 
System

1200 ℃ 216 1 ±5 / ±3 Electric 
Element

Fig. 3. (a) Bitumen binder under normal status and (b) Furnace used to melt 
the asphalt binder.
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resistance of the mixture simultaneously changes (from compacted 
distribution of fillers) as described by the fractional change in resistance 
(FCR) and the following equation: 

FCR =
R − R0

R0
× 100% =

ΔR
R0

× 100% (1) 

where R in Eq. 1 is the resistance of the mixture after loading, and R0 is 
the original electrical resistance of the unloaded specimen. The frac-
tional change in resistance (FCR) offers a quantitative approach to 
analysing variations in the electrical resistance of the specimen.

This novel approach to assessing the pavement’s electrical response 
to loads can be utilized to detect traffic flow, vehicle weight, and vehicle 
speed [27–29]. This functionality can assist in monitoring real-time 
traffic conditions and optimizing traffic management. Moreover, 
collected traffic data can be used to support the development of the 
weigh-in-motion system [30]. Cracks lead to change in resistance, as 
collected from the electrical signals to estimate the stress on the pave-
ment and assess the level of damage to the pavement.

Previous studies on self-sensing asphalt-cement composites and 
smart pavements have predominantly focused on laboratory experi-
ments, generating large amounts of data. The repetitive nature of the 

data makes it suitable for developing predictive models using machine 
learning (ML), a subset of artificial intelligence. Without considering 
rule-based algorithms and programming, ML can use specimens data to 
develop predictive models [31]. The use of ML in detecting concrete 
deterioration is not unheard. ML was used in corrosion area detection 
and evaluation, such as atmosphere corrosion [32], and pipeline 
corrosion [33]. Zhou et al. [34] applied ML to detect the micro-level 
damage to concrete beams. This has also been used in self-sensing 
technology. Roh et al. [35] made use of ML for the development of 
non-destructive evaluation of fibre-reinforced plastics.

By utilizing input training, machine learning (ML) can eliminate the 
need for theoretical modeling and expedite the decision-making process. 
An artificial neural network (ANN) can be trained using multiple sets of 
original data and corresponding targets to generate outputs that 
enhance machine learning (ML) performance. The schematic architec-
ture of ANN is shown in Fig. 2. Previous study have investigated the 
application of ANN for reinforced concrete design [36]. The shear 
contribution of fiber-reinforced plastics in reinforced concrete in-
frastructures was analysed using an adaptive neuro-fuzzy inference 
system (ANFIS) [37]. Furthermore, machine learning was applied to 
Structural Health Monitoring, enhancing the detection system’s 

Table 3 
Components of asphalt-based self-sensing specimens.

Sample type Cylinder specimens

CF wt% 0.5 % 1.0 % 1.5 % 2.0 % 2.5 % 3.0 % 3.5 % 4.0 %
Asphalt binder / g 71.82 71.82 71.82 71.82 71.82 71.82 71.82 71.82
Coarse aggregates / g 594 594 594 594 594 594 594 594
Fine aggregates / g 546 546 546 546 546 546 546 546

Fig. 4. (a)The asphalt based self-sensing specimen with scatter painting and (b) the DIC test result.

Fig. 5. The optical microscopic system.

Z. Deng et al.                                                                                                                                                                                                                                    



Construction and Building Materials 468 (2025) 140291

4

capability. However, limited research has analysed the application po-
tential of ML in the self-sensing asphalt sensors for pavement detection. 
Specifically, the application of machine learning (ML) in asphalt mix-
tures incorporating self-sensing sensors with conductive additives has 
not been previously investigated. The experiment evaluated the pie-
zoresistive response to loading changes and the mechanical properties of 
asphalt-based self-sensing mortar. The aim is investigating whether this 
mixture can be used in the practical situation. Furthermore, this study 
investigates the feasibility of self-sensing asphalt sensors by employing 
ML approach.

2. Materials and methodologies

2.1. Materials and mixture preparation

Class C450 level bitumen was chosen in this study and properties of 

this bitumen is shown in Table 2 based on AS 2008–2013. The normal 
status of bitumen was shown in Fig. 3(a). The test specimens combined 
coarse (nominal size of 10 mm) and fine (natural river sand) aggregates 
with asphalt as the binder. To establish conductive path in specimens, 
carbon fibre with an average diameter of 7 µm and length of 1 mm were 
added. To investigate the percolation thresholds of asphalt-based self- 
sensing sensors, eight dosages (0.5 %, 1.0 %, 1.5 %, 2.0 %, 2.5 %, 3.0 %, 
3.5 %, and 4.0 %) of CF was chosen. The furnace (LABEC) used to melt 
the asphalt was shown in Fig. 3(b) and Table 1 summarised the asphalt- 
cement composites. Although capable of achieving a maximum tem-
perature of 1200 ◦C, the furnace was operated at 175 ◦C as the highest 
viscosity of asphalt binder does not exceed 3 Pa⋅s at this temperature, 
making it suitable for mixing [38].

To enhance the electrical properties of asphalt concrete specimens, 
aligned carbon fibers (CF) should be uniformly dispersed within the 
asphalt matrix [39,40]. According to AS 2891, the melting temperature 
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Fig. 6. Comparison of smoothing results when d= 3 and w is the variable (a) w= 5; (b) w= 25; (c) w= 65.
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of the asphalt is 105 ± 5 ℃. In this experiment, the asphalt was melted 
at 175 ℃ for about two hours. At the same time, aggregates and CF were 
heated at the same temperature for the first two hours. Then, the CF and 
asphalt were mixed for about ten minutes for homogenous dispersion of 
the fibres. The mixture was then heated again at 175 ℃ for an additional 
two hours. Afterwards, aggregates were added to the asphalt-CF mixture 
and left into the furnace for an additional two hours heating which 
marked the final heating sequence for specimen preparation. At the end 
of heating, the mixture was ready to be poured into the moulds. In each 
mixing or moulding process, heating plate was applied to retain the 

temperature of the composites. Samples were de-moulded after 24 hours 
of initial curing in the moulds. The content of aligned CF in the samples 
ranged from 0.5 wt% to 4.0 wt% with an interval of 0.5 wt%, as sum-
marised in Table 3, resulting in eight distinct dosages of CF.

Previous research indicates that carbon fibers exhibit excellent 
thermal stability, capable of withstanding extremely high temperatures 
of up to 3000 ◦C in an inert environment [41]. However, exposure to 
extreme temperatures above 2000◦C can lead to graphitization [42]. 
Additionally, carbon fibers are prone to oxidation and degradation when 
subjected to temperatures in the range of 400–600◦C [43].

In this study, the maximum temperature applied to melt the asphalt 
was only 175◦C. Therefore, the influence of temperature on the carbon 
fiber’s properties was not considered or investigated in this work.

2.2. Strain change evaluation

The strain of the asphalt-based self-sensing (ASS) specimen was 
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Fig. 7. Comparison of smoothing results when w= 25 and d is the variable (a) d= 1; (b) d= 3; (c) d= 5.

Table 4 
The correlation coefficient and MSE results of different smoothed curves.

W= 25, d= 5 W= 25, d= 3 W= 25, d= 1

Correlation Coefficient 0.99953 0.99915 0.97064
MSE 8.43303E− 06 4.71244E− 06 0.000289033
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measured using the digital image correlation (DIC) method. The asphalt 
cylinder was ground to create a smooth, uniform surface. Then spray- 
paint was applied to the surface to present white colour spots for DIC 
test as shown in Fig. 4(a) and Fig. 4(b) showed the DIC test results. The 
DIC system was used to collect strain data. To ensure complete surface 
coverage and eliminate shadow interference, the camera and samples 
were aligned at the same horizontal level. [44]. The compressive 
strength of ASS specimens was tested by a universal testing machine 
under compression.

2.3. Electrical performance evaluation

2.3.1. Electrical resistivity
The electrical resistance of asphalt-based self-sensing specimens was 

measured, focusing specifically on their stress-electrical and strain- 
electrical resistance responses. Compressive stress was applied using a 
loading machine (AGX 50 kN), while electrical resistance was simulta-
neously measured with two multimeters under constant voltage and a 
four-electrode setup. The four-electrode method was employed as it can 
eliminate the effects of contact resistance between electrodes and 
asphalt [45]. Although two electrodes method have been applied in 
previous research for electrical resistance measurement due to an easier 
operation process [10,13], more reliable data can be recorded by using 
the four electrodes method. Moreover, the electrical resistance 
measured in this study can reflect the dispersion efficiency of the 

conductive fillers utilized.
The DC current was used in this study instead of AC current. 

Although AC current can reduce the polarization effects, there are 
several benefits that DC current can provide. As the carbon fiber added 
into the composites, the electrical resistance of asphalt mixtures was 
reduced. For the self-sensing test, the aim of self-sensing test was to 
measure the change of electrical resistance [46]. With DC current, the 
resistive components can be measured directly, but the capacitance and 
inductance of specimens should be considered if the study used AC 
current. The DC current measurement can provide a steady-state mea-
surement [47]. It can make the correlation between resistance change 
with stress or strain easier. However, with AC current, the impedance 
analyser and frequency-dependent devices were required to separate 
resistive and reactive components. Without accurate control, the AC 
current may lead to inaccurate results. AC current can create a 
time-varying signal which requires careful phase and frequency analysis 
to isolate resistance changes, and this can lead to less intuitive strain 
sensing. For the short-term test, with proper experimental setup, the 
polarization effect can be minimized and cause little effect on experi-
mental results [48]. In this study, each test for self-sensing specimens 
was only 2–3 minutes. Furthermore, with 175 ℃ melting temperature, 
the free ions content in asphalt mixtures was low which also reduce the 
polarization effect.

In conclusion, DC current can provide more stable measurement 
process and accurate results. Also, DC current can make experimental 
setup process simpler and avoid the influence of further variables.

2.3.2. Piezoresistivity test method
The self-sensing performance of the specimens was evaluated under 

varying compressive stress cycles to analyse the fractional resistance 
change. The cyclic compression test was tested successfully and rec-
ommended to measure the piezoresistivity of self-sensing samples in 
previous research [49]. The load application setup followed the same 
procedure as detailed in Section 2.3.1. Multimeters were connected to 
the four ends of copper electrodes on asphalt-based self-sensing speci-
mens and the data was collected in two flash drives. The specimens were 
tested under a single loading event and four loading-unloading cycles at 
the same stress amplitude.

2.4. Data smoothing method

The electrical response experimental results were inevitably influ-
enced by noise. In order to remove the noise influences, signal analyse 
process was employed [46]. The Savitzky–Golay smoothing filter (SGF) 
[50] was applied in this study to smooth a series of equal space data 
points and using following equation: 

gi =
∑nR

n=− nL

cn × fi+n (2) 

Where nR and nL represent the number of data points to the right and to 
the left; cn is filter coefficients; fi represent different data points and gi 
represent the linear combination. The w, known as window size, 
represent the number of nL +nR +1. For all nL +nR +1 points, the poly-
nomial degree is fitted as least-squares to generate the SCF, for each fi 
data point. Then at i position, gi was applied to be the value of the 
polynomial.

2.5. Machine learning modelling and evaluation

Testing asphalt-based self-sensing sensors generates a large dataset, 
which can be efficiently analysed using machine learning to reduce the 
time required for data processing. The intelligent model can process 
large datasets and continuously learn to adapt to new information. 
Furthermore, high computational, decrease the reliance of expertise, 
and pattern recognition are highly improved the working efficiency 

Fig. 8. Percolation thresholds of EVIzero-based self-sensing sensors [54].
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[51]. The trained artificial neural network (ANN) analysis system can 
generate outputs without being limited by whether the input data is 
known or unknown [35]. This approach can be beneficial for analysing 
the data gathered in this research. This study trained the artificial neural 
network (ANN) system using self-sensing performance test results. The 
selected inputs were the electrical response and the percentage of 
conductive filler content, while the output was the strain change of the 
samples. After training, the ANN algorithm consisted of cost function 
and input data. The cost value represents the errors between actual 
target value and model’s predicted value. The cost function was used to 
calculate the sum of errors made by the model across all training ex-
amples. The ANN algorithm was used to minimise the cost value and 
improve the accuracy of the results. In this study, results were the strain 

change, input value was fractional change of resistance (FCR) and per-
centage of carbon fiber contents. The primary objective of the ANN al-
gorithm was to minimise the system’s cost value and ensure that the 
final output value closely approximates the mean of the input data. 
Based on this principle, the piezoresistivity results of self-sensing spec-
imens, conductive filler content, and strain change were used as input 
parameters for the ANN algorithm. The Levenberg-Marquardt algorithm 
was applied for ANN training and is shown in following Eqs. (3) and (4)
[35]: 

H = JTJ (3) 

g = JTe (4) 

Eq. (3) represents Levenberg-Marquardt algorithm second-order 
training speed without calculating Hessian matrix. Eq. (4) presents the 
calculation method of gradient where J represent the Jacobian matrix 
and e represent the vector of network errors. In the Levenberg- 
Marquardt algorithm, Eqs. (3) and (4) are used as Newton-like update. 

xk+1 = xk − [JTJ + μI]− 1JTe (5) 

Where µ represents scalar. With the decrease of µ, the success training 
number were increased. The Eq. (5) can become Newton’s method when 
µ equal to zero. The equations from Eqs. (3) to (5) were utilised in 
Matlab Software. The inputs in this study are conductive filler content, 
FCR results, and the output is the strain of ASS samples. If filler content 
and FCR is not enough to conduct the algorithm, further parameters 
such as compressive strength will be added.

2.6. Optical microscope

This study analysed the micro-level holes in asphalt mixtures. The 
samples were compressed using a loading machine, and the compressive 
stress was maintained for five to ten minutes before being released. The 
compressed specimens were immediately scanned using an optical mi-
croscope. The optical microscope system was shown in Fig. 5. The type 
of microscope was a Carl Zeiss Axiotech Vario 100 HD, and the camera 
type was Eakins 48MP FHD.
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Fig. 12. Plot graphic of (a) training and (b) validation results of strain for 
whole dataset.
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Fig. 13. The reliability testing of trained algorithm test results by 
extra datasets.
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3. Results

3.1. Data smoothing results

The electrical response data was smoothed by Savitzky–Golay 
method as applied in previous study [52], as shown in Fig. 6. The 
smoothing process was influenced by window length, w and polynomial 
degree, d.

First, this study maintains the polynomial degree d at a low level 
while adjusting w to smooth the results. When d = 3, and w = 5, it is 
evident that the smoothing curve aligns perfectly with the original 
curve. The overfitting curve demonstrates that the smoothing process 
was not effective. In Fig. 6(b, c), the window length, w was progressively 
raised to 25 and 55. It is obvious that with the increase of w, the 
smoothing level has improved, but when the w value reached 65, the 
over smoothing problem was noticed while the curve under this w value 
can no longer represent the trend of the original curve. As such, for 
subsequent iterations, w = 25 was held constant while the polynomial 
degree, d was varied. The curve was over smoothed at d = 1 while the 
smoothing process was not effective at d = 5 which means it over fits the 
original trend without efficient noise reduction performance, as shown 
in Fig. 7. It can also be observed from the figure that at d = 3, the 
smoothing curve shows the best performance.

After calculating the mean squared error (MSE) and correlation co-
efficient for each smoothing curve, as shown in Table 4, it was observed 
that when w= 25 and d= 1, the correlation coefficient value was the 
lowest at 0.97064, with an MSE of 0.000289. The quantitative analysis 
indicates that d= 1 results in a weak correlation between the smoothed 
curve and the original curve. Under this condition, the curve was over- 
smoothed, as shown in Fig. 7(a). When d= 5, the smallest MSE value, as 

shown in Table 4, was achieved. However, with the highest correlation 
coefficient, the smoothed curve was overfitted to the initial curve, 
failing to effectively reduce noise influence. It can be observed from 
Fig. 7(c). Noticeably, when d= 3, the high correlation coefficient and 
low MSE demonstrated a strong correlation between the smoothed curve 
and the initial curve, without being overfitted or over-smoothed 
compared to other cases. It provides the best noise reduction perfor-
mance while it did not change the initial trend of the curve, shown in 
Fig. 7(b).

Compared to previous study [52], although same d value has been 
chosen, a lower w value of 25 was applied in this study. Thus, the 
combination of w= 25 and d= 3 has been applied to each electrical 
response results in this study.

3.2. Percolation analysis

According to previous studies [53], analytical models have been used 
to evaluate percolation thresholds, which can be applied to asphalt 
composites. Furthermore, Birgin et al. [54] applied EVIzero, one of the 
substitutes of asphalt, to build self-sensing sensors with carbon fibres. 
The percolation of this novel material was evaluated based on the EVI-
zero percentage, as shown in Fig. 8 [54]. A similar approach was 
adopted in this study to analyse the percolation thresholds of 
self-sensing asphalt-based sensors, with the findings presented in Fig. 9. 
The vertical axis represents the electrical resistance of the specimens, 
while the horizontal axis corresponds to the weight ratios of CF.

Based on analytical results, it can be observed that the critical 
volumetric fraction is at 1.0 % [55]. To analyse the reliability of this 
results, Birgin et al. [54] used experiments to confirm the percolation 
thresholds of EVIzero-based self-sensing sensors and found that the most 

Fig. 14. Micro-level hole in asphalt-based self-sensing sensors before loading (left) and after loading (right).

Fig. 15. Comparison of micro holes and micro-cracks change under compressive stress between cement-based samples (CC) and asphalt-based samples (ASS).
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promising doping level was around 1 wt% carbon fibre content. In this 
study, the result demonstrated that, when carbon fibre content reached 
between 0.5~1.0 %, the self-sensing asphalt-based sensors can be in the 
transition area from being insulator to conductor. Comparing the results 
between this study and Birgin et al. [54], similar percolation thresholds 
results were shown in both experiments. In Birgin et al. [54], the 
experimental results proved that the analytical model method to search 
percolation thresholds does not provide an accurate results when ana-
lysing asphalt like materials. According to the study results, it can be 
concluded that 0.5–1.0 wt% carbon fibre contents stand out as the 
working area of ASS specimens.

3.3. Piezoresistivity

Fig. 10 presents the fractional change of electrical resistance (FCR) of 
asphalt-based self-sensing specimens. With the single loading process, 
the FCR rate keeps decreasing. The peak value of FCR rate of self-sensing 
specimens occurred when dynamic loads reached the highest value.

With the increasing content of functional fillers (CF), the FCR rate 
initially increased at the onset of the percolation threshold but 
decreased near its endpoint. This phenomenon has been observed in the 
results of previous studies [56]. Compared with stress-electrical results, 
the strain-electrical results showed a better relationship between self- 
sensing performance and strain change of specimens. The strain 
changes in the specimens influenced the electrical response during the 
loading process. Over time, the initial fractional change in electrical 
resistance for each loading cycle decreased compared to the previous 
one. For FCR rate in the whole loading process, the rate keeps decreasing 
which is different from the electrical response of the cement-based self- 
sensing specimens [57]. Based on Figs. 10 and 11, as the loading stress 
increases, the relationship between strain changes and electrical 
response becomes more apparent. During the single loading process, it is 
evident that the increase in FCR corresponds to the increase in strain. 
When the loading process ended, the strain change did not return to the 
initial state at the start of loading cycle, indicated temporary deforma-
tion. During this period, the FCR rate initially increased and then sta-
bilized, corresponding to the strain changed. Previous study made a 
similar test to analyse the piezoresistivity performance of asphalt mix-
tures with electric arc furnace slag and graphene nanoplatelets which 
played the role of conductive fillers in the mixture [52]. Similar exper-
imental results can be found from previous research [58]. However, 
compared to previous study [52], it solely illustrates the relationship 
between compressive stress and the electrical response of self-sensing 
asphalt-based samples. Without considering strain changes, the elec-
trical response results become difficult to interpret. Due to the slow 
strain recovery process, the peak value of the FCR rate lagged the peak 
value of the compressive stress. Because of that, in the future research, 
strain-electrical response change of asphalt-based self-sensing speci-
mens needs to be tested. According to the experimental results, ASS 
samples exhibit high sensitivity to changes in compressive stress, 
demonstrating significant potential for traffic detection and structural 
health monitoring applications in the future.

3.4. Predicted response from trained ML model

Using the training and testing data for the trained strain model dis-
cussed in Section 2.5, scatter plots illustrating the relationship between 
actual and predicted results are presented in Fig. 12. According to 
Fig. 12, the root mean squared errors (RMSEs) of the training and 
validation regression were 0.00342 and 0.00336 and it can be observed 
that the determination coefficients (R2) were 0.965 and 0.966. The 
relationship between the actual strain and the predicted strain demon-
strates a strong correlation. Based on the data from Matlab algorithm, 
the ML model which was trained by experimental datasets has great 
reliability. Compared to the previous study, the algorithm which applied 

in previous studies performed a lower R2 value which was about 0.93 
[54]. In this study, the algorithm showed a high potential to be applied 
to traffic detection. Compared to previous research, earlier studies uti-
lized learning algorithms to design detection systems and apply them to 
traffic detection [53]. However, for those algorithm, complex numerical 
model and calculation process should be applied for detection results 
[27]. Compared to those complex processes, machine learning (ML) 
simplified the analysis process while enhancing reliability. With ML 
methods, the artificial neural network can be trained by the datasets to 
come up with an algorithm. The ML approach is simpler than previous 
algorithm [53] improving the working efficiency.

To prove whether the algorithm from MATLAB is reliable or not, 
another dataset was tested from a separate asphalt-based self-sensing 
specimens’ group with the same CF contents. As the sensitive area of ASS 
can be found from Fig. 6, the CF content of samples which have been 
used to do the second test was 0.5 %, 0.7 %, 0.8 %, and 1.0 %. Fig. 13
showed the testing phase results. Based on Fig. 13, the relationship be-
tween actual strain and predicted strain datasets presents a strong per-
formance, demonstrated by the value R2 of 0.963. The prediction 
process of algorithm may highly be influenced by the content of CFs, and 
this study only focuses on the asphalt-based self-sensing samples opti-
mum range. Through additional dataset analysis, this algorithm was 
validated as reliable for detecting strain changes in asphalt materials by 
monitoring variations in electrical resistance data.

4. Discussions on self-sensing performance

The electrical properties of self-sensing specimens are influenced by 
several factors. One of the factors that most significantly influence the 
fractional change in resistance ratio is the strain of the material. Birgin 
et al. [54] introduced the novel material EVIzero and applied this ma-
terial as the additive of asphalt. According to their results, the 
self-sensing specimen with 1 wt% conductive filler exhibited the best 
performance. When the strain ranged between 0 and 50 µε, the peak 
value of FCR rate reached about 20 %. Further, Xue et al. [59] made use 
of epoxy resin as the major material to form self-sensing sensors. When 
the strain of the sample reached its peak, the FCR rate was approxi-
mately 0.4 %. However, in this study, with 0.8 % content self-sensing 
asphalt-based sensors, the FCR rate was around 55 % and the strain of 
sample was 0.6 %, under 0.6 MPa compressive stress. It can be observed 
that with asphalt, the electrical response has been improved. Although 
replacement materials of asphalt have been used, self-sensing asphalt 
sensors demonstrated superior performance compared to other sub-
stitutes, as shown in previous studies.

Based on Fig. 14, it is obvious that under the compressive stress, the 
micro hole inside of the specimen has a deformation. Under the same 
compressive stress condition, ASS samples showed a clear deformation. 
For this reason, more conductive fillers can connect, forming additional 
conductive paths during the loading period.

According to Fig. 10, the FCR rate change showed a higher value 
compared to previous studies [60]. Under lower compressive stress, the 
strain change of ASS specimens was higher than cement-based mixtures. 
Due to the large shape change during the loading process, the structure 
inside of asphalt-samples presented a greater change than cement-based 
specimens. Because of that, more new conductive paths can be formed. 
As conductive paths in self-sensing specimens form within micro-level 
holes and microcracks under applied loads, the change in electrical 
resistance of asphalt-based self-sensing specimens is higher than that of 
cement-based self-sensing sensors. In that case, FCR rate of ASS samples 
was increased. Fig. 15 is summarised to illustrate this phenomenon that 
asphalt-based self-sensing sensors has a better reaction to the cyclic 
loads. During the load releasing process, the electrical resistance of self- 
sensing cementitious matrix can recover to original value following the 
loading releasing progress [56]. This phenomenon was indicated by 
previous study [61]. But the ASS samples cannot revert to its original 
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form as efficient as cement-based sensors. Because of that, the conduc-
tive path in ASS which formed during loading process will be partly kept 
in the micro-holes until next loading. Combined with Fig. 10, the FCR 
value of ASS keeps increasing following the twelve loading cycles. As a 
result, the self-sensing performance of sensors can be enhanced by 
incorporating asphalt mixtures.

5. Conclusion

This study analysed the electrical performance of asphalt-based self- 
sensing sensors and employed a machine learning method to develop a 
predictive algorithm for traffic detection. With the help of four-electrode 
method, DIC, and artificial neural network analysis, the working effi-
ciency of self-sensing function was investigated. The objective of this 
study is to identify the percolation thresholds of self-sensing asphalt 
sensors and apply this novel self-sensing sensor for pavement detection. 
Combining laboratory results and learning algorithm, the following 
conclusion can be listed: 

(1) With the addition of carbon fibers, the electrical resistance of 
asphalt-based samples has been decreased. The optimised work-
ing range of CF contents for ASS was found between 0.5 and 
1.0 wt%.

(2) Due to the higher shape change of asphalt-based matrix, the form 
of conductive paths has been improved during loading process. 
As the conductive fillers have more chance to connect with each 
other, the piezoresistivity of asphalt-based self-sensing sensors 
has been enhanced. Thus, asphalt mixtures can improve the 
electrical response of self-sensing sensors.

(3) The trained algorithm using ML showed a great performance with 
the R2 value higher than 0.96, it can be used to predict the strain 
change of asphalt-based matrix. This result demonstrates the 
potential of machine learning for enhancing self-sensing 
functionality.

(4) Based on experimental results and the machine learning method, 
this study demonstrates that the working efficiency of the self- 
sensing function can be enhanced using ML. With the help of 
machine learning, self-sensing sensors in asphalt-based matrix 
can be more functional in practical applications. In the future, 
more studies should be designed to enhance the cooperation of 
machine learning and self-sensing methods.

(5) Given that this study has demonstrated the potential of ML to 
enhance the operational efficiency of self-sensing systems, sub-
sequent research will be directed towards the optimization of 
installation procedures, refinement of data acquisition processes, 
and mitigation of the environmental impact of self-sensing sen-
sors, thereby advancing the methodology for their field 
application.
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