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Abstract

Cooperative AI and AI alignment research are increasingly important fields of

study as machine learning models are becoming more prevalent in society. Ap-

plications such as self-driving cars, realistic AI in games and human-AI teams,

all require further advancement in cooperative and alignment research before

more widespread applications can be achieved. However, research in these fields

have typically lagged behind other machine learning applications due to the

difficulty of creating models that are robust to and can adapt to novel human

partners. We attempt to address this through the creation of a framework that

uses Archetypal Analysis, a clustering algorithm that finds extremal ‘archetype’

points in a dataset and expresses each other point as a convex combination of

these archetypes. This framework creates understandable archetypes of players,

which a reinforcement learning agent can use to adapt accordingly to unseen

partners. We show that this framework not only results in performance compa-

rable to other cooperative benchmark models, but also achieves higher levels of

perceived cooperativeness without the need for human involvement during the

training process. As such, we demonstrate that using clustering techniques to

better model different types of human behaviour and strategies, can be an ef-

fective approach in improving the ability of AI models to adapt to and improve

cooperation with novel partners.
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Chapter 1 Introduction

Machine learning research has gone through significant advancement in recent

years and, in combination with rapid rises in computing power, has led to

widespread adoption of related technologies across diverse industries, funda-

mentally altering the methodologies employed for task execution and problem

resolution. Large language models, exemplified by architectures like Genera-

tive Pre-trained Transformers (GPT), have garnered significant attention due

to their ability to understand and generate human-like text, finding wide usage

in applications such as chat-bots and virtual assistants [190, 24]. Deep learn-

ing models such as convolutional neural networks (CNNs) have found success

in tasks like object detection, image classification, and semantic segmentation,

seeing use increasing use in agriculture for crop monitoring [1, 91], in retail for

customer behavior analysis [184], and in healthcare for disease diagnosis [39,

87]. Furthermore, reinforcement learning (RL), a branch of machine learning

concerned with decision-making and sequential tasks, has gained prominence

for its ability to learn optimal strategies through continual interaction with an

environment. This paradigm has been used to produce models capable of com-

peting with humans in high skill games such as Chess, Go and Dota 2 [33, 158,

129].

Despite large progress in machine learning research, there exists a conspicuous

gap in exploring the development of AI models capable of cooperating with hu-

mans. As these technologies become increasingly complex and integrated into

society such as the advent of self-driving vehicles [54, 112, 174] and human-AI

teams [5, 9, 18, 19], evidence shows that more work needs to be done on im-

proving their capacity to cooperate with humans. This is not a simple task and

cannot be easily addressed by minor changes in the framework of AI models,

but rather, require specific attention into developing systems where the dynam-

ics of teamwork, trust and commitment are prevalent [50]. This includes tasks

10



such as communication between one another, distributing responsibilities and

adapting to preferences, all of which are largely understudied in comparison to

other fields within machine learning.

Early attempts at developing AI capable of cooperation took the form of multi-

agent reinforcement learning (MARL), where multiple RL agents are trained

simultaneously with one another [127, 187, 90]. In this approach, agents attempt

to maximise a reward function similar to traditional RL, but have the additional

property that agents are able to interact with one another and are able to share

knowledge, communicate, and perform joint actions [157]. MARL has found

success in numerous areas spanning tasks in games [17], economic interactions

[134], and joint-decision making [40], but these have largely been between AI

agents. It is often the case that RL models generalise poorly to human partners

in cooperative settings [32]. As a result there has been more demand for human

involvement in the training process.

Approaches that integrate humans during training generally do so in order to

enhance the speed in which AI models converge to optimal policies, avoiding

the time-consuming process of exploring actions that, with human intuition,

are obviously bad. In Human-in-the-Loop Reinforcement Learning (HRL) and

Interactive Policy Learning, human feedback is leveraged to guide the learning

process and expedite training, often by having a human oversee the actions

of an AI model and rating them as they occur [41, 104, 8, 64, 79]. These

approaches are, however, very expensive and require significant human effort

and expertise. Though advancements have been made to reduce the amount

of data required and enhance the scalability of these algorithms, it has yet to

see popular adoption [6]. Furthermore, it can be challenging to gather reliable

human feedback as humans may provide inconsistent or conflicting feedback

based on subjective preferences, biases, or misunderstandings. In many cases,

these issues can exacerbate problems in the training process leading to worse

outcomes than training without human input.
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An alternative approach is the use of techniques that aim to replicate human

behaviour as closely as possible, such as imitation learning, behaviour cloning,

and inverse reinforcement learning, which attempt to replicate human action

as closely as possible with certain distinctions between them [32, 67, 58, 84].

In imitation learning, an agent learns a policy by observing and mimicking the

behavior of a human expert. This approach involves training the agent to map

states or observations to actions, often using supervised learning techniques.

Similarly, behavior cloning involves directly copying the actions taken by a hu-

man demonstrator in a given state, without explicitly modeling the underlying

decision-making process. Both imitation learning and behavior cloning are ef-

fective for tasks where human expertise or demonstrations are readily available

but may struggle in environments with high variability or sparse rewards. In

contrast, inverse reinforcement learning (IRL) involves inferring the underlying

reward function or preferences of a human demonstrator from observed behav-

ior [7, 79]. By learning the implicit goals or objectives driving human behavior,

IRL enables agents to generalize beyond specific demonstrations and adapt to

new situations. These methods have found success when trained with and gen-

erally improve the ability for AI models to adapt to humans more effectively.

However, it is unclear whether this is due to having a stronger understanding

of human partners or due to the improved robustness derived from exposure to

a greater variety of behaviours [32].

A set of techniques that has seen significant applications for better understand-

ing and modelling data across industries are clustering algorithms [130, 55, 132].

Clustering algorithms are a set of techniques that identify underlying structures

or patterns within datasets, often segmentating the data into distinct clusters

or groups. In doing so, they provide valuable insights into the inherent relation-

ships and similarities among individual data points. Despite the proliferation of

these algorithms in many other applications, they have yet to be applied in the

context of developing mental models of humans in the context of cooperative

agents, using patterns of decision-making, personality traits, or learning styles
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among individuals. Due to their flexibility of use and practicality of use, they

also demonstrate the potential to be used in conjunction with RL models in

order to improve collaboration with humans. However, this has also yet to be

done and as such, more research needs to be conducted to explore their benefits,

costs and ease of integration.

1.1 Motivation

Clustering algorithms have long played a pivotal role in various applications

across many industries to identify underlying patterns and extract meaningful

insights from large datasets [2, 167, 22, 97]. For example, Netflix, one of the

largest video streaming platforms in the world, heavily relies on clustering al-

gorithms to support their recommender systems [56]. These systems analyze

data points such as user preferences, viewing history, and interactions to de-

velop models of users to personalize the content displayed to users, enhancing

content discovery and user satisfaction [131, 183, 189]. Other use cases include

e-commerce platforms analyzing user behaviour to predict purchasing patterns

to launch targeted promotions, as well as social media platforms identifying

communities of users using information of shared interests to facilitate more

engagement [106, 113, 55]. In the realm of video games, clustering algorithms

are increasingly utilized for modeling player behavior and preferences to de-

liver immersive and personalized gaming experiences [167, 170, 62, 61, 60]. By

analyzing player actions within a game environment, clustering techniques can

identify distinct player profiles that can be leveraged to achieve various outcomes

such as dynamically adjusting game mechanics and difficulty levels. Despite the

wide applications of clustering algorithms, they have yet to be used in the con-

text of SMMs to improve cooperation in human-AI teams [36, 67] even in spite

of their proven capabilities in modelling human personalities and creating user

profiles.
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Though applications of human profiles in the context of RL have been mini-

mal, there has been much research into the features that make up personalities,

a crucial piece of knowledge when determining what techniques are best for

modelling profiles. The main approaches to model these personalities are the

Five-Factor model [15, 180, 181] and the HEXACO model [11, 13, 12], which

though they differ from one another in the choice of traits, each express human

personality as a combination of various extremal traits or features, rather than

a single, fixed trait. Using the Five-Factor model as an example, it expresses

personality as a mixture of the traits: openness to experience, conscientious-

ness, extraversion, agreeableness, and neuroticism. Within these traits exists

a scale between the extremities of the given trait. For example, extraversion

on one end of the scale describes extroverted people who are characterized by

seeking out social interactions and external stimulation while the other end of

the scale describes introverted people who typically avoid social interactions and

seek internal stimulation. The result is that when the model is applied to indi-

viduals, they will have a unique combination of different degrees of these traits

which when combined, define their characteristics such as how they approach

learning and process information [26]. Insight from these models has proven

that to capture the complexity of human behavior and preferences accurately,

it is necessary to consider the interaction and interplay of multiple traits and

factors.

However, how these traits manifest in behaviour can differ significantly between

contexts. In practice, this can be difficult to discern. Various clustering tech-

niques are utilized to model human profiles in research. Latent Profile Analysis

(LPA) [150] is employed to extract homogeneous clusters based on common

response profiles, with studies suggesting an optimal number of clusters for

meaningful insights. This allows for more meaningful mixtures of classes. Clus-

ter analysis procedures, such as hierarchical and non-hierarchical-k-means, have

been used to identify coping profiles among individuals, revealing distinct cop-

ing strategies and their impact on stress and health-related behaviors [59]. An

14



area which has seen significant applications of clustering techniques are games,

which involves the use of game metrics such as the number of times a certain ac-

tion is performed or game completion time. These are simple points of data but

can still support developers in adapting to their needs during gameplay such as

providing hints or support when the player is struggling or for future products

where data points on player data can inform future game designs [60]. In a few

cases, they have also been used to help AI agents within the virtual environ-

ment to adapt to player behaviour by finding trends in movement and combat

[60]. These methods often use unsupervised clustering techniques such as neural

gas [149], bayesian networks [169], and emergent self-organizing maps (ESOMs)

[99], which have found great success in finding underlying trends in the data.

This is due to avoiding the need for manual specification of player types and

allowing the technique to determine optimal clusters. These techniques will be

explored in more detail in chapter 2 of the thesis.

Games are a popular medium for learning more about player personalities, which

is due to how they mirror many aspects of real-world interactions. Players

often need to communicate, strategize, and adapt to dynamic scenarios with one

another to achieve common goals. In addition, games offer a controlled setting

where individual factors can be examined in isolation as rules and goals can be

changed with significantly less effort than environments set in reality, which are

often more complex and less predictable. The use of games as test beds also

allows for efficient collection of large volumes of relevant player data such as

actions they perform and the time spent doing certain tasks. By using games

as a test bed, researchers can iteratively improve AI systems in an iterative

and scalable manner, without worrying about the unpredictability of real-world

settings.

These techniques, however, either classify profiles as a single class or mixtures of

multiple average classes which do not capture the frameworks describing human

profiles as mixtures of extremal traits. A lesser-known algorithm that meets
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these requirements is Archetypal Analysis (AA) [47], which, in contrast with

other model-based clustering algorithms, groups data points as convex combi-

nations of archetypal points rather than mean points. This unique property of

AA allows representations of humans to be a mixture of various extremal be-

haviour traits as opposed to any single one or a mixture of mean traits, which

better aligns with our understanding of human personality. As an example,

assume that in a dataset of player behaviour, AA found 3 archetypal points,

which describe supportive, leadership, and learner traits. In this scenario, every

existing entry in the data set, as well as future entries, could be expressed as

a combination of these points, such as 0.6 supportive, 0.3 leadership, and 0.1

learners. While archetypal analysis has seen some use in several research fields

[51, 152, 22, 69, 97], it has yet to been used in the context of classifying player

personalities to base action adaptations on and better cooperate with them.

The work in this thesis explores the steps taken to achieve this goal.

1.2 Aims

To address the gaps of knowledge mentioned previously, this thesis aims to

explore potential applications of AA for constructing mental models of humans

that are flexible, and do not require bespoke architecture. In doing so, it hopes

to advance the capability for AI models to cooperate with human partners and

provide a foundation for future research into cooperative-AI research. This can

be broken down into the following aims:

1. To test whether the use of AA for the classification of player strategy and,

subsequently, the construction of player models will improve AI alignment

and coordination with human players.

2. To investigate methods of measuring AI alignment with human players to

allow for better assessment of agent cooperation.
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1.3 Research Questions

In order to address the proposed aims of the paper, the following research ques-

tions have been formulated.

1. (RQ1) Is archetypal analysis suitable for use in a cooperative RL agent?

(a) (RQ1 - A) Is archetypal analysis effective in classifying a human

partner’s playstyle?

(b) (RQ1 - B) What measures are required to successfully integrate

archetypal analysis for use in a cooperative RL agent?

(c) (RQ1 - C) Does formulating a better understanding of human part-

ners using clustering algorithms enable for higher levels of perceived

cooperation and or team performance?

(d) (RQ1 - D) What are the limitations of clustering algorithms for im-

proving AI alignment with humans and what are the implications for

AI safety?

2. (RQ2) How can AI alignment with human player personalities be evalu-

ated?

(a) (RQ2 - A) What existing methods are capable of measuring AI align-

ment with human players?

(b) (RQ2 - B) How do these methods assess agent cooperation and align-

ment with human player goals?

(c) (RQ2 - C) Are there any qualitative techniques that can help compare

levels of alignment between AI agents and human players?

(d) (RQ2 - D) What are the limitations of these techniques in evaluating

AI alignment with human players?
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1.4 Objectives

In order to address the research questions presented, the following objectives

were established.

1. Using a multi-agent environment that facilitates diverse playstyles and

strategies, train a variety of AI agents to complete tasks within them.

(a) Generate playthrough data in the environment and conduct archety-

pal analysis (AA) on it to represent potential playstyles. (RQ1 -

A)

(b) Develop a custom ensemble RL agent that takes advantage of AA to

better adapt to partners. (RQ1 - B)

(c) Conduct experiments that evaluate the performance of a custom

agent that takes advantage of archetypal analysis, compared with

benchmark agents developed by Carroll et al. [32]. (RQ1 - C,D)

2. Apply techniques used for measuring AI cooperativity with humans in an

experiment where participants partner with AI models in the aforemen-

tioned environment.

(a) Review existing literature on methods used for measuring AI coop-

erativity with humans.

(b) Test how effective different approaches are for measuring cooperativ-

ity by applying them to the test environment referred to in Objective

1 in an experiment. (RQ2 - B,D)

(c) Examine how, within these approaches, AI models could be compared

to one another to determine which agent is the most cooperative.

(RQ2 - C,D)
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1.5 Out of Scope

The nature of cooperation has been a significant subject of discussion across

many fields ranging from psychology, the social sciences and artificial intelligence

[141, 171, 50, 14, 142]. Tuomela [171] proposes a definition of cooperation

as a product of involved agents having mutual goals, which in turn, induces

some form of joint action to achieve through an agreement, whether implicit or

explicit. This contrasts with alignment, which is the scenario where one agent

does what another agent wants it to do [31]. The distinction often made is that

in cooperation, both agents have some goal of their own, while in alignment,

one agent does not. For this thesis, we make no guarantees that the agents

developed would necessarily fall under the category of cooperative models but

define them as cooperative models nonetheless to make their intentions clear to

the general audience. More specifically, this thesis focuses on the objective of

AI alignment with human players.

In addition, cooperative AI agents are typically considered agents that can coop-

erate to solve nontrivial problems involving trust, deception, and commitment

[50]. However, to adequately implement a test bed and procedure that suffi-

ciently facilitates these features is difficult and time-consuming with much work

in this area being still in its infancy [36, 42, 30, 44, 103]. Training models capa-

ble of achieving those outcomes also presents a significant challenge due to the

widely expanded state space and memory requirements. It is for these reasons

that implementing a complete cooperative agent capable of these features is

deemed out of scope.

In many cooperative environments, hidden information is often a factor such as

in the cooperative board game Hanabi [20]. In these settings, players are faced

with situations where they do not have perfect information to make informed

decisions about what action to pursue. This often requires players to commu-

nicate with one another to achieve reasonable results. In this thesis, we deem
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explicit communication between humans and AI out of scope for the thesis as we

already handle communication of intent implicitly using our custom approach.

1.6 Significance

This thesis contributes to the field of cooperative AI in three main areas.

1. Firstly, the development and testing of AA for use in RL to create AI

agents capable of cooperating with human partners. We will refer to

this as the "AA agent" for the remainder of the paper. As mentioned

previously, the use of clustering algorithms for improving the ability of

RL models to cooperate with human partners is largely unexplored and

there is little research done on the development of AI agents which are

capable of adapting to unique human behaviour. Thus, the development

and testing of these algorithms would be a valuable contribution to the

broader, growing field of cooperative AI [49], and more specifically in the

context of games.

2. Secondly, an experiment that demonstrates the relevance of perceived co-

operation when examining the success of cooperative AI agents, and their

relative performance. Most research conducted in cooperative AI eval-

uates the effectiveness of AI agents in cooperating with human players

through a quantitative score representing the overall performance of the

human-AI team in completing some task [20] [32]. This ignores the men-

tal aspects of cooperation which have significant impacts on the quality of

cooperation, such as how humans perceive or trust the AI agent to supple-

ment or direct a strategy [9]. This thesis aims to formulate an experiment

that considers and compares the quality of cooperation exhibited by AI

agents, in addition to objective performance measures.

3. Finally, informed by our development of the AA agent and the results

of our experiment, we provide suggestions for future directions to take
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research in the field of cooperative AI. This includes improvements that

could be made to the AA agent as well as to the approach we took dur-

ing our experiment to compare levels of cooperation between different AI

agents and human partners.

1.7 Thesis Structure Overview

There are eight chapters in this thesis, which address the research aims and

objectives described previously, and the research performed to achieve them.

Chapter 2 provides background knowledge of relevant work that has been done

to train cooperative agents using reinforcement learning, and modelling human

personalities. Chapter 3 continues to explore previous work but with the goal

of providing a broad view of techniques in the field rather than a detailed expla-

nation. After this, there are two chapters that cover the experiments: Chapter

4 describes how the Archetypal Analysis was used in conjunction with RL to

create a AA agent capable of cooperating with human partners, and a descrip-

tion of the environment it was trained in. Furthermore, it discusses the use of

additional qualitative data as a metric for evaluating the cooperativity of RL

agents. Afterwards, Chapter 5 outlines the structure of the experiment that was

conducted to evaluate the products of Chapter 4. The results of this experiment

is provided in Chapter 6 and their implications and significance are discussed

in Chapter 7. The thesis concludes in Chapter 8 which reviews the work that

was done and summarises the answers to the research questions. A discussion

of the limitations of the work and potential directions for future work are then

supplied. Afterwards, there is a small appendix of additional supporting figures

and a bibliography with all the references used throughout the thesis.
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Chapter 2 Background

This heading covers concepts that make up the core of, and which are essential

for the understanding of our research into cooperative AI models. It begins with

a description of reinforcement learning as well as related topics in the form of

multi-agent reinforcement learning and self-play. Next, an explanation of the

Archetypal Analysis clustering algorithm as well as descriptions of recent con-

figurations is presented. Finally a discussion of how ensemble learning functions

as well as insights into potential applications will be provided.

2.1 Training Cooperative Agents

Research into AI agents capable of cooperating with humans involves exploring

how agents can determine common goals and execute strategies during uncer-

tainty. This is however difficult to achieve without some threshold of competency

in completing a task without the involvement of a human partner.

A common technique used to achieve this is Reinforcement Learning (RL) which

has seen great success in 1v1 zero-sum games such as Go and Chess [33, 158,

129], as well as some partially cooperative settings such as DOTA 2 [129]. RL

is a prominent field of machine learning that centers around developing AI

agents that learn optimal decisions through interactions with an environment

[163]. This is achieved by providing feedback to RL agents, rewarding them

when they perform actions that progress them toward the desired goal, and

punishing them when they do not. These agents attempt to maximize the

reward they receive from the environment then tune their actions appropriately

and improve in performance over time. This process is visualised in Figure 1.

A common approach to modelling this process is through a Markov Decision

Process (MDP) where after performing some action and receiving information

about the proceeding reward and state, they select a new action in response.
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Figure 1: A visual representation of reinforcement learning [163]

A core challenge in the field of RL is the exploration, and exploitation trade-off

which describes how the agent is unaware of the true reward of any given action

until it performs the action at some point. This is made further difficult as a

result of environments where actions provide stochastic rewards and or rewards

that have temporal properties.

A more specific problem RL faces in training agents capable of cooperation is

in modelling multiple agents within an environment. Consider a scenario where

two agents are learning simultaneously, treating the other as part of the envi-

ronment. Both agents would react to the environment as well as the actions of

the other agent. This causes a cycle of continuous adaptation to the policy of

the other agent and presents a dynamic learning problem that makes it chal-

lenging to learn and converge at any given policy. This problem of convergence

is a key focus in the subset of RL known as Multi-agent Reinforcement Learn-

ing (MARL) and describes how agents learn and ultimately reach an optimal,

stationary policy where there is no longer any benefit in further adjustment

[187].

A potential solution to this problem is a centralized approach that has all agents

within the environment learn a single policy that dictates the actions of every

agent [187]. This approach has agents attempt to maximize a reward function

similar to traditional RL, but the state of an environment as it is interpreted by
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Figure 2: A visual representation of MARL (Self-Learning Power Control in Wireless

Sensor Networks)[163]

each agent is considered to output joint actions performed by them. As a result,

agents can share knowledge between themselves and the policy guiding them

can converge. However, this approach is limited in its ability to maximize the

rewards of individual agents independently from one another. A decentralized

approach addresses this by considering each agent as a part of the environment

and having them all learn at the same time [127] which is visualised in Figure

2 but this approach suffers from the aforementioned issue of convergence which

is no longer guaranteed.

A solution to training agents capable of cooperation using MARL is by having

agents train with themselves in the form of self-play, where interaction with

themselves within an environment can improve their coordination and decision-

making policy. In this case, one agent’s policy generally remains static and its

actions are considered as part of the environment, while the other agent’s policy

will be dynamic. The dynamic agent learns to more optimally interact with the

static agent and updates its policy accordingly. The updated policy is then
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copied to the static agent and the process is repeated until termination. This

approach avoids the aforementioned problem of convergence posed by MARL as

well as the need for novel partners for training, relying solely on an agent’s own

experiences to drive learning. This approach of enabling agents to experience

continual self-development has seen much success in many applications such as

games, where agents have beaten professional players in environments such as

Starcraft, and Go [33, 158].

However, the self-play approach of training agents to coordinate with one an-

other does not translate well to cooperation with human partners [32]. This

is due to the self-play agents overfitting their strategies and decisions to one

another meaning that though their strategy may perform very well if precisely

followed by all the agents involved, any deviation could cause significant drops

in performance. One approach to addressing this is through the involvement of

humans in the training process.

Another approach is to train AI agents that can act in a way that resembles a

human in the form of human proxies. Past experiments have used behaviour

cloning techniques to achieve this which have models learn their policy through

exposure to demonstrations by a human [32]. A cooperative RL model will

then repeatedly train with this human proxy instead of themselves in self-play

to improve their policy. Though this has shown promise in improving the ability

of AI models to cooperate with unseen human partners, this is not proven to

be because they have learned to better adapt to human partners or whether

simply the result of having a more robust policy. This uncertainty is best

shown in another experiment that avoids the involvement of humans in the

training process and instead trains a cooperative RL model with a population

of self-play models in a process known as Fictitious Co-Play (FCP) [162]. FCP

demonstrated that even without human involvement, by training with a more

diverse set of agents, it is possible to improve cooperation with human partners

as a result of more robust policies.
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Other methods involving humans in the training process take the approach of

eliciting their feedback to guide how RL agents learn and the policies they con-

verge to. In Human-in-the-Loop Reinforcement Learning (HRL) and Interactive

Policy Learning, human feedback is leveraged to guide the learning process and

expedite training, often by having a human oversee the actions of an AI model

and rating them as they occur [41, 104, 8, 64, 79]. For example, if an agent

performed an action, a human would provide feedback on whether that action

was good or bad. This feedback would translate to the rewards the RL agent

receives for that action with a good rating providing positive rewards while bad

ratings provide negative rewards. These approaches suffer from having to re-

quire significant human effort as even simple RL models can require hundreds of

thousands of timesteps to train. Furthermore, these approaches also suffer from

biases of the humans providing the feedback. In addition, they can suffer from

inconsistencies in the feedback they receive. For example, an action deemed

good earlier in training by human overseers could then be regarded as bad later

even when the state of the environment is the same.

Common future directions listed for improving cooperative RL models involve

improving training partners by improving how human-like they are, and/or by

diversifying their behaviour, as well as adapting to human partners in test-time

[32, 162]. We believe that to do so, a deeper understanding of how human

personalities differ from one another is required.

2.2 Modelling Human Personality

Research into human personality has been a common topic across various re-

search areas and fields such as sociology and computer science due to the inher-

ent value of better understanding how humans think and feel. This pursuit has

a wide range of applications such as improving the health of individuals, better

understanding societal structures, and enhancing entertainment [59, 177, 60].
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One prominent framework for understanding personality is the Five-Factor Model

(FFM) otherwise known as the Five-Factor personality model, which posits that

personality traits can be organized into five broad dimensions: openness to ex-

perience, conscientiousness, extraversion, agreeableness, and neuroticism (often

abbreviated as OCEAN or CANOE) as seen in Figure 3 [15, 180, 181]. Ac-

cording to this model, individuals vary in their levels of each trait, leading to

a wide range of personality profiles, a feature that has been used to adjust AI

models to perform believable human actions [144]. Research within the FFM

framework has shown that while individuals may exhibit dominant traits along

certain dimensions, they also possess a unique combination of traits that dis-

tinguishes them from others. For example, an individual may be high in ex-

traversion but low in conscientiousness, or high in openness to experience but

low in neuroticism. This suggests that human personalities are multifaceted and

can encompass a mix of different trait combinations. This model has also been

adapted to study player personalities and preferences [26] to explore how they

relate to various aspects of gameplay, such as game preferences, play styles, and

social interactions.

FFM has been widely applied in various fields due to its comprehensive coverage

of fundamental personality dimensions. In organizational psychology, the FFM

has been extensively used to predict workplace outcomes such as job perfor-

mance, leadership effectiveness, and job satisfaction. For example, research by

Judge et al. (2002) [92] demonstrated that Conscientiousness, one of the Big

Five factors, is a strong predictor of job performance across different occupations

and job types. Moreover, studies in clinical psychology have applied the FFM to

understand personality disorders and psychopathology. For instance, research

by Costa and Widiger (2002) [45] explored the relationship between the FFM

traits and personality disorders, highlighting the importance of neuroticism in

predicting emotional dysregulation and mood disorders. Additionally, the FFM

has been employed in cross-cultural research to examine cultural variations in

personality structure and values. By providing a robust framework for under-
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Figure 3: Five Factor Model

standing personality traits, the FFM continues to serve as a valuable tool for

researchers and practitioners in diverse fields, offering insights into individual

differences and behavior across different populations and contexts [92, 45].

An extension of the FFM framework is the HEXACO model see in Figure 4

which includes the addition of ’honesty-humility’ as a sixth factor [11, 13, 12].

This factor captures individual differences in sincerity, fairness, and modesty,

which are not fully represented in the FFM dimensions, and thus offers a more

comprehensive and culturally universal perspective on personality, particularly

concerning moral and ethical behavior.

The HEXACO model of personality has found applications across various do-

mains, including psychology, organizational behavior, and social sciences. In

organizational psychology, the HEXACO model has been utilized to predict
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Figure 4: Hexaco Model

workplace outcomes such as job performance, leadership effectiveness, and or-

ganizational citizenship behaviors. For instance, research by Ashton and Lee

(2007) [11] demonstrated that Honesty-Humility, a unique factor in the HEX-

ACO model, predicts counterproductive work behaviors, such as theft and ab-

senteeism, above and beyond the traditional Big Five factors. Moreover, studies

in social psychology have used the HEXACO model to investigate individual dif-

ferences in moral judgment and ethical decision-making. For example, research

has shown that individuals higher in Honesty-Humility are less likely to en-

gage in unethical behavior [11], such as cheating and deception, compared to

those lower in this trait. Additionally, the HEXACO model has been applied

in cross-cultural research to explore cultural differences in personality structure

and values [12].
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Though there are contentions on the exact choices and numbers of the traits in

these frameworks representing human personality, it is widely accepted that per-

sonality consists of a combination of various extremal traits or features. Though

these frameworks have found much use in qualitative work such as in sociology

and psychology, it is difficult to use them as they are for training RL models.

Namely, data from the combination of the environment and the agent’s actions

need to be collected and processed to represent different traits.

2.3 Clustering Techniques

A set of techniques that have seen significant applications for better understand-

ing and modelling data across industries are clustering algorithms [130, 55, 132].

Clustering algorithms are a set of techniques that identify underlying structures

or patterns within datasets, often segmenting the data into distinct clusters or

groups. In doing so, they provide valuable insights into the inherent relation-

ships and similarities among individual data points. Despite the proliferation

of these algorithms in many other applications, they have yet to be applied in

the context of developing mental models of humans using patterns of decision-

making, personality traits, or learning styles among individuals. Due to their

flexibility of use and practicality of use, they also demonstrate the potential to

be used in conjunction with RL models to improve collaboration with humans.

However, this has also yet to be done and as such, more research needs to be

conducted to explore their benefits, costs, and ease of integration.

Among clustering techniques, there exists a distinction between supervised and

unsupervised techniques. In supervised clustering, the algorithm is provided

with labeled data, where each data point is associated with a class or category.

The algorithm learns to identify patterns in the data based on the labeled ex-

amples provided during training and aims to predict the class labels of new,

unlabeled data points based on these learned patterns. Far more common are

unsupervised clustering techniques which operate on unlabeled data, meaning
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there are no predefined categories or classes associated with the data points

[149, 169, 99]. The algorithm identifies inherent patterns or structures in the

data without any prior knowledge or guidance, grouping similar data points

based on their intrinsic properties or similarities. The following section will

cover a variety of unsupervised approaches that have been used for extracting

meaningful personality profiles in the past.

One of the most popular clustering techniques is the k-means algorithm which

is a partitioning-base algorithm that aims to split the data into a predetermined

number of clusters. It does so by determining mean points in the dataset to be

centroids and iteratively assigning data points to clusters based on the proximity

to the cluster centroids, which are updated until convergence [110]. A limitation

of this technique is that it is unable to express data points as a combination

of clusters, with each data point belonging to a single distinct cluster. Despite

this, the k-means algorithm has found extensive use for creating profiles of

humans in a variety of industries to gain more insights about them and to

make resource allocation more efficient. For example, banks in Indonesia have

used the clustering technique to profile their customers using data they have

collected such as their residential information, gender, and age [165]. In doing

so, banks segment their customers into different demographies and behaviour

types, improving their ability to customize and target the services they provide

to their consumer base such as by prioritizing certain high-value customers and

determining individuals that are at higher risk to lend to. Other applications

of k-means include in businesses to gain advantages over competitors by better

understanding the personalities of customers such as labelling them as careless,

careful, or sensible [96] as well as in healthcare where it has been used to identify

coping profiles among individuals, revealing distinct coping strategies and their

impact on stress and health-related behaviors [59]. This technique however can

struggle to handle noisy datasets that include outlier data points as well as

those with varying cluster sizes and densities due to the innate assumption that

clusters are spherical and have similar densities [107]. Furthermore, k-means
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is generally less effective when there is little prior knowledge of the dataset as

it requires the specification of the number of clusters beforehand [107]. This

means that it is typically a better method for affirming assumptions about a

dataset rather than for data exploration.

Another clustering technique that has seen use for the construction of human

profiles is Hierarchical clustering. Hierarchical clustering algorithms organize

data into tree-like structures, known as dendrograms, based on the pairwise

distances between data points [73, 43]. This is achieved by merging or split-

ting the two closest data points or clusters depending on the approach taken.

In the Agglomerative hierarchical clustering approach, each data point starts

as a singleton cluster, and the closest pairs of clusters are iteratively merged

until a single cluster containing all data points is formed [27, 52]. Conversely,

Divisive hierarchical clustering begins with all data points in a single cluster

and recursively splits them until each data point forms its cluster [76, 182, 145].

The benefit of hierarchical clustering techniques is that the clusters they gen-

erate can be much more interpretable compared to other clustering techniques

as when visualized using a dendrogram, nested clusters can be identified and

provide a better understanding of the relationships between data points. Fur-

thermore, the technique does not assume the number of clusters and shape of

the dataset which can make it more suitable for many datasets and for ex-

ploring datasets without prior knowledge about its features. Because of these

benefits, hierarchical clustering has seen applications in digital systems such as

personalization algorithms [155]. In this framework, hierarchical agglomerative

clustering is used to cluster tags on resources such as ’design’, ’programming’,

and ’baseball’, and create groups of related content, while user profiles were

developed based on their interactions with different resources. A recommender

system would then be used to bridge user profiles to resources it deems relevant

to them through the groups of related content [155]. Hierarchical clustering

methods have also seen usage for modelling social media users, grouping users

exhibiting similar behaviour using data such as how often they post [160].
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Closely related to hierarchical clustering techniques are graph-based algorithms

such as Spectral clustering which also partition data into clusters with a graph-

like structure [178, 107]. Spectral clustering works by first constructing a sim-

ilarity graph from the data representing distances between data points. The

Laplacian matrix of the graph is then computed, and its eigenvectors corre-

sponding to the smallest eigenvalues, excluding the first constant eigenvec-

tor, are obtained. These eigenvectors capture the low-frequency components

or global structure of the data, enabling dimensionality reduction. Once this

lower dimensional space is constructed, any standard clustering algorithm such

as k-means can then be performed. Because of this dimensionality reduction,

spectral clustering is efficient for large datasets despite the costly eigenvector

computation [28, 25]. This feature has seen spectral clustering applied to large

datasets such as datasets by Facebook, to provide recommendations for friends

based on an individual’s existing social network [166]. Furthermore, it has found

applications in the energy industry for customer segmentation, using patterns

in consumer power consumption to help optimize resource allocation and energy

management strategies [3].

Other approaches include Density-based clustering algorithms such as DBSCAN

(Density-Based Spatial Clustering of Applications with Noise), which identify

clusters based on regions of high data density [37, 57, 48, 147]. DBSCAN

forms clusters by grouping closely packed data points, while distinguishing noise

points in sparser regions. Unlike partitioning-based algorithms, density-based

methods are robust to outliers and can discover clusters of arbitrary shapes and

sizes, as well as density levels in the case of the hierarchical versions known as

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with

Noise)[186, 57]. As a result, DBSCAN has found significant usage for extracting

meaning from challenging datasets such as radar pulses and road networks [48,

37]. Similar in function is Density Peak Clustering (DPC) which identifies

clusters through the process of finding points with high local density and low

proximity to points with higher density, known as density peaks by leveraging
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density and distance information [77, 153, 185]. DPC is less capable of handling

larger datasets compared to DBSCAN but has the benefit of being simpler

and generally faster [139, 4]. Density-based techniques though popular for use

in many large datasets, have only seen light usage for creating user profiles.

An example application was the use of DBSCAN for customer segmentation

where past data such as the frequency of purchases, recency of purchases and

the amount of money consumers spend in transactions are considered to create

customer classes [122, 151]. Another instance was the use of DPC for analyzing

the viewing patterns of online content by internet users to fuel a recommendation

system [179].

Though the clustering techniques mentioned above have found many applica-

tions across industries, they largely fall short in modelling personalities as a

mixture of traits as mentioned previously. Model-based clustering algorithms

assume that the data is generated from a mixture of probability distributions

and aim to identify the parameters of these distributions to infer the underlying

cluster structure [117, 116]. The Expectation-Maximization (EM) algorithm is

a popular model-based clustering method that iteratively estimates the param-

eters of the mixture model, such as cluster means and covariances, using the

observed data [119, 138]. Model-based clustering techniques provide a prob-

abilistic framework for clustering and can handle complex data distributions,

making them suitable for applications where the data does not conform to sim-

ple geometric shapes. Latent Profile Analysis (LPA) is an example of this which

has previously been employed to extract homogeneous clusters based on com-

mon response profiles, with studies suggesting an optimal number of clusters for

meaningful insights and class mixtures [150]. Furthermore, Gaussian Mixture

Models (GMMs) have been previously used to analyze data of player perfor-

mance in sports to construct player profiles, which describe what roles they are

likely to fill in a team as well as what skills differentiated them the most from

other players [161].

34



Model-based clustering algorithms make progress towards the ideal representa-

tion of human personality as a mixture of traits but a large number of them still

fall short in a single detail - that is, though they do represent people as mixtures

of clusters, the clusters are still largely constructed as mean values rather than

extremal values. A promising algorithm that fulfills this detail is Archetypal

analysis.

2.4 Archetypal Analysis

Archetypal Analysis (AA) is a model-based clustering technique that classifies

data points as a convex combination of extremal ’archetypal vectors’ as opposed

to around mean values [47]. These archetypal vectors are defined as extremal

points in the data that create a boundary that encapsulates all other observa-

tions in the form of a convex hull. In doing so, the basis vectors are significantly

different from one another, which provides more meaningful information when

contrasting strategies and makes it simpler to interpret the results achieved

[168]. The original AA algorithm seen in Equations 1, 2 and 3, works by ini-

tializing a set of archetype vectors ’A’ randomly, and iteratively optimizing the

weights that represent them ’W’ using a least squares minimization algorithm,

to reduce the squared error of reconstructed points until convergence [47]. This

proves problematic when applied to larger data sets as the computational com-

plexity is scaled quadratically by the number of data points.

min
A,W

n∑
i=1

k∑
j=1

wij ||xi − aj ||2 (1)

subject to:

k∑
j=1

wij = 1, for i = 1, 2, ..., n (2)
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and

wij ≥ 0, for i = 1, 2, ..., n and j = 1, 2, ..., k (3)

A configuration by Bauckhage identifies that data contained within the convex

hull created by the data set do not contribute to the residual being minimized

and so exclude them from the process to create a ’working set’[23]. In doing so,

the AA algorithm is capable of clustering larger data sets as the optimization

problems are reduced and continue to be reduced over time as more points are

removed from the ’working set’. AA has also been expanded recently to have the

ability to function with multivariate data through the use of deep learning in

the process [97], support more observation types such as probability vectors for

real-world applications [152], and to be more fast and efficient by using a novel

implementation of the Huber loss function [38]. Though improvements have

been made, AA still suffers from being computationally expensive compared to

other clustering methods such as DBSCAN and Spectral clustering, a weakness

that is exacerbated by larger datasets and higher dimensional spaces.

Despite this, AA has seen use in many real-world applications [105, 35, 111]

such as in the creation of performance profiles for sport athletes [66]. In this ex-

periment, player statistics from basketball and soccer leagues were collected and

AA was applied to produce several player archetypes for each sport. The result

was the extraction of meaningful traits and profiles for different players in the

dataset. For example, in the basketball dataset, four archetypes were found: the

’benchwarmer’, ’rebounder’, ’three-point shooter’, and ’offensive’ - with players

in the dataset being represented by a combination of these archetypes. Similarly,

AA has also been applied in the context of games in the form of a large dataset

on over 70,000 World of Warcraft players [168]. This experiment demonstrated

the ability to create more meaningful and interpretable profiles from the dataset

as compared with other standard clustering approaches such as K-means.
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Chapter 3 Literature Review

This heading covers a variety of techniques that are relevant to the study of

cooperative AI agents. It begins by exploring various reinforcement learning

approaches and the benefits they offer to cooperative AI models. Secondly, a

review of algorithms used for training human-like agents is conducted. The

section is then concluded with an analysis of techniques that allow for a better

understanding of humans for AI-human cooperation.

3.1 Training Agents

As with other areas of machine learning, training models to make appropriate

decisions is a core part of developing cooperative agents. Methods that do so

need to perform well in the environment they were trained but should also

remain robust to new scenarios and partners. The current section of the paper

will explore common techniques used for this training process as well as branches

of research that have developed out of them to enhance their capabilities.

3.1.1 Deep Reinforcement Learning (DRL)

Traditional RL models use Q-learning to assess the value of certain actions by

predicting the reward of the next state the action transitions them to, other-

wise known as a Q-function. This is achieved through a process of learning what

actions typically lead to certain states in the form of action-value pairs. This

approach however struggles when scaling to complex environments with much

larger state spaces as many more action-value pairs need to be learned. An ap-

proach to addressing this problem is known as Deep Q-Networks (DQN) or Deep

Reinforcement Learning (DRL), which leverages deep learning to approximate

the Q-function [163]. This approximation is achieved through a series of deep
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convolutional neural networks (CNN) to learn high-level representations of the

state space and a process of backpropagation to gradually reduce the error of

the approximations. As a result, DRL models have found much success in tradi-

tionally challenging environments with large state spaces and high dimensional

data [121, 72], including those requiring hidden information and large numbers

of agents that need to cooperate with one another [78].

However, the integration of deep learning has also made results for models highly

varied and difficult to reproduce[81]. Furthermore, like traditional RL, DRL is

not sample efficient and requires a significant amount of data to train from -

a direct result of needing a large number of tests and mistakes to learn from.

Attempts have been made to rectify this, including the use of model-based

RL methods which though tend to be less performant due to biases of the

environment, are more sample efficient[125].

3.1.2 Hierarchical Reinforcement Learning (HRL)

Hierarchical Reinforcement Learning (HRL) is another extension of RL that

aims to handle complex environments with larger state spaces. This is achieved

by decomposing complex tasks into a hierarchy of decisions at different levels

of abstraction so that monolithic calculations do not have to be made at every

given time step [53]. This is often achieved through a process of temporal ex-

ploitation where tasks are temporally extended and follow their policies until

termination. This behaviour naturally creates a hierarchical structure where

higher-level managers provide tasks to lower-level managers in a recursive fash-

ion. Managers in this system are only aware of states as they apply to their level

and as such will not have access to rewards and information about the goals of

the task set for them, as well as how tasks have been addressed in lower levels

[175]. By doing so, the complexity of the state space is progressively reduced as

tasks trickle downwards in the hierarchy and frequent, low-level decisions can

be made efficiently [71].
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This presents great potential for use in cooperative AI settings where this hi-

erarchical structure could greatly improve the efficiency of centralized MARL

frameworks as well as better model the hierarchical decisions cooperative agents

make regarding the needs of the team and themselves. An example of this was

its applications to a game of ’Capture the Flag’ where each agent had an inner

optimizer that maximized expected rewards and an outer optimizer that finds

solutions to winning the game as a whole [88]. This multi-timescale structure

supported memory and long-term reasoning that made the outer optimizer suit-

able for developing high-level strategies while the inner optimizer was still able

to resolve shorter-term and lower-level tasks.

3.1.3 Evolutionary Algorithms

An alternative approach to training agents are evolutionary algorithms (EA),

which aim to achieve optimal rewards by iteratively evolving a population over

multiple generations with the actions of high-performing agents being imitated

[133]. This works by comparing the performance of all agents in a population

and exploring and exploiting them at different intervals. Exploration takes

place in the form of randomly perturbing values by a certain factor to evaluate

whether the new value is superior in achieving a higher score than previous

values. In this way, agents that perform tasks together better will survive while

weaker versions will eventually die out in favor of the stronger models [89, 83,

148]. Some methods for exploitation include truncation selection, where if an

agent is in the bottom threshold of the population, it will copy the weights of

an agent in the top threshold of the population, as well as T-Test selection,

where an agent uniformly samples another agent, and copies the weights of the

sampled agent if it has a higher performing score than itself. As a result of

these larger population sizes, EA typically produces a larger variety of agent

behaviours compared to RL methods but struggles to learn from actions and

process why certain actions produce less benefit than others [98].
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Attempts have been made to incorporate EA into DRL algorithms to take ad-

vantage of the diversity of behaviours EA produces and to access the powerful

gradient-based methods from the latter to strengthen learning [98]. This hybrid

approach works by training an RL agent through the experiences developed by

EA and then inserting the RL agent back into the EA population occasionally

so it can be exposed to gradient information. Coined as Evolutionary Rein-

forcement Learning (ERL), this approach strengthens RL with the robustness

and immunity to sparse rewards that EA methods have, whilst still retaining

the low sample complexity that leveraging gradient methods have.

3.2 Human Models

Though the methods listed in the previous section have found success in devel-

oping AI that performs well in AI-AI environments, these results do not cross

over to AI-human scenarios [32, 20]. This is due to agents often expecting their

partners to be optimal in their actions, have a reward function that aligns with

their own, or struggle to communicate effectively. These problems highlight the

need to include a human in the training process so that agents understand how

to coordinate with imperfect actions and without opaque strategies. This sec-

tion explores the common methods used to do so or create AI agents capable of

imitating human behaviour.

3.2.1 Imitation Learning

Imitation learning works by replicating an observed action as closely as possible

and learning why that action was performed by extracting state-action pairs [58].

The technique has seen many applications for replicating human behaviour as

features that make actions imperfect or appear human are also included. This

allows agents that cooperate with an agent trained through imitation learning

to be more robust to less-optimal strategies and behaviour[32].
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Where this methodology falls short is in variability as the resulting agent will

struggle to perform unique behaviours as it continues to perform learned ac-

tions repeatedly with little variance [58]. This has damaging effects on the

performance of cooperative agents training with it as they can treat certain

habits with greater importance than they have [32]. Potential approaches de-

signed to address this include generating a larger pool of diverse behaviours by

providing more informative training samples and through Generative Adversar-

ial Networks (GANs) [84]. GANs work by including a discriminative classifier

which attempts to identify whether a presented behaviour was generated or the

ground truth in an iterative process. In addition, Imitation learning struggles to

capture dynamic features such as how other agents may respond to an agent’s

behaviour and does not generalize well to new or noisy environments [86].

3.2.2 Inverse Reinforcement Learning (IRL)

Inverse Reinforcement Learning (IRL) attempts to imitate an observed be-

haviour by extracting a hidden reward function from it [7]. This can potentially

result in very close imitations that generalize to new contexts if a suitable re-

ward function is found, and remove the need for one to be manually specified.

However, finding this reward function can be challenging and requires a fine

balance between training with less data so that the model can better adapt to

new situations and more data to achieve a better approximation of the reward

function. In addition, the goal of the model can be ambiguous if the reward

function of observed behaviour is difficult to specify or is dynamic [79]. Because

of this, as well as problems with captures of ideal behaviours being often noisy,

manual intervention and adjustments are often required to achieve a desired

behaviour [118].

An extension of IRL known as Cooperative Inverse Reinforcement Learning

(CIRL) aims to enhance the process of finding the hidden reward function by

demanding greater involvement from humans and having them interact with
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the AI agent [79]. This involves the human teaching and correcting the agent

during the training process so that the agent can better maximize the human’s

reward function. However, CIRL remains quite immature, and much of its value

is unclear as it makes numerous assumptions about how the human player will

act, such as how they are rational and will aim to convey information to the AI

as much as possible [31].

3.2.3 Interactive Learning

Interactive learning is a novel method, that includes a human in the training

process to help improve learning rates by taking advantage of prior knowledge,

and to provide them with greater agency to shape the AI agent’s behaviour

to better meet expectations and goals [63, 102]. A useful side effect of this is

improved sampling efficiency as less data is required to achieve higher levels

of performance[8]. Human feedback can come in many forms of quantitative

critiques which can be binary, or scalar values, to provide positive, or negative

feedback for a specific action chosen by the AI [102]. Feedback can also be

qualitative in the form of queries where humans choose sub-rewards for the

model out of a set of proposed options, action advice where the user illustrates

an optimal action and guidance where humans describe what they believe to be

the goal at any given time-step[63, 8].

Challenges of this interactive learning are that feedback can be non-optimal,

strongly biased, and be influenced by numerous environmental and psychological

factors such as fatigue and loss of motivation [102]. These factors can cause

inconsistencies in feedback which are especially pronounced when the frequency

of interventions required is high, negatively impacting the training process.
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3.2.4 Believable AI

The field of Believable AI is a field in computer science that involves the study

of techniques that make AI agents behave similarly to humans. This field of

study was largely active before the rise of machine learning and as such, uses

many techniques to improve the believability of traditional state-based agents

in games [143], though in recent years, techniques involving machine learning

such as behaviour cloning and reinforcement learning [46] have begun seeing

use. Some approaches to achieving more believable behaviour include giving

AI agents a personality and role which biase their behaviour towards certain

actions [159, 144, 21, 114, 154, 164], adding probabilistic behaviours such as

jumping, rotating and movement [135] and copying behaviour from observed

human players [123, 136]. In conjunction with techniques in making AI agents

act more human-like, there must exist some measure of believability. A test that

usually comes to mind is the ’Turing test’ which is a test that measures how

human-like an AI agent is. However, this test is very challenging to pass and

remains a grand challenge for many AI researchers interested in producing AI

with true intelligence [108, 82]. As such, many smaller tests were developed to

test specific aspects of AI such as believability. One such test involves the use of

a first-person shooter game ’Quake’ where AI agents and humans play with one

another across multiple levels while observed by human judges [108]. Judges

will then rate how human-like each player was, with AI agents with a higher

score being deemed more believable. Typical actions that resulted in AI agents

receiving a lower score include having reactions that were too fast or being too

accurate with their aim [108, 82].

3.3 Adaptating to Intent

Though the inclusion of a human proxy during the training process typically

makes AI agents more robust in cooperating with humans in real time, hu-
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mans can act very differently from one another. This can be partially resolved

through diversity in human models[32] however agents trained with vastly differ-

ent strategies struggle to effectively learn to cooperate with any and or have poor

training results [176]. This heading will begin by exploring different approaches

for measuring and identifying human intent, before describing meta-learning

techniques that allow AI agents to adapt accordingly.

3.3.1 Measuring Intent

Approaches to measuring human intent can be found in the field of robotics

where Mygography, the measurement of muscle activations, is commonly used

to detect movement from specific regions of the body with the assistance of

wearable sensors [109, 65]. An example of this is a power-assist glove that uses

sensors to detect flexion angles of the user’s joints to determine whether it should

assist them [95]. Visual sensors can also be used to detect human gestures from

which intention could be extracted from [128]. Some approaches to achieve this

include model-based approaches where a kinematic model is placed into the

scene to simulate human gestures, as well as heuristic-based methods, that use

depth sensors to find a human profile and then discern the different components

of the body to establish information about gesture. Many other approaches

to measuring intent exist, however they share a common trait of attempting

to paramaterise some factor that could infer intentionality. Once indicators of

intent have been measured, their meaning can then be assessed.

3.3.2 Discerning Intent

One approach to discerning human intent is the use of Hidden Markov Models

(HMM) which extracts information from observable states in the environment

to infer the meaning of hidden states [115]. Besides the hidden nature of some

states, the model assumes states abide by the Markov property like traditional
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Markov models which means that the current state of a process is sufficient to

predict potential future states without needing to draw upon previous states.

HMMs have seen use in experiments involving service robots to classify ges-

tures demonstrated by humans and found success even in context-sensitive and

combinatorial actions such as pointing [128]. This method however struggles as

state spaces grow larger and so usually has to be limited in some way such as

constraining the number of gestural patterns or classes. A method addressing

this uses hierarchical trees to represent human intentions and then infers a likely

action through Bayesian inference to infer likely actions they will perform and

reverse engineer their strategy [85].

3.3.3 Shared Mental Models

Shared Mental Models (SMMs) proposes that for humans and AI agents to co-

operate, they must both have an understanding of their individual and shared

goals [6]. Mental models are context-specific and/or context-sensitive often

requiring specialized architecture which limits more widespread adoption and

testing. Another limitation is the development of explainable AI which limits

what conclusions can be drawn from these frameworks. These methods remain

relatively unexplored with only a few minor experiments in the past decade [75,

80, 188], largely due to how abstract they are, with minimal concrete benefits.

More developed approaches to model and predict human intentions and be-

haviours include Dynamic Function Allocation and Adaptive Automoation [29,

137, 101, 93, 16, 100, 94]. Though these methods have found success in areas

such as aerospace [29] and navigating vehicles [100], they often require bespoke

solutions for different contexts, struggle to generalize to different partners and

only consider unidirectional adaptation with the AI adapting to the human.
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3.3.4 Meta-Learning

Meta-learning is a set of diverse techniques that are concerned with designing

robust algorithms that can learn and adapt to new environments more effec-

tively [124]. Model-agnostic meta-learning (MAML) is a common approach

that achieves this by calculating a set of parameters that is widely suitable for

a variety of tasks so that when deviations occur, the model is equipped to learn

quickly from a smaller number of new data through fine adjustments of weights

and adapt well to new tasks [124, 70]. Some approaches develop new model

architectures inspired by nature to improve learning such as Backpropamine

which takes inspiration from how animals learn to improve adaptation to new

settings in the form of neuromodulated plasticity [126], and other evolutionary

strategies which accelerate policy convergence [148]. Other contributions to the

field of meta-learning include Few-Shot learning approaches which optimize the

ability to learn from limited samples [192], unique Hebbian Softmax models

which improve the speed of neural networks by retaining important information

through efficient memory structures known as ’neural caches’ [140] and ensemble

learning models which assist with generalizing models to improve performance

in new scenarios [156].

3.4 Archetypal Analysis Variations

3.4.1 Deep Archetypal Analysis

Traditional linear AA models have been found to have limitations preventing

them from optimally approximating certain datasets such as those where no

prior knowledge exists. This is due to the limitations of linear separations of

features, especially those of higher dimensions, in addition to having a strong,

prior understanding of how many meaningful archetypes exist. A solution pro-

posed to address this problem is the use of an encoder-decoder framework that
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learns and compresses latent information about the dataset [97]. This compres-

sion handles side information which provides insights about a dataset to guide

the appropriate number of archetypes and dimensions. A property of this tech-

nique coined ’Deep Archetypal Analysis’, is that it is generative, allowing for

interpolations between archetypes to create new archetypal mixtures.

3.4.2 Probabilistic Archetypal Analysis

AA models are limited in their applications to datasets where observations exist

in vector space and are real. Though this has a wide range of applications, it

fails to handle certain data types such as binary data and probability vectors.

An approach to address this is to loosen the restrictions employed by the orig-

inal algorithm, allowing archetypal compositions to not perfectly recreate the

original archetypes but be a sparse set that could explain the observations of

a dataset [152]. As a result, the new algorithms allow of sparser archetypal

compositions so that reconstruction can deviate slightly from archetypes, while

also supporting different data types such as Bernoulli, Poisson and Multino-

mial distributed data. In doing so, additional observation types are supported,

including Bernoulli, Poisson, and Multinomial observations.

3.4.3 Fast Archetypal Analysis

AA is generally limited by the speed of the algorithm. Some approaches include

narrowing down the set of potential archetypal points or by preselecting them.

This avoids expensive optimization considering all data points and limits them

to a smaller set where a convex hull could be found [23]. This is possible as

a large number of data points do not make good archetypal points. though in

higher dimensions this becomes less effective as points start approaching the

hull, it is always more efficient than the original algorithm. [38]. There is
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however a chance for a loss of precisions since only a subset of data points are

considered for archetype selection.

3.5 Research Discussion and Open Problems

This section briefly explains these lacking areas and provides a launching point

for new investigations. Having covered a wide field of topics, low-level improve-

ments to current methodologies will not be covered and explanations will remain

high-level.

3.5.1 Communication between AI and Humans

In the field of Cooperative AI, the goal is not necessarily to have the AI fulfill any

specific task as specified by a human but to be capable of making decisions that

could go against human expectations yet also serve a unified goal [34]. This

Leader/follower behaviour either has the human wield complete control over

the AI or a stubborn agent who commits to certain actions with or without

the human [32]. Little research into developing a balance between the two roles

has been done as it can prove quite challenging. This is largely due to the

limited ways that humans and AI can communicate with one another, which

limits the ability to negotiate and adapt to one another [103]. However, recent

advancements in natural language processing pose great potential for the area

of Cooperative AI, especially for the ability of AI to express their intentions to

humans, something that has largely remained uni-directional [68]. This would

enable more common use of social frameworks to enhance cooperation such as

negotiation between agents [30], development in trust models of others [42, 10]

and voting in decision making [44]. In addition, advancements in the field of

’Understandable AI’ could improve the ability for AI and humans to cooperate

by giving us a better indication of the effects of certain parameters and why

certain decisions were made by the AI agent [49]
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3.5.2 Diversification and Adaptation of AI behaviour

Cooperative AI research relies on the availability of models representative of

human behaviour, whether synthetically developed or involving human involve-

ment, to perform optimally. However, synthetic models face challenges in being

able to generalize to new contexts effectively, accurately capturing realistic re-

ward functions, and can be data inefficient [144]. Human involvement similarly

faces challenges such as being time-consuming and potentially suffering from

biases and inconsistencies. As such, there exists the need to advance both ap-

proaches to improve cooperative models. On synthetic models, techniques to

develop diverse AI behaviours and AI agents that act similar to humans is an

open problem with many techniques being explored to improve them such as

by giving AI agents a personality and role which biase their behaviour towards

certain actions [159, 144, 21, 114, 154], adding probabilistic behaviours such as

jumping, rotating and movement [135] and copying behaviour from observed

human players [123, 136]. Meta-learning techniques also have the potential to

be used to improve the adaptability of AI agents but have yet to see much explo-

ration in the domain of cooperative AI research [124, 70]. On involving humans

in the training process, there have been a variety of approaches to improving

the process by making it more efficient, by reducing the amount of involvement

required to get accurate behaviour capture [102, 8], and making models more

robust [58, 86].

3.5.3 Modelling Human Personalities and Intent

For AI models to improve in their ability to cooperate with humans, there is

a need for them to be able to understand the intentions of humans such as

through mental models [6, 75, 80, 188]. Much research has been conducted in

measuring and discerning human intentions in robotics, however, the techniques

have yet to be applied to cooperative AI or RL settings in general [115, 128,
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85]. Existing methods in robotics for collecting information on human intent

generally involve the use of wearable technology [109, 65] or sensors [128] which

can enable the collection of more data suitable for informing the actions of AI in

cooperative contexts. Another promising approach to developing better mental

models of humans is through the use of clustering techniques such as Archetypal

Analysis which has already seen applications in contexts outside of cooperative

AI [47, 168, 66]. This allows human partners to be represented as combinations

of archetypal behaviours which can be effective in informing AI models on how

to best adapt to them.

3.6 Summary

As evident in the above subsection, many techniques have been explored for im-

proving understanding human personalities, and adapting technologies to better

meet the needs of humans. However, little of this work has been applied in the

field of cooperative AI for improving the cooperativeness of RL agents which

has largely focused on techniques to improve robustness, such as training with

human proxies or a large volume of other AI agents, or focused on AI-AI teams.

Though these are important contributing factors to effective cooperative models,

more work needs to be done for better understanding and adapting to human

partners.

This gap in research drives our work in this thesis which looks towards the use

of clustering algorithms to develop better mental models of human partners in

RL agents, to improve cooperation. Specifically, we look to the use of AA which

amongst other clustering techniques, best matches theoretical understandings

of human personalities. Using the mental models developed by this approach,

we intend to improve the ability for RL agents to adapt to novel human part-

ners and reduce the need for explicit communication through better implicit

understanding of their partner’s needs.
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Chapter 4 Overcooked AI: Implementation

This section outlines our proposed framework for a cooperative model that in-

tegrates archetypal analysis (AA) into a reinforcement learning agent. This

section largely addressed (RQ1 - A, B). For assistance in visualizing the pro-

cess, please refer to Figure 5.

Figure 5: The framework of our AA agent. In the left-most image, we use fictitious

co-play to train models and have the models complete episodes in the environment

while tracking play data. Illustrated in the centre image, we then performed AA

on the dataset to generate archetypes representing outlier playstyles. We then train

separate PPO models to cooperate with each archetype as shown in the right-most

image.

4.1 Environment

In reinforcement learning research, games are often used as testbeds for training

and testing models due to their ability to manipulate environmental informa-

tion. Though they do not always translate well to real-life environments, they

are sufficient to serve as a benchmark to use for comparisons to other models.

To assess the objectives listed, the environment for this experiment needs to

adequately accommodate a variety of potential play styles and strategies, as

well as allow for meaningful cooperation between agents. This typically means
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that the game should have a longer time horizon than that used in previous

experiments in addition to a variety of meaningful objectives.

An environment that has seen increasing use for developing cooperative AI mod-

els is ‘Overcooked’, a multiagent environment that challenges multiple agents in

their ability to cooperate [32, 162]. In this game, players act as chefs responsible

for delivering as many dishes to customers within a given time frame. To do

so, they must coordinate with one another in the kitchen by delegating tasks,

sharing ingredients, and avoiding running into one another. A summary of this

gameplay can be found in Figure 7, as well as the state-action space in Table

1. There are a variety of levels in the game with their unique layouts but a few

objects that are common among all of them are as follows:

• Onion dispenser: A location in a level that when interacted with by a

player, provides them with a single instance of an onion. If the player

already has an item in their possession, then nothing will happen unless

it is an onion in which case it will disappear.

• Plate dispenser: A location in a level that when interacted with by a

player, functions similarly to the onion dispenser but instead provides

plates.

Figure 6: The ‘Cramped Room’ layout we built upon, and conducted experiments

with, from the ‘Overcooked ai’ environment developed by Carroll et al. [32].
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• Tables: The most common location in levels. They can be interacted with

by players to drop items such as onions and plates. This is generally done

as to position items in a more convenient position for other players to

interact with.

• Pot: A location in a level where players deposit onions. Once the pot has

been filled with 3 onions, it will stop accepting them and begin to cook

them. After a short duration, the onions will be cooked and the pot will

enter a ’filled’ state. While in this state, players need to have a plate to

interact with it in which case, the player they have in possession will be

transformed into a ’dish’ and the pot will return to its default state.

• Counter: A location in a level where players deliver dishes to gain points.

Table 1: State-Action Space for Overcooked

State Space Description

Player Positions Locations of all player characters on the game grid.

Ingredient Positions Locations of all ingredients (on table, or being carried).

Dish Statuses Status of dishes (raw, cooked, plated, served).

Kitchen Layout Configuration of the kitchen (tables, cooking pots, plate dispenser,

onion dispenser, counter).

Timers Relevant countdown timers (cooking timers).

Action Space Description

Movement Actions to move in four directions (up, down, left, right).

Interaction Actions to interact with objects (picking up, putting down, cooking,

serving).

Use Items Actions to use or manipulate items (placing ingredients in pots, taking

cooked food out of pots, plating dishes).

Overcooked serves as a great testbed for our purposes as it has a high level of

complexity, with multiple tasks to be performed simultaneously and others that

may force coordination between agents. This complexity enables the emergence
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Start Game Prepare Ingredients Cook Ingredients

Assemble Dish

Serve Dish

Time is up?

End Game

Yes

No

Figure 7: Gameplay outline of Overcooked showing the core actions that can be done

in the game as well as the order in which they are done.

of more diverse play patterns, which in turn leads to more meaningful archetypes

when applying archetypal analysis. In addition, the multi-agent nature of the

environment is ideal for assessing what archetypes may perform better with

others, which can be invaluable when attempting to coordinate with an unseen

player. This is supported by the sparse nature of rewards that encourages agents

to work together to achieve long-term goals as opposed to acquiring fast rewards

they could get themselves.

We used the environment implementation developed by Carroll et. al. [32], as

seen in Fig. 6, with a few adjustments to facilitate our custom AA agent. This

included a few data structures to hold information on each episode as well as

information on the archetypal profile of each player regardless of whether they

were human or AI. These were crucial for the implementation of our AA agent

which is covered in the following section.
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4.2 Archetypal Analysis Agent Implementation

Our approach in integrating AA to develop cooperative AI models is by using

it as a heuristic in an ensemble framework, where it can be used to determine

the most appropriate model action to use. To achieve this, we first created a

dataset of playthroughs by representative human players to run AA on and find

archetypal playstyles. Once this was developed, we then trained an RL model

with each archetypal playstyle so that they were optimized to cooperate with

them. This would leave us with N number of RL models where N is the number

of archetypal playstyles which we would shift between to select actions during

runtime using ensemble learning.

4.2.1 Dataset Synthesis

To produce the initial dataset of playstyles, we chose to create RL models that

were representative of human playstyles as opposed to recording real human

playthroughs. This was because it would be expensive and time-consuming to

have a human play through a large number of levels to create the dataset. To

create the RL models, we took inspiration from Strouse et al. [162] and their use

of fictitious co-play models and took a similar approach in creating this initial

dataset to avoid the use of human data. This involved training 5 self-play agents

using a Proximal Policy Optimization policy (PPO) that is checkpointed during

the process to represent levels of player skill. These models then play with one

another and the data from each playthrough is saved. Through observations

collected during recordings of multiple playthroughs of the Overcooked environ-

ment by human players, we found that the most relevant features conducive to

determining the archetype of a player were:

• Number of objects placed

• Number of objects boiled
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• Number of soup delivered

• Number of soup plated

Each of the 5 PPO agents was initiated with a random seed and starting posi-

tion, then trained for 10,000 timesteps and checkpointed after timesteps 2500,

5000, and 7500, producing 20 different models, converging at largely different

policies. These models would then play a random number of playthroughs with

themselves in an Overcooked level ranging from 100-150 times each. In the

end, we produced 2647 playthroughs which served as our dataset representing

different approaches to the environment.
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Figure 8: Comparison of different number of archetypes

4.2.2 AA on Synthetic Dataset

We then perform archetypal analysis on this dataset, which provides us with K

number of archetypes, where K is an arbitrary integer we choose. To aid us in

choosing an effective number of archetypes, we calculated the explained variance

of different numbers of archetypes, which can be seen in Fig. 8. Evidently, the
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Table 2: Archetype Profiles

Arch- Features

type objects placed objects boiled soup delivered soup placed

A1 0.000000 0.770684 0.582924 1.000000

A2 0.000000 0.846997 0.834530 0.000000

A3 0.954288 0.000000 0.000000 0.295429

Figure 9: Datapoints expressed as a convex combination of 3 archetypes.

benefits of additional archetypes taper off after 5 archetypes with 3-5 archetypes

explaining most of the variance in the dataset. Using fewer archetypes would

fail to encode all the information from the dataset while using more archetypes

would take away the benefits of the dimensionality reduction effects afforded by

the algorithm. With the original feature set having a dimensionality of 4, we

chose to proceed with 3 archetypes to take advantage of the dimensionality re-

duction benefits of archetypal analysis. The profiles of the archetypes generated

with K = 3 archetypes are seen in Table 2 and the data points in the feature-set

can be expressed as a convex combination of these 3 archetypes shown in Fig.

9.
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4.2.3 AA Agent Training

Afterward, we trained an RL model with a PPO policy to cooperate with the

model that had the closest alignment to each archetype for 10,000 timesteps.

The result of this was 3 policies that were each tailored to cooperate with

one of the 3 player archetypes produced previously. To have the agent adapt

to these player archetypes and archetypal mixtures, we take inspiration from

Villareal et al. where ensemble learning was used to discern different styles of

human drawings and inform which classification model their framework should

use [176].

Ensemble learning is an approach typically used for improving the predictive

performance of multiple classification models [156]. This involves training a

variety of classification models and combining their predictions to produce a

joint prediction as seen in Figure 10. This could be done through voting where

the most common prediction is used or stochastically chosen from, through an

average result of the predictions, or some heuristic. The result of this is that the

combined model is most robust, mitigating overfitting and reducing bias that

may occur when solely using the prediction of any single classification model.

Figure 10: A visual representation of Ensemble learning (A Survey of Ensemble

Learning: Concepts, Algorithms, Applications, and Prospects)[163]
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For determining our agents next move, we chose a stochastic approach to action

selection. During runtime, our AA agent observes the player’s alignment to one

of the aforementioned archetypes through a least-squares algorithm comparing

the player’s current play data scaled by time. Using the resulting vector repre-

senting alignment, the agent stochastically selects the appropriate cooperative

model action weighted by the player’s proximity to the given archetypes. For

example, based on a player’s actions, performing a least-squares operation may

result in a distribution of [0.001, 0.87, 0.129] representing the convex combina-

tion of 3 archetypes. The model will then select the 1st archetype with 0.001

probability, the 2nd archetype with 0.87 probability, and the 3rd archetype with

0.129 probability.

4.2.4 Other Design Considerations

One of the reasons we chose not to use human playthroughs for our initial dataset

is that it is expensive and time-consuming. However, another reason for the

decision was that we would need to train a model to cooperate with an archetypal

playstyle afterwards. If we had human playthroughs, the player who was closest

to an archetypal playstyle would then need to play thousands of games with the

cooperative agent for training purposes. This intensive requirement for repeated

play sessions with a human partner was deemed impractical and unacceptable

for our project’s scope and timeline. As such, we decided to produce a variety

of human-like playstyles artificially using the Fictitious Co-play technique.

An alternative approach of producing artifical playstyles was the use of a smaller

amount of human playthrough data to train RL models through behaviour

cloning or inverse reinforcement leraning and then using the resulting model

to produce playthrough data. Though this was considered, we ultimately de-

cided against this approach for several reasons. Firstly, using Fictitious co-play

allowed us to make more direct and meaningful comparisons with self-play mod-

els that do not rely on human data that we are benchmarking against. Secondly,
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though one of the benchmark models we aimed to compare against does utilize

human data as mentioned in the following section, the comparison would be

unfair as we do not have access to the specific human data used for its train-

ing. This lack of access is discussed more in the conclusion in the Limitations

section of Chapter 8, and details about the benchmark models are provided in

the following section.

To ensure consistency and fairness in our comparisons, we chose to use self-play

agents with a PPO policy to generate our models. PPO is a widely used RL

algorithm that balances exploration and exploitation effectively, making it a

robust choice for training cooperative agents. Furthermore, it is also the policy

that was used by the self-play benchmark model, and by using it, we aimed to

isolate the impact of our framework and reduce confounding variables related

to the underlying RL algorithms and training parameters.

4.3 Benchmarks

To assess the capabilities of our custom cooperative agent framework, we com-

pare it with other models that have been used for cooperation. A variety of

agents were used in the experiment including 2 benchmark models from Carroll

et al. [32]:

• Self-play agent: This benchmark agent was trained from scratch with

itself using PPO. It had access to information about its state, such as

what object it was holding, as well as the state of the environment, such

as the number of objects in the pot. To expedite training, it was given

rewards for positive intermediate actions, including putting onions into

the pot and picking up soup with a dish.

• Human-Trained agent: This benchmark agent was developed by first train-

ing a model to act as similarly to a human as possible using behaviour
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cloning, a technique where the model learns a policy from demonstra-

tions. The agent then trains with this model using PPO and implements

a model-based planner that uses a hierarchical A* search to act and strate-

gize optimally in response to the policy of their partner.

• Random action agent: This agent selects an action to perform at complete

random. It is not expected that this agent will perform well and it largely

acts as a point of comparison for participants to evaluate the cooperativity

of a partner.

• AA agent: This ensemble agent was trained using our custom framework

described previously under the Implementation section. It makes use of

archetypal analysis to select the appropriate model action in response to

their partner’s perceived playstyle.

4.4 Overcooked AI: Metrics

This section outlines our research into techniques for evaluating AI alignment

to human playstyles, mainly addressing research questions (RQ2 - A, B, C). It

begins with a review of existing methods before exploring potential approaches

from other research fields that could be applied comparing the alignment of RL

models.

4.4.1 Quantitative Metrics

When comparing the performance of Cooperative RL models, researchers have

employed various metrics and approaches to assess their effectiveness [121, 32,

162, 120, 191]. Carroll et al., in their experiment on the Overcooked testbed,

utilized metrics such as cumulative reward and average rewards per episode to

evaluate the performance of their AI models [32]. Other experiments ran on the

same game such as those run by Strouse et al. instead used the number of dishes
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that were delivered before the time limit for the level ran out, which though

provides a less detailed metric, is more understandable [162]. In summary,

common methods used to assess agent cooperation and alignment with human

goals generally involved comparisons of the score that they achieved, or the

rewards the model received, to assess how well an AI agent was able to align

themselves, and adapt to human player goals - the expectation, being, that those

that scored higher were better able to align to a human player’s personality.

4.4.2 Qualitative Metrics

Though these approaches see common usage and can be useful to compare the

performance between RL agents, they overlook factors unique to cooperative

contexts such as perceived cooperation. For instance, in human-robot interac-

tion scenarios, the perception of cooperation from users can significantly influ-

ence their satisfaction and engagement with the system, regardless of individual

agent performance metrics [173, 157, 172, 74, 9, 146]. In experiments run by

Van den Bosch et al., interviews and questionnaires are used to evaluate the

experience of humans who collaborated with their AI system, asking questions

about morality and trust [173]. Ulfert et al., similarly use interviews to elicit the

thoughts of participants about the AI systems they collaborated with as well as

how they reached those conclusions [172]. The latter experiment also includes

observations about their participants, noting habits and behaviour patterns to

gain further insights about the cooperativity of their systems. Other previous

experiments have also included assessing the intrinsic motivation of participants,

by containing questions related to the past experiences of the participant [146].

These qualitative techniques provide rich data which allow for more analysis

and conclusions to be made in comparison to quantitative approaches. Despite

this, some approaches such as interviews and the collection of observational data

have yet to see much use in the context of evaluating cooperative RL models.
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4.4.3 Mixed Methods

Although the aforementioned qualitative techniques often provide deeper insight

into generally how cooperative systems are, it can be difficult to compare the

level of cooperativity between different AI systems in comparison to quantitative

measures. An experiment that demonstrates a promising approach to remedy

this issue is one run by Strouse et al. who use closed questions in combination

with a 5-point Likert scale when asking participants to evaluate their preference

for different AI partners [162]. Furthermore, past experiments also evaluate the

alignment of AI agents to human expectations, by reviewing actions that were

performed by the agent during a playthrough with a participant, and asking

participants whether the action aligned with what they wanted the AI to do,

and whether they believed the action was sufficiently cooperative [162]. This

approach successfully takes advantage of the benefits of qualitative data while

also providing a quantitative measure to compare different AI agents using, in

this case, the number of reviewed actions that aligned with the player’s expec-

tations of the AI agent. Therefore, incorporating measures of perceived coop-

eration, such as user feedback or subjective evaluations of AI agents, alongside

traditional, quantitative performance metrics can provide a more comprehensive

understanding of the effectiveness of RL models in cooperative settings.

4.4.4 Experiment Implementation

We incorporate the above methods in our experiment, with the data collected

during the experiment including observational notes on player behaviour and

trends, scores they achieved with each AI, and a questionnaire that the partici-

pants filled out. The questionnaire was filled by players after each playthrough

with questions varying from those assessing their intrinsic motivation, and eval-

uating the experiences of playing games, to open questions that assess the levels

of confidence and trust that players have of their team partners. The question-

63



naire also asks participants to rate the cooperativity of each agent they partner

with using a 5-point Likert scale, giving us a qualitative measure in which to

compare the perceived level of cooperation for each agent. The questions for

each agent included:

• How cooperative did you feel your partner was on a scale of 1-5?

• What factors contributed to you reaching the above conclusion?

General questions that were asked include:

• How experienced are you with playing cooperative video games?

• What differences stood out between playing with a human and an AI?

• Any final comments you would like to add?

4.5 Chapter Summary

In this section, we described the ’Overcooked’ environment that we will use as a

testbed for our experiments which will be explained in Chapter 5. We justified

that this is an appropriate environment for training and evaluating cooperative

RL agents due to facilitating a variety of strategies and multiple approaches of

cooperation between players.

Following this, we provided a detailed explanation of how our AA agent was

implemented through the process of creating a synthetic dataset of playthrough

data, conducting AA on the dataset and then training multiple cooperative

models that constitute the AA agent. We then outline other models we used

in our experiment that acted as benchmarks to evaluate the performance of the

AA agent on.

We continue with a discussion on metrics previously used to evaluate the perfor-

mance of cooperative RL agents with human partners, and explain why they are
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often insufficient due to overlooking factors such as alignment in goals. Conlud-

ing this section is an outline of the combination of qualitative and quantitative

measures we implemented in our experiment.
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Chapter 5 Overcooked AI: Experiment

Having described the setup and implementation of the experiment in the previ-

ous chapter, under this heading, we delve into the procedure of the experiment

ran and the demographics of the participants involved.

In this experiment, we aimed to evaluate the effectiveness of our AA agent in

the ’Overcooked’ testbed, compared with the previously described benchmark

models, answering the research questions outlined in the beginning of the thesis

(RQ1 - C,D).This ’effectiveness’ is evaluated using two measures: the score the

model and its human partner achieved in a playthrough, and the cooperative

rating that its human partner gave it afterwards. We also apply our research

into techniques for evaluating AI alignment with human player personalities

(RQ2 - D).

5.1 Procedure

The experiment was held in person at a university computer lab and admin-

istered in a supervised format. This allowed for experimental control and for

observations by the experiment host in regards to actions users performed as

well as to provide context for the largely quantitative data collected. Upon

entry, participants were greeted and informed of the experiment’s procedure.

They would then be required to complete a written consent form and be given

an initial safety brief. They were then directed to a computer with instructions

for how to play the game while a host would answer any questions they had. To

ensure that players understand the directions, they would play a test game that

was not recorded with a random AI agent. They were allowed to play as many

test games as necessary until they felt confident in playing the game. This was

crucial to avoid as much bias as possible caused by familiarity with the game.
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Once ready, the host would randomly pair the participant with an AI agent

among the list of agents listed above, whom they would then play a game

with. Each game lasted for 30 seconds, after which they were prompted to

complete the relevant sections of the questionnaire and the experiment host

would note down the score that was achieved and any observations they had.

The experiment host may decide to ask questions about the playthrough after

it was completed but no questions were asked during the playthroughs to avoid

distracting the participant.

Upon completion, the host would randomly change the AI agent to one that

had not already been chosen and then prompt the participant to begin again

when they were prepared. This procedure would continue until the participant

had been partnered with each AI agent, at which point they would be debriefed

and the experiment was concluded. This followed a within-participant design,

that is, each participant played with each style of agent, though the order in

which they were paired were random. This allowed us to isolate biases to each

individual, evaluate the scores they achieved and the unique preferences they

had.

5.2 Participants

Participants were recruited through announcements distributed across univer-

sity channels, including club communications, and on local game industry fo-

rums and groups. These recruitment messages were uniformly disseminated

across public forums to maintain a non-personalized approach, thereby mini-

mizing potential biases and ensuring voluntary participation.

Our goal was to acquire approximately 20 participants and then adjust this

number based on data saturation analysis. That is, after each experiment,

results were reviewed and a Bayesian Mann-Whitney U Test was conducted.

If additional participants did not change the Bayes factor by at least 10% we
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would halt recruitment, otherwise initiate another wave of recruitment. For this

experiment, our first wave of recruitment concluded with 16 participants and

after the aforementioned data saturation analysis, we found it unnecessary to

conduct further recruitment efforts. These tests can be found in the Results

section.

The participants we acquired fell under the 20-30 year old range with 75% of

participants between 20-25 and the remaining 25% between 25-30. Participants

had a diverse range of experiences in playing cooperative games with 12.5%

rating themselves as beginners to cooperative games, 56.25% as having inter-

mediate experience, and 31.25% as having advanced experience. As a result, we

saw a good variety of perspectives on cooperative behaviour and several different

strategies to succeed in the game.
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Chapter 6 Overcooked AI: Experiment Results

In this chapter, we provide a summary of the results we achieved during the

experiment. This includes quantitative comparisons between the scores each AI

agent achieved as well as the cooperative rating that participants gave them.

Qualitative data such as observations of participants and the responses they

provided in the questionnaire will also be summarised.

6.1 Quantitative Results

The following section covers the quantitative results that were collected through

participant playthroughs and the rating participants gave to agents in the ques-

tionnaire. We conducted Bayesian, non-parametric ANOVA tests on the two

quantitative measures of agent performance, that being the scores they were

able to achieve with human partners as well as the cooperativity rating par-

ticipants gave each agent in the questionnaire. Though we also experimented

with a standard non-parametric ANOVA test, we found the Bayesian equiva-

lent had similar results but provided additional information as a result of the

Bayes factor. We then performed paired sample tests using a Bayesian Wilcoxon

signed-rank test to gather more specific data on comparisons between models.

We first begin with the tests on the scores that each model was able to achieve

and then continue to discuss the equivalent for the cooperative ratings each

model received.

6.1.1 Score

From the non-parametric ANOVA test shown in Table 3 and visualized in Figure

11, the BF (Bayes Factor) when comparing AA to Human-Trained, AA to Self-

play and Self-play to Human-Trained agents were all equivocal, with a BF10
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Table 3: Post Hoc Comparisons - Agent Type

Prior Odds Posterior Odds BF10,U error %

AA SelfPlay 0.414 0.122 0.294 0.013
Random 0.414 14.910 35.997 7.802 × 10−7

Human_Trained 0.414 0.640 1.545 3.122 × 10−6

SelfPlay Random 0.414 3592.837 8673.877 2.548 × 10−7

Human_Trained 0.414 0.575 1.387 3.761 × 10−6

Random Human_Trained 0.414 5113.135 12344.200 1.359 × 10−7

Figure 11: Raincloud plot of agent scores

< 3 representing insufficient evidence to prove that they are not equal. This

suggests that there are no significant differences in their performance given the

sample size. Following the same measure for significance, we found that there

was sufficient evidence that random-action agents were significantly different

from the other 3 agents.

Looking at the distribution of results in Table 4, we found there was substantial

variability in the score of the AA agent, which had a standard deviation of 17.7,

as well as the human-trained agent with a standard deviation of 15. This is

in comparison to the random and self-play agents which had noticeably lower

standard deviations.

We then conducted a Bayesian Paired Samples T-Test as seen in Table 5 to find

additional details between the agents. Though this did not produce any new
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Table 4: Descriptives of Score Data

95% Credible Interval
Agent Type N Mean SD SE CoV Lower Upper

AA 16 47.500 17.701 4.425 0.373 38.068 56.932
SelfPlay 16 50.000 12.649 3.162 0.253 43.260 56.740
Random 16 28.750 10.247 2.562 0.356 23.290 34.210
Human_Trained 16 56.250 15.000 3.750 0.267 48.257 64.243

results, it did reinforce the findings we previously found with the ANOVA test.

Pair-wise comparisons of the different agents can be found in Figure 13. We did

not include the comparisons between self-play and human-trained models with

random agents as they were not the focus of the experiment.

Table 5: Bayesian Wilcoxon Signed-Rank Test Score

Measure 1 Measure 2 BF10 W Rhat

AA - SelfPlay 0.527 8.000 1.000
- Random 37.910 55.000 1.002
- Human_Trained 1.898 10.000 1.000

SelfPlay - Random 374.649 105.000 1.018
- Human_Trained 1.421 4.000 1.000

Random - Human_Trained 377.061 0.000 1.012
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6.1.2 Cooperative Rating

From the non-parametric ANOVA test shown in Table 6 and visualized in Figure

12, we found that when it came to ratings of cooperativity, the AA and human-

trained models were equivalent with a BF10 < 3. Using the same measure, the

self-play model performed significantly worse than AA and human-trained mod-

els but better than the random action model which performed overwhelmingly

poorly in comparison to the other models.

Table 6: Post Hoc Comparisons - Agent Type Rating

Prior Odds Posterior Odds BF10,U error %

AA SelfPlay 0.414 2.643 6.380 8.686 × 10−7

Random 0.414 1675.453 4044.901 3.079 × 10−7

Human_Trained 0.414 0.202 0.487 0.019
SelfPlay Random 0.414 5.042 12.172 7.208 × 10−7

Human_Trained 0.414 106.048 256.021 2.228 × 10−7

Random Human_Trained 0.414 4086.442 9865.545 2.155 × 10−7

Figure 12: Raincloud plot of agent scores

Analysing the details of the cooperative rating results in Table 7, we found that

similarly to the score results, the AA agent had the highest variance in their

ratings, though they were closer in line with the variance of the other agents

this time.

We then conducted a Bayesian Paired Samples T-Test as seen in Table 8 to

find additional details in the pair-wise comparisons of the cooperative ratings
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Table 7: Descriptives of Rating Data

95% Credible Interval
Agent Type N Mean SD SE CoV Lower Upper

AA 16 3.750 0.856 0.214 0.228 3.294 4.206
SelfPlay 16 2.750 0.683 0.171 0.248 2.386 3.114
Random 16 1.875 0.719 0.180 0.383 1.492 2.258
Human_Trained 16 4.063 0.772 0.193 0.190 3.651 4.474

received by different agents, which can be found in Figure 14. We did not

include the comparisons between self-play and human-trained models with ran-

dom agents as they were not the focus of the experiment.

Table 8: Bayesian Wilcoxon Signed-Rank Test Rating

Measure 1 Measure 2 BF10 W Rhat

AA - SelfPlay 7.729 90.000 1.004
- Random 1450.546 120.000 1.007
- Human_Trained 0.521 20.000 1.000

SelfPlay - Random 16.759 62.000 1.006
- Human_Trained 60.059 0.000 1.002

Random - Human_Trained 173.140 0.000 1.021

In summary, the AA agent performed similarly to self-play and human-trained

models regarding the score they were able to achieve during the experiment.

Additionally, the AA agent achieved similar results to the human-trained model

in cooperative ratings it received but was significantly better than self-play and

random action models. In both score and cooperative rating measures, the AA

agent had the greatest variance in its results.

6.2 Qualitative Results

The following set of results consists of the qualitative components of the experi-

ment, acquired through observations by the experiment host as well as responses

provided by participants in the questionnaire. In this section, we discuss the

73



feedback provided and observations made for specific agents. Sample responses

from the questionnaire shown in this section were chosen based on the relevancy

of the feedback and to represent novel points made. That is, we chose not to in-

clude feedback commenting on factors outside of the cooperativity of the agents,

those that were phrased poorly, or redundant points.

6.2.1 AA Agent

The feedback we received for the AA agent summarised in Table 9 was largely

positive, with many comments recognizing that the agent made distinct at-

tempts to cooperate with its partner’s strategy. A few comments also men-

tioned that the AA agent would change its strategy multiple times throughout

a playthrough to best match the strategy of the participant. Through observa-

tion, we found that this experience generally occurred to users who had more

experience with cooperative games as they attempted to test the limits of the

AA agent’s ability to cooperate with them. As such, we believe that in response

to (RQ1 - A) that AA is effective for classifying the personalities and overarching

strategies of players.

The general theme of negative feedback regarding the AA agent was that it

would sometimes suffer from periods of indecision. This often took the form of

performing an action conducive to a strategy and then proceeding to perform an

action towards another strategy which was frequently counter-productive such

as placing an ingredient near the pot for the player’s convenience before picking

it up again and putting it into the pot themselves. Through observations, we

found that this generally occurred to players whose archetypal mixture was close

to an even distribution of each archetype, as due to the stochastic ensemble

approach to action selection, the likelihood of multiple actions being conducive

to a single strategy is quite low.
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Table 9: AA Agent Feedback Quotes

Data Source Participant Quotes

Questionnaire "The AI moved randomly around the workspace, blocking my
character multiple times. It picked up items and used them correctly
but sometimes it would put them down and do nothing."

"AI does wait for me to do my role, And sometimes I put onions and
it waits for me. Overall feels like its trying to work together. Except
sometimes it goes everywhere and blocks my way which is
counter-productive."

"It did actions in sync with me at each stage of the game but we
struggled at points with stuff needing to be done but nobody holding
the right thing."

"We swapped roles quite a bit but it worked well."

"Moved slower and was easier to work with. Predictable and felt
more cooperative."

6.2.2 Human-trained Agent

The Human-trained agent received similarly positive feedback in general as seen

in Table 10, with a majority of comments by participants praising its ability to

adapt to their strategy. For most partners, the Human-Trained agent would be

able to continually adapt to changes in strategy though sometimes, they would

change their strategy and take over the player’s role.

The main complaints by participants with the Human-trained agent were that it

would often block them from performing actions during playthroughs. Through

observation, this would often occur when the player and the AI agent need to

pass each other to get to a given object, with the Human-trained agent fre-

quently taking on a more assertive personality, not backing down on its current

trajectory and forcing the player to change paths should they wish to avoid a

stalemate where both of them remain stationary.
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Table 10: Human-Trained Agent Feedback Quotes

Data Source Participant Quotes

Questionnaire "The AI seemed to pick up onions when I went to collect dishes and
vice versa which helped a lot to complete the level. It was also very
quick. However there were moments where it blocked my character
from moving."

"I often find that my partner blocks my way and usually doesn’t
move out of the way. But I do notice that it considers what I am
currently holding so some collab there but I can’t communicate to
it."

"We took turns doing tasks and the AI knew what object o have
based on what I had and what went in the pot."

"We had a good system, me on dishes, him on onions, but he
changed roles at the end which slowed things down."

"Helpful because he placed the plates in a convenient location."

6.2.3 Self-play Agent

The Self-play agent generally received negative feedback from participants re-

garding its ability to cooperate with them as partners. One major theme in the

responses found in Table 11 were that the Self-play agent tried to do everything

themselves, completely disregarding the player, forcing them to try and adapt.

This is expected as these agents only train with an idealized partner and thus

expect their partner to perform the same actions that they have deemed opti-

mal. Through observation, they act quite stubbornly and scripted, which leads

to lower cooperativity ratings but still perform quite well in regards to the score

they achieve as it forces their partner to adapt to them.

This would frustrate many of the participants who would attempt to assist the

AI initially but lose motivation to once they realized that they were being ig-

nored. These attempts often involved placing ingredients at convenient positions

for the AI to use which would be ignored with the AI continually grabbing ingre-
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dients from the ingredient dispenser despite being further away. Furthermore,

another observation that we made was that collisions between participants and

the Self-play agent were very frequent and would also frustrate participants,

demotivating them from playing further.

Table 11: Self-play Agent Feedback Quotes

Data Source Participant Quotes

Questionnaire "The AI moved randomly around the workspace, blocking my
character multiple times from moving. It also picked up items and
didn’t use them which confused me. The AI was quick, which helped
occasionally."

"It doesn’t feel like AI wants to work with me compared to the last
AI [Human-trained]. I tried putting ingredients with them and they
didn’t even wait for me. It feels like the AI wants to do that role
only so I adapted. "

"The bot did everything and didn’t give me the chance to place food
in the pot."

"Similar issues to the last one [Random-action] but was more flexible
with their role."

"Sometimes/often got in the way, blocked me when i tried to
finish/help with the soup. Just running back and forth - annoying."

6.2.4 Random-action Agent

The Random-action agent expectedly received poor feedback from participants

due to not performing many actions conducive to the success of the team. The

main points of feedback as summarised in Table 12 were that the Random-

action agent did not know what to do and just simply walked around cluelessly.

A few responses instead mention that the AI took a passive approach to co-

operation, expecting the participant to initiate. This trend was also observed

as participants would mention it verbally in passing through comments such as

"I’m guessing this is the passive one".
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Through observation, we found that the Random-action agent would occasion-

ally receive relatively high cooperative ratings due to its tendency to avoid

collisions with the player. These ratings would generally come from partici-

pants who were less experienced in playing cooperative games as they would be

largely fixated on their actions rather than being concerned with the actions of

the AI agent.

Table 12: Random-Action Agent Feedback Quotes

Data Source Participant Quotes

Questionnaire "AI felt dumb, blocking my path and actions. At first easy to
understand/avoid cos they stayed in a certain section, but then after
it felt like they "didn’t know what to do" - stopped me from
delivering soup."

"The AI moved randomly around the workspace, blocking my
character multiple times. The AI would pick up items and do
nothing with them sometimes."

"The bot felt like it was expecting me to do all the tasks. It didn’t
provide big contributions to the pot."

"He was good at the dishes but he blocked the pot for long periods
of time."

"Annoying and walking around not doing anything."

6.3 Results Summary

The qualitative trends found through participant playthroughs of the experi-

ment and responses from the questionnaire are summarised as follows:

1. In regards to the score achieved, a Bayesian, non-parametric ANOVA

found that there is no significant evidence between the performance of

the self-play, human-trained and AA agents. There was however greater

variation in the score of the AA agent in comparison with the benchmark

models, as evident by a higher standard deviation.
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2. In regards to the cooperating rating each agent received, a Bayesian, non-

parametric ANOVA found that the AA agent received significantly higher

ratings compared to the self-play and random agents, and similar cooper-

ative ratings to the human-trained agent.

To summarise overarching qualitative trends in the questionnaire responses and

the observations made during the experiment by experiment hosts:

1. AI obstruction of player actions had a significant effect on the cooper-

ativity ratings an agent was given and would greatly frustrate partici-

pants. This would often overshadow otherwise great performance and

good decision-making processes by the AI agent as there were situations

where the human-trained agent or AA models that performed well in score

and cooperation received poorer ratings in cooperativity if they obstructed

player movement or actions.

2. Participants with more experience playing cooperative games would pay

greater attention to the actions of their AI partner, while in comparison,

those with less experience would largely focus on their actions. This would

result in occasionally higher than-expected opinions by less experienced

players for poor-performing agents such as the Random-action agent as

well as agents that appear competent such as the Self-play agent.

3. The AA and Human-trained agents were able to significantly better adapt

to their partner’s strategies compared to the Random-action and Self-play

agents. The Human-trained agent was typically more robust and smooth

in its adaptations to the player while the AA agent made more distinct

shifts in strategy in comparison at the cost of more instability.

79



Chapter 7 Discussion

This section will examine the findings of the results section and discuss their

potential implications. This will be done considering the experiment structure,

explaining how it affected the results and their significance.

7.1 Measuring Effective Cooperation

Effective cooperation in our experiment is the combination of how well an AI

agent can serve an unspecified, unified goal with a human partner, and how

cooperative they are perceived by the human partner. Thus, measuring the score

that was achieved by an AI agent is not sufficient in encapsulating how capable it

is in cooperating with a human partner, as a high score could have been achieved

without collaboration between them. This is evident by the higher cooperative

rating the AA agent received compared to the self-play model, despite both

having similar scores. This is especially the case for the overcooked environment

we used as it is an environment where cooperation is optional, that is, it is

possible to achieve a reasonable score as an individual. Scores, however, may

be a better indication of the cooperativity of an agent in environments where

cooperation between partners is mandatory such as certain overcooked levels

where scoring is impossible without mutual collaboration.

7.1.1 Measuring Cooperative Perception

Some qualitative measures used in our experiment include questionnaires and

observational data which effectively capture the complexity of what makes up

cooperation. The questionnaires were able to capture participant thoughts on

the agents they collaborated with, gaining deep insights about what actions

they wanted the agents to do, and what factors constituted their impression of
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the agents. Quantitative measures in isolation such as the score achieved, often

only allow for discussions on whether they are significant or not.

Firstly, participants tended to be less forgiving of AI that obstructed their ac-

tions such as moving in front of them so that they wouldn’t be able to move or

place objects where they wanted. This would strongly offset any positive con-

tributions the AI made throughout the levels as seen in Table 13. For example,

an AI that performs optimal actions and adapts to the player well would receive

negative sentiment if it ever obstructed the player, especially if it happened

more than once. We found that this was a contributing factor to the larger fluc-

tuations in cooperativity ratings the AA agent received, as when its partner’s

archetype was not clear, it would often collide with them due to sudden shifts

in decision-making.

Table 13: Feedback about obstruction

Data Source Participant Quotes

Questionnaire "The AI moved randomly around the workspace, blocking my
character multiple times."

"There were moments where it blocked my character from moving."

"The AI moved randomly around the workspace, blocking my
character multiple times."

"Sometimes [the agent] often got in the way [and] blocked me when i
tried to finish [and] help with the soup."

"I often find that my partner blocks my way and usually doesn’t
move out of the way."

Secondly, participants would not rate AI agents very highly in cooperativity

even if the AI was productive in gaining a high score, as long as the AI did

not make clear shifts in actions as a response to their actions. This is evident

in quotes found in Table 14 where participants in our experiment mentioned

changes in actions to be a factor in their perception of AI cooperativity. Fur-

thermore, these shifts in actions would often usurp effective actions in priority

81



for strong perceptions of cooperation, with participants preferring to see distinct

adaptations rather than optimal cooperative actions.

Table 14: Feedback about adaptation

Data Source Participant Quotes

Questionnaire "It doesn’t feel like AI wants to work with me... I tried putting
ingredients with them and they didn’t even wait for me. It feels like
the AI wants to do that role only so I adapted"

"The bot did everything and didn’t give me the chance to place food
in the pot."

"It did actions in sync with me at each stage of the game but we
struggled at points with stuff needing to be done but nobody holding
the right thing."

"We swapped roles quite a bit but it worked well."

"We had a good system (me on dishes, him on onions) but he
changed roles at the end which slowed things down."

7.1.2 Measuring Cooperative Motivation

Our experiment also made use of observational data which provided invaluable

insights into patterns of participant behaviour, reasons why certain cooperating

ratings were given, and why specific game scores were achieved. For example,

using only quantitative measures alone, it would have been difficult to provide

evidence for why the AA agent scores and cooperative ratings had larger vari-

ations compared to the other AI agents. However, with observational data, we

were able to discover that due to certain strategies participants implemented,

they would have very even archetypal mixtures which caused difficulties in the

AA model, which would make drastic shifts in actions.

In addition, though it has not been explored thoroughly, we found that ob-

structions in pure human teams would not result in the same degree of negative

sentiment compared to human AI teams. We believe this is the case as AI
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agents are not seen as part of the participant’s ’group’ and are instead seen as

something to be subservient to them. This corroborates with past work on the

nature of cooperation that describes it as the product of having agents with

mutual goals, which in turn induces some form of joint action to achieve mutual

goals and thus elicit some feeling of belonging [141, 171, 50, 14, 142]. AI agents

are generally not perceived to have their own goals or intentions and thus do

not elicit such a feeling. This hypothesis could be tested in other environments

where the nature of a partner as a human or AI is hidden from participants.

7.1.3 Effective Cooperation Summary

For the reasons listed previously in the section, we believe that a combination

of quantitative and qualitative measurements is needed to holistically assess the

effectiveness of RL models in cooperating with human partners. Past work in

cooperative AI in the RL space has largely avoided the use of qualitative mea-

sures despite frequent use outside of the area, in the broader field of cooperative

AI and social studies.

These measures should be designed so that in combination together, they eval-

uate different factors of cooperation. In our experiment, we found the following

trends as factors that contributed to the evaluation of AI agents by participants.

1. The result of cooperation: What impact does the AI agent have on the

team score?

2. The perception of cooperation: Does the AI agent seem to act collabora-

tively? Are there attempts to adjust their actions to adapt to a partner?

3. The motivation of cooperation: Is there a desire for the AI agent to work

with their partner? Does their partner want to work with them?

We do not believe these to be the complete list of factors that make up cooper-

ation, but are ones that we found trends for, in our experiment.
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7.2 On Mental Models of Humans

In line with expectations and other previous experiments [32], RL models that

were trained with human data performed better in our experiments in both

score and cooperative ratings compared to those that did not. It is, however,

unclear whether this was due to being able to understand the intentions of their

human partners and adapting to them respectively. We find that a more likely

explanation for its better performance is due to being robust to more strate-

gies that a partner may implement. This is because, during experiments, the

adaptations they made for their partners were minimal and appeared more like

a self-play model that was less focused on a singular role and was capable of

fulfilling a supportive role. This robustness may be suitable to small environ-

ments where the possible approaches for cooperation are limited, such as the

level of Overcooked we used for the experiment, but will likely struggle to be as

effective in more complex environments. An example of this is the game ’Dota

2’ where strategies are larger and involve the execution of smaller objectives

over a long time horizon [129]. This implies that it is not entirely sufficient

to simply use human data and expect that a meaningful understanding of dif-

ferent human strategies or personalities would be developed in RL models in

the form of a state-action value function. Rather, it is necessary to construct a

stronger understanding of player personalities to then be represented as part of

the environment for effective cooperation to occur.

7.2.1 Reasons for Mental Models

Using a similar approach to Strouse et al. [162], combined with archetypal

analysis, we found that a model without any human data could still achieve

similar results in score and perceived cooperativity. This was likely the result

of the aforementioned argument of robustness as the AA model was exposed

to a wider range of strategies compared to the self-play model. Though our
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approach did not produce a model that performed significantly better than

other benchmark models, a likely reason for this is that the environment we

used to test these models did not put a strong emphasis on requiring quality

teamwork between the agent and its partner to achieve a high score. It was

perfectly possible to get a high score simply through efficient movement and

actions, without any coordination with a partner. For example, when the player

would deliver dishes then the AI agent would prepare the food, when the player

prepared dishes then the AI agent would deliver dishes. Though there were

some nuances such as the agent playing food on tables so that they were in

more convenient locations for the player, the decisions were not overly difficult

to replicate in a traditional state-machine-driven AI agent. As a result, there

was less benefit to having a strong ability to adapt that our model had, and

standard self-play models were sufficient to succeed in the environment.

Though the framework we used to develop the AA model did not make a signif-

icant improvement in the performance of the model compared to other models

as measured by scoring, it did significantly improve how cooperative it was per-

ceived by human partners due to its ability to make significant adaptations.

Combined with the flexibility of our approach, it can easily serve as a wrapper

for new and existing AI agents to improve adaptiveness. This is because our

approach can effectively be condensed into computing AA on existing play data

and using a partner’s existing play data as a heuristic for informing decisions.

This is not restricted to just RL models and can be used to improve traditional

state-based models. An example of how this could be implemented is by com-

puting the archetype mixture of a player and using that in conjunction with

other environmental information to determine the appropriate action.

7.2.2 Archetypal Analysis for Developing Mental Models

Although it is likely the case that our approach does not result in the emergence

of true cooperativity, we found that the use of clustering algorithms for the
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classification of player strategy does improve AI alignment and coordination

with humans. The use of archetypal analysis to find innate patterns in a dataset

of play data and effectively classify playstyles was a large component of this

success. Though slower than comparable modern clustering techniques such as

DBSCAN, AA aligns closer in function to work done in the field of psychology

relating to human personality, including the Big Five and HEXACO models.

We worked around its large runtime complexity by running it offline and then

passing its output archetypal profiles to an ensemble model as a heuristic for

choosing actions of different cooperative models. This does limit our model to

only infer the needs of a partner based on previous training data and means that

if the complete range of playstyles were not captured during training, it may

struggle to wholistically represent its partner’s playstyle as a combination of

existing archetypes. In addition, there is no guarantee that the model matches

the partner’s preferences or is aligned with them as their needs are imposed on

them.

What our framework did succeed in was creating the perception of cooperation.

This was through distinct shifts in actions in response to the strategy of the AI

agent’s partner. Evidence of this came from observational data, and feedback

from questionnaires. Quantitatively, this did not have a significant impact on

scores, but it did have an impact on the variation of scores, performing well for

those with a strong archetypal alignment. We believe archetypal analysis was

not a limiting factor and more work could be done in action selection using en-

semble learning. We present opportunities for work in regard to these problems

in chapter 8.4.

7.2.3 Mental Models Summary

For the reasons outlined in this section, we believe that producing better men-

tal models of human partners in RL agents will improve their cooperativity.
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Archetypal Analysis is the technique we used to achieve this, which believe,

theoretically, is an effective approach as it creates a model that aligns with

work in psychology research, which is also understandable for humans. The RL

agent we developed using AA and ensemble learning proved to be capable of

classifying human strategies and adapting to them, though suffered from dras-

tic action shifts when partner archetypes were unclear. Despite this, the agent

was developed with little additional cost compared to a typical self-play agent

while significantly improving the adaptiveness to different partners, and how

cooperative it was perceived.

7.3 Discussion Summary

In this chapter, we provided interpretations of the results of the experiment we

ran, and summarised their implications. We first discussed the importance of

combining quantitative and qualitative data for measuring the effective coopera-

tiveness of RL agents. Next, we explored the value of developing mental models

of human partners in AI agents for improving adaptiveness and perceived coop-

erativity. The use of Archetypal Analysis was justified for the construction of

these models due to the similarities it shares with existing frameworks used to

evaluate human personality.
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Chapter 8 Conclusion

We proposed a novel method that is simple to include in existing RL approaches

and that has demonstrated promising results in making AI agents more coopera-

tive with human partners. This was achieved by taking advantage of a clustering

algorithm called archetypal analysis to better understand human partners and

adapt to their actions. In doing so, we have established a promising direction for

future research towards improving the cooperative capabilities of reinforcement

learning models.

8.1 Thesis Overview

The thesis aimed to investigate whether the use of clustering techniques could

be used to model human personality to improve the ability of AI models to

cooperate with human partners. To guide our work, we proposed two research

questions:

1. (RQ1) Is archetypal analysis suitable for use in a cooperative RL agent?

2. (RQ2) What methods are capable of measuring AI alignment with hu-

mans?

To address these questions, we developed a flexible framework to train a coop-

erative agent referred to as the ‘AA agent’ throughout the thesis, which was

compared with benchmark models in a cooperative testbed ’Overcooked’. The

framework works by finding archetypal playstyles in a dataset of playthrough

data, training self-play models with each archetype to produce tailored policies

for each, and then using ensemble learning to stochastically select the appropri-

ate policies to cooperate with a novel human partner during run-time based on

their archetypal mixture.
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8.2 Contributions

In this section, we address the research questions proposed at the beginning

of the thesis by summarising the conclusions that were reached as part of our

experiments.

8.2.1 Research Question 1

(RQ1 - A) Archetypal analysis (AA) is effective for classifying player person-

alities and strategies and shows potential for use in the setting of cooperative

RL agents. Based on our results, we found that our archetypal agent which

was not trained on human data received higher levels of perceived cooperation

by participants compared to self-play models and similar levels of perceived co-

operation as RL models trained on human data. This was due to the agent

demonstrating distinct shifts in actions depending on the user’s personality and

strategy, suggesting that formulating a better understanding of human partners

enables higher levels of perceived cooperation.

(RQ1 - D) AA integration into the RL context is however limited by the algo-

rithm’s high computational complexity. To be integrated into an RL architec-

ture, AA is too expensive to be run in real-time which means that the algorithm

needs to be precomputed offline and will be unable to find new playstyles and

strategies during run-time. As such, if not all archetypes are found from the

initial dataset of playstyles that AA was run on, the algorithm may not be able

to effectively model a human partner with a distinct, unseen personality. (RQ1

- B) Though this problem still exists, we were still able to successfully create

an effective cooperative agent by using ensemble learning to switch between

distinct cooperative policies deemed to be the best fit for a human partner’s

’archetype’.
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(RQ1 - C) These findings imply that clustering techniques such as AA can be

used to model human profiles which can supplement the effectiveness of existing

RL agents. Though we used these profiles to inform an ensemble learning ar-

chitecture’s selection of the appropriate cooperative policy, the human profiles

developed through clustering could easily be used for any general RL agent.

For example, instead of training two RL agents naively with one another, using

clustering algorithms to improve their mental models of each other based on

their actions could assist with their cooperativity.

8.2.2 Research Question 2

(RQ2 - A, B) Previous methods for comparing the cooperativity of RL models

with human partners have typically come in the form of quantitative measures

such as average rewards per episode [32] or the total score achieved by them

[162]. However, these methods overlook important factors unique to cooperative

contexts such as how cooperative they were perceived by and whether they made

sufficient adaptations to their partners.

(RQ2 - C) To provide a more comprehensive understanding of the effectiveness

of RL models in a cooperative setting, we integrated qualitative measures such

as questionnaires and participant observations into our experiment. These were

beneficial for assessing how participants felt about each RL model and extracted

far more information about the cooperativity of each model compared to solely

using quantitative metrics.

(RQ2 - D) The limitations of our approach in comparing the cooperativity of

the agents are that reviews were generally overviews of the experience with

few references to specific moments. This was because participants filled in the

questionnaire after play and thus though they were fresh out of playing the

game, it was difficult for them to refer to specific moments and discuss them in

greater detail. We believe that by recording the playthroughs of the participants
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and stepping through different stages of their playthrough and discussing what

they were thinking and expecting their AI partner to do, we would have been

able to gather more informative results.

These findings imply that quantitative measures are insufficient for wholistically

measuring how cooperative an AI agent is. Though metrics such as scores can

provide indications for how well an RL model performs on its own, it does not

have any implications on the cooperativeness of the model.

8.3 Limitations

This section outlines a few limitations of the work presented in this thesis.

8.3.1 Lack of access to benchmark data

Firstly, our ability to compare the experimental AA agent with benchmark

models, such as the human-trained model, was limited due to the lack of access

to the specific human data used to train the benchmark model. Although it

was possible to develop our human-trained models using data of our own, we

determined that our results would be more valuable and credible if they were

directly comparable to models from established previous work.

8.3.2 Small number of participants

Secondly, our study was limited by the relatively small number of participants

involved in the experiments. A larger sample size would have provided a more

robust statistical foundation for our findings, allowing for a greater degree of

confidence in our conclusions. Specifically, a larger participant pool would have

enabled us to perform a more granular analysis of agent performance across

different player skill levels. Throughout the experiments, we observed that more
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experienced players tended to rate both the human-trained and AA models more

favorably, whereas less experienced players showed a preference for the self-play

agent. However, due to the limited number of participants, particularly within

each skill level, we were unable to draw definitive conclusions about these trends.

8.3.3 Limited environments

Additionally, our research was constrained by the limited number of environ-

ments in which we tested the performance of each agent. Ideally, testing across

a wider variety of environments as well as more complex environments would

provide deeper insights into the generalizability of the different agents. Such an

approach could reveal additional strengths and weaknesses of the AA agent that

may not be apparent in our work. However, the development and training of

novel agents for multiple new environments require substantial computational

resources and time that were not available to us during the project. This lim-

itation restricted our ability to fully assess the versatility and adaptability of

the AA agent across diverse scenarios.

8.4 Future Work

Our use of archetypal analysis as a heuristic for ensemble frameworks to better

adapt to human partners is flexible, generalizable, and can easily be included in

most existing model designs. However, throughout development, we found that

there were a variety of directions that could be taken to improve the model.

8.4.1 Smoothing the transition between strategies

We found that a significant issue our model faced was the moments of indeci-

sion it faced when their partners did not align strongly with any archetypes.

A potential approach to addressing this is by having the model stochastically
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choose a series of actions in the form of an action plan tailored towards a given

archetype as opposed to a single action to perform.

8.4.2 Replacing self-play models with models trained with human

proxies

For more simple levels, self-play agents appeared sufficient to generate diverse

playstyles; however, for more complex environments and to create more unique

strategies, the use of human data could greatly improve performance. As seen

in Carroll et al. [32] there is no reason behaviour cloning could not be used to

generate an improved dataset.

8.4.3 Increase or optimize the features observed

For the AA agent we trained for our experiment, we hand-picked features that

we believed were the most important in identifying playstyles. This is, however,

prone to error and is in no way optimal. Techniques could be implemented to

better choose relevant features or a greater number of features could be tracked

to generate more meaningful archetypes. As archetypal analysis also reduces

the dimensions of the data, it should scale quite well with additional features.

8.4.4 More meaningful adaptations to non-archetypal partners

Currently, if partners do not fit into an archetype, the AA agent adapts by

weighting the chances of different archetypal actions accordingly. However, this

could done better. In human-human interactions, when cooperating with a

partner, humans do not just randomly choose strategies that they believe their

partner is in between. Therefore, AI agents should not do this either. Rather,

new strategies often emerge, and so instead of weighting stochastic outcomes

based on the partner’s alignment with archetypes, the weights of the model
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could be scaled directly. This is an unexplored area and will likely require

greater advancements in the field of explainable AI before anything significant

can be achieved.

8.4.5 Faster clustering algorithms

AA and many other clustering techniques are quite slow in general and are not

suitable for being computed in real time. This means that they may not be able

to easily adapt to new playstyles that emerge during run-time. This currently

makes gathering a diverse set of playstyles offline important to be effective at

representing the player. Work in enhancing these algorithms to be able to run

in real-time could overcome these limitations and make adaptation to emergent

playstyles possible.

8.4.6 Shared mental models

The use of clustering demonstrated in this thesis only affects the AI understand-

ing of the human partner while having minimal impact on the human under-

standing of the AI. Though this is a step towards cooperative AI, we believe that

more work on developing a mutual understanding is needed. A simple display

of the AI’s current strategy could help inform their human partners more about

them but we believe a more promising direction would be to pursue concrete

ways of implementing shared mental models.
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Chapter 9 Appendix A

Figure 13: Inferential Plots of Bayesian Wilcoxon Signed-Rank Tests for Score:

(Top-left) AA and Self-play, (Top-right) AA and Random, (Bot-left) AA and

Human-trained, (Bot-right) Self-play and Human-Trained agents
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Figure 14: Inferential Plots of Bayesian Wilcoxon Signed-Rank Tests for Cooperative

Rating: (Top-left) AA and Self-play, (Top-right) AA and Random, (Bot-left) AA and

Human-trained, (Bot-right) Self-play and Human-Trained agents
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