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Forest fire threatens global carbon sinks and
population centres under rising atmospheric
water demand

Hamish Clarke 1,2,3,4 , Rachael H. Nolan 2,3, Victor Resco De Dios 5,6,7,
Ross Bradstock1,2,8, Anne Griebel2,3, Shiva Khanal3 & Matthias M. Boer 3

Levels of fire activity and severity that are unprecedented in the instrumental
record have recently been observed in forested regions around the world.
Using a large sample of daily fire events and hourly climate data, here we show
that fire activity in all global forest biomes responds strongly and predictably
to exceedance of thresholds in atmospheric water demand, as measured by
maximum daily vapour pressure deficit. The climatology of vapour pressure
deficit can therefore be reliably used to predict forest fire risk under projected
future climates.We find that climate change is projected to lead towidespread
increases in risk, with at least 30 additional days above critical thresholds for
fire activity in forest biomes on every continent by 2100under rising emissions
scenarios. Escalating forest fire risk threatens catastrophic carbon losses in the
Amazon and major population health impacts from wildfire smoke in south
Asia and east Africa.

Earth’s forests and woodlands have been marked by a string of
mega-fires in recent years1. Impacts on humans and ecosystems
extend well beyond the footprint of these fires2, which are
increasingly occurring in areas and seasons not normally con-
sidered fire-prone3. With their abundance of live and dead plant
biomass (fuel), all forests and woodlands are inherently flammable.
The drying out of fuel in these vegetation communities represents a
critical transition to a higher risk state, with connected dry areas
forming a template for any wildfires that occur4. Major drying
events can overcome natural barriers to fire spread such as rela-
tively moist vegetation in gullies5 and in extreme cases allow fire
to spread into rainforests and other fire-sensitive forest
communities6,7.

Quantifying the relationship between forest fire activity and
variation in fuel moisture content thus provides a means for pre-
dictionof landscape fire potential, particularlywhen accompanied by

spatially explicit predictions of fuel moisture content. The moisture
content of fine dead plant material on the forest floor is a key
determinant of fire properties8 and can be predicted from tempera-
ture and humidity, inputs for which a wide range of global, high-
quality observational andmodelling datasets are available9,10. Vapour
pressure deficit (VPD), which is calculated from air temperature and
humidity, is a direct measure of the atmospheric demand for water
and has been shown to be a reliable predictor of dead fuel moisture
content in a range of forest and woodland biomes11. VPD is also a key
driver of plant mortality, causing declines in the moisture content of
live fuels and an increase in the proportion of highly flammable dead
fuels12. VPD-based fuel moisture thresholds have been shown to be
indicative of critical increases in the cumulative area burnt in south-
east Australia13 and Mediterranean Europe14. VPD itself has been
found to be strongly associated with fire activity in boreal15,
temperate4,16–21, Mediterranean22 and tropical forests23..
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Here, we identify VPD thresholds for the switching of global forest
ecosystems from a prevailing humid and non-flammable state to a dry,
flammable (i.e. ignitable) state. Our use of daily remotely sensed
burned area and hourly climate reanalysis data is a key advance on
previous studies, which typically focus on aggregate measures such as
total area burnt over a season. Given this focus, models of the prob-
ability of successful ignition as a function of climate (i.e. daily max-
imum VPD) should provide a better identification of the critical fuel
moisture threshold thanmodels associatedwith total area burnt or the
incidence of large fires. The latter may be confounded by additional
factors such as fire suppression or the natural variation in area burned
across biomes and regions. We develop generalised linear models of
the probability of fire occurrence and use these models along with

skill-selected global climate models to assess the impacts of climate
change on the frequency of exceedance of fire activity thresholds (see
Methods). We focus on the implications of changes in forest fire
activity in two critical areas: carbon losses24 and human health impacts
from wildfire smoke25,26.

Results and discussion
We found thatfire activity in all global forest biomes responds strongly
and predictably to VPD, with a clear difference in the distribution of
VPD values on fire days compared to non-fire days (Fig. 1; Supple-
mentary Note 1). Our models performed well in most forest biomes,
with a median true positive rate of 0.73 (n = 70), meaning the prob-
ability of correctlypredictingfireon afire daywas73% (Supplementary

Fig. 1 | The response of forest fire activity to VPD in four continental forest
biomes. a Boreal forests and taiga in Canada (n = 1,657,115). b Temperate broadleaf
and mixed forests in Australia (n = 580,200). c Tropical and subtropical moist
broadleaf forests in northern South America (n = 1,697,491). d Mediterranean for-
ests, woodlands and scrub in Europe (n = 147,605). The lines show generalised

linear models of the probability of fire as a function of daily VPD (red) and the
threshold at which the probability of fire is 50% (blue). Histograms show the dis-
tribution of VPD on days with fire (top) and without fire (bottom). See Supple-
mentary Information for model performance details.
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Fig. 1; Supplementary Table 1). There were marked differences in the
VPD threshold above which the daily probability of fire exceeds 50% in
the different forest biomes (Fig. 2, Supplementary Fig. 2, Supplemen-
tary Table 2). These correspond broadly to latitudinal gradients, with
higher thresholds—corresponding to warmer and drier conditions and
hence greater evaporative demand—occurring closer to the equator
and lower values occurring at higher latitudes. VPD thresholds were
highest in subtropical and tropical biomes (median 2.7 kPa), followed
by mediterranean biomes (median 2.3 kPa). Temperate and boreal
biomes had much lower thresholds above which fires were probable
(median 1.3 kPa). The mean annual frequency of daily VPD threshold
exceedances (or thenumberofpotentialfire days) variedwidely across
forest biomes (Fig. 3a, Supplementary Tables 1 and 2).

Unlike the VPD threshold value, there was little clustering of the
frequency of days exceeding the VPD threshold among forest types,
norwas there a strong latitudinal gradient. Further, therewas generally
much greater variability within individual forest biomes for thismetric
than for the VPD threshold value (Supplementary Fig. 3). Between
2003 and 2020, the mean annual frequency of VPD threshold excee-
dances was greatest in forests of east Asia, southwest Australia, wes-
tern Europe and the eastern United States. Regions where VPD
thresholds occurred fewer than 30 days of the year on average were
found in temperate, boreal, subtropical and tropical forest biomes. In
contrast, no mediterranean forest biome exceeded its VPD thresh-
old fewer than 66 days per year, highlighting the fire proneness of
mediterranean-type forests under current climate conditions.

Unmitigated climate change is projected to lead to widespread
increases in the frequency of days exceeding VPD thresholds asso-
ciated with elevated probability of fire. Under a high emissions sce-
nario (RCP8.5), by 2026–2045 all models projected at least 45
additional days per year above the VPD threshold in parts of tropical
South America, with two out of three models also projecting increases
of this magnitude in North America, east Africa and large parts of
Europe (Supplementary Fig. 4). By 2081–2100 the magnitude of
change is projected to be far greater, even in the model with the
smallest increases (Fig. 3). Then VPD thresholds will be exceeded by at
least 45 additional days per year in forest biomes on every continent,
including increases of at least 150 days per year in tropical South
America, regardless of model.

Under a lower and increasingly more plausible emissions
scenario27 (RCP4.5) the magnitude of change is smaller but still fea-
tures widespread increases in the annual frequency of days of elevated
probability of fire (Supplementary Fig. 5 and 6). Increases are wide-
spread across timehorizons,models and emissions scenarios, with the
largest projected increases in the frequency of such days in tropical

forests, followed by northern hemisphere temperate forests and bor-
eal forests. Although of lower magnitude, the projected increases in
days exceeding fire activity thresholds in mediterranean forests occur
against a backdrop of an already high annual frequency of such days.
The increases are greatest and most widespread in ACCESS1-0 and
GFDL-CM3 and generally more moderate in CNRM-CM5. The latter
tends toproject the leastwarmingof the threemodels,withGFDL-CM3
projecting the most28. ACCESS1-0 is generally the driest of the
three models, while both ACCESS1-0 and GFDL-CM3 have a higher
climate sensitivity parameter thanCNRM-CM529. Increases in days over
the VPD threshold are projected to occur in regions with globally
significant forest carbon storage, including the Amazon in tropical
South America and the Congo in Central Africa (Fig. 4). Substantial
increases in the number of days over the VPD threshold—and
hence days of elevated probability of fire and smoke emissions—are
projected to occur by 2081–2100 near major population centres
in south Asia and east Africa by all three models (Fig. 5). Two of three
models also suggest considerable population exposure to smoke
from increased forest fire activity in parts of central America, west
Africa and east Asia.

We found that for many forested regions, and for the majority of
global burned area in forests, the probability of fire occurrence can be
accurately predicted on the basis of exceedance of thresholds in daily
maximumVPD.We also found that the value of these thresholds varied
predictably across major forest types, being highest in tropical and
subtropical forests and lowest in temperate and boreal forests.
Improving our understanding of the drivers of fuel moisture and its
links to forest fire activity are critical to the development and use of
predictive models30,31. Our findings provide new evidence at a high
temporal resolution (i.e. daily) of the link between fuel moisture and
forest fire activity32,33 and the potential for fuel moisture-mediated
changes—nearly always increases—in risk due to climate change34–36. A
recent study identified VPD thresholds associated with fire activity in
North and South America between 2017–2020 using hourly data, with
similar findings37. We did not explore seasonality, interannual varia-
bility or temporal trends of atmospheric water demand in our study,
but there is already evidence of increasing dryness in the Mediterra-
nean, western US and tropical South America12,38,39, along with increa-
ses in global forest carbon emissions40, attributed in part to changes in
fuel moisture41. Our use of VPD is pragmatic and we note that model
performance in specific regions may be improved with the use of
alternative predictors42 (e.g. evaporation, soil moisture and wind
speed) or by the aggregation of predictors43. Equally, other sources of
meteorological and fire incidence data may provide a greater estimate
of the uncertainty around these results44, although the improved

Fig. 2 | VPD thresholds (kPa) forfire activity inglobal forest biomes.Threshold values indicate the daily VPD abovewhich theprobability offire exceeds 50%, as derived
from generalised linear modelling of historical climate and fire records. The white areas indicate non-forest land.
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Fig. 3 | Themean annual frequency of daily VPD threshold exceedances (days)
for global forest biomes. Current frequency based on ERA5 data (2003-2020) (a)
and the projected change in the number of days over VPD threshold by 2081–2100

under RCP8.5 for the GFDL-CM3 (b), CNRM-CM5 (c) and ACCESS1.0 (d) models.
The white areas indicate non-forest land.
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representation of humidity is a noted feature of the ERA5 reanalysis45.
The generally strong performance of our models is notable given they
do not explicitly address other key biophysical constraints on fire—
which may not always act synergistically with the changes in fuel
moisture projected here—such as human activity46, fire weather47 and
long-term drying48. High population density, high fire detection rates
and high suppression capacity are all known to lower the effective
ignition rate and couldweaken the link between VPD and fire activity in
some regions49,50.

Increasing forestfire riskhaswidespread implications for humans,
ecosystems and the global carbon cycle. Our analysis highlights the
carbon-rich forests of tropical South America as being exposed to
substantial increases in forest fire activity under climate change. At a
local level, these results reaffirm the need to understand the complex
anddynamic drivers and effects of fire—and firemanagement—in these
regions51,52. At a global scale, our findings point to the Amazon rain-
forest as a “tipping element” i.e. a site for which the crossing of some
critical threshold could have major consequences for the state or

Fig. 4 | Projected change in global forest aboveground biomass exposure to
changes in themean annual frequency of days exceeding theVPD threshold by
2081–2100 under RCP8.5. Results are shown for GFDL-CM3 (a), CNRM-CM5 (b)

and ACCESS1.0 (c) models. Units are tonne-days of exposure. The white areas
indicate non-forest land.
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development of the earth’s climate system53. There is already evidence
that recent increases in fire may have tipped the Amazon from a net
carbon sink to a net carbon source54. Increasing wildfire at the scale
described here could interact with other sources of dieback such as
drought and deforestation to further undermine the role that the
Amazon plays within the carbon cycle and regional climate, as a con-
tributor to human welfare and as a unique feature of the biosphere.
Likewise boreal forests, another biome for which we project increases
in fire activity, have also been identified as tipping elements53. Our
findings highlight the risks posed by conditions of increasing

atmospheric moisture demand to forest-based efforts to enhance
terrestrial carbon storage such as reforestation, offsetting and
improved forest management55.

We also show that increases in forest fire activity are projected to
occur near major population centres in east Africa and south Asia, and
possibly central America, east Asia and west Africa. These populations
may be exposed to increased wildfire smoke, which can have sub-
stantial impacts on human health. There have already been significant
wildfire smoke events in Russia in 201056 and in equatorial Asia in
201557, while the Australian mega-fires of 2019-20 were estimated to

Fig. 5 | Change in population exposure to changes in the mean annual frequency of days exceeding the VPD threshold by 2081–2100 under RCP8.5. Results are
shown for GFDL-CM3 (a), CNRM-CM5 (b) and ACCESS1.0 (c) models. Units are person-days of exposure. The white areas indicate non-forest land.
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have led to 429 excess deaths and a much larger number of hospita-
lisations due to wildfire smoke58. Overall the health costs of the
2019–2020 Australian fires were close to US$1.5 billion58, a number
comparable to one estimate of the annual acute health impacts from
wildfire smoke in Canada59. We havemodelled forest fire only, and any
increases in fire risk that extend to peatlands will lead to even greater
health impacts57. While significant, smoke health costs represent just a
fraction of the broader economic impacts, reflecting the wide range of
direct and indirect effects of fire including on property, infrastructure,
agriculture and tourism. Our study provides tangible evidence of the
local, regional and global impacts of forest fire under future climates
that may be avoided by successfully mitigating anthropogenic climate
change.

Methods
Study area
Our study area consisted of all global forest biomes. We first selected
forest-dominant biomes from a global classification of terrestrial
ecosystems60. The resultant biomes formed three major groups: sub-
tropical and tropical (Tropical and Subtropical Moist Broadleaf For-
ests, Tropical and Subtropical Dry Broadleaf Forests, Tropical and
Subtropical Coniferous Forests); mediterranean (Mediterranean For-
ests, Woodlands, and Scrub) and temperate and boreal (Broadleaf and
Mixed Forests, Temperate Coniferous Forests, Boreal Forests/Taiga).
These biomes were then masked using a 1 km resolution global forest
cover product in order to further resolve forests61. Selected study area
properties are shown in Supplementary Table 3.

Fire data
Fire activity was represented using theModerate Resolution Imaging
Spectroradiometer (MODIS) MCD64A1 burned area product (Col-
lection 6)62. We analysed fires occurring from January 1, 2003 to
February 29, 2020, coinciding with the end of the austral summer
associated with the extraordinary fires of 2019-20. We only used data
with the highest quality assessment (QA) ratings. These data are at
approximately 500m resolution with daily timestep. In order to
explore variation within biomes we used 21 pre-defined sub-con-
tinental windows63 (Supplementary Table 4). Windows 22, 23 and
24, corresponding to the Azores, Cape Verde Island and Hawaii,
were omitted. Although they are of great interest, prescribed and
cultural burns are not likely to have accounted for a significant pro-
portion of the fire activity data as they are generally of far lower
size and intensity than wildfires and are frequently undetected by
MODIS64.

Climate data
We computed daily vapour pressure deficit (VPD) using daily max-
imum air temperature and dew point temperature at the time of daily
maximum air temperature, based on data from the ERA5 reanalysis45,
for the same period as the burned area data. The ERA5 data has a
horizontal resolution of 0.25° and hourly temporal resolution. For
climate change analyses we selected three global climate models from
the CMIP5 dataset65 on the basis of skill, independence and the ability
to span the range of future changes in climate: ACESS1.0, CNRM-CM5
and GFDL-CM3 (Supplementary Table 5). These models were among
the best performing compared to other CMIP5 models in a compre-
hensive evaluation for the purposes of downscaling over multiple
regions, which included annual cycles of rainfall and temperature,
general circulation patterns, teleconnections and the south east Asian
monsoon66. Of the highly performing models evaluated, these three
models generally spanned all or most of the range of projected future
seasonal and regional changes in climate (Supplementary Fig. 7).
We avoided models from the same model family to avoid duplication
of models with similar biases. We used the RCP4.5 and RCP8.5
greenhouse gas emission concentration pathways, which represent

‘stabilisation without overshoot’ and ‘rising’ pathways respectively66.
Daily maximum VPD was computed using daily maximum air tem-
perature and relative humidity at the time of maximum air tempera-
ture from 3-hourly GCM data for the time periods 2026-2045 (mid-
century) and 2081-2100 (late century). Daily ERA5 data (1981-2000)
was used to bias correct GCM VPD following a quantile mapping
approach67. Climate change values were calculated using the delta
method i.e. by subtracting modelled present values (1981-2000) from
modelled future values. The native resolution of the climate models
was retained for the analysis, meaning that results only apply to forest
within a given climate model grid cell.

Analysis
To examine the influence of daily maximum VPD on the probability
of wildfire we used a generalised linear model with binomial error
distribution and logit link function. For each combination of forest
biome and sub-continental window (n = 70) we estimated the
probability of fire incidence (i.e. a grid cell being recorded as burnt)
as a function of daily VPD. Presence data were the VPD values on the
same day and closest grid cell to each MODIS burnt area grid cell.
Due to a mismatch between the spatial resolution of fire and climate
data, the same VPD value may be assigned to multiple burned area
grid cells within a single climate grid cell. Quasi-absence data was
generated by randomly sampling unburned grid cells within the
study area at random dates throughout the year68. An equal number
of presence and absence data was used each year and overall. A
supplemental analysis confirms that presence and absence data
points are drawn from the same climate zone (Supplementary
Fig. 8). Grid cells that had burned in the last five years were excluded
from the analysis. We set the critical forest fire activity threshold as
the daily VPD value above which the probability of fire is 50%
(VPDP=50). Uncertainty in VPDP=50 was initially represented using
confidence intervals (±2 × standard error). However, as confidence
intervals were narrower than ±0.01 in 68 of 70 cases these figures
were not reported. The area under the curve (AUC) of the receiver
operating characteristic (ROC) plot was used to measure each
model’s prediction accuracy69. A discussion of model performance
including accuracy and percentage deviance explained can be found
in the Supplementary Information. For each combination of forest
biome and sub-continental window, climate model, emissions sce-
nario and epoch we calculated the annual frequency of days
exceeding VPDP=50. We used ERA5 data to estimate the current fre-
quency of such days and the CMIP5 data to calculate their future
frequency. Note that the strength of the relationship between VPD
and fire activity in any given region does not imply a particular
magnitude of burnt area for a given number of exceedances of daily
VPD threshold values. A supplemental analysis examined the rela-
tionship between area averaged monthly days over VPDP=50 and
burnt area, with broadly similar findings to the main analysis (Sup-
plementary Fig. 9). A supplemental analysis examined the relative,
rather than absolute, change in the number of days over VPDP=50,
with broadly similar findings (Supplementary Figs. 10–13). All data
analysis was carried out in R70. To estimate the potential impact of
smoke exposure to human populations in the vicinity of areas that
exceed the VPD threshold, we used gridded spatial demographic
projections at 1 km resolution71. Because results are reported at the
coarser resolution of GCM grid cells, they allow for long range
smoke transport, which has been observed around the world at a
scale of hundreds of kilometres or more57,72. Population projections
for 2090 were based on a “middle of the road” scenario in terms of
expected population growth, urbanisation, and spatial patterns of
development71. We multiplied the population density by the change
in days per year above VPDP=50 to produce a gridded raster of the
annual number of person-days of exposure to critical fire activity
conditions73. A similar approach was taken to estimate potential
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forest carbon exposure to fire. We used the tiled 100m spatial
resolution ESACCI aboveground biomass (AGB) rasters for year
2010 on a global coverage74. To derive an AGB raster of comparable
resolution to other input datasets, the grid cells in AGB rasters were
resampledwith themedian rule using ERA5 data as a template.While
resampling, missing data areas (AGB = 0 values) were omitted. We
multiplied the aboveground biomass by the change in days per year
above VPDP=50 to produce a gridded raster of the annual number of
tonne-days of exposure to critical fire activity conditions. Although
the exposure units (tonne-days, person days) are somewhat artifi-
cial, they transparently reflect the joint occurrence of increased
frequency of high fire risk days and high density of forest carbon and
human population.

Data availability
MODIS data is available from the Land Processes Distributed Active
Archive Center (LPDAAC) at the U.S. Geological Survey (USGS) Earth
ResourcesObservation and Science Center (EROS) (http://lpdaac.usgs.
gov) and the University of Maryland. ERA5 data is available from the
Copernicus Climate Change Service (C3S) Climate Data Store https://
cds.climate.copernicus.eu. Aboveground biomass is available from the
Centre for Environmental Data Analysis https://catalogue.ceda.ac.uk.
Population data is available from the National Center for Atmospheric
Research (NCAR) and University Corporation for Atmospheric
Research (UCAR) Climate and Global Dynamics https://www.cgd.ucar.
edu/iam/modeling/spatial-population-scenarios.html. Biome data is
available from theWorld Wildlife Fund https://www.worldwildlife.org/
publications/terrestrial-ecoregions-of-the-world. The forest mask is
available from Geo-Wiki https://application.geo-wiki.org/branches/
biomass/. CMIP data are available from https://esgf-node.llnl.gov/
search/cmip5/.

Code availability
Code to fit the generalised linear models is available on request.
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